
 1

Comparative chloroplast genomes analysis of nine Limonium (Plumbaginaceae) species,

including two endangered species from the island of Malta

Dolores R. Agius & Peter Poczai

Supplemantary Figures and Tables:

Species Infrageneric classification Native
distribution**

L. aureum (L.) Hill
ex Kuntze

L. subg. Limonium
M

L. sect.
Plathymenium B Li
Ba Bo M

L. subsect.
Chrysanthae B Ba
Bo

Buryatiya, N & C
China, Chita,
Mongolia, Qinghai,
Tuva

L. bicolor Kuntze L. subg. Limonium
K

L. sect.
Plathymenium K

 Mongolia to
N. & E. China.

L. franchetii
(Debeaux) Kuntze

L. subg. Limonium
K

L. sect.
Plathymenium K

 N & SE China,
Manchuria

L. otolepis
(Schrenk) Kuntze

L. subg. Limonium
M

L. sect.
Nephrophyllum R
A M
L. sect. Limonium
B Li

L. subsect.
Hyalolepideae

Afghanistan, N &
C China,
Kazakhstan,
Kirgizstan,
Tadzhikistan,
Turkmenistan,
Uzbekistan,
Xinjiang

L. sinense (Girard)
Kuntze

L. subg. Limonium
L

L. sect.
Plathymenium B
Ba Bo

L. subsect.
Chrysanthae B Ba
Bo

N & SE China,
Manchuria, Nansei-
shoto, Taiwan,
Vietnam

L. tenellum (Turcz.)
Kuntze

L. subg. Limonium
L

L. sect.
Plathymenium B
Ba

L. subsect.
Rhodanthae B Ba

Mongolia

L. tetragonum
(Thunb.) Bullock

L. subg. Limonium
L

L. sect.
Plathymenium B

L. subsect.
Chrysanthae B

S. Korea, S.
Russian Far East,
Central & S. Japan
to
N. Nansei-shoto,
New Caledonia

L. melitense
Brullo*

L. subg. Limonium
K

 Malta

L. zeraphae
Brullo*

L. subg. Limonium
K

 Malta

* ‘Mediterranean lineage’ Koutroumpa PhD thesis

** Distribution according to Plants of the World Online website except for the Maltese

species

 2

 https://powo.science.kew.org/ (accessed 19th November, 2024)

K = Koutroumpa PhD thesis; L = [4]; M = [9]; B = [42-44]; Li = [45, 46]; R = [47]; A = [28];

Ba = [1]; Bo = [48]

Supplementary Table 1: The nine species of Limonium spp. included in this study and their

infrageneric classification.

Supplementary Figure 1: Current distribution of 9 Limonium species included in this study

as specified by Plants of the World online (accessed 13th Sept., 2024)

●

●

●

●

●

● ●

*

●

●
●

●

●
●
0
0

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

● ●

●

●
●

● ●
●

●

https://powo.science.kew.org/

 3

Commands used to in oatk to assemble the plastome of L. melitense and L. zeraphae

./oatk -k 1001 -c 100 -t 24 --nhmmscan /bin/nhmmscan -m <path>/embryophyta_mito.fam -p
<path>/embryophyta_pltd.fam -o <prefix> <prefix>_hifi_reads.fa.gz

 4

Alignment_stats_py:

"""
Author: Peter Poczai
Institution: University of Helsinki
Date: March 14, 2025
Description:
This script computes alignment statistics (constant sites, variable sites, entropy, and
informativeness scores (Townsend 2007))
for nucleotide sequences in FASTA or PHYLIP format. It supports batch processing of
multiple alignment files
from an input directory and saves results to an output directory. If the output directory is not
specified,
it is automatically created as 'output_directory'. If it already exists, a new directory with a
numerical suffix
(e.g., 'output_directory2', 'output_directory3', etc.) is created.

Additionally, the script generates a single PDF for violin plots and a separate PDF for box-
and-whiskers plots
for the computed statistics and saves them in the output directory.

Installation:
- Requires Python 3+
- Install dependencies using:
 pip install biopython ete3 pandas numpy argparse matplotlib seaborn

Usage:
 python alignment_stats.py -I input_directory -O output_directory
"""

import argparse
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from Bio import AlignIO
from Bio.SeqUtils import GC
from Bio.Phylo.TreeConstruction import DistanceCalculator
from collections import Counter

def ensure_output_directory(base_name="output_directory"):
 """Create an output directory, adding a numerical suffix if it already exists."""
 dir_name = base_name
 count = 2
 while os.path.exists(dir_name):
 dir_name = f"{base_name}{count}"
 count += 1
 os.makedirs(dir_name)
 print(f"Output directory created: {dir_name}")

 5

 return dir_name

def compute_informativeness(alignment):
 """Computes Townsend 2007 Informativeness Score."""
 informativeness_scores = []
 for col in range(alignment.get_alignment_length()):
 column_data = [record.seq[col] for record in alignment]
 freq_counts = Counter(column_data)
 probs = np.array(list(freq_counts.values())) / sum(freq_counts.values())
 entropy = -np.sum(probs * np.log2(probs)) if len(probs) > 1 else 0
 informativeness_scores.append(entropy)
 return np.mean(informativeness_scores)

def compute_alignment_stats(input_file):
 file_extension = input_file.split(".")[-1].lower()
 file_format = "fasta" if file_extension in ["fa", "fasta"] else "phylip"

 try:
 alignment = AlignIO.read(input_file, file_format)
 except Exception as e:
 print(f"Error reading {input_file}: {e}")
 return None

 if len(alignment) == 0:
 print(f"Empty alignment in {input_file}. Skipping...")
 return None

 num_taxa = len(alignment)
 alignment_length = alignment.get_alignment_length()

 seq_array = np.array([list(str(rec.seq)) for rec in alignment])
 gap_mask = (seq_array == '-') | (seq_array == 'N')
 gap_proportion = gap_mask.sum() / (num_taxa * alignment_length)

 gc_contents = [GC(str(rec.seq).replace("-", "").replace("N", "")) for rec in alignment if
len(str(rec.seq).replace("-", "").replace("N", "")) > 0]
 mean_gc_content = np.mean(gc_contents) if gc_contents else 0

 unique_sites = np.apply_along_axis(lambda col: len(set(col) - {'-', 'N'}), axis=0,
arr=seq_array)
 constant_sites = np.sum(unique_sites == 1)
 variable_sites = np.sum(unique_sites > 1)
 parsimony_informative_sites = np.sum(unique_sites > 2)
 singleton_sites = np.sum(unique_sites == 2)

 def compute_entropy(column):
 counts = np.array(list(Counter(column[column != '-']).values()))
 probs = counts / counts.sum() if counts.sum() > 0 else np.array([])
 return -np.sum(probs * np.log2(probs)) if len(probs) > 1 else 0

 6

 entropy_per_site = np.array([compute_entropy(seq_array[:, i]) for i in
range(alignment_length)])
 mean_entropy = np.mean(entropy_per_site)
 informativeness_score = compute_informativeness(alignment)

 results = {
 "File": os.path.basename(input_file),
 "Alignment length": alignment_length,
 "Number of constant sites": constant_sites,
 "Number of variable sites": variable_sites,
 "Number of parsimony-informative sites": parsimony_informative_sites,
 "Number of singleton sites": singleton_sites,
 "Proportion of gaps/missing data": gap_proportion,
 "Mean GC content": mean_gc_content,
 "Mean entropy per site": mean_entropy,
 "Informativeness Score (Townsend 2007)": informativeness_score
 }

 return results

def generate_combined_plots(data, output_dir):
 metrics = [
 "Alignment length", "Number of constant sites", "Number of variable sites",
 "Number of parsimony-informative sites", "Number of singleton sites",
 "Proportion of gaps/missing data", "Mean GC content", "Mean entropy per site",
 "Informativeness Score (Townsend 2007)"
]

 fig, axes = plt.subplots(1, len(metrics), figsize=(len(metrics) * 4, 6))
 for i, metric in enumerate(metrics):
 sns.violinplot(y=data[metric], ax=axes[i], palette="Set2")
 axes[i].set_title(metric, rotation=45, ha="right")
 plt.tight_layout()
 plt.savefig(os.path.join(output_dir, "violin_plots.pdf"))
 plt.close()

 fig, axes = plt.subplots(1, len(metrics), figsize=(len(metrics) * 4, 6))
 for i, metric in enumerate(metrics):
 sns.boxplot(y=data[metric], ax=axes[i], palette="Set1")
 axes[i].set_title(metric, rotation=45, ha="right")
 plt.tight_layout()
 plt.savefig(os.path.join(output_dir, "box_plots.pdf"))
 plt.close()

def process_directory(input_dir, output_dir):
 output_dir = ensure_output_directory(output_dir)
 all_results = []
 for filename in os.listdir(input_dir):
 if filename.endswith((".fasta", ".fa", ".phy", ".phylip")):
 input_path = os.path.join(input_dir, filename)

 7

 result = compute_alignment_stats(input_path)
 if result:
 all_results.append(result)

 if all_results:
 df = pd.DataFrame(all_results)
 df.to_csv(os.path.join(output_dir, "summary_statistics.csv"), index=False)
 generate_combined_plots(df, output_dir)

if __name__ == "__main__":
 parser = argparse.ArgumentParser(description="Compute alignment statistics from
FASTA or PHYLIP files.")
 parser.add_argument("-I", "--input_directory", required=True, help="Directory containing
input alignment files (FASTA or PHYLIP)")
 parser.add_argument("-O", "--output_directory", default="output_directory",
help="Directory to save output CSV files (default: output_directory)")

 args = parser.parse_args()
 process_directory(args.input_directory, args.output_directory)

 8

Bootstrap_analysis.py:

"""
Author: Peter Poczai
Institution: University of Helsinki
Date: March 15, 2025

Description:
This script extracts and analyzes bootstrap values and SH-aLRT values from IQ-TREE
.treefile output files.
It computes summary statistics and generates visualizations including histograms, density
plots, violin plots, and box plots.
The script supports:
- Analyzing a single file
- Comparing up to three specific files
- Analyzing all .treefile files in a given directory

Installation:
Requires Python 3+ and the following dependencies:
```sh 
pip install biopython pandas numpy argparse matplotlib seaborn 
``` 

Usage:
For a **single .treefile file** analysis:
```sh 
python bootstrap_analysis.py -i SET.treefile -O results 
``` 

For **comparing two .treefile files**:
```sh 
python bootstrap_analysis.py -i SET1.treefile -I SET2.treefile -O results 
``` 

For **comparing three .treefile files**:
```sh 
python bootstrap_analysis.py -i SET1.treefile -I SET2.treefile -J SET3.treefile -O results 
``` 

For **analyzing all .treefile files in a directory**:
```sh 
python bootstrap_analysis.py -D input_directory -O results 
``` 

If the `results` folder already exists, the script creates a new folder `results2`, `results3`, etc.

Options:
- `-i`, `--input1` (optional) : Path to the first .treefile file.
- `-I`, `--input2` (optional) : Path to the second .treefile file (for comparison).

 9

- `-J`, `--input3` (optional) : Path to the third .treefile file (for comparison).
- `-D`, `--input_directory` (optional) : Directory containing .treefile files to analyze.
- `-O`, `--output` (default=`results`) : Directory to save analysis results.
- `-h`, `--help` : Show this help message and exit.
"""

import argparse
import os
import re
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use('Agg') # Ensure non-GUI backend for HPC/server use
import matplotlib.pyplot as plt
import seaborn as sns

def ensure_output_directory(base_name="results"):
 """Create an output directory, adding a numerical suffix if it already exists."""
 dir_name = base_name
 count = 2
 while os.path.exists(dir_name):
 dir_name = f"{base_name}{count}"
 count += 1
 os.makedirs(dir_name)
 print(f"Output directory created: {dir_name}")
 return dir_name

def extract_support_values(treefile):
 """Extracts bootstrap and SH-aLRT values from an IQ-TREE .treefile."""
 bootstrap_values = []
 sh_alrt_values = []

 with open(treefile, 'r') as f:
 tree_data = f.read().strip()

 match = re.search(r'\((.+);', tree_data, re.DOTALL)
 if not match:
 print(f"Error: No valid Newick tree found in {treefile}.")
 return np.array([]), np.array([])

 newick_tree = match.group(0)
 matches = re.findall(r'\)(\d+\.\d+)?/(\d+):', newick_tree)
 sh_alrt_values = [float(x[0]) if x[0] else np.nan for x in matches] # Handle missing SH-
aLRT values
 bootstrap_values = [float(x[1]) for x in matches]

 return np.array(bootstrap_values), np.array(sh_alrt_values)

def generate_plots(df, output_dir):
 """Generates histograms, violin plots, and box plots for bootstrap and SH-aLRT values."""

 10

 if df.empty:
 print("No valid data for plotting. Skipping plots.")
 return

 plt.figure(figsize=(8, 6))
 sns.histplot(df, x="Bootstrap Value", hue="Alignment", kde=True, bins=20, alpha=0.5)
 plt.title("Histogram & Density Plot of Bootstrap Values")
 plt.savefig(os.path.join(output_dir, "bootstrap_histogram.pdf"))
 plt.close()

 plt.figure(figsize=(8, 6))
 sns.histplot(df, x="SH-aLRT Value", hue="Alignment", kde=True, bins=20, alpha=0.5)
 plt.title("Histogram & Density Plot of SH-aLRT Values")
 plt.savefig(os.path.join(output_dir, "sh_alrt_histogram.pdf"))
 plt.close()

 plt.figure(figsize=(8, 6))
 sns.violinplot(data=df, x="Alignment", y="Bootstrap Value", palette="Set2")
 plt.title("Violin Plot of Bootstrap Values")
 plt.savefig(os.path.join(output_dir, "bootstrap_violin.pdf"))
 plt.close()

 plt.figure(figsize=(8, 6))
 sns.violinplot(data=df, x="Alignment", y="SH-aLRT Value", palette="Set3")
 plt.title("Violin Plot of SH-aLRT Values")
 plt.savefig(os.path.join(output_dir, "sh_alrt_violin.pdf"))
 plt.close()

 plt.figure(figsize=(8, 6))
 sns.boxplot(data=df, x="Alignment", y="Bootstrap Value", palette="Set1")
 plt.title("Box Plot of Bootstrap Values")
 plt.savefig(os.path.join(output_dir, "bootstrap_box.pdf"))
 plt.close()

 plt.figure(figsize=(8, 6))
 sns.boxplot(data=df, x="Alignment", y="SH-aLRT Value", palette="Set3")
 plt.title("Box Plot of SH-aLRT Values")
 plt.savefig(os.path.join(output_dir, "sh_alrt_box.pdf"))
 plt.close()

def analyze_support(files, output_dir):
 """Analyzes bootstrap and SH-aLRT values and generates plots."""
 support_data = []

 for file in files:
 bootstrap_values, sh_alrt_values = extract_support_values(file)
 if len(bootstrap_values) > 0:
 support_data.append(pd.DataFrame({
 "Bootstrap Value": bootstrap_values,
 "SH-aLRT Value": sh_alrt_values,

 11

 "Alignment": os.path.basename(file)
 }))

 if not support_data:
 print("Error: No support values found in the provided .treefile files. Exiting.")
 return

 df = pd.concat(support_data, ignore_index=True)
 summary_stats = df.groupby("Alignment")[["Bootstrap Value", "SH-aLRT
Value"]].describe()
 summary_stats.to_csv(os.path.join(output_dir, "support_summary.csv"))
 generate_plots(df, output_dir)
 print("Analysis complete. Results saved in", output_dir)

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument("-i", "--input1", help="Path to the first .treefile file")
 parser.add_argument("-I", "--input2", help="Path to the second .treefile file")
 parser.add_argument("-J", "--input3", help="Path to the third .treefile file")
 parser.add_argument("-D", "--input_directory", help="Directory containing .treefile files")
 parser.add_argument("-O", "--output", default="results", help="Output directory")
 args = parser.parse_args()
 output_dir = ensure_output_directory(args.output)
 files_to_analyze = [f for f in [args.input1, args.input2, args.input3] if f]
 if args.input_directory:
 files_to_analyze.extend([os.path.join(args.input_directory, f) for f in
os.listdir(args.input_directory) if f.endswith(".treefile")])
 analyze_support(files_to_analyze, output_dir)

if __name__ == "__main__":
 main()

 12

Family Genus Specific name NCBI number
Frankeniaceae Frankenia laevis NC_041277.1
Frankeniaceae Frankenia pulverulenta NC_041278.1
Plumbaginaceae Ceratostigma griffithii NC_071213.1
Plumbaginaceae Ceratostigma minus NC_071214.1
Plumbaginaceae Ceratostigma plumbaginoides NC_071212.1
Plumbaginaceae Ceratostigma ulicinum NC_071211.1
Plumbaginaceae Ceratostigma willmottianum NC_041261.1
Plumbaginaceae Limonium melitense PP968847
Plumbaginaceae Limonium zeraphae PQ274899
Plumbaginaceae Limonium aureum NC_045399.1
Plumbaginaceae Limonium bicolor NC_059915.1
Plumbaginaceae Limonium franchetii NC_085143.1
Plumbaginaceae Limonium otolepis NC_065861.1
Plumbaginaceae Limonium tenellum NC_041279.1
Plumbaginaceae Limonium tetragonum NC_059914.1
Plumbaginaceae Limonium sinense MN599096.1
Plumbaginaceae Plumbago auriculata NC_041245.1
Plumbaginaceae Plumbago zeylanica NC_084458.1
Polygonaceae Atraphaxis bracteata NC_059952.1
Polygonaceae Atraphaxis decipiens NC_070100.1
Polygonaceae Atraphaxis irtyschensis NC_070099.1
Polygonaceae Atraphaxis spinosa NC_070098.1
Polygonaceae Bistorta emodi NC_066665.1
Polygonaceae Bistorta macrophylla NC_068876.1
Polygonaceae Bistorta ochotensis NC_082240.1
Polygonaceae Bistorta officinalis NC_065784.1
Polygonaceae Bistorta paleacea NC_082267.1
Polygonaceae Calligonum aphyllum NC_049137.1
Polygonaceae Calligonum arborescens NC_049140.1
Polygonaceae Calligonum bakuense NC_062619.1
Polygonaceae Calligonum caput-medusae NC_049141.1
Polygonaceae Calligonum colubrinum NC_049142.1
Polygonaceae Coccoloba uvifera NC_068873.1
Polygonaceae Fagopyrum dibotrys NC_037705.1
Polygonaceae Fagopyrum esculentum NC_064334
Polygonaceae Fagopyrum gracilipes NC_082243.1
Polygonaceae Fagopyrum leptopodum NC_056984.1
Polygonaceae Fagopyrum luojishanense NC_037706.1
Polygonaceae Fallopia aubertii NC_068872.1
Polygonaceae Fallopia convolvulus NC_082245.1
Polygonaceae Fallopia dentatoalata NC_082246.1
Polygonaceae Fallopia dumetorum NC_082247.1
Polygonaceae Fallopia multiflora NC_041239.1
Polygonaceae Knorringia sibirica NC_082248.1
Polygonaceae Koenigia alpina NC_066667.1
Polygonaceae Koenigia cyanandra NC_066668.1
Polygonaceae Koenigia divaricata NC_066669.1
Polygonaceae Koenigia forrestii NC_066670.1
Polygonaceae Koenigia lichiangensis NC_066672.1
Polygonaceae Muehlenbeckia australis NC_059029.1
Polygonaceae Muehlenbeckia axillaris NC_059030.1
Polygonaceae Muehlenbeckia complexa NC_066815.1
Polygonaceae Muehlenbeckia gracillima NC_059031.1
Polygonaceae Muehlenbeckia gunnii NC_059032.1
Polygonaceae Oxyria digyna NC_082249.1
Polygonaceae Oxyria sinensis NC_032031.1
Polygonaceae Persicaria amphibia NC_071233.1
Polygonaceae Persicaria bungeana NC_082250.1
Polygonaceae Persicaria capitata NC_073007.1

 13

Polygonaceae Persicaria chinensis NC_050358.1
Polygonaceae Persicaria criopolitana NC_079578.1
Polygonaceae Polygonum ajanense NC_066666.1
Polygonaceae Polygonum argyrocoleon NC_082264.1
Polygonaceae Polygonum aviculare NC_058892.1
Polygonaceae Polygonum cognatum NC_082265.1
Polygonaceae Polygonum cuspidatum NC_057435.1
Polygonaceae Pteroxygonum denticulatum NC_068877.1
Polygonaceae Pteroxygonum giraldii NC_082272.1
Polygonaceae Reynoutria japonica NC_059800.1
Polygonaceae Rheum alexandrae NC_061617.1
Polygonaceae Rheum delavayi NC_063092.1
Polygonaceae Rheum nobile NC_046506.1
Polygonaceae Rheum officinale NC_058627.1
Polygonaceae Rheum palmatum NC_027728.1
Polygonaceae Rumex acetosa NC_042390.1
Polygonaceae Rumex hypogaeus NC_050054.1
Polygonaceae Rumex nepalensis NC_057504.1
Polygonaceae Rumex subgen.

Acetosa
hastatus NC_050928.1

Polygonaceae Triplaris americana NC_068874.1
Tamaricaceae Myricaria bracteata NC_088075.1
Tamaricaceae Myricaria elegans NC_063470.1
Tamaricaceae Myricaria laxiflora NC_072270.1
Tamaricaceae Myricaria paniculata NC_041270.1
Tamaricaceae Myricaria prostrata NC_046761.1
Tamaricaceae Reaumuria songarica NC_041273.1
Tamaricaceae Reaumuria trigyna NC_041265.1
Tamaricaceae Tamarix androssowii NC_084254.1
Tamaricaceae Tamarix aphylla NC_084252.1
Tamaricaceae Tamarix arceuthoides NC_067397.1
Tamaricaceae Tamarix chinensis NC_040943.1
Tamaricaceae Tamarix gracilis NC_084253.1
OUTGROUP
Aizoaceae Tetragonia tetragonoides NC_036991.1
Barbeuiaceae Barbeuia madagascariensis NC_041301.1
Talinaceae Talinum paniculatum NC_037748.1
Montiaceae Calandrinia eremaea NC_041259.1
Montiaceae Calandrinia granulifera NC_041260.1

Supplementary Table 2: List of species included in the phylogenomic study and IR

boundary study.

 14

Supplementary Figure 2: (A) Nucleotide diversity and (B) Haplotype diversity for the introns

of 9 Limonium species

Supplementary Figure 3: L. melitense and L. zeraphae (A) genic and (B) intergenic nucleotide

diversity

0

0.01

0.02

0.03

rp
s1
6

trn
G
_U
C
C

at
pF

rp
oC
1

yc
f3
_1

yc
f3
_2

trn
L_
U
AA

trn
V_
U
AC

cl
pP
_1

cl
pP
_2

pe
tB

pe
tD rp
l2

nd
hB

rp
s1
2_
2

trn
I_
G
AT

trn
A_
U
G
C

nd
hA

trn
A_
U
G
C

trn
I_
G
AU

rp
s1
2

nd
hB

N
uc

le
ot

id
e

D
iv

er
si

ty
 (p

)

a

0.0

0.2

0.4

0.6

0.8

1.0

rp
s1
6

trn
G
_U
C
C

at
pF

rp
oC
1

yc
f3
_1

yc
f3
_2

trn
L_
U
AA

trn
V_
U
AC

cl
pP
_1

cl
pP
_2

pe
tB

pe
tD rp
l2

nd
hB

rp
s1
2_
2

trn
I_
G
AT

trn
A_
U
G
C

nd
hA

trn
A_
U
G
C

trn
I_
G
AU

rp
s1
2

nd
hB

H
ap

lo
ty

pe
 D

iv
er

si
ty

 (H
)

b

0

0.001

0.002

0.003
0.004

0.005

0.006

0.007

0.008

trn
H_

G
UG

ps
bA

trn
K_

UU
U_

ex
on

2
m

at
K

trn
K_

UU
U_

ex
on

1
rp

s1
6_

ex
on

1
rp

s1
6_

ex
on

2
trn

Q
_U

UG
ps

bK ps
bI

trn
S_

G
CU

trn
G

_U
CC

_e
xo

n1
trn

G
_U

CC
_e

xo
n2

trn
R_

UC
U

at
pA

at
pF

_e
xo

n2
at

pF
_e

xo
n1

at
pH at
pI

rp
s2

rp
oC

2
rp

oC
1_

ex
on

2
rp

oC
1_

ex
on

1
rp

oB
trn

C_
G

CA pe
tN

ps
bM

trn
D_

G
UC

trn
Y_

G
UA

trn
E_

UU
C

trn
T_

G
G

U
ps

bD
ps

bC
trn

S_
UG

A
ps

bZ
trn

G
_G

CC
trn

M
_C

AU
rp

s1
4

ps
aB

ps
aA

yc
f3

_e
xo

n3
yc

f3
_e

xo
n2

yc
f3

_e
xo

n1
trn

S_
G

G
A

rp
s4

trn
T_

UG
U

trn
L_

UA
A_

ex
on

1
trn

L_
UA

A_
ex

on
2

trn
F_

G
AA

nd
hJ

nd
hk

nd
hC

trn
V_

UA
C_

ex
on

2
trn

V_
UA

C_
ex

on
1

trn
M

_C
AU

_3
73

92
at

pE
at

pB rb
cL

ac
cD ps
aI

yc
f4

ce
m

A
pe

tA
ps

bJ
ps

bL
ps

bF
ps

bE pe
tL

pe
tG

trn
W

_C
C

A
trn

P_
UG

G
ps

aJ
rp

l3
3

rp
s1

8
rp

l2
0

rp
s1

2_
ex

on
1

clp
P_

ex
on

3
clp

P_
ex

on
2

clp
P_

ex
on

1
ps

bB
ps

bT
ps

bN
ps

bH
pe

tB
_e

xo
n1

pe
tB

_e
xo

n2
pe

tD
_e

xo
n1

pe
tD

_e
xo

n2
rp

oA
rp

s1
1

rp
l3

6
in

fA
rp

s8
rp

l1
4

rp
l1

6
rp

s3
rp

l2
2

rp
s1

9
rp

l2
_e

xo
n2

rp
l2

_e
xo

n1
rp

l3
2

trn
M

_C
AU yc
f2

trn
L_

CA
A

nd
hB

_e
xo

n2
nd

hB
_e

xo
n1

rp
s7

rp
s1

2_
ex

on
3

rp
s1

2_
ex

on
2

trn
V_

G
AC

rrn
16

trn
I_

G
AU

_e
xo

n1
trn

I_
G

AU
_e

xo
n2

trn
A_

UG
C_

ex
on

1
trn

A_
UG

C_
ex

on
2

rrn
23

rrn
4.

5
rrn

5
trn

R_
AC

G
trn

N_
G

UU yc
f1

nd
hF

rp
l3

2
trn

L_
UA

G
cc

sA
nd

hD
ps

aC
nd

hE
nd

hG nd
hI

nd
hA

_e
xo

n2
nd

hA
_e

xo
n1

nd
hH

rp
s1

5
yc

f1
trn

N_
G

UU
trn

R_
AC

G
rrn

5
rrn

4.
5

rrn
23

trn
A_

UG
C_

in
tro

n
trn

A_
UG

C_
ex

on
2

trn
A_

UG
C_

ex
on

1
trn

I_
G

AU
rrn

16
trn

V_
G

AC
rp

s1
2_

ex
on

2
rp

s1
2_

ex
on

3
rp

s7
nd

hB
_2

_e
xo

n1
nd

hB
_2

_e
xo

n2
trn

L_
CA

A
yc

f2
trn

M
_C

AU

N
uc

le
ot

id
e

D
iv

er
si

ty
 (π

)

a

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

trn
H_

G
TG

-p
sb

A
ps

bA
-tr

nK
_A

AA
trn

K_
AA

Ae
xo

n1
-m

at
K

m
at

K_
trn

K_
AA

A-
ex

on
2

trn
K_

AA
A

in
tro

n
(in

clu
de

s m
at

K)
trn

K_
AA

A-
rp

s1
6

Rp
s1

6
in

tro
n

rp
s1

6-
 tr

nQ
_T

TG
trn

Q
_T

TG
-p

sb
K

ps
bK

-p
sb

I
ps

bI
-tr

nS
_G

CT
trn

S_
G

CT
-tr

nG
_U

CC
trn

G
_U

CC
 in

tro
n

trn
G

_U
CC

-tr
nR

_T
CT

trn
R_

TC
T-

at
pA

at
pA

-a
tp

F
at

pF
 in

tro
n

at
pF

-a
tp

H
at

pH
-a

tp
I

at
pI

-rp
s2

rp
s2

-rp
oC

2
rp

oC
2-

rp
oC

1
rp

oC
1

in
tro

n
rp

oC
1-

rp
oB

rp
oB

-tr
nC

_G
C

A
trn

C_
G

CA
-p

et
N

pe
tN

-p
sb

M
ps

bM
-tr

nD
_G

TC
trn

D_
G

TC
-tr

nY
_G

TA
trn

Y_
G

TA
-tr

nE
_T

TC
trn

E_
TT

C-
trn

T_
G

G
T

trn
T_

G
G

T-
ps

bD
ps

bD
-p

sb
C

ps
bC

-tr
nS

_T
G

A
trn

S_
TG

A-
ps

bZ
ps

bZ
-tr

nG
_G

CC
trn

G
_G

CC
-tr

nM
_C

AT
trn

M
_C

AT
-rp

s1
4

Rp
s1

4-
ps

aB
ps

aB
-p

sa
A

ps
aA

-y
cf

3
Yc

f3
_i

nt
ro

n1
Yc

f3
_i

nt
ro

n2
yc

f3
-tr

nS
_G

G
A

trn
S_

G
G

A-
rp

s4
Rp

s4
-tr

nT
_T

G
T

trn
T_

TG
T-

trn
L_

TA
A

trn
L_

TA
A

in
tro

n
trn

L_
TA

A-
trn

F_
G

AA
trn

F_
G

AA
-n

dh
J

nd
hJ

-n
dh

k
nd

hk
-n

dh
C

nd
hC

-tr
nV

_T
AC

trn
V_

TA
C_

in
tro

n
trn

V_
 T

AC
- t

rn
M

_C
AT

trn
M

_C
AT

-a
tp

E
at

pE
-a

tp
B

at
pB

-rb
cL

rb
cL

-a
cc

D
ac

cD
-p

sa
I

ps
aI

-y
cf

4
yc

f4
-c

em
A

ce
m

A-
pe

tA
pe

tA
-p

sb
J

ps
bJ

-p
sb

L
ps

bL
-p

sb
F

ps
bF

-p
sb

E
ps

bE
-p

et
L

pe
tL

-p
et

G
pe

tG
-tr

nW
_C

CA
trn

W
_C

C
A-

trn
P_

TG
G

trn
P_

TG
G

-p
sa

J
ps

aJ
-rp

l3
3

rp
l3

3-
rp

s1
8

rp
s1

8-
rp

l2
0

Rp
l2

0-
rp

s1
2_

ex
on

1
Rp

s1
2_

ex
on

1-
clp

P
clp

P-
in

tro
n1

clp
P-

in
tro

n2
clp

P-
ps

bB
ps

bB
-p

sb
T

ps
bT

-p
sb

N
ps

bN
-p

sb
H

ps
bH

-p
et

B
pe

tB
 in

tro
n

pe
tB

-p
et

D
pe

tD
 in

tro
n

pe
tD

-rp
oA

rp
oA

-rp
s1

1
rp

s1
1-

rp
l3

6
rp

l3
6-

in
fA

in
fA

-rp
s8

rp
s8

-rp
l1

4
rp

l1
4-

rp
l1

6
rp

l2
2-

rp
s1

9
rp

s1
9-

rp
l2

rp
l2

 in
tro

n
Rp

l2
-rp

l3
2

Rp
l3

2-
trn

M
_C

AT
yc

f2
-tr

nL
_C

AA
trn

L_
CA

A-
nd

hB
_e

xo
n2

nd
hB

 in
tro

n
nd

hB
-rp

s7
rp

s7
-rp

s1
2

rp
s1

2-
in

tro
n2

rp
s1

2-
 tr

nV
_G

AC
trn

V_
G

AC
-rr

n1
6

rrn
16

-tr
nI

_G
AT

trn
I_

G
AT

_i
nt

ro
n

trn
I_

G
AT

-tr
nA

_T
G

C
trn

A_
TG

C_
in

tro
n

trn
A_

TG
C-

rrn
23

rrn
23

-rr
n4

.5
rrn

4.
5-

rrn
5

rrn
5-

trn
R_

AC
G

trn
R_

AC
G

-tr
nN

_G
TT

trn
N_

G
TT

-y
cf

1
Yc

f1
-n

dh
F

nd
hF

- r
pl

32
rp

l3
2-

trn
L_

TA
G

trn
L_

TA
G

-c
cs

A
cc

sA
-n

dh
D

nd
hD

-p
sa

C
ps

aC
-n

dh
E

nd
hE

-n
dh

G
nd

hG
-n

dh
I

nd
hI

-n
dh

A
ex

on
2

nd
hA

 in
tro

n
nd

hA
-n

dh
H

nd
hH

-rp
s1

5
Rp

s1
5-

 Y
cf

1
Yc

f1
-tr

nN
_G

TT
trn

N_
G

TT
-tr

nR
_A

CG
trn

R_
AC

G
-rr

n5
rrn

5-
rrn

4.
5

rrn
4.

5-
rrn

23
rrn

23
-tr

nA
_T

G
C

trn
A_

TG
C_

in
tro

n
trn

A_
TG

C-
trn

I_
G

AT
trn

I_
G

AT
- i

nt
ro

n
trn

I_
G

AT
-rr

n1
6

rrn
16

-tr
nV

_G
AC

trn
V_

G
AC

-rp
s1

2_
ex

on
2

rp
s1

2
in

tro
n

Rp
s1

2_
ex

on
3_

rp
s7

_2
rp

s7
-n

dh
B

nd
hB

 in
tro

n_
2

nd
hB

-tr
nL

_C
AA

trn
L_

CA
A-

yc
f2

yc
f2

-tr
nM

_C
AT

N
uc

le
ot

id
e

D
iv

er
st

iy
 (π

)b

 15

Supplementary Figure 4: Plastome map of L. tenellum showing SSC region

ycf2

ycf2

rpoC2

rpo
B

rpoC1

rrn23

rrn
23

trnK-UUU
ps

aA

nd
hF

ps
aB

ndhB

ndhB

ndhA

ycf3

clpPpsbB

atpA

nd
hD

matK

rrn16

rrn
16

atpB

rbcL

ps
bC

petB

atpF

petD

rps16

ndhH

yc
f1

psbA

ps
bD

rpoA

trnI-GAU

trn
I-G

AU

petA

ndhK

rps12

rps12

trnG-UCC

trnA-UGC

trn
A-

UGC

atpIrps2

rps3

trnV-UAC

rps4

trnL-UAA

ycf4

nd
hG

ndhI

ndhJ

rps7

rps7

rpl22

rpl2

atpE

rpl16

rps11

rps8

rpl20

rpl14

ndhC

rps18

nd
hE

rp
s1

4
rps19

rps15

psbE

ps
aC

atpH

psbH

rpl33

ps
bZ

psbK

rp
l3

2

psaJ

psbN

psbJ

rrn5

psbF
psbL

rpl36

rps12

petG

psaI

psbI

psbT

ps
bM

rrn4.5

petL

pe
tN

trnS-GCU

trn
S-

UG
A

trnS-G
G

A

trn
Y-

GU
A

trnL-CAA

trnL-CAA

trn
L-

UA
Gtrn

R-
AC

G

trnP-UGG

trnW-CCA

trnH-GUG

trnI-CAU

trnR-ACG

trnI-CAU

trn
D-

GU
C

trnM
-CAU

trnF-G
AA

trnT-UG
U

trn
E-

UU
C

trnV-GAC

trn
N-

GU
U

trn
V-G

AC

trn
fM

-C
AU

trn
T-

GG
U

trn
C-G

CA

trnR-UCU

trnQ-UUG

trn
G

-G
CC

Limonium tenellum
chloroplast genome

150,515 bp

hypothetical chloroplast reading frames (ycf)
clpP, matK
ribosomal RNAs
transfer RNAs
ribosomal proteins (LSU)
ribosomal proteins (SSU)
RNA polymerase
RubisCO large subunit
NADH dehydrogenase
ATP synthase
cytochrome b/f complex
photosystem II
photosystem I

IR
AIRB

SSC

LSC

 16

Supplementary table 3: Simple sequence repeats (SSRs) in the plastomes of 9 Limonium species

 L. melitense L. zeraphae L. bicolor L. franchetii L. aureum L. otolepis L. sinense L. tenellum L. tetragonum
SSRs Mono 34 33 32 33 37 39 43 33 34

Di 5 5 7 7 7 7 11 7 6
Tri 1 1 0 0 0 0 0 0 0

Tetra 0 0 0 0 0 0 0 0 0
Penta 0 0 0 0 0 0 0 0 0
Hexa 0 0 0 0 0 0 0 0 0

Total
SSRs

 40 39 39 40 44 46 54 40 40 382

Supplementary Table 4: Number of direct repeats, separated into size ranges, in the plastomes of 9
Limonium species.

L. melitense L. zeraphae L. bicolor L. franchetii L. aureum L. otolepis L. sinense L. tenellum L. tetragonum
20-29 65 68 77 91 83 69 165 71 81
30-39 12 11 17 18 17 18 22 14 18
40-59 6 7 3 7 9 7 32 11 9
60-79

0 2 2 16 1

80-99

1
6

100-200

35

200-300

4

300-400

6

>400

7

Total 83 86 97 117 111 96 293 97 108

Supplementary Table 5: Number of palindromic repeats, separated into size ranges, in the plastomes
of 9 Limonium species.
 L. melitense L. zeraphae L. bicolor L. franchetii L. aureum L. otolepis L. sinense L. tenellum L. tetragonum
20-29 59 55 69 88 76 64 116 90 71
30-39 14 14 22 22 21 21 23 26 22
40-59 4 4 7 6 6 7 11 12 6
60-79 0 0 2 6 0
80-99 0 0 0 1
100-200 0 0 14 1
200-300 1 1 2
300-400 0
>400 3
Total 78 74 98 116 103 94 175 130 99

Supplementary Table 6: Number of supermaximal repeats, separated into size ranges, in the
plastomes of 9 Limonium species

 L. melitense L. zeraphae L. bicolor L. franchetii L. aureum L. otolepis L. sinense L. tenellum L. tetragonum
20-29 50 50 39 46 44 41 54 34 43
30-39 8 7 11 12 11 8 16 8 12
40-59 4 6 6 5 6 3 16 8 6
60-79 1 0 1 2 11 1
80-99 1 3
100-200 35
200-300 4
300-400 6
>400 7
Total 62 63 57 64 62 54 152 51 61

 17

Supplementary Figure 5: Violin plots of the bootstrap and SH-aLRT values for the

phylogenomic tree

