Comparative chloroplast genomes analysis of nine Limonium (Plumbaginaceae) species,

including two endangered species from the island of Malta

Dolores R. Agius & Peter Poczai

Supplemantary Figures and Tables:

Species Infrageneric classification Native
distribution**
L. aureum (L.) Hill | L. subg. Limonium | L. sect. L. subsect. Buryatiya, N & C
ex Kuntze M Plathymenium B Li | Chrysanthae B Ba | China, Chita,
BaBoM Bo Mongolia, Qinghai,
Tuva
L. bicolor Kuntze L. subg. Limonium | L. sect. Mongolia to
K Plathymenium K N. & E. China.
L. franchetii L. subg. Limonium | L. sect. N & SE China,
(Debeaux) Kuntze | K Plathymenium K Manchuria
L. otolepis L. subg. Limonium | L. sect. Afghanistan, N &
(Schrenk) Kuntze M Nephrophyllum R C China,
AM Kazakhstan,
L. sect. Limonium L. subsect. Kirgizstan,
B Li Hyalolepideae Tadzhikistan,
Turkmenistan,
Uzbekistan,
Xinjiang
L. sinense (Girard) | L. subg. Limonium | L. sect. L. subsect. N & SE China,
Kuntze L Plathymenium B Chrysanthae B Ba | Manchuria, Nansei-
Ba Bo Bo shoto, Taiwan,
Vietnam
L. tenellum (Turcz.) | L. subg. Limonium | L. sect. L. subsect. Mongolia
Kuntze L Plathymenium B Rhodanthae B Ba
Ba
L. tetragonum L. subg. Limonium | L. sect. L. subsect. S. Korea, S.
(Thunb.) Bullock L Plathymenium B Chrysanthae B Russian Far East,

Central & S. Japan
to

N. Nansei-shoto,
New Caledonia

L. melitense L. subg. Limonium Malta
Brullo* K
L. zeraphae L. subg. Limonium Malta
Brullo* K

* ‘Mediterranean lineage’ Koutroumpa PhD thesis

** Distribution according to Plants of the World Online website except for the Maltese

species

https://powo.science.kew.org/ (accessed 19th November, 2024)
K = Koutroumpa PhD thesis; L = [4]; M = [9]; B = [42-44]; Li = [45, 46]; R =[47]; A = [28];
Ba=[1]; Bo=[48]

Supplementary Table 1: The nine species of Limonium spp. included in this study and their

infrageneric classification.

L. melitense *

L. zeraphae
L. bicolor
L. franchetii «

L otolepis o

L tenellum o

. L ° L. tetragonum o

Supplementary Figure 1: Current distribution of 9 Limonium species included in this study

as specified by Plants of the World online (accessed 13" Sept., 2024)

https://powo.science.kew.org/

Commands used to in oatk to assemble the plastome of L. melitense and L. zeraphae

Joatk -k 1001 -c 100 -t 24 --nhmmscan /bin/nhmmscan -m <path>/embryophyta mito.fam -p
<path>/embryophyta pltd.fam -o <prefix> <prefix> hifi reads.fa.gz

Alignment stats py:

Author: Peter Poczai

Institution: University of Helsinki

Date: March 14, 2025

Description:

This script computes alignment statistics (constant sites, variable sites, entropy, and
informativeness scores (Townsend 2007))

for nucleotide sequences in FASTA or PHYLIP format. It supports batch processing of
multiple alignment files

from an input directory and saves results to an output directory. If the output directory is not
specified,

it is automatically created as 'output_directory'. If it already exists, a new directory with a
numerical suffix

(e.g., 'output_directory2', 'output_directory3', etc.) is created.

Additionally, the script generates a single PDF for violin plots and a separate PDF for box-
and-whiskers plots
for the computed statistics and saves them in the output directory.

Installation:
- Requires Python 3+
- Install dependencies using:
pip install biopython ete3 pandas numpy argparse matplotlib seaborn

Usage:
python alignment _stats.py -I input_directory -O output_directory

nmn

import argparse

import os

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from Bio import AlignlO

from Bio.SeqUltils import GC

from Bio.Phylo.TreeConstruction import DistanceCalculator
from collections import Counter

def ensure output directory(base name="output directory"):
"""Create an output directory, adding a numerical suffix if it already exists.
dir name = base name
count =2
while os.path.exists(dir_name):
dir name = f"{base name} {count}"
count += 1
os.makedirs(dir_name)
print(f"Output directory created: {dir name}")

nmn

return dir_name

def compute informativeness(alignment):

"""Computes Townsend 2007 Informativeness Score.

informativeness_scores = []

for col in range(alignment.get alignment length()):
column_data = [record.seq[col] for record in alignment]
freq_counts = Counter(column_data)
probs = np.array(list(freq_counts.values())) / sum(freq_counts.values())
entropy = -np.sum(probs * np.log2(probs)) if len(probs) > 1 else 0
informativeness_scores.append(entropy)

return np.mean(informativeness_scores)

nmn

def compute alignment stats(input_file):
file_extension = input_file.split(".")[-1].lower()
file format = "fasta" if file extension in ["fa", "fasta"] else "phylip"

try:

alignment = AlignlO.read(input_file, file format)
except Exception as e:

print(f"Error reading {input file}: {e}")

return None

if len(alignment) == 0:
print(f"Empty alignment in {input_file}. Skipping...")
return None

num_taxa = len(alignment)
alignment_length = alignment.get _alignment_length()

seq_array = np.array([list(str(rec.seq)) for rec in alignment])
gap mask = (seq_array =="'"-") | (seq_array == 'N")
gap proportion = gap_mask.sum() / (num_taxa * alignment_length)

gc_contents = [GC(str(rec.seq).replace("-", "").replace("N", "")) for rec in alignment if
len(str(rec.seq).replace("-", "").replace("N", "")) > 0]
mean_gc_content = np.mean(gc_contents) if gc_contents else 0

unique_sites = np.apply along_axis(lambda col: len(set(col) - {'-', 'N'}), axis=0,
arr=seq_array)

constant_sites = np.sum(unique_sites == 1)

variable_sites = np.sum(unique_sites > 1)

parsimony_informative sites = np.sum(unique_sites > 2)

singleton_sites = np.sum(unique_sites == 2)

def compute entropy(column):
counts = np.array(list(Counter(column[column !="-"]).values()))
probs = counts / counts.sum() if counts.sum() > 0 else np.array([])
return -np.sum(probs * np.log2(probs)) if len(probs) > 1 else 0

entropy_per_site = np.array([compute_entropy(seq_array([:, i]) for i in
range(alignment_length)])

mean_entropy = np.mean(entropy_per_site)

informativeness_score = compute informativeness(alignment)

results = {
"File": os.path.basename(input_file),
"Alignment length": alignment_length,
"Number of constant sites": constant_sites,
"Number of variable sites": variable_sites,
"Number of parsimony-informative sites": parsimony_informative_sites,
"Number of singleton sites": singleton_sites,
"Proportion of gaps/missing data": gap proportion,
"Mean GC content": mean_gc content,
"Mean entropy per site": mean_entropy,
"Informativeness Score (Townsend 2007)": informativeness_score

}

return results

def generate_combined plots(data, output dir):
metrics = [
"Alignment length", "Number of constant sites", "Number of variable sites",
"Number of parsimony-informative sites", "Number of singleton sites",
"Proportion of gaps/missing data", "Mean GC content", "Mean entropy per site",
"Informativeness Score (Townsend 2007)"

]

fig, axes = plt.subplots(1, len(metrics), figsize=(len(metrics) * 4, 6))
for 1, metric in enumerate(metrics):
sns.violinplot(y=data[metric], ax=axes[i], palette="Set2")
axes[i].set_title(metric, rotation=45, ha="right")
plt.tight layout()
plt.savefig(os.path.join(output_dir, "violin_plots.pdf™))
plt.close()

fig, axes = plt.subplots(1, len(metrics), figsize=(len(metrics) * 4, 6))
for 1, metric in enumerate(metrics):
sns.boxplot(y=data[metric], ax=axes[i], palette="Set1")
axes[i].set_title(metric, rotation=45, ha="right")
plt.tight layout()
plt.savefig(os.path.join(output_dir, "box_plots.pdf"))
plt.close()

def process_directory(input_dir, output dir):
output dir = ensure output directory(output_dir)
all results =[]
for filename in os.listdir(input_dir):
if filename.endswith((".fasta", ".fa", ".phy", ".phylip")):
input_path = os.path.join(input_dir, filename)

result = compute alignment_stats(input_path)
if result:
all_results.append(result)

if all results:
df = pd.DataFrame(all results)
df.to_csv(os.path.join(output_dir, "summary_statistics.csv"), index=False)
generate_combined plots(df, output dir)

n n

if name ==" main_ "

parser = argparse.ArgumentParser(description="Compute alignment statistics from
FASTA or PHYLIP files.")

parser.add_argument("-1", "--input_directory", required=True, help="Directory containing
input alignment files (FASTA or PHYLIP)")

parser.add_argument("-O", "--output_directory", default="output directory",
help="Directory to save output CSV files (default: output_directory)")

args = parser.parse_args()
process_directory(args.input_directory, args.output_directory)

Bootstrap_analysis.py:

nmn

Author: Peter Poczai
Institution: University of Helsinki
Date: March 15, 2025

Description:

This script extracts and analyzes bootstrap values and SH-aLRT values from [Q-TREE
treefile output files.

It computes summary statistics and generates visualizations including histograms, density
plots, violin plots, and box plots.

The script supports:

- Analyzing a single file

- Comparing up to three specific files

- Analyzing all .treefile files in a given directory

Installation:

Requires Python 3+ and the following dependencies:

“sh

pip install biopython pandas numpy argparse matplotlib seaborn

Usage:
For a **single .treefile file** analysis:
“gh

python bootstrap analysis.py -1 SET.treefile -O results

For **comparing two .treefile files**:
“sh
python bootstrap analysis.py -i SET1.treefile -1 SET2.treefile -O results

For **comparing three .treefile files**:
“sh
python bootstrap analysis.py -1 SET1.treefile -1 SET2.treefile -J SET3.treefile -O results

For **analyzing all .treefile files in a directory**:
“sh
python bootstrap analysis.py -D input_directory -O results

AR

If the ‘results” folder already exists, the script creates a new folder ‘results2’, "results3", etc.

Options:
- -1, "--inputl” (optional) : Path to the first .treefile file.
- -I', "--input2” (optional) : Path to the second .treefile file (for comparison).

-"-J', "--input3’ (optional) : Path to the third .treefile file (for comparison).

- '-D’, "--input_directory’ (optional) : Directory containing .treefile files to analyze.
--0’, "—-output’ (default="results") : Directory to save analysis results.

-"-h’, *--help’ : Show this help message and exit.

nmn

import argparse

import os

import re

import numpy as np

import pandas as pd

import matplotlib

matplotlib.use('Agg') # Ensure non-GUI backend for HPC/server use
import matplotlib.pyplot as plt

import seaborn as sns

def ensure output directory(base name="results"):
"""Create an output directory, adding a numerical suffix if it already exists.
dir name = base name
count =2
while os.path.exists(dir_name):
dir name = f"{base name} {count}"
count += 1
os.makedirs(dir_name)
print(f"Output directory created: {dir name}")
return dir_name

nmn

def extract support values(treefile):
"""Extracts bootstrap and SH-aLRT values from an IQ-TREE .treefile."""
bootstrap values =[]
sh_alrt values =[]

with open(treefile, 't') as f:
tree_data = f.read().strip()

match = re.search(r'\((.+);', tree_data, re. DOTALL)
if not match:
print(f"Error: No valid Newick tree found in {treefile}.")

return np.array([]), np.array([])

newick tree = match.group(0)

matches = re.findall(r'\)(\d+\.\d+)?/(\d+):', newick tree)

sh_alrt values = [float(x[0]) if x[0] else np.nan for x in matches] # Handle missing SH-
aL.RT values

bootstrap values = [float(x[1]) for x in matches]

return np.array(bootstrap values), np.array(sh_alrt values)

def generate plots(df, output_dir):
"""Generates histograms, violin plots, and box plots for bootstrap and SH-aLRT values.

nmn

if df.empty:
print("No valid data for plotting. Skipping plots.")
return

plt.figure(figsize=(8, 6))

sns.histplot(df, x="Bootstrap Value", hue="Alignment", kde=True, bins=20, alpha=0.5)
plt.title("Histogram & Density Plot of Bootstrap Values")
plt.savefig(os.path.join(output dir, "bootstrap histogram.pdf'))

plt.close()

plt.figure(figsize=(8, 6))

sns.histplot(df, x="SH-aLRT Value", hue="Alignment", kde=True, bins=20, alpha=0.5)
plt.title("Histogram & Density Plot of SH-aLRT Values")
plt.savefig(os.path.join(output_dir, "sh_alrt histogram.pdf™))

plt.close()

plt.figure(figsize=(8, 6))

sns.violinplot(data=df, x="Alignment", y="Bootstrap Value", palette="Set2")
plt.title("Violin Plot of Bootstrap Values")
plt.savefig(os.path.join(output dir, "bootstrap violin.pdf™))

plt.close()

plt.figure(figsize=(8, 6))

sns.violinplot(data=df, x="Alignment", y="SH-aLRT Value", palette="Set3")
plt.title("Violin Plot of SH-aLRT Values")
plt.savefig(os.path.join(output_dir, "sh_alrt violin.pdf"))

plt.close()

plt.figure(figsize=(8, 6))

sns.boxplot(data=df, x="Alignment", y="Bootstrap Value", palette="Set1")
plt.title("Box Plot of Bootstrap Values")
plt.savefig(os.path.join(output_dir, "bootstrap box.pdf'"))

plt.close()

plt.figure(figsize=(8, 6))

sns.boxplot(data=df, x="Alignment", y="SH-aLRT Value", palette="Set3")
plt.title("Box Plot of SH-aLRT Values")
plt.savefig(os.path.join(output_dir, "sh_alrt box.pdf'"))

plt.close()

def analyze support(files, output_dir):
""" Analyzes bootstrap and SH-aLRT values and generates plots.
support_data =[]

nmn

for file in files:
bootstrap values, sh_alrt values = extract_support values(file)
if len(bootstrap values) > 0:
support_data.append(pd.DataFrame({
"Bootstrap Value": bootstrap_values,
"SH-aLRT Value": sh_alrt values,

10

"Alignment": os.path.basename(file)

1)

if not support_data:

print("Error: No support values found in the provided .treefile files. Exiting.")
return

df = pd.concat(support_data, ignore index=True)

summary_stats = df.groupby("Alignment")[["Bootstrap Value", "SH-aLRT
Value"]].describe()

summary_stats.to_csv(os.path.join(output_dir, "support summary.csv"))

generate_plots(df, output_dir)

print("Analysis complete. Results saved in", output dir)

def main():
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--inputl", help="Path to the first .treefile file")
parser.add_argument("-1", "--input2", help="Path to the second .treefile file")
parser.add_argument("-J", "--input3", help="Path to the third .treefile file")
parser.add_argument("-D", "--input_directory", help="Directory containing .treefile files")
parser.add_argument("-O", "--output", default="results", help="Output directory")
args = parser.parse_args()
output dir = ensure output directory(args.output)
files_to_analyze = [f for f in [args.inputl, args.input2, args.input3] if f]
if args.input_directory:
files_to analyze.extend([os.path.join(args.input_directory, f) for f in
os.listdir(args.input_directory) if f.endswith(".treefile")])
analyze support(files to analyze, output dir)
if name ==" main_ "
main()

11

Family Genus Specific name NCBI number
Frankeniaceae Frankenia laevis NC_041277 1
Frankeniaceae Frankenia pulverulenta NC_041278.1
Plumbaginaceae Ceratostigma griffithii NC_071213.1
Plumbaginaceae Ceratostigma minus NC_0712141
Plumbaginaceae Ceratostigma plumbaginoides NC_071212.1
Plumbaginaceae Ceratostigma ulicinum NC_071211.1
Plumbaginaceae Ceratostigma willmottianum NC_041261.1
Plumbaginaceae Limonium melitense PP968847
Plumbaginaceae Limonium zeraphae PQ274899
Plumbaginaceae Limonium aureum NC_045399.1
Plumbaginaceae Limonium bicolor NC_059915.1
Plumbaginaceae Limonium franchetii NC_085143.1
Plumbaginaceae Limonium otolepis NC_065861.1
Plumbaginaceae Limonium tenellum NC_041279.1
Plumbaginaceae Limonium tetragonum NC_059914 .1
Plumbaginaceae Limonium sinense MN599096.1
Plumbaginaceae Plumbago auriculata NC_041245.1
Plumbaginaceae Plumbago zeylanica NC_084458.1
Polygonaceae Atraphaxis bracteata NC_059952.1
Polygonaceae Atraphaxis decipiens NC_070100.1
Polygonaceae Atraphaxis irtyschensis NC_070099.1
Polygonaceae Atraphaxis spinosa NC_070098.1
Polygonaceae Bistorta emodi NC_066665.1
Polygonaceae Bistorta macrophylla NC_068876.1
Polygonaceae Bistorta ochotensis NC_082240.1
Polygonaceae Bistorta officinalis NC_065784.1
Polygonaceae Bistorta paleacea NC_082267.1
Polygonaceae Calligonum aphyllum NC_049137.1
Polygonaceae Calligonum arborescens NC_049140.1
Polygonaceae Calligonum bakuense NC_062619.1
Polygonaceae Calligonum caput-medusae NC_049141.1
Polygonaceae Calligonum colubrinum NC_049142.1
Polygonaceae Coccoloba uvifera NC_068873.1
Polygonaceae Fagopyrum dibotrys NC_037705.1
Polygonaceae Fagopyrum esculentum NC_064334
Polygonaceae Fagopyrum gracilipes NC_082243.1
Polygonaceae Fagopyrum leptopodum NC_056984.1
Polygonaceae Fagopyrum luojishanense NC_037706.1
Polygonaceae Fallopia aubertii NC_068872.1
Polygonaceae Fallopia convolvulus NC_082245.1
Polygonaceae Fallopia dentatoalata NC_082246.1
Polygonaceae Fallopia dumetorum NC_082247 1
Polygonaceae Fallopia multiflora NC_041239.1
Polygonaceae Knorringia sibirica NC_082248.1
Polygonaceae Koenigia alpina NC_066667.1
Polygonaceae Koenigia cyanandra NC_066668.1
Polygonaceae Koenigia divaricata NC_066669.1
Polygonaceae Koenigia forrestii NC_066670.1
Polygonaceae Koenigia lichiangensis NC_066672.1
Polygonaceae Muehlenbeckia australis NC_059029.1
Polygonaceae Muehlenbeckia axillaris NC_059030.1
Polygonaceae Muehlenbeckia complexa NC_066815.1
Polygonaceae Muehlenbeckia gracillima NC_059031.1
Polygonaceae Muehlenbeckia gunnii NC_059032.1
Polygonaceae Oxyria digyna NC_082249.1
Polygonaceae Oxyria sinensis NC_032031.1
Polygonaceae Persicaria amphibia NC_071233.1
Polygonaceae Persicaria bungeana NC_082250.1
Polygonaceae Persicaria capitata NC_073007.1

12

Polygonaceae Persicaria chinensis NC_050358.1
Polygonaceae Persicaria criopolitana NC_079578.1
Polygonaceae Polygonum ajanense NC_066666.1
Polygonaceae Polygonum argyrocoleon NC_082264.1
Polygonaceae Polygonum aviculare NC_058892.1
Polygonaceae Polygonum cognatum NC_082265.1
Polygonaceae Polygonum cuspidatum NC_057435.1
Polygonaceae Pteroxygonum denticulatum NC_068877.1
Polygonaceae Pteroxygonum giraldii NC_082272.1
Polygonaceae Reynoutria japonica NC_059800.1
Polygonaceae Rheum alexandrae NC_061617.1
Polygonaceae Rheum delavayi NC_063092.1
Polygonaceae Rheum nobile NC_046506.1
Polygonaceae Rheum officinale NC_058627.1
Polygonaceae Rheum palmatum NC_027728.1
Polygonaceae Rumex acetosa NC_042390.1
Polygonaceae Rumex hypogaeus NC_050054.1
Polygonaceae Rumex nepalensis NC_057504.1
Polygonaceae Rumex subgen. hastatus NC_050928.1
Acetosa

Polygonaceae Triplaris americana NC_068874.1
Tamaricaceae Myricaria bracteata NC_088075.1
Tamaricaceae Myricaria elegans NC_063470.1
Tamaricaceae Myricaria laxiflora NC_072270.1
Tamaricaceae Myricaria paniculata NC_041270.1
Tamaricaceae Myricaria prostrata NC_046761.1
Tamaricaceae Reaumuria songarica NC_041273.1
Tamaricaceae Reaumuria trigyna NC_041265.1
Tamaricaceae Tamarix androssowii NC_084254.1
Tamaricaceae Tamarix aphylla NC_084252.1
Tamaricaceae Tamarix arceuthoides NC_067397.1
Tamaricaceae Tamarix chinensis NC_040943.1
Tamaricaceae Tamarix gracilis NC_084253.1
OUTGROUP

Aizoaceae Tetragonia tetragonoides NC_036991.1
Barbeuiaceae Barbeuia madagascariensis NC_041301.1
Talinaceae Talinum paniculatum NC_037748.1
Montiaceae Calandrinia eremaea NC_041259.1
Montiaceae Calandrinia granulifera NC_041260.1

Supplementary Table 2: List of species included in the phylogenomic study and IR

boundary study.

13

©

™
=
[}

gypu
zLsdi
nvo jui
09N vul
vupu
oDn vuy
1V jud
Z zlsdi
aupu

/a1

qied

gied

Z ddp

L~ ddp
ovn Aul
vvn 1w
Z eph

L gjof
10odi
Hde

20N bul
9gLsdi

(s} - o
< o
o o

(1) Auseniq epnosjonN

Ko

+

e @ © % o
-~ © o o o

(H) Aussanig adAjoideH

gypu

zLsdi

nvo jui
+09n vui

vypu
+05n vui

LVD Ul

Z zlsdi

gypu

gl

aied

gied

g ddp

L= ddp

ovn Aud

vvn g

Z eph

L e

10odi

Hdie

00N vul

91sdi

o
(=}

(A) Nucleotide diversity and (B) Haplotype diversity for the introns

.
.

Supplementary Figure 2

of 9 Limonium species

Supplementary Figure 3: L. melitense and L. zeraphae (A) genic and (B) intergenic nucleotide

diversity

14

falal Q. XS

S0s

LsC: éég’o&‘

N\ -
%
,,
5 Rheeed
/ Limonium tenellum \ (o
| |
chloroplast genome
150,515 bp

"'”’-CAU

1
K

o

[l photosystem |

[l photosystem I

[H cytochrome b/f complex
[ATP synthase

[CJ NADH dehydrogenase
B RubisCO large subunit
[l RNA polymerase

[ribosomal proteins (SSU)
[H ribosomal proteins (LSU)
[l transfer RNAs

M ribosomal RNAs

[clpP, matk

[hypothetical chloroplast reading frames (ycf)

Supplementary Figure 4: Plastome map of L. tenel/lum showing SSC region

15

Supplementary table 3: Simple sequence repeats (SSRs) in the plastomes of 9 Limonium species

L. melitense | L. zeraphae |L. bicolor| L. franchetii | L. aureum | L. otolepis | L. sinense | L. tenellum | L. tetragonum
SSRs | Mono 34 33 32 33 37 39 43 33 34
Di 5 5 7 7 7 7 11 7 6
Tri 1 1 0 0 0 0 0 0 0
Tetra 0 0 0 0 0 0 0 0 0
Penta 0 0 0 0 0 0 0 0 0
Hexa 0 0 0 0 0 0 0 0 0
Total 40 39 39 40 44 46 54 40 40 382
SSRs

Supplementary Table 4: Number of direct repeats, separated into size ranges, in the plastomes of 9
Limonium species.

L. melitense | L. zeraphae | L. bicolor | L. franchetii | L. aureum | L. otolepis | L. sinense | L. tenellum | L. tetragonum
20-29 65 68 77 91 83 69 165 71 81
30-39 12 11 17 18 17 18 22 14 18
40-59 6 7 3 7 9 7 32 11 9
60-79 0 2 2 16 1
80-99 1 6
100-200 35
200-300 4
300-400 6
>400 7
Total 83 86 97 117 111 96 293 97 108

Supplementary Table 5: Number of palindromic repeats, separated into size ranges, in the plastomes
of 9 Limonium species.

L. melitense | L. zeraphae | L. bicolor | L. franchetii | L. aureum | L. otolepis | L. sinense | L. tenellum | L. tetragonum

20-29 59 55 69 88 76 64 116 90 71
30-39 14 14 22 22 21 21 23 26 22
40-59 4 4 7 6 6 7 11 12 6
60-79 0 0 2 6 0

80-99 0 0 0 1

100-200 0 0 14 1

200-300 1 1 2

300-400 0

>400 3

Total 78 74 98 116 103 94 175 130 99

Supplementary Table 6: Number of supermaximal repeats, separated into size ranges, in the
plastomes of 9 Limonium species

L. melitense | L. zeraphae | L. bicolor | L. franchetii | L. aureum | L. otolepis| L. sinense L. tenellum L. tetragonum

20-29 50 50 39 46 44 41 54 34 43
30-39 8 7 11 12 11 8 16 8 12
40-59 4 6 6 5 6 3 16 8 6
60-79 1 0 1 2 11 1

80-99 1 3

100-200 35

200-300 4

300-400 6

>400 7

Total 62 63 57 64 62 54 152 51 61

16

80

60|

Support Value

401

201

Combined Violin Plot of Bootstrap and SH-aLRT Values

1007 V—

 a

Bootstrap Value

Support Type

SH-aLRT Value

Supplementary Figure 5: Violin plots of the bootstrap and SH-aLRT values for the

phylogenomic tree

17

