
Supplementary Material 

1. Empirical laws interpolation for the Aegean Sea region 
The first thing to do to set up QuakeUp for this event is to interpolate region-specific laws that 
correlate the PGV and the magnitude to the quantities measured on the P-wave time window 
chosen. We used seismic events of different magnitudes occurred in the region to calibrate the laws 
that QuakeUp needs to perform its estimations. The data for this calibration were taken from the 
accelerometric waveform recorded by the stations in the area during nine events, occurred in the 
Aegean Sea. The events with their magnitude, location and date of occurrence are listed in 
Supplementary Table S1. 

Supplementary Table S1. In this table we report the origin time, the epicentral location, the 
hypocentral depth and the magnitude values of the events used to calibrate the empirical laws for 
the Aegean Sea region.  

 

We didn’t use the main event for the calibration of the laws, but we used moderate events with a 
magnitude range from 5.6 to 6.9. The location and the magnitude of each event were taken from the 
IRIS Bulletin, where also the recorded waveforms are available [1]. The events were used to 
interpolate the coefficients for equations 2 (see main text), obtaining the following equations  

 𝑀
𝑤
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(S1) 

Origin Time (UTC) Latitude (deg) Longitude (deg) Depth (km)  𝑀
𝑤

2021/08/01 
04:31:25 

36.3958 27.0112 10.13 5.6 

2011/02/28 
07:48:52 

34.8667 25.4535 54.7 5.7 

2020/01/30 
11:21:31 

35.2254 27.8103 10 5.8 

2019/11/27 
07:23:42 

35.7272 23.2673 71.76 6.0 

2011/04/01 
13:28:49 

35.7317 26.5466 75.5 6.1 

2013/06/15 
16:11:02.00 

34.4507 25.0440 21.5 6.3 

2017/07/20 
22:30:48.04 

36.9249 27.4135 7 6.6 

2020/05/02 
12:51:06.94 

34.2045 25.7124 17 6.6 

2014/05/24 
09:24:15.62 

40.2763 25.3698 8.2 6.9 



Where the moment magnitude ( ) is expressed as a function of the logarithm of the 𝑀
𝑤
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𝑤
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hypocentral distance  and the logarithm of the peak in acceleration, velocity and displacement (𝑅
 and  respectively). We notice that the equation for the acceleration parameter has a slightly 𝑃

𝑎
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𝑣
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higher standard error compared to the other two. The magnitude estimated from the acceleration 
shows also a very low dependence from the distance  compared to the other two magnitude 𝑅
estimations, which is a not very common behavior for such equations. The data and the fitted laws 
with their uncertainties are reported in figure S1. 

Supplementary Figure S1. Equations S1 are reported visually here (black solid lines) together with 
their standard errors (dashed lines) and the data used for the calibration (grey dots) 

 

The data from the same events reported in Table S1 were used to interpolate also the relations 
correlating the PGV to the P-wave amplitudes parameters (equations 1 in the main text) obtaining 
the following values 

 𝑃𝐺𝑉𝑎 =− 0. 62 + 0. 61⋅𝑃
𝑎
    𝑆𝐸 = 0. 4

 𝑃𝐺𝑉𝑣 = 0. 61 + 0. 72⋅𝑃
𝑣
    𝑆𝐸 = 0. 4

 𝑃𝐺𝑉𝑑 = 0. 78 + 0. 44⋅𝑃
𝑑
    𝑆𝐸 = 0. 5

(S2) 

Where three onsite values of the  are obtained as a function of the logarithm of the P wave 𝑃𝐺𝑉
amplitudes in acceleration ( ), velocity ( ) and displacement ( ). Once again, we notice that the 𝑃

𝑎
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𝑣
𝑃

𝑑

retrieved coefficients for the region are different from the ones obtained for the other two analyzed 
cases. In Figure S2 we show the obtained laws, and the data used. 

 

 

 

 



Supplementary Figure S2. The three interpolated laws (black solid lines) are represented with the 
data used to retrieve them (grey dots). The standard errors of each law are represented as black 
dashed lines.  

 

Finally, to perform the simulation we set the GMPE for the region, using the laws provided by 
Akkar and Bommer [2].  

2. Empirical laws interpolation for the simulations in the Messina Strait 
To simulate a real-time performance of QuakeUp, the attenuation laws for the case must be 
interpolated. This interpolation is particularly relevant in this case, because we are analyzing 
simulated events and not real ones. In principle, they should follow attenuation relationships similar 
to the one calculated on real data, but considering that not all the frequencies are modelled, we can’t 
be sure about that. This is the reason why we interpolated not only the laws involving the P-wave 
amplitude parameters, but also the GMPE. To do that we used the functional form proposed by 
Bindi at al. [3] and reported in equation S3 
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Where  can stand for PGA or PGV, but, considering that QuakeUp uses the PGV value for all the 𝑌
prediction, we will use the PGV to interpolate the law. The functions  and  represent the 𝐹

𝐷
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dependence from the distance and the magnitude. The function  is expressed as  𝐹
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Where  is the epicentral distance,  is a reference distance (fixed to 1 kilometre),  is a constant 𝑅 𝑅
𝑟𝑒𝑓

ℎ

reference depth ( ,  is the magnitude and  is a fixed reference magnitude value (ℎ = 7. 9) 𝑀 𝑀
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Where  is the magnitude and  is another constant reference magnitude value ( ). In 𝑀 𝑀
ℎ

𝑀
ℎ

= 6. 75

equation S3 the term  refers to the linear site amplification factor and the term  accounts for 𝐹
𝑆

𝐹
𝑠𝑜𝑓

the faulting style correction. We ignored these two terms in our regression, setting them two zero, 
since their usage is not implemented yet in QuakeUp. Using the same criteria also the coefficients 

 and  are set to zero. The coefficient  was originally set to zero by the authors of the GMPE 𝑏
3

𝑐
3

𝑏
3

[3]. If we write down the whole equation explicitly, we obtain the functional form that was used in 
the interpolation procedure 
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All the coefficients  and  in equation S6 have been interpolated, obtaining the GMPE used in 𝐴
𝑛

𝐵
𝑛

QuakeUp. An example of these law is shown in Supplementary Figure S3.  

Supplementary Figure S3. The figure shows the interpolated law (black solid line) with its 
uncertainty boundaries (1 standard deviation, dashed black lines) of three magnitude 7 events 
simulations. The solid blue line represents the GMPE proposed by Bindi et al. [3] for the same 
magnitude value. The PGV data at each station for the events are represented as grey dots as a 
function of the epicentral distance. 

 

In the figure we compare visually the GMPE obtained by us (black line) on the simulated data and 
the GMPE retrieved by Bindi et al. [3] on real data (blue line). We can immediately notice that the 
law interpolated on real data would systematically overestimate the simulated values of PGV. To 



interpolate all the laws, we used 15 events, corresponding to 1 slip distribution for each magnitude 
for each epicentral position. This is because the slip distribution shouldn’t affect too much the 
average PGV recorded at the stations. We report all the values obtained in Supplementary Table S2. 

Supplementary Table S2. Table reporting all the coefficients values obtained in the interpolation. 
The coefficients  are used for the events with , while for the magnitude 7 event the 𝐴

𝑛
𝑀≤6. 75

coefficients  were used 𝐵
𝑛

 

 

 

 

 

Using the same 15 simulated events we calculated also the coefficients for the laws correlating the P 
wave amplitude parameters to the PGV and the magnitude. To calculate the parameters  and 𝑃

𝑎
,  𝑃

𝑣

 all the traces were manually picked. The time window used for the calculation starts from the P 𝑃
𝑑

pick and ends at the time of the theoretical arrival time of the S-wave at the station. The interpolated 
laws correlating the P waves amplitudes to the magnitude have the following form 

 𝑀
𝑤
𝑎 = 5. 27 + 0. 38⋅𝑃

𝑎
 + 0. 72⋅𝑅     𝑆𝐸 = 0. 3

 𝑀
𝑤
𝑣 = 5. 62 + 0. 31⋅𝑃

𝑣
 + 0. 72⋅𝑅     𝑆𝐸 = 0. 3

 𝑀
𝑤
𝑑 = 5. 89 + 0. 29⋅𝑃

𝑑
 + 0. 69⋅𝑅     𝑆𝐸 = 0. 3

(S7) 

Here we notice a very strong dependence from the constant value in the equation, meaning that the 
hypocentral distance  and the P-wave amplitude parameters (  and ) count less than the 𝑅 𝑃

𝑎
,  𝑃

𝑣
𝑃

𝑑

previous cases in the determination of the magnitude. This may be due to the narrow magnitude 
interval used to produce these laws. It was not possible, however, to extend the magnitude range, 
because, as we have explained, has an objective difficulty in modelling high frequencies associated 
with lower magnitude events. The results of this interpolation are shown in Figure 39, where a 
mean epicentral distance of 30 kilometers to plot equations S7. 
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Supplementary Figure S4. This figure shows the interpolated laws correlating the magnitude and 
the P-wave amplitude parameters. The laws are represented as black solid lines, while their 
uncertainties are represented as dashed lines. The data used to obtain the laws are plotted as grey 
dots.  

 

The laws correlating the PGV to the P-wave amplitudes were also interpolated using the usual 
functional form shown in equation 1 of the main text. The laws obtained are the following 

 𝑃𝐺𝑉𝑎 =− 0. 17 + 0. 72⋅𝑃
𝑎
     𝑆𝐸 = 0. 4

 𝑃𝐺𝑉𝑣 = 0. 51 + 0. 61⋅𝑃
𝑣
     𝑆𝐸 = 0. 4

 𝑃𝐺𝑉𝑑 = 0. 98 + 0. 58⋅𝑃
𝑑
     𝑆𝐸 = 0. 4

(S8) 

Where we notice the same value of the standard error for all the three relations. The relationships 
retrieved for the synthetic case we set up, do not differ too much from the real cases shown in the 
previous chapters. This suggests that the case we are simulating is, at least, realistic.  

Supplementary Figure S5. Visual representation of equations S8. The black solid lines show the 
interpolated laws, while the data used for the interpolation are plotted as grey dots. The uncertainty 
boundaries of the laws are represented as black dashed lines 

All these interpolated laws were used to simulate the real-time functioning of QuakeUp on the 
magnitude 7 event originally associated with the real 1908 Messina event. 

3. Statistical study on network reduction performances 
To further test the reliability of the method, we simulated 1000 scenarios in which different 
percentages of the network fail. We simulated a failure of the 30%, the 50% and the 70% of the 
stations in the network, by randomly choosing the malfunctioning stations for each one of the 1000 
scenarios simulated for each percentage. The different network geometries, produced in this way, 
were used to analyze the performance of QuakeUp on the magnitude 7.0 event. The performances 
of the system are evaluated by comparing the values of the source parameters estimated by the 
EEWS and the true value used for the simulation. The time to obtain stable values of these 
parameters is also calculated in seconds after the Origin Time of the event. Supplementary Figure 
S6 shows the distributions of the errors in source parameters estimations and the respective 



stabilization times. In panel a, we can see that the magnitude is very well estimated by the system, 
with just one case in which this parameter is underestimated. The average time at which the system 
obtains a stable value of this parameter is 35 seconds from the origin time (panel d), which is 
slightly smaller than the one we obtained using the whole network (panel d of figure 5 of the main 
text). However, it is important to note that the distribution presents two peaks, one around 22 
seconds and the other at 38 seconds. This results in a high standard deviation (5 seconds). The peak 
at 22 seconds may correspond to lucky cases in which the geometry of the reduced network 
includes the stations closer to the epicenter. The system shows nice performance also in the location  

Supplementary Figure S6. In this figure we show the errors in magnitude (panel a), epicentral 
location (panel b) and depth (panel c) in the estimations obtained by QuakeUp using a network 
reduced by the 30%. The distribution of the seconds to obtain stable values of these parameters are 
also shown in panels d, e and f. 

estimations, presenting a mean epicentral error of 7 kilometers (panel b) and a mean depth error of 
-4 kilometers (panel c), indicating a tendency to overestimate the depth value. The distribution of 
the depth errors has a standard error of 4 kilometers, meaning that it is wider than the distribution of 
the epicentral distance (with a standard error of 2 kilometers).  The time needed to obtain stable 
values of these parameters presents a distribution shape similar to the magnitude one, with two 
peaks and an average time of 35 seconds. In these situations, in which the distribution shapes are 
not gaussian, makes sense to consider the median more than the mean. The median values of all the 
stabilization time distribution are 38 seconds. It is worth to also look at the uncertainty distributions 
on the estimations. Looking at figure S7, we see that the mean uncertainty in longitude is 1.3 
kilometers and the mean uncertainty in longitude is 4 kilometers. The depth uncertainties 
distribution shows that the system can be precise in estimating this parameter, having an average 
uncertainty of 3 kilometers. The problem in the depth estimation is the accuracy, in fact the panel c 
of figure S6 shows a wide distribution of the errors. Finally, the magnitude is again the best 
resolved parameter, presenting a median uncertainty value of 0.3.  

 

 



 

The network was further reduced, eliminating the 50% of the stations. The performances on the 
1000 scenarios produced with the 50% of the network available are presented in Supplementary 
Figure S8. It is interesting to note how, again, the magnitude results to be the easiest parameter to 
estimate correctly, showing 2 cases of underestimation and one case of overestimation (panel a in 
Supplementary Figure S8). The average values of the location errors are affected by the further 
reduction operated on the network, presenting higher values than the previous case: 8 kilometers for 
the epicenter and -4 kilometers for the depth. The distributions of the time needed for the 
stabilization of each parameter have the same two-peaked shape showed in figure S6. All these 
distributions have a median value of 38 seconds, but another lower peak is present around 22 
seconds. It is interesting to note that the reduced network almost didn’t affect these values. 



Supplementary Figure S8. Errors distributions obtained by QuakeUp, using the 50% of the 
network. The distribution of magnitude errors is shown in panel a and the distribution of the time to 
obtain these values is shown in panel d. Panel b and c show the distribution of the errors in 
epicentral location and depth value, respectively. The time needed to obtain these values are shown 
in panel e and f. 

The uncertainties obtained by QuakeUp using the 50% of the network are shown in Supplementary 
Figure S9. As we expected, the average values of the uncertainties of each parameter are higher 
than the previous case. The mean value of the uncertainty in longitude is 1.6 kilometers and the 
mean uncertainty in longitude is 4 kilometers, meaning that in this case the method is very stressed 
and can’t be very accurate in epicentral location estimations. The mean uncertainty on the depth is 
also higher than the previous case, having a mean value of 4 kilometers. This value is still 
acceptable in the early warning framework, where the quickness of the prediction is more important 
than the accuracy. The mean value of the magnitude error remains the same as before (0.3), 
confirming the efficiency of the system in estimating this particular parameter.  



Supplementary Figure S9. The uncertainty distributions obtained by QuakeUp using the 50% of 
the network are shown here. The uncertainty in longitude (panel c), latitude (panel a), depth (panel 
b) and magnitude (panel d) are plotted. 

To stress more the system, bringing it to its limit we simulated 1000 scenarios in which the 70% of 
the stations in the network fails. We analyzed the same estimation performances as in the previous 
cases, obtaining the distribution plotted in Supplementary Figure S10. The magnitude errors 
distribution, showed in panel a, presents a mean value of almost zero. This value derives from the 
equal number of overestimations and underestimations and confirms again the great effectiveness of 
the system in this particular type of estimation. The distribution of the epicentral errors, showed in 
panel b, have a peak around 7 kilometers, but it starts to show a second low peak at 23 kilometers, 
meaning that the system is really stressed by this poor network. The average value is, however, 9 
kilometers, which is still very useful in early warning framework, for both seismic and tsunami 
warning. The distibution of the depth errors, showed in panel c, confirms the tendecy of the system 
in overestimating the value of this parameter, showing a mean value of -5 kilometres. This 
parameter is very relevant in Tsunami Early Warning, therefore, the fact that QuakeUp can retrive a 
reliable value of the depth even if the network is largely not working, is very encouraging. The 
distribution of the times needed to have stable paramters estimations, show again the two-peaked 
shape that we discussed in the previous cases. In fact, we can see in panels d, e and f that the 
distributions have a low peak around 22 seconds and a main peak around 39 seconds. The median 
values of these distributions are in fact exactly 39 seconds, which is higher than the previous case. 
We expected that the method would be really stressed in this situation and so we expected an higher 



average value of the stabilization time. However, it is worth to note that the time needed to have 
stable source estimations is absolutely in the range usually discussed in early warning framework. 

 

Supplementary Figure S10. In panel a we show the errors in magnitude, calculated as the 
difference between the estimation and the true value, obtaining a value of zero in most cases. In 
panel b the epicentral errors distribution is shown, obtaining a mean value of 8 kilometres of 
epicentral distance. In panel c we show the depth estimation errors calculated as the difference 
between the true value and the estimated ones, obtaining an average value of -5 kilometres, 
underlying the tendency of the system in overestimating this parameter. In panels d, e and f we 
show the distribution of the times needed to obtain stable values of magnitude, epicentral location 
and depth, respectively.  

Also in this case, we present the uncertainty on the estimated parameters provided by the system. 
As we expected, the network reduction largely affects these uncertainties, as we can see in 
Supplementary Figure S11. In panel a, the distribution of the uncertainties in latitude is shown. The 
distribution appears to be well peaked around the mean value of 2 kilometers, but it has some vary 
high value. In those situations, the system basically can’t have a reliable source latitude estimation. 
A similar shape can be recognized looking at the longitude uncertainty distribution, in panel c. This 
parameter seems to be less resolved than the others, having a mean uncertainty value of 5 
kilometers and showing in the distribution uncertainty values up to 60 kilometers. Such a high 
uncertainty means that the epicentral location can’t be used even in the early warning framework. 
The depth uncertainties distribution, instead, is centered around the mean value of 5 kilometers. In 
this distribution there are also values of uncertainty too high to be used effectively in the tsunami 
early warning framework, in fact in the tail of the distribution there are values up to 13 kilometers 
(panel b). Finally, the magnitude uncertainties distribution is shown in panel d. The mean value of 
the distribution is 0.3, exactly the same of the cases analyzed before. This means that the magnitude 
is very well resolved even if the network is strongly reduced. This is probably because the method 
uses the independent estimations of the magnitude at the stations to obtain a global value as a 



weighted mean (see Method in the main text). This means that even if few stations are working in 
the area, if they have the right relation to correlate their measurements to the magnitude, they can 
still retrieve the right value of this parameter.  

Supplementary Figure S11. In this figure we show the uncertainties distribution for all the 
parameters estimated by QuakeUp. These distributions were obtained using 1000 different 
configurations in which just the 30% of the stations in the network works. 

4. Maps of the calculated Tsunami Travel Times 
The tsunami travel time calculated for the two regions are presented in Supplementary Figure S12. 
We obtained this figure by considering a 15 arc-sec bathymetric model (SRTM15+) and the shallow 
water approximation for the tsunami propagation. The fault models presented in the figure as white 
dashed boxes, were obtained with two different strategies, well explained in the main text. The fault 
in panel a, relative to the 2020 Aegean Sea event, was obtained starting from the focal mechanism 
proposed by IPGP4 and calculating the dimensions with the Wells and Coppersmith scale 
relationship5. In panel b, instead, the fault model shown is the same used to produce the simulated 
traces and it’s the one retrieved by Michelini6. These colormaps are useful to quantify the lead-times 
available at places outside the two blind zones. Let us consider, for instance, the cities of Agios 
Kirkos and Kusadasi in panel a. These two coastal cities were reached by the tsunami waves in 
about 15 minutes. The alert provided by Early-Est and the PTF (yellow line) would have been 
issued in 3 minutes and 40 seconds, resulting in about 11 minutes and 20 seconds of time for the 
people in those cities to perform mitigation actions. However the alert provided by the combination 
of QuakeUp and the PTF is issued in 1 minute and 10 seconds (cyan line), providing 13 minutes 
and 50 seconds of lead-time at the same cities. Similar considerations can be done for the Messina 
Strait scenario (panel b). Let us consider the city of Catania, which would be reached buìy the 
tsunami waves in about 15 minutes. Considering that the combination of the estimations provided 



by Early-Est and PTF would have issued an alert in 3 minutes and 40 seconds (yellow line), people 
living in Catania would have had 11 minutes and 20 seconds of lead-time using the current system. 
The alert provided by the chain formed by QuakeUp and PTF would have been issued in 48 
seconds, meaning that the people of Catania would have had 14 minutes and 8 seconds of time to 
take cover.  

 

 

Supplementary Figure S12. Tsunami Travel Times maps. The colormaps in panel a and panel b 
show the tsunami travel times expressed in minutes calculated, respectively, for the 2020 Aegean 
Sea event and for the Simulated magnitude 7.0 Messina strait event. The fault models are 
represented in both panels as a dashed white box, while the epicenters estimated by QuakeUp in the 
two scenarios are represented as a green star. The cyan shapes on the figure are the blind zones 
associated with the alert that would have been produced by the combination of  QuakeUp and PTF 
estimations, while the yellow shapes are the blind zones associated with the combination of the 
estimations produced by Early-Est and the PTF. 

 

5. Hazard curves at any Prediction point 
Figure S13 shows all the hazard curves calculated by the PTF at all the prediction points in the 
region around the epicenter of the Samos earthquake. The blue solid lines are the curves calculated 
starting from the epicenter estimated by Early-Est, while the dashed lines are the curves calculated 
using the location estimated by Early-Est. In the lower part of each panel the relative difference is 
also shown as a function of the waves’ height. At every forecast point in the region the differences 
between the two curves are very little, reaching the maximum value of 0.3. It is worth to notice that 
no trend can be identified looking at the behaviour of the differences in the hazard curves. 



 

Supplementary Figure S13. Hazard curves for the Samos earthquake. In each panel the blue curve 
represents the hazard curve calculated using the epicentral position estimated by Early-Est and the 
dashed red curve represents the hazard curve calculated from the epicenter estimated by QuakeUp. 
The difference between the two curves is plotted as a black line in the lower part of each panel. 

 

Figure S14 shows the hazard curves calculated for all the prediction points in the Messina Strait 
region. In each panel the blue line is the curve calculated for the magnitude 7 simulated event and 
the red dashed line is the curve calculated for the simulated magnitude 6 event. As we expected the 
difference between the two curves (black line in each panel) increases as the waves’ height increase. 
That’s because a magnitude 7 earthquake produces higher tsunami waves than a magnitude 6 
earthquake. Looking at the points located further from the epicenter, the difference is remarkable 
also considering low waves’ height. This means that the bigger event produces a tsunami that has an 
impact on a larger area around the fault.  

 



  

Supplementary Figure S14. Hazard curves for two simulated earthquakes. In each panel the blue 
curve represents the hazard curve calculated using the epicentral position estimated by QuakeUp for 
a magnitude 7 simulated event and the dashed red curve represents the hazard curve calculated from 
the same epicenter for a magnitude 6 simulated earthquake. The difference between the two curves 
is plotted as a black line in the lower part of each panel. 
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