Supplement 3. The framework of the hierarchical Bayesian conjugate Dirichletmultinomial model for the estimation of levels of vision impairment

 \vec{Y} : estimated number of vision impairment of different severity: no, mild moderate, sever and blindness (vector of 5)

N: Population number of specific gender, age group and hospital level, derived from National Health Insurance Research Database (NHIRD)

Three levels of hierarchical structure: gender, age group, hospital level

$$\overrightarrow{Y_{ijk}} \sim Multinomial(N_{ijk}, \overrightarrow{p_{ijk}})$$

i=1,2 (gender: male, female)

j=1,2,3,4 (age group: age 20-39, age 40-54, age 55-69, age ≥70)

k= 1,2,3 (hospital level: medical center, regional hospital, local hospital/clinic)

$$\overrightarrow{\theta_{l}} \sim Dirichlet (\overrightarrow{\alpha_{all}})$$

$$\overrightarrow{\alpha_{all}} = \overrightarrow{\theta_{all}} * \omega_{s}$$

 $\overrightarrow{\theta_{all}}$: overall proportion (overall expectation value)

 ω_s : strength between sex level

$$\overrightarrow{\theta_{ij}} \sim Dirichlet(\overrightarrow{\alpha_i})$$

$$\overrightarrow{\alpha_i} = \overrightarrow{\theta_i} * \omega_A$$

 $\overline{\theta_i}$: proportion in each sex level

 ω_A : strength among age_group level

$$\overrightarrow{p_{ijk}} \sim Dirichlet\left(\overrightarrow{\alpha_{ij}}\right)$$

$$\overrightarrow{\alpha_{ij}} = \overrightarrow{\theta_{ij}} * \omega_L$$

 $\overline{\theta_{ij}}$: proportion in each age_group level ω_L : strength among hospital_level level

 $\omega_s{\sim}gamma(0.01,0.01)$

 $\omega_A \sim gamma(0.01, 0.01)$

 $\omega_L \sim gamma(0.01,0.01)$