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I. THE BLOCH BAND PICTURE

As noted in the main text, the zero-bias peak Ry in Fig. la of the main text cannot be captured within the
RCSJ model. We speculate that its emergence may be attributed to the dual Bloch band picture. The periodic
potential of a Josephson junction, —FE; cos ¢, gives rise to Bloch wavefunctions that are 2w-periodic in ¢ up to a
phase that depends on the quasicharge ¢, which is analogous to the crystal momentum £ in solid state systems and
is defined in the Brillouin zone —e < ¢ < e. From the solid state analogy, we find energy bands E, (¢q) that depend
periodically on ¢ and are given by the Mathieu characteristic values [1], where n = 0,1,... is the band index. In
the experimentally-relevant limit E; > FE¢, the junction potential is in the tight-binding limit, and the lowest Bloch
band is approximately given by Ey(q) ~ —A cos(mq/e), where A =~ %(E?}Ec)l/‘le_v 8E;/Ec ig the phase slips
rate, which is the tunneling amplitude between adjacent minima in the cosine potential.

The superconducting phase ¢ and the quasicharge ¢ are conjugate variables and satisfy an uncertainty relation.
If the quantum fluctuations in the quasicharge are small (corresponding to a fluctuating phase), the semiclassical
equation of motion for a junction biased by DC and RF currents Iy, g reads [2]

(j - —‘qup dE;;)q(Q) + Ib + IRF sin(wRFt), (Sl)
where R, is the quasiparticle resistance of the junction and wrr = 27 frr. Here we assume that the bias currents
and the temperature are small enough such that the quasicharge is restricted to the lowest Bloch band, n = 0. This
equation is dual to the RCSJ equation (Eq. (1) of the main text), with the absence of a second-derivative intertia term
§; this term may be added with an inductor L connected in series with the junction (dual to the parallel capacitance
in the RCSJ model), but is unimportant in the following discussion and we omit it henceforth.

The analysis of Eq. (S1) is due to Likharev and Zorin [2]. Consider the case Igr = 0, and set Ey(q) =~ —A cos(wg/e).
At I, < Iy, with Ly, = 7A/(eRyp), the solution for the quasicharge is stationary, ¢ = 0, and the current flows through
the quasiparticle channel, such that the voltage across the junction is V' = I, Rqp. As I}, exceeds the threshold Iiy,, the
quasicharge is no longer stationary and enters the Bloch oscillations regime, less current flows through the quasiparticle
channel, and the differential resistance dV/dI}, is negative. One therefore expects a resistance peak around I, = 0 with
a width Iy,. Such a peak was observed for resistively-shunted junctions [3], and also for a two-dimensional Josephson
array [4].

Let us now consider the effect of a small RF current on the resistance peak. Within linear response in Iz, we
write q(t) = §(t) + R{dge™ "}, where G(t) is the solution to Eq. (S1) in the absence of RF current. Plugging ¢(t) to
Eq. (S1) and expanding in dq/¢ < 1, we find

Irp
0q = . S2
1 wrF + i% cos(mg/e) (52)

The correction dq renormalizes the Bloch bandwidth A. To see this, plug ¢ = ¢ + R{5ge’“r*!} into Asin(mq(t)/e):
Asin(rq(t)/e) = AJo([dq|/e) x sin(wG/e) + Y Ju(m|q|/e)emrri=), (S3)
n#0

where J,,(z) is the nth Bessel function of the first kind, and ¢ is the phase of d¢g. Integrating over a period of the RF
current, the high-order Bessel functions average out, and we are left with a renormalized DC term:

A = Ado(m|ogl|/e). (S4)
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Using Jo(z < 1) ~ 1 — 22/4, we find that A.g is reduced as the RF current is increased. This effect is expected
to diminish at large frequencies, wrr > m2A/(e?Ryp). We note that the same conclusions may be derived by
diagonalizing the Floquet Hamiltonian of a periodically-tilted cosine potential and extracting the width of the lowest
Bloch band from the Floquet quasienergies [5]. Recalling that the Bloch bandwidth A is the tunneling rate in the
cosine potential, this effect may be interpreted as the coherent destruction of tunneling [6].

In the experiment, the zero-bias resistance peak narrows as the RF power is increased, as shown in Fig. 1a of the
main text. This is in line with the prediction of the Bloch band picture: decreasing A.g corresponds to decreasing
Iin = mAcr/(eRqyp). However, the rest of Fig. la is captured quite well by the RCSJ model, which cannot coexist
with the Bloch band picture, since the two models correspond to two different regimes of quantum fluctuations in ¢
and ¢g. This possibly suggests that a more complete analysis is required to explain the experimental observations, not
only the low-temperature phase diagram, but also the reentrant superconductivity at finite temperatures.

II. CONTROLLING E; WITH RF CURRENT

In this section, we demonstrate how the application of RF current leads to a reduction in E; within the RCSJ
picture. Consider the semiclassical equation of motion for the phase,

%OTC(b + Qi—OR(;S + I sin(¢p) = Iy, + Irr sin(wgrrt). (S5)
Note that now R is the normal state resistance of the junction and not the quasiparticle resistance in the Bloch band
picture. Neglecting the capacitive intertia term, which is unimportant in this context, the equation for the phase ¢
is dual to Eq. (S1) for the charge, with the critical current I, replacing the phase slips rate A. One may repeat the
calculation from the previous section in the present situation: applying linear response in the RF current leads to a
renormalization of the critical current,

6Ic7eff = ICJO(‘(S(bl)? (86)
with

I
L E— (87)
S2wRr + iR cos(¢)

where q~5 is the solution to Eq. (S5) at Ixr = 0. Thus, we find that Ejeq = ®olcen/(2m) decreases as Ixp increases.
Note that Eqs. (S4) and (S6) result from the Bloch band and RCSJ pictures, respectively, which correspond to
different regimes of quantum fluctuations and hint at a non-trivial dependence of the junction parameters on the RF
current. On the one hand, the Bloch band picture predicts that the phase slips rate is decreased as the RF current
is increased. On the other hand, the RCSJ model predicts a decrease in I. and hence E; as well, corresponding to

a larger phase slips rate A ~ e~ V#Ps/Fc We conclude that the dependence of the junction parameters on the RF
current is drastically altered by the regime of quantum fluctuations.

III. COMPARING THE EXPERIMENT WITH THE RCSJ MODEL

In a simplified picture, the granular aluminum (grAl) sample can be thought of as a stack of many parallel 1D JJ
chains. When current biased, the currents flowing through the parallel chains would be roughly the same since the
long 1D chains are statistically similar. The individual JJs in the 1D chain are modeled as RCSJ junctions and so the
1D chain consists of RCSJ junctions in series. In the current bias case, the dynamics of the individual RCSJ junctions
decouple with the individual dynamics described by Eq. (1) in the main text. The total voltage across the chain is
simply the sum of voltages across the individual junctions. The RCSJ parameters 2 = ¢o frr/(I.R), 8 = 2rR?>C1./$o
of the individual junctions are expected to be very similar with some mean value and a small variance; the small
variance is expected to result in smoothening of sharp features such as the Shapiro steps [7]. We attempt to estimate
the RCSJ parameters (mean value) for the experimental system.

We can estimate ) directly from Fig. la of the main text, where the RF drive is at frequency frp = 24.5 MHz.
The number of steps, Ny, that would occur for a given range of the normalized DC current, §i, is determined by 2:
Ny ~ 0i/€Q. In the figure we can see around 3 steps between I, = 0 and I;, = 1 pA. Then, using the zero-temperature
critical current value for the sample (see Fig. 2c in the main text), I.tot ~ 7 nA, we get @ ~ 0.05. Now, let us
calculate 2 using its defining relation, Q = ¢¢ frr/(I.R). Let N, denote the number of parallel chains and N denote



the number of RCSJ junctions in a chain. At large current bias, all the RCSJ junctions become purely ohmic, and
then the total voltage across the sample is simply given by, V.= NRI,/N.. From the frequency dependence of the
giant Shapiro steps, we find N = 430 in the main text. The critical current of an RCSJ junction is related to the
total critical current of the sample by, I. = I. tot/Nc. Then we get,

Ic,tot K

IR = ,
N T,

forlarge I,. (S8)

The sample resistance at large bias is V/I,, ~ 1k. Then, plugging in the value of I, 1o and N, we get, I.R ~ 0.01 mV
and consequently 2 ~ 0.005. This estimate is one order of magnitude smaller than the directly estimated 2 from
Fig. 1la. The origin of this discrepancy is not fully clear. One possible cause could be that the superconducting
coherence length ~ 10 nm is greater than the grain size, and this could result in multiple grains combining to form an
effective RCSJ junction. In that case, the factor N = 430 reported in the main text would correspond to the number
of such effective RCSJ junctions in series. But in the fully ohmic regime at large I},, the resistance between the grains
would come into play and this could be seen to effectively increase N in Eq. S8, which consequently would decrease
I.R and thereby increase §). Thus we believe that the estimate  ~ 0.005 calculated from its defining relation should
only be a lower bound.

The direct estimation of the parameter § for the RCSJ junctions is complicated since the capacitance C' would
depend on various factors. We attempt to qualitatively infer 8. If § < 1, then in this overdamped case, the Shapiro
steps should extend much above the critical current, unlike in the experiment. On the other hand, if 5 > 1, then the
Shapiro steps would be hardly visible. Both these features could be seen in Fig. S1. Based on these considerations
we believe that 8 ~ 1 in our case. Next, using the relation 5Q) = 27 RC frr, and using the inferred Q2 ~ 0.05 and
R ~ 2k (assuming, N, = N, x N, we get I. ~ 5 nA and then from I.R ~ 0.01 mV, we get R), we get C' ~ 100 {F.
We then see that E;/E. ~ 10. This large E;/E. ratio is consistent with the fact that at low RF powers, the sample
is superconducting.

IV. PHENOMENOLOGICAL EXPLORATION OF REENTRANT SUPERCONDUCTIVITY USING
THE RCSJ MODEL

In the main text, we attribute the reentrance of superconductivity to a decrease of the charging energy Eo with
temperature T via the mechanism discussed in Ref. [8]. The Efetov model predicts reentrance from an insulating
phase to a superconducting phase; here we phenomenologically explore the possibility of reentrance using the RCSJ
model, which cannot capture the insulating state. We phenomenologically show that reentrance from a normal phase
to a superconducting phase is possible, by assuming that the primary effect of increasing T is to reduce Ec and Ej.
The reduction of Ec and E; leads to the reduction of the plasma frequency w, ~ +/E;Ec. To study the physics
associated with the reduction of wy, it is better to express the RCSJ equation in a dimensionless form where the drive
frequency is scaled by the plasma frequency. This is done using the dimensionless time coordinate 7 = w,t in Eq. S5
to get,

O2p + 00, ¢ + sind = ig + i1 sin Q. (S9)

Here ig = I,/I. and i; = Igxr/I. are the scaled currents. The parameter o is the damping parameter and is related to
the parameter 3 in the Stewart-McCumber form by o = 1/4/3. The frequency {2 is scaled by the plasma frequency,
ie. Q=w/wp; N is related to the Q in the Stewart-McCumber form by Q = Q/o.

For simplicity, we assume a linear reduction of I. with 7. The exact nature of how FEo changes with T is not
known. For the purpose of exploring what magnitude of change in F¢ is required for reentrance to occur in the RCSJ
description, we consider an abrupt change in E¢ after some T < T,. This would result in o = 0¢ at T' < T™ going
to o = o1 at T'> T™. Note that the corresponding change in 2 follows from its relation to 2. We choose o¢g = 1
and ©Q = 0.03 (corresponding to 8 =1 and Q = 0.03) at T = 0, which are close to the parameters estimated in the
previous section. We also choose T* = 0.8T,.. The effect of o1 on reentrance is explored in Fig. S2. A crude qualitative
resemblance to the experimental results in Fig. 1b and Fig. 2a is seen. However, we reiterate that the feature associated
with the strong insulator is not captured, as it is beyond the scope of the RCSJ description. From the results, we
find that oy < 0.10¢ is required for reentrance. Thus E¢ should decrease by around 3 orders of magnitude for the

~

reentrance to occur within the RCSJ description for the estimated parameter regime of the experiment.
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FIG. S1: Survey of Shapiro maps obtained from the RCSJ model in the 5 — ) parameter space. For the cases starting
from the second row, only half of the map is calculated to reduce calculation time.
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FIG. S2: Exploring reentrance within the RCSJ description, by assuming temperature modified parameters as
discussed in the text. The top panels show the case of a small I},/I.0 = 0.05. The bottom panels show the case with
a fixed Igr/I.0 = 0.6 (indicated by a dashed white line in the top panels). From left to right the magnitude of abrupt
E¢ reduction at T* = 0.8T, is increased; this is captured by the ratio of o1 /0 (see text).
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FIG. S3: (a) The R (T, P) phase diagram presented in Fig. 1b in the main text at frequency frr = 24.5 MHz. (b)
R (T) linecuts at selected RF power levels indicated by dashed lines in (a). (c) The R (T') linecuts in the reentrance
temperature region SC 2.

V. EXTENDED DATA AND DISCUSSIONS
A. Reentrant superconductivity

To examine the reentrant superconductivity shown in the phase diagram of Fig. 1b in the main text, we analyze
five representative line cuts taken at constant power levels, indicated by dashed lines in Fig. S3a. The corresponding
resistance versus temperature (R vs. T') curves for each power level are presented in Fig. S3b. A consistent color
scheme is used across both figures to denote the different power levels, as referenced to in Fig. S3a. For comparison,
we also include the R vs. T trace measured without applied RF power, which exhibits a single superconducting
transition at a critical temperature of T, = 2.25 K.

Figure S3c provides a closer view of the R(T') curves in the region where reentrant superconductivity emerges.
At P = —18 dBm, three distinct transitions are observed: the resistance drops to zero near T' = T, rises again at
T = 2.13 K, and then falls back to zero at T'= 1.8 K. At a higher power level (P = —10.5 dBm), two superconducting
transitions are seen, indicating a narrowing of the reentrant region with increasing RF power.

B. The insulating state
1.  Estimating the normal state resistance

To estimate the normal-state resistance, we rely on high-current measurements rather than resistance data taken
above the superconducting transition temperature (7). This is because measurements above T, include significant
contributions from the contact regions, due to the quasi-four-probe configuration of our setup. Instead, we take
advantage of the device geometry, which features relatively wide contact regions. As described in Ref. [9], upon
increasing the DC current I, beyond I., defined in Fig. S4a, the nanobridge and parts of the contacts switch to the
resistive state. When I, is reduced towards I,. (also defined in Fig. S4a) the contacts return to the superconducting
state first, followed by the nanobridge at I, = I,.. Thus we estimate RN as dV/dI}, obtained right before I, = I,., where
we assume the nanobridge is in the normal state while the contacts are superconducting. While it is possible that
parts of the contact pads also remain resistive under these conditions, potentially increasing the measured resistance,
we treat this value as an upper bound for the true normal-state resistance. Using this procedure we obtain an upper
limit to the normal-state resistance, Rxy = 1.55 k).

2. Study the temperature dependence of the insulating state

In Fig. S4b we demonstrate that in the insulating (I) state, the resistance follows a sharp exponential rise beyond ten
times Ry, then saturates at low temperatures. The observed exponential rise is stronger than that observed for electron
localization triggered by Coulomb interactions in insulating granular aluminum films [10]. At low temperatures the
resistance saturates close to 50 k2. We believe that this saturation is not intrinsic and it is due to the experimental
limitations in our measurement system. We demonstrate that in the next paragraph
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FIG. S4: (a) dV/dI, (Ip) measured at opposite current sweep directions in the absence of RF power. (b) R(T)
measured in the presence of RF power of P, = —10.5 dBm and frrp = 24.5 MHz, showing the insulating state in
comparison to the normal state resistance Ry. (c¢) Exploration of the RF frequency dependence of the insulating
state. R (T') curves are shown for selected RF frequencies and their corresponding input RF powers.

8. Origin of the low temperature saturation

Figure S4c examines the frequency dependence of resistance in the insulating state. For each RF frequency (frr),
we measure resistance (R) as a function of input power (P) at base temperature and identify the power level, Pi(frr),
at which R reaches its maximum. While the actual RF power delivered to the sample may vary with frequency,
selecting the peak resistance point allows us to assume that the effective RF power within the device is approximately
frequency-independent.

At lower RF frequencies, we observe a lower saturation temperature. One possible explanation is that as the device
enters the insulating regime and resistance increases, more power is dissipated, potentially heating the electrons
and limiting how cold the electron temperature can get. Another contributing factor may be limitations in our
measurement setup, particularly the RF bias tee filters, which include 50 kf2 resistors—comparable to the resistance
values observed at saturation. These constraints suggest that, in the absence of such limitations, the resistance could
have continued to increase with further cooling.

C. Finite voltage width of the giant Shapiro steps

Here we demonstrate that the observed giant Shapiro steps are characterized by a finite voltage width. In Fig.
Sha we show dV/dI,, as a function of P and the normalized voltage V/V;, at frp = 67.5 MHz. The voltage V is
obtained by integrating the measured dV/dI}, with respect to I,. Vo = 60 pV is the typical quantization voltage
obtained in Fig. 3b in the main text. As can be seen, the quantized voltage is significantly smeared. The voltage
steps are reflected in bright regions in the dV/dIy color map. In the case of a uniform JJ array, these bright regions
should follow straight vertical lines at integer values of V/V; (indicated by solid lines in Fig. Sba for comparison).
In contrast, here the bright regions form a diagonal pattern, smeared towards non-integer V/V; values. This finite
voltage width is further demonstrated in Fig. S5b, where we analyze several representative line cuts taken at constant
power levels, indicated by dashed lines in Fig. S5a. At P = —10.7 dBm, we see a minimum of dV/dl}, at V/Vj ~ 1,
while for P = —9.5 dBm this minimum appears at V/V; ~ 0.5 due to the smearing. This smearing may result from
distribution of junction properties in our naturally occurring JJ array. This disorder, however, may not be sufficient
to completely diminish the giant steps observed; therefore, we expect it to be minimal.

D. Absence of RF overheating

The presence of RF power may create dissipation and electron overheating [11]. It appears as a discontinuous jump
of I o with increasing Izr. However, our naturally occurring array is controlled to exhibit negligible overheating as it
is tunable at low frr, since the dissipated power is proportional to fzr. This is evident by the continuous suppression
of I.ex with increasing P (Fig. la) and the absence of hysteresis of R over P sweeps for frequencies frr < 25 MHz
(not shown). This contrasts with operation at high frequencies, where the discontinuity is visible, as can be seen in
Fig 3c in the main text for frp = 67.5 MHz. Therefore, we suggest that the observed superconductor-to-insulator



transition and reentrant superconductivity can be interpreted in the regime of negligible overheating.
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curves obtained at constant power levels indicated by dashed lines in (a).

Device

: w
c a
H =]
: Board a
---------------------------------------------------------- :--l
gy
8 -
-20 dB 50 mK
-10 dB 1K
-20dB 4K
300 K
P

FIG. S6: The measurement setup used in the experiment.
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