
Supplementary Information for Overcoming

Barriers to Dynamic Phase-only Modulation in

Transmissive Metasurfaces via Diffraction Control

Ju Young Kim†, Ruzan Sokhoyan†, Minkyoon Yi, Sangjun Han, Harry Atwater*,

Min Seok Jang*

1 Temporal Coupled-Mode Theory

The model framework that we utilize to analyze and design the system is the temporal coupled-mode

theory (TCMT) [1]. The validity of TCMT is described in detail in [2]. The dynamics of amplitude a

of a resonance mode (We will only deal with single-resonance systems in this paper) can be described

by the following equations:

da

dt
= −iω̃0a+ ⟨κ∗|s+⟩ (S1)

|s−⟩ = C|s+⟩+ a|d⟩ (S2)

where ω̃0 = ω0+iγ is the complex resonance frequency whose real (ω0) and imaginary (γ) parts are the

center frequency and the overall decay rate of the resonance, respectively. Here |a|2 is normalized to

be the energy of the corresponding mode, |s+⟩ and |s−⟩ are the vectors of amplitudes of the incoming

and outgoing waves, and their number of elements is equal to the number of input (m+) and output

(m−) ports, respectively. |d⟩ and |d⟩ are m+ and m− dimensional vectors describing the coupling

from the input port to the resonance, and from the resonance to the output port, respectively. C

is the m− × m+ direct scattering matrix from input to output ports. Note that there is freedom in

choosing where the ports are placed from the resonator, which allows the complex parameters in the

terms |d⟩, |κ⟩ and C to be decided up to a factor eikl = eiθ, where l is the port’s distance from the

resonator. This allows us to later adopt the convention used in the main paper, which is to place all

the ports such that the coupling parameters |d⟩ take on real values. This convention is possible for

single-resonance systems, but is not guaranteed for systems with multiple resonances as choosing the

set of port distances that gives real coupling parameters for one resonance does not generally make

the coupling parameters real for the other resonances. Also, choosing the coupling parameters |d⟩ to

be real simultaneously affects the complex parameters of the direct scattering matrix C, and generally

results in complex values for C.
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For generality, we will start off with a four-port system and reduce to two-port systems when nec-

essary. There can be many ways to make the system have four ports - by using different polarizations,

nonzero incidence angles, or diffraction orders. We will assume to have two additional diffraction ports,

but the mathematics for systems with more diffraction ports (such as the six-port system in the main

paper) is similar. Imagine a four-port system as follows (Fig. S1):

Notice that no assumptions on ’where’ the ports 1, 2, 3, 4 are positioned are used in the following

derivations, only the fact that port 3 = port 4 due to symmetry. The figure below is just for illustrative

purposes. The analysis below is more general than what’s shown in the figure, as the following formal-

ism can also take into account systems with ports 3 and 4 on port 2’s side, and systems with ports 1

and 2 ’misaligned’ or at an angle with one another, and many other configurations.

Figure S1: A four-port system with parity symmetry in the x-direction across the y-axis

Then along with Eq. S1 and S2 above, we have for the incoming and outgoing wave vectors and

the coupling vectors:

|s−⟩ =


s1−

s2−

s3−

s4−

 |s+⟩ =


s1+

s2+

s3+

s4+

 |κ⟩ =


κ1

κ2

κ3

κ4

 |d⟩ =


d1

d2

d3

d4


and the direct scattering matrix C is given by:
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C =


c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44



where cij refers to the direct scattering term from port i to port j.

Applying time reversal symmetry, energy conservation, and reciprocity [1] we get

⟨d|d⟩ = 2

τ
(S3)

|d⟩ = |κ⟩ (S4)

C|d⟩∗ = −|d⟩ (S5)

Also, assuming parity symmetry in the x-direction about the y-axis as shown in Fig. S1 above, and also

assuming that the resonance field profile in question is also even about the y-axis (our mode belongs

to this class), as well as applying time reversal symmetry, energy conservation, and reciprocity ([3])

we get the following scattering matrix C :

C =


r1 t α α

t r2 β β

α β c e

α β e c


with the following norm equations:

|r1|2 + |t|2 + 2|α|2 = 1 (S6)

|t|2 + |r2|2 + 2|β|2 = 1 (S7)

|α|2 + |β|2 + |c|2 + |e|2 = 1 (S8)

and the following orthogonality relations:

r1t
∗ + tr2

∗ + 2αβ∗ = 0 (S9)

r1α
∗ + tβ∗ + αc∗ + αe∗ = 0 (S10)

tα∗ + r2β
∗ + βc∗ + βe∗ = 0 (S11)

|α|2 + |β|2 + ce∗ + ec∗ = 0 (S12)
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By assuming steady state excitation we have:

a =
⟨κ∗|s+⟩

−i(ω − ω0) + γ
(S13)

where γ = 1
τ = γ1 + γ2 + γ3 + γ4 + γd. Here γi refers to the radiative coupling amplitudes (energy

loss) for each port, and γd refers to dissipative loss. The radiative coupling di, which is tied to the

decay/gain in the field amplitude of the resonance (rather than the energy of the resonance, like the

γi terms) is related to the γi terms through Eq.S1 above, and by turning ’on’ only a single port while

the other ports are turned ’off’. This gives rise to di =
√
2γie

iθi .

Now to get the relation between the coupling coefficients di and the direct scattering coefficients

of matrix C, we use Eq.S3 above:
r1 t α α

t r2 β β

α β c e

α β e c




d∗1

d∗2

d∗3

d∗4

 = −


d1

d2

d3

d4


Then we get:

r1d
∗
1 + td∗2 + α(d∗3 + d∗4) = −d1 (S14)

td∗1 + r2d
∗
2 + β(d∗3 + d∗4) = −d2 (S15)

αd∗1 + βd∗2 + cd∗3 + ed∗4 = −d3 (S16)

αd∗1 + βd∗2 + ed∗3 + cd∗4 = −d4 (S17)

Although due to symmetry and the even field profile we have d3 = d4, we will still denote them as d3

and d4 separately.

Now applying |s−⟩ = C|s+⟩+ a|d⟩:
s1−

s2−

s3−

s4−

 =


r1 t α α

t r2 β β

α β c e

α β e c




s1+

s2+

s3+

s4+

+ a


d1

d2

d3

d4


Because the incident light is only coming through port 1, s2+ = s3+ = s4+ = 0 and along with Eq.S13

r =
s1−
s1+

= r1 +
id21

(ω − ω0) + iγ
= r1 +

2iγ1e
2iθ1

(ω − ω0) + iγ
≡ Ar +Br (S18)

t =
s2−
s1+

= t+
id1d2

(ω − ω0) + iγ
= t+

2i
√
γ1γ2e

i(θ1+θ2)

(ω − ω0) + iγ
≡ At +Bt (S19)
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r10 =
s3−
s1+

= α+
id1d3

(ω − ω0) + iγ
= α+

2i
√
γ1γ3e

i(θ1+θ3)

(ω − ω0) + iγ
≡ Ad1 +Bd1

Now we are in the position to examine how the At,r and Bt,r behave. Let’s look at them one by one:

First, they were denoted in bold because on the complex plane, if you think of their real parts as

the x-axis projections and their imaginary parts as the y-axis projections, we can think of them as 2-D

vectors.

Second, the terms At,r are relatively constant as the changes in ω − ω0 make a significant differ-

ence in the overall transmission and reflection curves, provided that the losses γd in γ don’t render the

’widths’ (FWHM in the case of a Lorentzian curve) of these curves to be too large (in which case the

curves will likely be useless for phase modulation, which we shall soon see).

Third, the terms Bt,r draw a circle on the complex plane as the ω sweeps from 0 to ∞. We can

see this as follows. Let’s first isolate the common term from Bt,r and rewrite it by making the denom-

inator real:
i

(ω − ω0) + iγ
=

i√
(ω − ω0)2 + γ2

eiα

where the term α was defined so that cosα = ω−ω0√
(ω−ω0)2+γ2

and sinα = −γ√
(ω−ω0)2+γ2

. Denoting

ω − ω0 = ω for simplicity, we can see that as ω goes from 0 to ∞, ω goes as roughly −∞ → ∞ (ω0 is

a very large number typically). Then from the definition of the cosα, it goes as −1 → 1, and coupled

with that fact that sinα is negative due to −γ < 0 (α < 0), we can see that α sweeps as −π → 0 from

the reference of i (the imaginary axis). We can see this in Fig. S2 below.

Now, to see that the common term in Bt,r terms draw out a circle, we write it as:

− sinα√
(ω − ω0)2 + γ2

+ i
cosα√

(ω − ω0)2 + γ2
=

γ

(ω − ω0)2 + γ2
+ i

ω − ω0

(ω − ω0)2 + γ2
≡ x+ iy

Now, showing that x and y satisfy the equation of a circle:

x2 + y2 =
γ2

((ω − ω0)2 + γ2)2
+

(ω − ω0)
2

((ω − ω0)2 + γ2)2
=

(ω − ω0)
2 + γ2

((ω − ω0)2 + γ2)2
=

1

(ω − ω0)2 + γ2

x2 − 1

(ω − ω0)2 + γ2
+ y2 +

1

(2γ)2
=

1

(2γ)2

x2 − 2(
γ

(ω − ω0)2 + γ2
)(

1

2γ
) + y2 +

1

(2γ)2
=

1

(2γ)2

Defining R′ = 1
2γ we can see the equation becomes:

(x−R′)2 + y2 = R′2
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Figure S2: The sweeping of the B vector in the right side plane

This shows that the common term in Bt,r satisfies the equation of a circle defined on the complex

plane, with the radius of R′ and the center (R′, 0). Then, with the corresponding factors on either

Bt,r, we can see that Bt,r draws out a circle like below in Fig. S3, with Bt having R =
√
γ1γ2

γ and

Θ = θ1 + θ2, while Br has R = γ1

γ and Θ = 2θ1.

Figure S3: The Bt,r vector drawing a circle on the complex plane

Now, before we see whether or not the transmission amplitude circle encircles around the origin on

the complex plane, let’s first rotate the complex transmission amplitude circle by −Θ = −(θ1 + θ2).
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Then we have:

te−i(θ1+θ2) = te−i(θ1+θ2) +
2i
√
γ1γ2

(ω − ω0) + iγ
≡ A+B (S20)

The reason for this is two-fold. One, we will now adopt the convention assumed in the main paper

(θ1 = θ2 = 0, the real coupling condition), which, from the above, allows us to adopt the frame-

work of displacing the term
2i
√
γ1γ2

(ω−ω0)+iγ by the ’direct scattering parameter’ td = te−i(θ1+θ2) in the

main paper, and two, this illustrates the point made in the paper that changes in the radiative

coupling values will naturally change θi and therefore will be reflected as ’compensated’ changes in

arg[td,Im[di]=0−convention] = arg[te−i(θ1+θ2)].

Let’s now adopt the real coupling condition where the θi = 0, by placing the ports accordingly. Then

we can observe that the circle is displaced by the t vector, but its angular orientation is maintained,

with the t = A vector being the circle’s leftmost point and the rightmost point corresponding to the

resonance frequency ω = ω0 (the latter fact can be quickly checked by seeing that putting in ω = ω0

in B gives B =
2
√
γ1γ2

γ , which is purely positively real). Fig.S4 nicely illustrates this.

Now, back to the matter of the encircling of the origin. Graphically, this can result in 3 scenar-

ios: The transmission circle NOT encircling the origin (Fig. S4a), encircling the origin (Fig. S4b), and

exactly going through the origin (Fig. S3). The mathematical determinant for the encirclement of the

origin is given by R2 − |C|2 and its sign, where C is the displacement vector of the center of the circle

from the origin, and is given by C = A+
√
γ1γ2

γ = (
√
γ1γ2

γ +Re[t]) + i(Im[t]).

Figure S4: (a). The transmission circle not encircling the origin (b). The transmission circle encircling

the origin

Now evaluating R2 − |C|2 gives us

R2 − |C|2 = (

√
γ1γ2

γ
)2 − [(

√
γ1γ2

γ
+Re[t])2 + (Im[t])2]
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= (

√
γ1γ2

γ
)2 − [(

√
γ1γ2

γ
)2 + 2

√
γ1γ2

γ
Re[t] + (Re[t])2 + (Im[t])2]

= −2

√
γ1γ2

γ
Re[t]− |t|2 (S21)

Then rearranging Eq. S14 above and absolute-squaring it (now all the di terms are purely real),

we have:

|r1 + α
d3 + d4

d1
|2 = | − t

d2
d1

− 1|2 = |t
√

γ2
γ1

+ 1|2

= 1 +
γ2
γ1

|t|2 + 2

√
γ2
γ1

Re[t]

Then we have the following from above:

−2

√
γ1γ2

γ
Re[t] =

γ1
γ
(1 +

γ2
γ1

|t|2 − |r1 + α

√
2γ3 +

√
2γ4√

2γ1
|2) (S22)

Then inserting this into Eq. S21 above:

R2 − |C|2 =
γ1
γ
(1 +

γ2
γ1

|t|2 − |r1 + α

√
γ3 +

√
γ4√

γ1
|2)− |t|2

=
γ1
γ
(1− γ1 + γ3 + γ4 + γd

γ1
|t|2 − |r1 + α

√
γ3 +

√
γ4√

γ1
|2) (S23)

where we have used the fact that γ = γ1 + γ2 + γ3 + γ4 + γd.

Now in a two-port system, we have γ3 = γ4 = α = 0 and |t|2 + |r1|2 = 1 so we get:

R2 − |C|2 =
γ1
γ
(1− γ1 + γd

γ1
|t|2 − |r1|2) = −γd

γ
|t|2 < 0 (S24)

Equation S24 shows that in a two-port system, as long as there are dissipative losses γd > 0 you

will always have a complex transmission circle that doesn’t encircle the origin (shown in Fig. 1 of

the main paper, with the best case having the circle go through the origin when γd = 0. This

means for a two-port system, unless you add gain to the system (γd < 0), the phase variation

around the resonance will always be limited as < 180◦. Also, from Eq. S21 and from the fact

that R2 − |C|2 = −2
√
γ1γ2

γ Re[t]− |t|2 = 0 when γd = 0, it follows that Re[t] < 0

Now the idea behind using additional diffraction ports is this: Because R2 − |C|2 = 2
√
γ1γ2

γ |Re[t]| −

|t|2 = 0 just before diffraction is added (two-port system), if we can decrease the magnitude of |t|

through the additional terms in the energy conservation equation |r1|2 + |t|2 + 2|α|2 = 1 and engineer

the complex valued t so that Re[t] ≈ t, then we could have the second negative term −|t|2 being

smaller than the first positive term 2
√
γ1γ2

γ |Re[t]| and have R2 − |C|2 > 0.

Since we show that adding diffraction channels can indeed make R2 − |C|2 > 0 in Fig. 2 of the

main paper, we will now outline our objectives for optimal phase-only modulation.

1. We want the largest possible complex transmission amplitude circle, aka. having the largest radius

R =
√
γ1γ2

γ1+γ2+γ3+γ4+γd

8



2. We want the circle centered as close to the origin as possible, aka. having the smallest |C| =

|(
√
γ1γ2

γ +Re[t]) + i(Im[t])|

We will now show below the conditions for having the largest possible radius while having |C| = 0,

making it a perfect phase-only modulation scheme.

First, the largest R is achieved when γ3 = γ4 = γd = 0 (restricting ourselves to the case of hav-

ing no gain, γd = 0) and having γ1 = γ2, resulting in Rmax = 0.5 (from the inequality x+ y ≥ 2
√
xy,

with the equality holding when x = y). This makes sense intuitively, as we would expect the resonator

spitting out equal number of photons per second into ports 1 and 2. While it is tempting to think

that having γ2 > γ1 would be better, this would simply mean that not enough photons would come

in through port 1 in the first place for port 2 to spit out (having a CAPACITY for port 2 to spit out

100 photons per second is meaningless if port 1 can ONLY take in 10 photons per second into the

resonator).

Now, with that in mind, let’s look at the condition of having |C| = 0. This means having the following

two conditions:

Re[C] = 0 →
√
γ1γ2

γ
= −Re[t] (S25)

Im[C] = 0 → Im[t] = 0 (S26)

Because all the γ′s are defined to be positive, we can see from Eq. S25 that Re[t] < 0, and from

Eq. S26, we have the required condition that t is negative and real. Secondly, because
√
γ1γ2

γ is the

radius of the complex transmission amplitude circle, and our theoretical upper bound for the radius is

0.5, we can succinctly reduce the optimal conditions for transmissive phase-only modulation to be:

arg[t] = π (S27)

|t| = R =

√
γ1γ2

γ
= 0.5 (S28)

These are equations 2 and 3 in the main paper, and with these conditions the transmission circle starts

at the baseline of |t| = 1
2 from the negative real axis and draws a perfectly centered circle at the origin

while maintaining the amplitude (radius) of 0.5.
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2 Figure 2 Details

The figures S5, S6, S7 below show the spectral transmittance and phase line plots for three periods

(Px = 1344 nm, Px = 1401.2 nm, and Px = 1751.5 nm), as well as the spectral reflection/diffraction

plots for the diffraction-regime periods Px = 1401.2 nm and Px = 1751.5 nm in Fig. S7 and S8,

respectively. R00 refers to normal reflection, and R10 refers to first-order diffraction in the x−direction.

Figure S5: Transmittance and phase spectra for the metasurface depicted in Fig. 2 of the main

manuscript. The period Px = 1344 nm is smaller than the effective wavelength within the substrate

(2000 nm/1.44 = 1388.9 nm). Hence, no diffraction is observed in reflection or transmission. Note

that the phase exhibits discontinuity and spans 180 degrees.

Figure S6: Transmittance and phase spectra for the metasurface with Px = 1401.2 nm. The effective

wavelength within the substrate is smaller than the metasurface period in the x-direction, and diffrac-

tion within the substrate is observed. (b) shows diffraction efficiencies in the normal direction R00 and

in the x-direction R10. Note that we plot 2×R10 to account for ±1st diffraction orders. (c) plots the

phases of each of the diffracted waves.
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Figure S7: Transmittance and phase spectra for the metasurface with Px = 1751.5 nm. The effective

wavelength within the substrate is smaller than the metasurface period in the x-direction, and diffrac-

tion within the substrate is observed. (b) shows diffraction efficiencies in the normal direction R00 and

in the x-direction R10. Note that we plot 2×R10 to account for ±1st diffraction orders. (c) plots the

phases of each of the diffracted waves.



3 Zeros and poles on the complex frequency plane

Recent work [4] highlights the role of zeros and poles of the transmission amplitude in phase modula-

tion. It illustrates that in order for the resonance to span a full 2π phase range, the zero should be

above the real frequency line such that the branch cut between the zero and the pole forms an inter-

section with the real frequency line. We will now show that achieving the condition of the complex

transmission amplitude circle encircling the origin (R2 − |C|2 > 0) is mathematically equivalent to

having the transmission zero move upwards into the upper complex plane from the real frequency axis.

Equation 1 in the main paper can be rearranged as follows:

t = t+
2i
√
γ1γ2

(ω − ω0) + iγ
=

t(ω − ω0) + itγ + 2i
√
γ1γ2

(ω − ω0) + iγ
= t

ω − (ω0 − i(γ +
2
√
γ1γ2

t ))

ω − (ω0 − iγ)
≡ A exp(iBω)

ω − ωz

ω − ωp

where the Weierstrass expansion form is shown on the utmost right. From the above we can see that

the direct transmission scattering parameter t (complex-valued) corresponds to the term A exp(iBω),

where the very slowly varying nature of t with respect to the frequency ω (compared to the resonance

term) allows us to assume it is constant in the vicinity of the resonance (Bω ≈ B0,→ t ≡ A exp(iB0)).

The location of the complex zero is given by ωz ≡ ω0 − i(γ +
2
√
γ1γ2

t ), and the location of the complex

pole, similarly, is given by ωp ≡ ω0 − iγ.

If the transmission zero moves up into the positive imaginary half-plane in the complex frequency

space, it means that the imaginary component of the complex zero becomes positive: Im[ωz] =

−Re[γ +
2
√
γ1γ2

t ] > 0 (Notice that the Re part is necessary because the term γ +
2
√
γ1γ2

t itself is

complex-valued due to the complex t). Then rearranging −Re[γ +
2
√
γ1γ2

t ] > 0 gives:

Re[γ +
2
√
γ1γ2

t
] = Re[

2t∗
√
γ1γ2

|t|2
+ γ] =

2
√
γ2γ2

|t|2
Re[t∗] + γ =

2
√
γ1γ2

|t|2
Re[t] + γ < 0 (S29)

where the relation Re[t∗] = Re[t] was used. Then dividing Eq. S29 by γ and multiplying by −|t|2

gives us −2
√
γ1γ2

γ Re[t]−|t|2 > 0, which, from Eq. S21, is precisely the condition of R2−|C|2 > 0. Be-

cause the complex transmission pole is located below the real frequency axis due to Im[ωp] = −γ < 0,

the branch cut between the zero and the pole crosses the real frequency line, allowing for a full 2π

phase change. It also naturally follows that having the condition of R2 − |C|2 = 0 equates to having

the transmission zero exactly on the real frequency axis, as in the case of two-port, single-resonance

systems without loss or gain, and having the condition of R2−|C|2 < 0 indicates that the transmission

zero is below the real frequency axis, failing to yield a full 2π phase change.

We will go further and qualitatively explain why the transmission zero cannot be on the real axis

or exist as complex conjugate pairs, using the logical framework employed in the work [4].

The logic of the work was as follows. Suppose there is a transmissionless state for a two-port
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system with its associated complex frequency, ωTZ . If there’s time-reversal symmetry, you could apply

the time-reversal operation on to this state ωTZ and get ω∗
TZ , which, in a two-port system, would

also be a tranmissionless state. This means for a transmissionless state that either ωTZ = ω∗
TZ or

ωTZ ̸= ω∗
TZ . Therefore, the transmissionless state complex frequencies ωTZ exist either as real values

or as complex conjugate pairs. If ωTZ is a real value, there is zero transmission for that given real-

frequency excitation, which prevents 2π phase range. If the transmissionless states exist as complex

conjugate pairs, then one of the zero-pole pairs has its branch cut crossing the real frequency line,

permitting 2π phase change. This spontaneous symmetry-broken state involves two resonances, the

notable example being the Huygen metasurface involving multipoles of different symmetries satisfying

the Kerker condition [5]. Additionally, there is the method of explicitly breaking the time-reversal

symmetry to push the transmission zero away from the real axis. However, having intrinsic losses

in the system pushes the zero downwards [6], which prevents the branch cut from crossing the real

frequency line, so in the context of phase modulation, engineering the system to have a phase change

of 2π is rather non-trivial unless sophisticated setups involving gain are employed.

Now let’s apply the logical framework above to our system with additional diffraction ports. Sup-

pose there is a transmissionless state ωTZ . Due to the additional diffraction channels, this state entails

having an incident beam coming through the incident port, having no light go through the transmission

port, and also have light radiate out through the diffration ports as well. Because there’s no intrinsic

system loss, we can apply the time-reversal operation. After time-reversal, the system would now have

the incident and the diffraction ports having light converging back into the system/resonator (all with

intensities less than unity), and light being emitted out through the incident port with unity intensity.

Although technically the transmission port does not carry any incoming or outgoing light, it is difficult

to call this a ’transmissionless’ state because the system requires destructive interference of the beams

coming from both the incident AND the diffraction ports at the transmission port. If we were to only

consider the incident and the transmission port through projection onto the incident/transmissive

port subspace and disregard the diffraction ports, energy conservation would be violated, which would

prevent the use of time-reversal symmetry. Therefore, in our system, the transmission zeros do NOT

have to exist either on the real axis or as complex conjugate pairs.

We support our claim above with complex frequency plots showing the locations of the zeros and

poles for our resonance in Fig. 2 of the main paper. The results are shown in Fig S8 below. The

complex frequency sweep was done with the S4 RCWA software. Fig. S8a shows the complex frequency

plot for the structure in Fig. 2 without diffraction (having Px =1380 nm). As expected, the system is

only a two-port system without diffraction ports, and therefore the transmission zero is indeed on the

real frequency axis, with its exact location being fzero = 149.74+0i THz. This prevents the resonance

from attaining a full 2π phase change. Fig. S8b shows the same system with a slightly larger period so

that diffraction exists (Px =1400 nm, the threshold period for diffraction is Px,threshold = 1388.9 nm).

The zero is now slightly displaced above the real axis, with its location being fzero = 149.75 + 0.01i

THz. Fig. S8c shows the same structure with a much larger period Px = 1650 nm, so that the zero
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is displaced even higher, with its location being fzero = 149.75 + 0.06i THz. As all three complex

frequency plots show, there is only a single zero-pole pair, signifying that only a single resonance is

being utilized. For the diffraction cases, the arg t plots show the branch cut between the zero and the

pole crossing the real frequency line, allowing for a full 2π phase change.

Figure S8: The complex frequency plot for (log |t|2) and arg t for the structures (with differing Px’s)

shown in Fig. 2 of the main paper. The common geometric parameters for all three cases a,b, c are:

Py = 1328.6 nm, Germanium (n = 4) pillar dimensions are 1167.7 nm (W) × 1167.7 nm (L) × 999 nm

(H), and the substrate is silicon dioxide (n = 1.44). a. Px = 1380 nm. b. Px = 1400 nm c. Px = 1650

nm.
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4 Figure 3 Details

The resonance wavelengths λ0 and the wavelength ranges used to plot Fig. 3 of the main manuscript

were described in the caption of the figure. Here, we additionally the exact values for the complex

direct transmission scattering parameters td, the radii R of the complex transmission amplitude circles,

and the quality factors Q, for Fig. 3b-3f:

Figure td R Q

3b. −0.6205 + 0.1513i 0.329793 363.214

3c. −0.4561 + 0.1427i 0.3352 375.949

3d. −0.5871 + 0.0608i 0.370913 2943.99

3e. −0.4282− 0.0154i 0.448322 3254.32

3f. −0.4682 + 0.0205i 0.455155 19864.6

Table S1: td, R, and Q values for the circles in Fig. 3

The coloring scheme of the circles in Fig. 3 is as follows. For the circles in Fig. 3b and 3c, the

points on the circles were plotted with each point having an angular frequency difference of (∆ω =

3.64147 × 109 rad/s), and for the circles in Fig. 3d, 3e, and 3f, and angular frequency difference of

(∆ω = 3.74177× 109rad/s). The magnitude of the color change in terms of its RGB values from one

point on the circle to its nearest neighboring point was the same for all the circles in Fig. 3b to 3f. This

means that if a resonance has a higher quality factor, fewer points would be required to sweep around

the circle (due to the narrow spectral linewidth), and therefore visually the circle would have a more

spread-out rainbow coloring around the resonance point (the dark red point with a black outline). As

can be confirmed in Table S1 above, the quality factor keeps increasing as the circles progress from

Fig. 3b to 3f, with an order of magnitude difference between 3b, 3c and 3d, 3e (the spreading-out of

rainbow coloring), and another big jump in the order of magnitude from 3d, 3e to 3f (indicated by the

3f circle becoming discretized, as the consecutive points become too far in distance from one another).

Figures S9 to S13 below show the spectral transmittance and phase line plots for the complex

transmission amplitude curve/circles in Fig. 3a to 3f of the main manuscript, as well as the spectral

reflection (R00) and diffraction (R10 for x−directional first-order diffraction and R01 for y−directional

first-order diffraction) line plots and the corresponding phase plots for the diffraction-enabled cases of

Fig. 3c to 3f.
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Figure S9: Phase and transmittance spectra corresponding to the complex amplitude plots shown in

Fig. 3a and 3b of the manuscript. In (a), the transmission phase shows discontinuity. In (b), the phase

extracted from full-wave simulations is continuous but spans from −120◦ to 50◦, instead of the desired

0◦–360◦.

Figure S10: Phase and transmittance spectra corresponding to Fig. 3c.The effective wavelength within

the substrate is now smaller than the metasurface period and the diffraction within the substrate is

observed. (b) shows diffraction efficiencies in the normal direction R00, y-direction R01, and x-direction

R10. We plot 2 × R01 and 2 × R10 to account for ±1st diffraction orders. (c) plots the phases of the

diffracted waves. R stands for the total Reflectance.

Figure S11: Same as above, corresponding to Fig. 3d.
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Figure S12: Same as above, corresponding to Fig. 3e.

Figure S13: Same as above, corresponding to Fig. 3f.



5 Identifying Optimal Parameters

Here, we outline the process of identifying optimal parameters for centralized complex transmission

amplitude circle with the largest radius. We consider our metasurface configuration excluding the ITO

electrodes, not included in the simulation below. The assumed LN thickness is 339.6 nm, and the period

in the x-direction is Px = 1959.2 nm. The dimensions of the Ge pillar are 1175.5×1175.5×1005.7 nm,

where 1005.7 nm is the pillar height (along the z-direction). We simultaneously vary the width of the

LN stripe and the period in the y-direction Py. The wavelength range considered (1997–2001 nm)

supports only one resonance. We plot the average transmittance ((Tmax + Tmin)/2), transmittance

variation ( Tmax − Tmin), and a figure of merit (FOM):

FOM =
Tmax − Tmin

[(Tmax + Tmin)/2]
2.5

as a function of LN width and Py below in Fig. S14. We choose geometric parameters that minimize

the FOM. When minimized, the transmission spectra exhibit nearly constant transmission (phase-only

control), while simultaneously optimizing for high transmittance (large circular radius for the complex

transmission amplitude circle). As can be seen in Fig. S14c, there are multiple parameter sets that

result in a high FOM, allowing us to select the one with the largest circular radius. Notice that the

geometric parameters of the plot don’t exactly match that of the parameters in Fig. 3 or Fig. 4 of the

main manuscript. These plots are here to merely illustrate the process of optimal parameter selection.

Figure S14: (a)–(c) plot average transmittance, transmittance variation, and the FOM as functions of

LN width and Py. In (a)–(c), the wavelength range is 1997–2001 nm. (d)–(f) show the transmission

and phase spectra corresponding to the minimum FOM.
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6 Metasurfaces with continuous (unetched) LN films

Figure S15 below shows spectral transmittance and phase line plots for a metasurface configuration

with a continuous LN film underneath the Ge pillars. These curves were among the best of the phase-

only modulation results with such an unetched configuration. This is to illustrate that although the

continuous LN film configuration below performs decently well in terms of transmissive phase-only

modulation, etching of the LN to create the pedestal structure is necessary to achieve a near-optimal

(close to the theoretical upper bound) results.

Figure S15: (a) Schematic of the metasurface unit cell with a continuous (unetched) LN film. (b) and

(c) show transmittance and phase spectra for the following two geometries. For (b), the pillar height

is 1005.9 nm, the pillar width and length are both 1175.8 nm, the LN thickness is 522.5 nm, Px =

1806.7 nm, and Py = 1858.8 nm. In c), the pillar height is 1009.2 nm, the pillar width and length

are both 1179.5 nm, the LN thickness is 131 nm, Px = 1793.4 nm, and Py = 1914.2 nm. Simulations

exclude electrodes, but we envision placing lateral transparent conducting electrodes on top of the LN

films for practical realization.
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