
 
Fig. S1:  AR and ASCL1 gene expression in histology and pathology groups. 
(A) AR expression is significant higher in samples with positive AR IHC stain. There is little but not no expression of AR 

in the samples with no AR staining.  
(B) ASCL1 expression is significantly higher in samples with positive INSM1 IHC stain.  
(C) AR expression is highest in AD tumours, followed by Mixed then NE tumours.  
(D) ASCL1 expression is comparable between AD and NE tumours while rare in AD ones.  
The statistical test used was Wilcoxon rank test.  

 
 
 
 
 
 

 



 
Fig. S2: Expression of AR related, NE phenotype, cell cycle, GI, WNT subtype, and stem-cell-like subtype in 
tumour cells across all lesions of individuals.  
(A-G) Signature expression in CA27, CA43, CA35, CA76, CA83, CA46 tumours, respectively. The genes belonging to 
each signature is presented in Supplementary Table S2. Limited inter-lesion heterogeneity was shown by the six 
signatures. Expression of signatures was uniform except proliferating tumour cells clustered. Importantly, the cell 
populations with low AR or NE signatures were not further explained by the rest signatures, showing no distinguishment 
between CA83 lung and other CA83 tumours in E. The NE signature has zero expression in all AD samples, little in 
Mixed samples and more in NE samples while interestingly, AR signature expression was found in NE tumours.  
  



 
Fig. S3: UpSet plots showing the SNVs intersection between lesions of individuals. 
(A-I) UpSet plots of all patients. Little genetic inter-lesion heterogeneity was observed as most SNVs were shared 
between all samples within patients, similar number of SNVs were called among lesions and a similar proportion of SNV 
impacts were identified, with the only exception being the fat and lung samples of CA83. The height of the bar represents 
the number SNVs overlapped between samples linked in the below panel. The colours of the bar are split by impacts 
annotated by VEP. Besides SNVs shared by all lesions, tumours from the same organ were more likely to share SNVs.  
  



 
Fig. S4: Non-tumour cell composition across samples. The normal cell composition varied across samples and 
patients, with some association with organ and pathology class (Fig. 3F). Neuron cells were exclusively found in CA90 
samples, except the lymph nodes.  
 
  

12%

6.5%

21%

12%

34%

8%

11%

20%

14%

45%

4.4%

5.1%

22%

5.1%

28%

33%

11%

13%

15%

47%

11%

46%

4.9%
4.4%
4.9%

9.8%

23%

33%

11%

3%

12%

7.4%
3%

24%

4.7%

5.4%

20%

26%

36%

8.3%

12%

25%

10%

30%

11%

6.7%

6.5%

11%

17%

15%

4.9%

39%

17%

39%

17%

5%

16%

19%

16%

36%

4.9%

15%

4.9%

28%

31%

15%

20%

4.6%

46%

34%

9.4%

3.7%

21%

20%

15%

15%

24%

32%

4%

48%

4%

11%

21%

20%

3.6%

42%

7.4%

4.7%

23%

25%

30%

3.5%

10%

7.3%

35%

6.3%

43%

3.1%

7.7%

6.4%

41%

6.8%

33%

4.7%

11%

36%

25%

20%

15%

21%

19%

8%

28%

7.2%

65%

33%

25%

15%

7.8%

19%

4.7%

17%

8.6%

25%

20%

32%

17%

14%

23%

15%

5.9%

31%

8.1%

6.2%

25%

36%

23%

9.4%

27%

8.1%

41%

6.8%

14%

17%

30%

26%

6.4%

17%

52%

29%

8%
3.5%

5.1%

21%

11%

3.2%

15%

12%

9.6%

17%

12%

4.8%

63%

9.6%

12%

7.2%

17%

31%

34%

14%

3.7%

10%

54%

3.7%

14%

3.7%

AD Mixed NE

CA34 CA35 CA43 CA76 CA83 CA27 CA58 CA46 CA90

liv
e

r 
1
1

liv
e
r 

8

L
N

 2

b
la

d
d
e

r 
2

L
N

 1

liv
e

r 
1
2

liv
e
r 

7

L
N

 4

b
o

n
e

 1
7

liv
e

r 
4
0

b
o

n
e

 2
5

L
N

 4
7

liv
e

r 
4

9

lu
n

g
 5

5

L
N

 1
2

d
u

ra
 1

3

d
u

ra
 1

4

L
N

 1

p
ro

s
ta

te
 9

L
N

 5
0

liv
e

r 
2
9

liv
e

r 
3
8

L
N

 5

liv
e

r 
1

2

lu
n

g
 7

L
N

 1
5

L
N

 1
9

p
ro

s
ta

te
 1

7

a
b

d
o

m
e

n
 1

3

b
ra

in
 2

liv
e

r 
4

3

L
N

 3
9

L
N

 5
2

0.00

0.25

0.50

0.75

1.00

C
e
ll 

P
ro

p
o

rt
io

n

Cell Type

T cells

B cells

Plasma cells

Macrophages

Neurons

Hepotocytes

Epithelial cells

Endothelial cells

Lymphatic endothelial cells

EndoMT

Fibroblasts

Adipocytes

Pericytes

Chondrocytes



 
Fig. S5: Composition of archetype modules across samples and sites, and association with AR and 
ASCL1 gene expression. 
(A) Composition of archetype modules across samples. The legends are the same as in panel B.  
(B) Composition of archetype modules across organs. There was no organ specific pattern of module 

composition in cells with an absolute module annotation (top) or in a transition state (bottom).  
(C-D) Expression AR and ASCL1 in cells based on their module annotation. Modules were ranked based on 

gene expression level. The AR gene has the highest expression in cells annotated as belonging to the 
AR module group, followed by those annotated as being from the Inflammation and Glycolysis module 
groups. ASCL1 has highest expression in cells of the NE1 Module, and lower in those of the NE2 and 
Cycling Module. The Spearman correlation adjusted p values are less than 10-16.   

(E) Spearman correlation between module signatures expression and expression of AR. AR is most 
positively correlated with AR Module expression, followed by the Inflammation Module, and is negatively 
correlated with the rest modules.  
(F) Spearman correlation between module signatures expression and expression of ASCL1. NE1 is more 
correlated with ASCL1 expression than NE2. The Spearman correlation adjusted p values are less than 
10-16, except the p value between Module 6 and ASCL1 expression is 9.8x10-44.  

 



 
Fig. S6: Expression of NE1 and NE2 signatures in tumour cells of CA90 primary tumours.  
(A) Expression of AR, ASCL1, NE1 and NE2 signatures in tumour only cells of CA90 primary prostate tumour 

site 13.NE2 expression was higher in the right small cluster than in the rest of the cells.  
(B) Expression of AR, ASCL1, NE1 and NE2 signatures in tumour only cells of CA90 primary prostate tumour 

site 18, showing homogenous expression of NE1 and NE2 signatures.  
Tumour cells were separated from normal cells through SingleR annotations.  

  



 
Fig. S7: Subclone overview for CA27 and CA58 with AR and ASCL1 expression. 
(A) Joint subclones inferred by ATAClone for all lesions of CA27. The subclones shared most background CNVs 

originated from the same ancestor. The evolutionary relationship of metastases was not linear, with subclones in 
the different metastases not being direct daughters of one another. The LN sample has the greatest number of 
subclones and distinct amplifications.  

(B) UMAP of tumour cells of CA27 with expression of AR and ASCL1 grouped by subclones. All the subclones have 
comparable AR expression. ASCL1 expression is also shared across subclones, suggesting the emergence of NE 
subpopulations was spontaneous across subclones. Inter-lesion clusters are mostly, but not always, dominated by 
one subclone.  

(C) Joint subclones inferred by ATAClone for all lesions of CA58. Livers and LN 50 subclone 3 cells have more CNV 
than the rest subclones. Although the liver samples have NE signatures, they are distinct clones. The LN 50 
subclone 3 is the most distinct subclone.  

(D) UMAP of integrated tumour cells of CA58 with expression of AR and ASCL1 grouped by subclones. There is a 
cluster in NE cells in the LN sample, which all belong to subclone 3. This subclone has both AR+ and ASCL1+ cells. 
Their CNV profile is more similar to the other subclones of LN 50 rather than the liver clones, indicating that 
emergence of NE features in this subclone was separate to the emergence of NE in the liver samples.  

  



 
Fig. S8: Expression of therapeutic targets including FOLH1, STEAP1/2, ROR1, DLL3, CD276, HOXB13 and 
mCRPC phenotypic markers (AR and ASCL1) across tumour cells in our cohort. FOLH1 had the strongest 
expression, followed by STEAP2 and STEAP1. STEAP2/1 had high expression in ARlow samples (e.g. CA27), which 
have the most consistent expression to FOLH1. ROR1 had limited expression except CA76 samples with low FOLH1 
expression. CD276 and HOXB13 had very weak expression across cells with their relation to FOLH1 expression 
remains unclear in this cohort. DLL3, a potential NE marker, had a sparse low expression in NE samples. Except CD276 
and HOXB13 with barely any expression, STEAP1/2 had a largest potential to be complementary to FOLH1 therapeutic 
range while DLL3 could target FOLH1 negative populations (NE samples).  
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Supplementary Note 1 
Identifying and subtyping non-tumour cells  

 
 
There were in total 36,108 normal cells across all our samples, which included immune populations, such as T cells, B 
cells, plasma cells, and macrophages, stromal populations, such as fibroblasts, adipocytes, endothelial cells and 
pericytes, as well as epithelial cells and neurons, and organ-specific normal cells such as hepatocytes, chondrocytes 
(Fig. 3E). 
 
The cell types were identified through typical markers explained in next sections and shown in (A). B cells were 
characterized by MS4A1 (CD20), CD83 expression and BANK1 which involves in B cell signalling pathway1,2. T cells 
remained poorly differentiated as there was a weak signal from the cytotoxic marker CD8A and the CD4+ T cell marker 
CD4, but there was overexpression of CD2473. We also identified macrophage cells based on the expression of CD86, 
CD163 and FMN1. The proportion of T cells and B cells was concordant with the cell proportion estimate from 



histological staining with CD3, CD8 and CD20 but a non-significant correlation was found between the proportion of 
macrophages and CD68 stain intensity (Supplementary Note 4). 
 
We also identified large clusters of cells expressing typical fibroblast markers DCN, LUM, and LAMA2. Collagen genes 
were largely expressed in fibroblasts but also in other fibroblast-like cells such as adipocytes and pericytes4,5 (A). 
Adipocytes were characterized by having a high expression of LAMA2, MIR99AHG, TRPC4 and KAZN, while pericytes 
upregulated ABCC9, RGS5 and EBF2 instead. VWF was used to annotate endothelial cells and the expression of 
BTNL9 and FLT1 highlighted the vascular endothelial growth and angiogenesis associated with tumour growth6–8. 
Lymphatic endothelial cells had specific marker expression (PKHD1L1, CD36, PROX1) and separated from common 
endothelial cells (A).  
 
Hepatocytes showed distinct typical signatures like CP, ALB and SORBS2 (A). Neurons were enriched with astrocytes 
makers such as NRXN1, and also genes associated with neuron development (CSMD1), and excitatory signaling 
(CADM2) 9–12. Epithelial cells were identified as expressing with WFDC2 and EPCAM but also upregulated cancer-
associated genes like EHF, TMC5 13,14. Chondrocytes, or osteoblasts, if considering the source of this cell type was 
bone, upregulated IBS, P SATB2 and INSC (A). 
 
To dive deeper into the functional status and immune subtypes, we extracted and re-analysed each immune population 
separately (B-D). As B cells primarily expressed naïve and memory markers like BANK1, CD83, and MARCH1, 
subclustering did not enable the identification of cell subtypes other than plasma cells (B) 2,15. T cells also overexpressed 
naïve markers, and fully differentiated CD4 and CD8 T cells were not revealed by subclustering, but regulatory T cells 
with markers IL2RA, RTKN2, and IKZF2 were identified and mostly found in CA83 and CA903,16 (C). Although lack of 
canonical T cell subtypes, DEA between T cells subclusters found signatures linked with defective immune response 
and immune-suppressive behaviour like THEMIS and BCL2 17,18 (C). Tumour-associated macrophages (TAM), with 
markers SPP1, CD83 and CD109 and even a small group of cells with additional angiogenesis markers like VCAN, 
dominated the macrophage population (D). The rest of cells were either tissue-resident macrophages (TRM) (F13A1, 
LYVE1 and CD163L1) or macrophages with no clear subtype markers19. The majority of macrophages were found in 
CA83 (36%) and mostly in lung samples (33%) (D). 
 
We followed a similar procedure with stromal cells, and, contrary to immune populations, we identified organ-specific 
subtypes and distribution (E-G). For endothelia cells, liver and LN had specific endothelial cell types while artery 
endothelial cells were found to be enriched in LN and bone, suggesting a role on immune modulation with active 
angiogenesis (E). Epithelial cells in the dataset primarily belonged to the prostate of CA27 sample. We identified a 
number of epithelial subtypes, including basal (VAV3, TP63), luminal (CPA6, ALDH1A2) and ciliated (ADCY2, PTPRN2) 
subtypes20 (F). Organ specific epithelial cells, although a small population, were also found in liver and lung as liver 
epithelial cells (BICC2, GLIS3, CTNND2) and alveolar epithelial cells (ABCA3, SFTPB), respectively (F). The cluster of 
fibroblast cells was the largest stromal cell population, and included several subtypes, including adipose, chondrocytes, 
pericytes, myofibroblasts and smooth cells. Except adipocytes (LSAMP, TRPC4) and chondrocytes (IBSP, SATB2), 
which were primarily in CA27 prostate and CA76 bone, other subtypes such as pericytes (ADAMTS9,  EBF1), 
myofibroblasts (COL3A, VCAN), and smooth muscle (ACTA2, MYH1) were seen mostly seen in liver and LN (F) 4,5,21  



Supplementary Note 2 
NE1 and NE2 dissect NE phenotype plasticity  

 
 
We aimed to investigate whether the NE1 and NE2 Modules represented different stages of NE development. There 
was high expression of both NE1 and NE2 Modules in purely NE samples such as lesions from CA46 and CA90 and 
liver lesions from CA58 (A). However, there were marked differences in the patterns of expression within each lesion, 
with solely high expression of NE1 or 2 (NE1high or NE2high), or a combination in a subset of cells (NEmixed). We therefore 
hypothesized that NE1 might represent a more differentiated NE state better correlated with ASCL1, while NE2 might 
represent a transitory, plastic state from adenocarcinoma. We checked the expression of the signatures in primary 
tumours of CA90 prostate and found positive expression of NE1 and NE2 Modules in the low AR and ASCL1 negative 
context (Fig. S6). Here, the NE2 Module showed specifically higher expression in a small group of cells which could be 
undergoing a transition process similar to CA27 (A).  
 
To dissect this, we investigated the lesions from CA27, as all lesions had a combination of both phenotypes. We first 
focused on the CA27 dura 13 sample since the development of NE phenotype from amphicrine cells was free from 
subclone evolution in this sample (B). To capture the developmental expression trajectory from adenocarcinoma cells 
to NE cells, we performed pseudotime analyses and estimated the trajectory paths between archetype module cells, 
using the AR module cells as the starting point. Cells were divided into NE2high, NEmixed and NE1high groups. We found 
that NE2 had a high expression level in a larger cell population than the NE1 signature (B). Pseudotime analyses 
identified that NEmixed cells showed the furthest distance from the AR module, suggesting a more matured state when 
there was co-expression of both signatures (Fig. 4D). In contrast, NE2high cells were positioned between the AR module 
and NEmixed cells while NE1high cells were rare in this sample, considering its expression in other NE samples in patients 
with clinical diagnosed NE like CA46 and CA90. Overall, NE1 and NE2 signatures indicate different NE states.  



Supplementary Note 3 
Evaluation of NE1 and NE2 signatures in external and pre-clinical public data 

sets 
 

We investigated the expression of NE1 and NE2 signatures in external datasets. First, we investigated the single-cell 
study by Dong et al. who profiled six mCRPC patients, including two tumours (patients 4 and 6) that were positive for 
AR and INSM1 on histology22 (A). As expected, in both patients there were cells co-expressing AR and ASCL1, 
suggesting a transition state. In cells of Patient 4, where there were fewer amphicrine cells and lower ASCL1 levels, 
with overexpression of NE2. In contrast, in Patient 6, cells with higher ASCL1 had higher expression of NE1 than NE2. 
The observation was concordant with our hypothesis that NE1 and NE2 describe two NE subtypes with NE1 more linked 
with ASCL1 expression, while NE2 is more linked with transitioning, and NEmixed is the most differentiated state (A).   
 
We also investigated the expression of these signatures in CRPC samples from Prostate Cancer Atlas23 (B). NE1/NE2 
ratios were higher in low AR samples, in both CRPC and NEPC samples, with the trend being strongest in NEPC 
samples. Similarly, NE1/NE2 ratios increased with ASLC1 levels. This is consistent with NE1 showing its highest 
expression at end-stages of NEPC development (low/no AR and high ASCL1), while NE2 is higher during NE 
transitioning stage where both positive AR and ASCL1 (lower than end-stage NE) was observed, consistent with 
emerging earlier in neuroendocrine development. 
 
In the xenograft models developed by Living Tumour Lab24 treated with testosterone (GSE41193), a subset develops 
androgen-independence, and one model developed NEPC (LTL-331) (C). The model that developed NEPC showed the 
highest NE1/NE2 ratio at baseline. This ratio subsequently decreases with androgen independence but is still the highest 
of all xenografts. This suggest that NE1 and NE2 are sensitive to detect NEPC transformation at early stages of disease 
development.  



Supplementary Note 4 
Correlation between cell type proportions inferred from snRNA data and from 

immunohistochemistry (IHC) 
 

 
 
To validate the proportion of microenvironment cells in our data that were derived from the snRNAseq data, we 
performed staining of CD20, CD8, CD3 and CD68, to quantify B cells, CD8 T cells, T cells and macrophages on matched 
FFPE tissue sections. These show significant positive correlations, except between CD68 staining and macrophages. 
The IHC staining was done on slides of the same tissue samples as the fresh frozen samples used to generate the 
snRNAseq data. Therefore, complete matched cell composition was not expected. The Jonckheere-Terpstra (JT) and 
Spearman correlation tests were used to quantify the relationship between the IHC stain positive area proportion and 
the corresponding cell type proportion to the total cells of tissue.   
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