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Abstract

Languages for describing two-dimensional (2-D) structures have become power-
ful tools across multiple fields, including pattern recognition, image processing,
and the modeling of physical and chemical phenomena. One of such struc-
tures is labeled polyominoes, i.e., geometric shapes formed by connected unit
squares arranged on a 2-D grid. In previous work, we introduced: (a) a novel
grammar-based approach for defining sets of labeled polyominoes that satisfy
predefined requirements, and (b) an algorithm to develop labeled polyominoes
following the rules of the proposed grammar. We demonstrated that these two
components enable optimization within the space of labeled polyominoes, sim-
ilarly to how grammatical evolution and its extensions operate in string-based
search spaces. In this work, we extend our previous approach to a new domain:
the evolution of modular soft robots, namely, voxel-based soft robots (VSRs). We
evolve VSRs for the task of energy-efficient locomotion, while constraining their
physical structure to adhere to a given grammar. We show that the evolved robots
successfully perform their assigned tasks and do have the required structure.
These results highlight the potential of integrating domain knowledge through
grammars to guide the evolutionary design of complex structure as modular soft
robots.

Keywords: polyomino, grammar, representation, 2-D patterns, voxel-based soft robots
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1 Introduction

Two-dimensional (2-D) languages have emerged as powerful tools across various fields,
originally motivated by challenges in pattern recognition and image processing [17,
22, 35]. These languages generate 2-D objects, ranging from simple rectangles to more
complex shapes like decagons. Among these, polyominoes have attracted significant
interest due to their unique properties [4, 20, 34] and diverse applications [25, 36, 56,
57, 62, 64, 70].

Polyominoes [23] are geometric shapes formed by connected unit squares, form-
ing a finite set of cells within a 2-D grid. Also known as lattice animals in the
physical [25] and chemical [57] fields, they are widely used to model branched poly-
mers, molecular structures, and percolation processes, offering insights into complex
systems [8, 77]. Their mathematical properties have led to extensive study in com-
binatorial optimization and mathematics [4, 20, 34], but also influenced theoretical
formal language research [22, 23]. In many of these fields, it is often crucial to find
one or more polyominoes that maximize specific objectives while satisfying predefined
structural requirements [2]. A powerful mechanism for describing and generating 2-D
shapes is grammars [36, 56, 58, 64, 78].

Grammars formally describe a language through a set a production rules. To
generate 2-D shapes, they can be designed either as one-dimensional encoding of two-
dimensional structures [78] or as fully two-dimensional representations [58, 64]. While
grammars have been used to generate and study the properties of polyominoes [78], to
the best of our knowledge, no existing approach employs them to evolve these shapes
for optimization purposes. However, grammars have been widely applied in the gen-
eration of 2-D pictures [33, 35, 43, 71], finding practical applications in popular tasks
such as mathematical formula recognition [36, 56, 64].

Polyominoes can be further enhanced by assigning a label to each individual cell,
hence providing additional information within the structure. In a previous work [51],
we presented a novel approach for generating labeled polyominoes that adhere to
structural requirements defined in a formal way. Specifically, we: (a) defined the con-
cept of polyomino context-free grammars (PoCFGs) as an extension of context-free
grammars (CFGs) and (b) proposed a development algorithm that can be used for
generating a polyomino adhering to a PoCFGs. Our algorithm constructs these poly-
omino structures with precise control of the shape of the polyomino and labeling of its
cells. When used inside an evolutionary algorithm (EA), it allows solving optimiza-
tion problems over the space of labeled polyominoes adhering to a given PoCFG. This
process only requires the provision of a grammar and a fitness function to the selected
EA; notably, it does not require users to provide variation operators that guarantee
that varied polyominoes will still adhere to the PoCFG—i.e., operators with the clo-
sure property. This fact greatly increases the applicability of our approach, lowering
the barrier to polyominoes optimization, much like grammatical evolution (GE) [67]
did with regular languages.

Since our algorithm is greatly agnostic with respect to the genotypic repre-
sentation employed by the EA, we compared different representations in terms of
representation-related metrics (validity, redundancy, and locality). Moreover, to show-
case the effectiveness of our approach, we evolved some polyominoes in a few case
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studies where the goal is to evolve a polyomino adhering to a grammar that is as much
as possible similar to a pre-defined target polyomino. We showed experimentally that
evolutionary optimization does work, giving polyominoes that are more and more sim-
ilar to the target one while all adhering to the provided grammar, i.e., meeting the
user-defined constraints.

In this work, we extend our previous research presented in [51] in two ways. First,
we analyze more in detail the relevant literature consisting the optimization of 2-D
structures. Second, we consider a new case study where we apply our development
algorithm to the evolution of a kind of modular soft robots, voxel-based soft robots
(VSRs), whose physical structure can be described with a labeled polyomino. We con-
sider the non-trivial task of the energy-efficient locomotion, a bi-objective optimization
problem where we look for robots which run fast and energy-efficient at the same time
and we compare two cases: one where we constrain the search to VSRs whose phys-
ical structure adhere to a given grammar and one where their structure is free (but
limited in size). We show that through our approach for describing sets of labeled
polyominoes with a PoCFG and developing them in the context of an evolutionary
optimization one can conveniently introduce some domain knowledge (and structural
constraints) in complex problems while still resorting on general-purpose EAs.

The remainder of the paper is structured as follows. In Section 2, we present the
related works on polyominoes and their applications. In Section 3, we introduce the
formal definitions of polyomino and PoCFG and we describe in detail the development
algorithm. In Section 4, we detail the experimental setup and discuss the results,
including the novel case study about the evolution of VSRs. Finally, in Section 5 we
summarize the main findings and suggest directions for future research.

2 Background and related works

2-D formal languages have been widely explored as a means to describe structured
patterns across various domains. In this paper, we focus on polyominoes, which are
geometric figures composed of one or more unit squares (or cells) joined edge-to-edge,
and we discuss their characteristics and applications.

Polyominoes can be categorized based on properties such as connectivity, symme-
try, and convexity. Connectivity refers to the number of holes within a polyomino,
symmetry describes how a polyomino can be transformed through rotations and reflec-
tions, and convexity indicates whether the shape fully encloses a convex region. These
properties provide a foundation for analyzing polyominoes across multiple contexts.

The study of polyominoes spans a wide range of problems and domains, bridg-
ing mathematics, computer science, and physics. Many fundamental questions remain
unsolved, making polyominoes interesting for researchers. One classic challenge is
counting the number of distinct polyominoes which meet some given criteria [4, 9].
This well-known combinatorial problem lacks a general formula for the number of poly-
ominoes of a given size in most cases, despite decades of work. Recent advances have
extended the maximum size for which the total count of distinct shapes is known [3, 42].

Symmetry in polyominoes plays a central role in computational geometry, par-
ticularly in classifying tiling patterns and analyzing their properties. Tiling involves
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covering the plane with a repeating pattern of a single shape that fits with itself in
multiple orientations [20]. While some heuristics exist to determine whether a given
polyomino can tile the plane, no general algorithm efficiently solves this problem in
all cases. Beyond theoretical interest, tiling problems have practical implications in
materials science and physics, where polyomino tilings model atomic arrangements
in quasicrystals and other structures. Additionally, tiling with polyominoes inspires
numerous challenges and popular games [41].

While polyominoes continue to be studied for their intrinsic mathematical prop-
erties, their structured nature also makes them valuable models for solving complex
problems across diverse fields. In some contexts, polyominoes are also referred to as
lattice animals [77].

One prominent application is in percolation theory [8, 25], which examines the
behavior of networks as nodes or links are added. Percolation models are widely used
to analyze processes such as fluid movement through porous materials [31], the spread
of diseases [7], and information diffusion in networks [29]. These models often repre-
sent the system as a lattice (e.g., a grid) where each site or bond is randomly occupied
with a certain probability. As the probability increases, clusters of connected occu-
pied sites form, frequently resembling polyomino-like structures, which are critical for
understanding phase transitions and connectivity in such systems.

In polymer chemistry, branched polymers (molecules with structures that resemble
trees) can be mapped to polyominoes on a lattice. Each polymer molecule structure
corresponds to a cluster of connected sites, which is essentially a polyomino shape.
This polyomino representation enables the application of statistical mechanics on a
grid to study polymer behavior [75, 76].

Polyominoes have proven useful in modeling self-assembly processes, where com-
ponents spontaneously organize into ordered structures through local interactions,
without external control. These models have been applied in different domains, includ-
ing the assembly of DNA tiles [21, 57], the self-folding of three-dimensional (3-D)
shells [63], and modular robotics [66]. In robotics, polyomino (2-D) and polycube
(3-D) configurations enable adaptable, reconfigurable designs [30, 37, 40, 66], support-
ing tasks such as locomotion, manipulation, and structural adaptation. In theoretical
computer science, self-assembly systems based on polyomino tiles have been shown to
achieve computational universality [14].

From combinatorial enumeration to self-assembly and robotics, polyominoes pro-
vide a powerful framework for studying structure, optimization, and emergent
complexity. To effectively represent and exploit these shapes, linguistic methods have
extended formal languages beyond one-dimensional (1-D) strings to 2-D arrays [17, 22].
These approaches enable the systematical generation and analysis of not only
individual polyominoes but also of entire sets, following specific rules.

Several computational models have been proposed to construct polyominoes under
different assumptions. For instance, a polyomino tile assembly model has been explored
in the context of self-assembly [14], where polyomino shapes emerge from the bond-
ing of smaller tiles. Another approach, entitled Polyomino Development Algorithm,
encodes an n-omino (polyminoes with n cells) as an array of integers and uses an
EA to grow the polyomino shape over time [2]. Additionally, an algorithm has been
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proposed to generate sets of polyominoes according to their site-perimeter, which is
the number of cells outside a polyomino that touch its border, within the application
for the two-player game Gomino [18]. Each of these methods offers a unique perspec-
tive on polyomino construction, and together they provide valuable tools for exploring
both the theory and practical design of polyomino structures.

Among modeling tools, cellular automata (CA) and grammars stand out for their
ability to incorporate structural constraints while supporting flexible shape genera-
tion. Both have been successfully adapted to study polyomino properties and their
dynamics. CA [59] operate on an infinite or bounded grid of cells, each having a finite
number of states, and have been widely employed to grow 2-D shapes [52], including
polyominoes. As a dynamic representation, CA use local transformation rules to model
the growth of a polyomino over time, cell by cell. In the literature, CA have been
applied to investigate various properties of polyominoes, such as tiling patterns [1, 4]
and shape convexity [24], by observing how clusters of cells evolve under different sets
of rules.

Grammars, commonly used for 2-D pattern languages [22, 64], offer an alterna-
tive mechanism to generate and analyze polyomino shapes, grounded in rule-based
derivation. A grammar defines how shapes are constructed by recursively apply-
ing production rules, which can be designed to integrate domain-specific knowledge
and/or constraints, for example the connectivity (e.g., presence of holes), or convexity.
Grammar-based methods have been applied to describe and enumerate various classes
of polyominoes, especially convex polyominoes [12, 13, 19], and to support enumer-
ation tasks using attribute grammars [10]. Beyond polyomino enumeration, spatial
grammars have also been used in generative design of 3-D soft robots [11], which effec-
tively take the form of 3-D polyominoes. In this approach, grammar rules directly
encode design requirements and constraints, instead of relying on the objective func-
tions. This approach has demonstrated the ability to generate both expected and novel
designs, with all outcomes constrained by the grammar. Different approaches were
tested and show that single applied grammar rules were able to increase the objective
function, highlighting their potential. Grammars have also been proposed to represent
and generate polymers [26], successfully reproducing large datasets compiled from the
literature. This representation has proven useful for reverse engineering of polymer
design and production. Moreover, it offers a blueprint for applications in other fields,
such as chemical model design, molecular discovery, and property optimization.

The present study builds on a previous work in which we proposed a grammar-
based approach for describing sets of labeled polyominoes, along with an algorithm
to develop shapes that respect the grammar constraints [51]. We also demonstrated
how these components can be used in optimization tasks. The results showed that
grammars can effectively enforce hard constraints within the polyomino search space
while supporting evolutionary search. This framework is generalizable: to apply it
to a specific problem, one only needs to design a grammar that encodes the desired
restrictions. If optimization is the goal, then, like in any usage of an EA, an appropriate
objective function must also be defined.
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Fig. 1: Example of polyominoes with labels in A = { , , , , , , }.

3 Grammar-based polyominoes and their evolution

3.1 Labeled polyomino

A polyomino is a 2-D geometric figure composed by one or more squares (or cells)
joined along their edges. A labeled polyomino over an alphabet A is a polyomino where
each cell is assigned a symbol (or label) a ∈ A. For brevity, we will refer to labeled
polyominoes simply as polyominoes. We denote by PA the set of all the polyominoes
defined over A. Figure 1 shows examples of polyominoes defined over an alphabet of
seven symbols, encoded as colors for easing the visualization.

Given a polyomino p, we assign coordinates (x0, y0) ∈ Z
2 to one of its cells. The

label of a cell displaced by x − x0 cells along the x-axis and y − y0 cells along the
y-axis relative to (x0, y0) is denoted as px,y =∈ A. If no cell exists at (x, y), we define
px,y = ∅.

A referenced polyomino is a polyomino in which one cell is designated as the
reference cell. By convention, this reference cell is assigned the coordinate (0, 0).

3.2 Polyomino context-free grammar (PoCFG)

A PoCFG G is defined as a tuple G = (N,T, n1,R), where N is a finite set of non-
terminal symbols, T is a finite set of terminal symbols, with N ∩T = ∅, n1 ∈ N is the
starting symbol (or axiom), and R is a finite set of production rules. Each production
rule consists of a non-terminal symbol (left-hand side) and a referenced polyomino
defined over the alphabet N ∪ T (the right-hand-side).

Similarly to the case of CFGs for strings, we represent a PoCFG using a compact
notation resembling Backus-Naur form (BNF), where rules are grouped by their non-
terminal symbol, and the first rule corresponds to the starting symbol n1. Figure 2
presents an example of PoCFG in BNF.

A PoCFG G = (N,T, n1,R) provides a compact way to define a (possibly infinite)
set of polyominoes over T , denoted by PG ⊆ PT—Figure 3 shows a few polyominoes
belonging to the set defined by the grammar shown in Figure 2. The next section
describes a constructive process to obtain a polyomino p ∈ PG .

Deciding whether a given polyomino p belongs to PG is beyond the scope of this
paper. However, for CFGs that satisfy certain conditions, this problem is solvable for
the case of strings [68].
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N = { , }, T = { , , }, n1 = , |R| = 8 production rules.

::= | | | |

::= | |

Fig. 2: Example of PoCFG. Half colored squares represent non-terminal symbols;
fully colored squares represent terminal symbols; on the right-hand-side, a thick
black border denotes the reference cell in a referenced polyomino.

Fig. 3: Example of polyominoes belonging to PG with the PoCFG G of Figure 2.

3.3 Developing polyominoes given a PoCFG

In our previous work [51] we introduced a development algorithm for obtaining a
polyomino p ∈ PG from a PoCFG G. The algorithm iteratively expands a polyomino
by adding or modifying cells according to the production rules of G, starting from
the single cell polyomino given by the axiom. This process resembles a developmental
model, where structures emerge step by step.

3.3.1 Design principles

The development algorithm is designed for use within an evolutionary optimization
process over PG . It takes as input the genotype g, which guides the selection of pro-
duction rules to apply. The development algorithm thus acts as a mapping from a
genotype g to a polyomino p.

To ensure flexibility, the algorithm is agnostic to the genotype type, allowing it to
process any G ∋ g. We achieved this by making the algorithm modular. Specifically,
we decoupled the components responsible for rule selection, rule expansion, and iden-
tification of suitable rules. This modular design allows us to easily experiment with
different genotype representations. In Section 4.2, we compare various realizations of
the development algorithm using different genotype structures, including bit-strings,
integer-strings, and more complex data structures.

3.3.2 Development algorithm

Algorithm 1 presents our development algorithm in the form of pseudocode. The
algorithm takes as input a genotype g ∈ G, a PoCFG G, and two parameters: a sorting
criterion c and an overwriting flag o. It returns either a polyomino p ∈ PG or ∅ if no
valid polyomino can be developed with the given inputs.
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Algorithm 1 Algorithm to generate a polyomino p ∈ PG ∪ {∅} from a genotype
g ∈ G using a PoCFG G, a sorting criterion c, and an overwriting flag o.

1: function develop(g,G; c, o)
2: p ← single(startingSymbol(G)) ▷ init with starting symbol
3: s ← ∅

4: while true do

5: {(xi, yi)}i ← nonTerminalCells(p)
6: if |{(xi, yi)}i| = 0 then ▷ no non terminal cells
7: break

8: end if

9: (x⋆, y⋆) ← selectNonTerminal(R; c) ▷ find cell to be replaced
10: Rn ← optionsFor(px⋆,y⋆ ,G) ▷ find replacing ref. pol. for px⋆,y⋆ ∈ N in G
11: (p′, s) ← chooseReplacement(Rn, g, s) ▷ choose one replacing ref. pol.
12: if p′ = ∅ then ▷ no chosen replacing polyomino
13: return ∅

14: end if

15: if ¬o ∧ ¬fits(p′, p, x⋆, y⋆) then ▷ cannot replace p with p′ at x⋆, y⋆

16: return ∅

17: end if

18: p ←replace(p, p′, x⋆, y⋆)
19: end while

20: return p

21: end function

The algorithm proceeds as follows. First, it sets (line 2) p as a single-cell polyomino,
where the only cell is labeled with the axiom n1. Then, it iteratively modifies p through
these steps:

(i) it finds (line 5) all cells in p labeled with a non-terminal symbol in N , i.e., cells
that can be replaced using a production rule in R;

(ii) it chooses (line 9) one of the identified cells (x⋆, y⋆) as the target for replacement,
according to the sorting criterion c;

(iii) it selects a suitable production rule for the target cell (line 11), based on the
genotype g and the current state s (initialized as ∅; see Section 3.3.3).

(iv) finally, if possible, it modifies p by replacing the target cell with the referenced
polyomino p′, aligning its reference cell at (x⋆, y⋆).

The process repeats until either (a) no non-terminal cells remain in p, or (b) one of
the steps cannot be performed (discussed below).

Since multiple non-terminal cells may exist in p at step (ii) above
(selectNonTerminal() in Algorithm 1), selecting which one to expand is crucial, as
it can impact on whether other steps fail due to production rules not being applicable.
We treat this as a sorting problem and explore three sorting criteria for selection:
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−→ −−→ −→ −−→

{

−→ −→ −→ −→ with o = true

∅ with o = false

Fig. 4: An example of the development of a polyomino based on the PoCFG of Figure 2
with (o = true) or without (o = false) overwriting (with the Position criterion).
Polyominoes in between arrows are the development stages: here the thick black border
denotes the cell that is being replaced. Referenced polyominoes above arrows are
the right-hand-side of the production rule being applied: here the thick black border
denotes the reference cell.

Position criterion: we choose the non-terminal cell with the lowest y-coordinate in p

and, in case of, tie, the one with the lowest x-coordinate; or
Recency criterion: we choose the non-terminal cell most recently added to p (i.e., at

the most recent iteration of the algorithm) and, in case of tie, the one selected
with the Position criterion; or

Free sides criterion: we choose the cell with the most free sides (i.e., sides without
adjacent cells), and, in case of tie, the one selected with the Position criterion.

In Algorithm 1, the parameter c determines which sorting criterion selectNonTer-

minal() applies. We compare different choices experimentally in Section 4.1.
Once a target cell is selected, the algorithm must determine which production rule

to apply (step (iii)). The function chooseReplacement() handles this step, selecting
among the applicable rules based on the genotype g. We explore three alternative
implementations of this function in Section 3.3.3.

No-mapping conditions

The development algorithm returns ∅ (i.e., fails in mapping a genotype g to a poly-
omino p ∈ PG) in two cases. The first occurs when no production rule can be selected
for a replaceable cell because chooseReplacement(Rr, g) returns ∅, which typically
happens when g has been completely consumed (see next section). This mechanism
prevents infinite execution, similar to termination strategies in other GE variants,
such as structured grammatical evolution (SGE) [38] and weighted hierarchical gram-
matical evolution (WHGE) [5]. The second case arises when the selected cell of p at
(x⋆, y⋆) cannot be replaced by the referenced polyomino p′ from the chosen rule—
Figure 4 shows an example of such a situation. This happens if nearby non-empty cells
in p would need to be replaced by corresponding cells in p′, but a conflict prevents
the replacement. Unlike string-based grammars, where symbols can be replaced by
sequences by shifting surrounding substrings, no such flexibility exists in 2-D struc-
tures. In Algorithm 1, this condition is verified by fits(). A variant of the algorithm
allows rules to be applied regardless of conflicts, enabling overwriting when plac-
ing p′ at (x⋆, y⋆). The Boolean parameter o in Algorithm 1 controls this behavior,
representing an overwriting flag.
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3.3.3 Different types of genotype

The development algorithm is designed to support different representations, allowing
for different genotype domains G. Our rationale is twofold. First, we aimed to demon-
strate that the algorithms is general, by decoupling the choice of the production rules
from the rest of the process. Second, we wanted to build on prior research and estab-
lished practices in grammar-guided genetic programming (G3P), where different kinds
of genotype (and different ways of using it) have been explored to enhance the general
effectiveness of the evolutionary search, such as bit-strings in early GE and WHGE,
as well as structured strings of integers in SGE.

We implemented four representations, each corresponding to a different implemen-
tation of the chooseReplacement() function in Algorithm 1. The modular design of
the algorithm allows these representations to be incorporated seamlessly. In all cases,
we assume that the selection of production rules based on the genotype is stateful,
meaning that repeated calls with the same g may yield different outputs. To formalize
this, we include a state s as an argument for chooseReplacement() and define the
function to return an updated state s along with the selected reference polyomino p′.
The state is initialized to an empty value ∅ at the beginning of each execution of the
development algorithm, and its domain varies depending on the chosen representation.

Figure 5 shows an example of the execution of the development algorithm with
three of the four representations described in detail below.

String of integers

In this representation, a genotype g is an l-long string of integers, i.e., G =
{1, . . . , b}l ⊆ N

l, and the state s is an integer counter, i.e., s ∈ S = {1, . . . , l} ∈ N.
Given a genotype g = (g1, . . . , gl), a set of production rules Rn = (r1, . . . , rk)

for the non-terminal n (where each rj is a pair (n, pj), with pj being a referenced
polyomino defined over N ∪T ), and the state s, the function chooseReplacement()
operates as follows. If the state s is ∅, it is initialized to 1; otherwise, it is incremented
by 1. If s > l, the function returns p′ = ∅; otherwise, the reference polyomino is
selected as p′ = pj , with j = ((gs−1) mod k)+1. Intuitively, chooseReplacement()
consumes the genotype one integer at a time and selects the rule using the mod rule,
as in the original GE.

This representation is denoted as ints(l, b), where l is the genotype length, and b is
the maximum possible value of each genotype element. That is, l and b are parameters
for this parametric representation.

String of bits.

In this representation, the genotype is a binary string, G = {0, 1}l, with the state
S = {1, . . . , l} ∈ N.

Given g = (g1, . . . , gl), a set of production rules Rn = (r1, . . . , rk) for the non-
terminal n, and a state s, chooseReplacement() works as follows. If the state, s, is
∅, it is set to 1; otherwise, it is incremented by h = ⌈log2 |Rn|⌉. If s+h > l, the function
returns p′ = ∅; otherwise: (i) it extracts the next h bits, g′ = (gs, gs+1, . . . , gs+h) in g;
(ii) it converts g′ into an integer z ∈ {1, . . . , 2h}; (iii) it selects the reference polyomino
as p′ = pj , with j = (z mod k) + 1.
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g = (

(l=8)
︷ ︸︸ ︷

2, 8, 6, 1, 6, 3, 6, 7)

p s gs k j p′

1 2 5 2

2 8 5 3

3 6 5 1

4 1 3 1

5 6 5 1

6 3 3 3

7 6 5 1

8 7 3 1

9

(a) With ints(8, 8).

g =

(l=32)
︷ ︸︸ ︷

0111000100 . . . 11

p s h g′ z k j p′

1 3 011 3 5 4

4 3 100 5 5 1

7 2 01 1 3 2

9 3 001 1 5 2

12 3 000 0 5 1

15 2 11 3 3 1

17 3 101 5 5 1

20 2 11 3 3 2

22

(b) With bits(32).

g = (

(l1=73)
︷ ︸︸ ︷

5, 2, 5, 1, . . .,

(l2=9)
︷ ︸︸ ︷

3, 2, 3, . . .)

p s i j p′

(1, 1) 1 5

(2, 1) 1 2

(3, 1) 1 5

(4, 1) 1 1

(4, 2) 2 3

(5, 2) 1 1

(5, 3) 2 2

(6, 3) 1 1

(6, 4) 2 3

(7, 4) 1 1

(7, 5) 2 2

(7, 6)

(c) With structured(82, 2).

::=

1
︷︸︸︷

|

2
︷︸︸︷

|

3
︷︸︸︷

|

4
︷︸︸︷

|

5
︷︸︸︷

::=

1
︷︸︸︷

|

2
︷︸︸︷

|

3
︷︸︸︷

(d) The grammar G.

Fig. 5: Example of the development of a polyomino with the grammar of Figure 2
(also shown here in 5d for easing the comprehension and with the index of each rule
made explicit) and three representations (one table for each representation). Each
row in the table represents one iteration of the algorithm (with the Position sorting
criterion and no overwriting). The thick black border denotes in p the cell that is being
replaced and in p′ the reference cell.
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In this case, chooseReplacement() processes h bits at a time, ensuring that h is
the smallest number needed to accommodate Rn and chooses the rule using the mod
rule on the bit-to-integer conversion of the consumed h bits. If |Rn| = 1, no bits are
consumed—which is sound, as there are no decisions to be made. This representation
is denoted as bits(l).

String of reals

In this representation, the genotype consists of real-valued elements, G = R
l, with

S = {1, . . . , l} ∈ N.
Given g = (g1, . . . , gl), a set of production rules Rr, and state s, chooseReplace-

ment() works similarly to ints(l, b) in updating s. The reference polyomino selection
proceeds as follows. If s > l, the function returns p′ = ∅; otherwise: (i) it clamps
gs to the range [0, 1] as h = min(1,max(0, gs)), then (ii) it selects p′ = pj , with
j = max(1, ⌈kgs⌉).

Intuitively, here chooseReplacement() consumes the genotype one real value at
a time and chooses the rule based on the value normalized to [0, 1] and mapped to a
valid rule index, {1, . . . , |Rn|}.

This representation is denoted as reals(l).

Structured string of integers

In this representation, the genotype is a set of strings of integers, one string for each
non-terminal in the grammar, and the state is a set of counters, one for each non-
terminal. Let N = {n1, . . . , nm} be the set of non-terminals, and let Rnj

⊆ R be
the set of production rules for the non-terminal nj . Formally, G = {1, . . . , |Rn1

|}l1 ×
· · ·×{1, . . . , |Rnm

|}lm and S = {1, . . . , l1}×· · ·×{1, . . . , lm}, with the constraint that
∑j=m

j=1 lj = l, ensuring that the total genotype length remains l.
The number of genotype elements lj assigned to each non-terminal nj of the

grammar is determined based on the total genotype length l through the following
process.

(1) We start with a bag N = {n1} containing only the axiom.
(2) We repeat for nrec times this procedure: (i) for each non-terminal n in N , we

collect all rules Rn associated with n; (ii) we extract all referenced polyominoes
appearing on the right-hand side of these rules; (iii) we add all non-terminals
from these polyominoes to N (potentially with repetitions).

(3) Finally, we assign a portion of the genotype to each non-terminal nj based on its

frequency in N . Namely, for nj we set lj =
⌊

l
|{n∈N :n=nj}|

|N|

⌋

. The values are then

adjusted to ensure that
∑j=m

j=1 lj = l.

The rationale of this procedure is to have a number of genotype elements suitable for
performing “enough” productions with each given non-terminal, while still constrain-
ing the genotype to be l-long. The parameter nrec influences how much more recursive
non-terminals (i.e., those that appear more frequently in derivations) receive larger
portions of the genotype.
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Given a genotype, g = (g1,1, . . . , g1,l1 , . . . , gm,1, . . . , gm,lm), a set of rules Rni
for

a non-terminal ni, and a state s = (s1, . . . , sm) (or s = ∅), the function chooseRe-

placement() for this representation works as follows. If s = ∅, it initializes it as
s = (1, . . . , 1) (i.e., a m-long vector of ones); otherwise, it updates the counter for the
current non-terminal: if s = (s1, . . . , sm), then si = si+1. If si > li, p

′ = ∅; otherwise
p′ = pj , with j = gi,si

Intuitively, here chooseReplacement() selects a production rule by sequen-
tially consuming one integer at a time from the genotype portion corresponding to
the current non-terminal being replaced. Note that the mod rule here is not needed,
since the domain of each genotype part exactly matches the number of rules for the
corresponding non-terminal symbol.

We denote this representation, which resembles the one of SGE [38], with
structured(l, nrec).

3.4 Evolution of polyominoes

Having defined how to map a genotype g ∈ G to a polyomino p ∈ PG for a given
grammar G, we can solve problems of optimization over PG using evolutionary com-
putation (EC), specifically with an EA. Since we have mapping variants for different
types of genotype, we can use any EA that best matches the corresponding G. For
example, evolutionary strategy (ES) [27] or the more recent OpenAI-ES [69] are suit-
able for the reals(l) representation, while a genetic algorithm (GA) is appropriate for
bits(l), possibly incorporating a linkage-exploitation mechanism [74] as in [46]. For
simplicity, in this work, we use the simple GA described below, leaving the investi-
gation of alternative EAs as future work. When experimenting with the modular soft
robots (see Section 4.3.2), we use a bi-objective EA.

Given an objective function f : PG → R (assuming minimization problems, with-
out loss of generality), we evolve polyominoes using a simple GA with two variation
operators (mutation and crossover, each being representation-specific). The algorithm
employs tournament selection for parents selection and allows overlapping between
parents and offspring. The process begins with the initialization of a population P of
npop individuals, generated using a representation-specific procedure. Then, for ngen

generations, we iterate through the following steps:

(1) We generate rx-overnpop offspring via crossover. Each child is produced by select-
ing two parents from P with tournament selection (of size ntour) and applying a
crossover operator.

(2) We generate (1− rx-over)npop new individuals via mutation, selecting the parent
through tournament selection.

(3) We merge all newly generated individuals with the parents, hence obtaining a
population P with 2npop individuals.

(4) We apply truncation selection to P , retaining the best npop individuals according
to the objective function f .

At the end of the process, we return the individual, i.e., the polyomino, with the best
objective value.
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For initializing the population, namely each genotype in it, we simply generate
each g by sampling each one of its element in the proper domain with uniform prob-
ability, i.e., in {1, . . . , b} for ints(l, b), in {0, 1} for bits(l), in [0, 1] for reals(l), and
{1, . . . , |Rni

|} (with the appropriate value for i) for structured(l, nrec).
As mutation, we use point-mutation, which randomly changes each genotype ele-

ment to another value in the proper domain with pmut probability, for ints(l, b), bits(l),
and structured(l, nrec). For reals(l) we use the Gaussian mutation with standard
deviation σmut.

As crossover, we use uniform crossover, which selects each element of the child
genotype from one of the parents with equal probability, across all representations.

4 Experiments and results

We performed several experiments to: (a) compare the different variants of the develop-
ment algorithm (i.e., sorting criterion and overwriting flag), (b) compare the different
representations, (c) verify if our approach actually allows to evolve polyominoes
towards a predefined target shape while adhering to the given grammar, also in the
more realistic case of evolutionary optimization of VSRs. Regarding the representa-
tions, we experimented with bits(l), ints(l, 4), ints(l, 16), reals(l), and structured(l, 2),
using different values for the genotype length l.

When comparing variants and representation, we focused on analyzing quantita-
tively some properties of the representation, since they allow to characterize how the
search process operates [44, 65]. Specifically, we consider the following quantitative
properties, which we measured experimentally:

Validity measures the degree to which a genotype maps to a valid phenotype. Given
a set G of genotypes, we applied our development algorithm to obtain the cor-
responding bag P of phenotypes and computed the validity as 1

|G| |{p ∈ P : p ̸=

∅}|.
Uniqueness measures the degree to which different genotypes are mapped to distinct

phenotypes. Given a set G of genotypes and the corresponding bag P of pheno-

types, we computed the uniqueness as |G|
|P ′| , with P ′ being the set of elements of P

different than ∅, i.e., the valid phenotypes. Note that P may contain duplicates,
while P ′ does not, as it is a set.

Locality measures the degree to which similar genotypes are mapped to similar phe-
notypes. Given a sequence G of unique genotypes, the corresponding sequence P

of phenotypes, and two distances dG and dP defined for genotypes and pheno-
types, we computed the distance matrices DG and DP containing the distances
between all pairs of elements of the two sequences and then we computed the
locality as the Pearson correlation between the corresponding elements of the
matrices. We defined dP as the Hamming distance between pair of polyominoes
after having translated them in order to have coincident centers of mass. For dG,
we used the Hamming distance for bits(l), ints(l, b), and structured(l, 2), and the
Euclidean distance for reals(l).
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(e) Dog

Fig. 6: The PoCFGs considered in the experiments. Half colored squares represent
non-terminal symbols; fully colored squares represent terminal symbols; on the right-
hand-side, a thick black border denotes the reference cell in a referenced polyomino.
e.g., for the Dog grammar, N = { , , , , }, T = { , , }, n1 = , and there are
|R| = 11 production rules.

For all properties, higher values indicate better characteristics.
We performed our experiments with five PoCFGs, shown in Figure 6. They differ

in the number |R| of rules, the number |T | of terminals, and the number |N | of
non-terminals.

4.1 Comparison of development variants

To compare the six variants of our development algorithm (obtained by combining
the three sorting criteria and the two overwriting flag values) we used the bits(l)
representation, with l ∈ {10, 15, . . . , 245, 250}. We conducted similar experiments for
the other representations and observed qualitatively similar findings. For each l value,
we generated 5000 genotypes (and their corresponding phenotypes) to measure validity
and uniqueness, and 1000 genotypes to measure locality. Figure 7 presents the results
of this experiment.

We first observe that differences in the measured properties are more apparent
across PoCFGs (plot columns) than across variants of the algorithm (line colors).
This suggests that the selection of the grammar plays a key role in determining the
properties of the representation. This finding is consistent with the literature of G3P
algorithms, which has shown that grammar design can greatly impact the behavior
of the algorithm [28, 39, 55]. At the same time, it indicates that our development
algorithm is robust with respect to its parameters.

Looking at the validity plots (first row), it is possible to see that overwriting gener-
ally leads to a higher number of valid polyominoes. With all the grammars except for
the Bidirectional, the validity reaches its maximum for most of the combinations with
overwriting when l is sufficiently large. The lower validity observed with Bidirectional
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Fig. 7: Representation properties (rows of plots) for the six variants of the develop-
ment algorithm (line colors and types) measured on the five grammars (columns of
plots) with the bits(l) representation.

might be related to the fact that there is a higher chance of selecting a non-terminal
rather than a terminal, compared to the other grammars.

Concerning uniqueness, Figure 7 suggests that the Sides criterion tends to result
in lower uniqueness, whereas Recency in higher uniqueness. No clear and general
distinctions can be made between the variants with and without overwriting.

Finally, regarding the locality, the results suggest no differences among the variants.
The main role is played by l: as genotype length increases, locality decreases. This
finding can be explained by the fact that long genotypes may not be fully used in
the mapping process: differences in unused parts of two genotypes are not reflected
in the corresponding phenotypes. This interplay between locality and genotype usage
has been previously observed and can be analyzed through visualization tools [50].

Based on the results of this experiment, we chose the Recency criterion without
overwriting for the next experiments. Specifically, we selected the latter parameter
value due to its closer alignment with the role of a grammar: describing structural
constraints for polyominoes.
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Fig. 8: Representation properties (rows of plots) for the five representations (line
color) measured on the five grammars (columns of plots) with the development algo-
rithm based on Recency without overwriting.

4.2 Comparison of representations

We compared the five representations using the same procedure as in the previ-
ous experiment, applying the Recency criterion without overwriting. The results are
depicted in Figure 8.

As in the previous analysis, the results show that grammar and genotype length l

have a greater impact on the representation properties than the representation itself.
However, representations exhibit more differences than the development algorithm
variants.

The bits(l) and ints(l, 4) representations generally achieve higher validity.
structured(l, 2) generates more invalid polyominoes than the other representations,
likely due to portions of the genotype being too short—an effect of the nrec parameter.
However, larger validity does not always imply a higher number of unique phenotypes:
in all grammars except the Bidirectional and Dog, the structured(l, 2) representation
presents higher uniqueness.

Concerning locality, structured(l, 2) and reals(l) perform, in general, better. While
all representations follow a similar trend, bits(l) shows a smoother curve (with,
however, low locality).

Although in EAs a higher locality is typically desirable, we chose to perform the
subsequent experiments using the bits(l) representation, as it is the simplest and most
similar to the original GE.
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(a) Chess (b) Circle (c) Worm-1

(d) Worm-2 (e) Dog

Fig. 9: The five target polyominoes.

4.3 Evolutionary optimization of polyominoes

We performed some experiments to verify whether the algorithm proposed can be
used inside an EA to solve optimization problems. We considered a set of synthetic
optimization problems, where the goal is simply to “approximate” a given target
polyomino, and a more realistic problem consisting in optimizing a modular soft robot
for performing the task of locomotion (i.e., to run along a flat surface).

4.3.1 Synthetic polyomino optimization problems

We built a set of optimization problems where the goal is to evolve a target polyomino
p⋆. We used, as objective function, the average of the Hamming distance of the evalu-
ated polyomino p to the target p⋆ and the same distance computed without considering
labels; in both cases, we translated the polyominoes in order to have their centers of
mass to coincide. Intuitively, this objective function measures the approximation error
of a polyomino p with respect to the target polyomino p⋆. We employed this measure
of error to facilitate the evolution of the correct shape: namely, we weighted more the
shape than the labels of the polyomino.

We considered five target polyominoes, shown in Figure 9, and used each of the
five PoCFGs of Figure 6 on each target polyomino, hence resulting in 25 optimization
problems. We purposely chose target polyominoes which match very differently the five
PoCFGs. Note that the Dog shape is not perfectly achievable with the Dog grammar,
due to the misplaced rightmost foot.

We evolved the polyominoes using the GA described in Section 3.4 with the fol-
lowing parameters (summarized in Table 1): npop = 100, ngen = 200, rx-over = 0.8,
ntour = 3, pmut = 0.01, the latter being the only representation-specific parameter. We
employed the bits(500) representation with the Recency criterion and no overwriting:
moreover, whenever the polyomino development process concluded with ∅ (i.e., no
mapping), we took a single cell polyomino with the “first” terminal of T as polyomino.

We used JGEA [48] for the experiments. For each of the 25 combinations of
grammar and target, we performed 50 evolutionary runs, varying the random seed.
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Parameter Value

Number of generations ngen 200
Population size npop 100
Tournament size ntour 3
Crossover rate rx-over 0.80
Mutation probability pmut 0.10

Table 1: Our EA parameters.
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Fig. 10: Approximation error and size (row of plots) of the best polyomino during
the evolution for the five problems (column of plots) using the five grammars (color
line) with the development algorithm based on Recency without overwriting and the
bits(500) representation. The shaded area corresponds to the interquartile range, the
line to the median across 50 runs.

Results and discussion

Figure 10 presents the results of these experiments, showing both the approximation
error of the best polyomino during the evolution and its size, measured by the number
of cells.

By looking at the results, it is possible to see that the EA successfully identified the
optimal solutions for the Worm-1 and Worm-2 targets when using the Worm grammar.
Similarly, the Dog grammar greatly outperformed the other grammars in solving the
Dog problem. This highlights the significance of a well-designed grammar, not only
for enforcing structural constraints, but also to incorporate domain-specific knowledge
about the problem. Figure 11 illustrates the evolution of the best individual across
generations when using the Dog grammar to evolve the Dog shape, for one random
run. In contrast, Figure 12 presents an example of evolution using the Monodirectional
grammar for the same target and one random run. While the resulting shape bears
some resemblance to the desired form, the lack of necessary label colors (terminal
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(a) Generation: 1,
Error: 0.3605.

(b) Generation: 7,
Error: 0.31.

(c) Generation: 116,
Error: 0.1111.

Fig. 11: Snapshots on different generations of the best individual evolved to match
the polyomino target Dog (Figure 9e), using the Dog grammar (Figure 6e).

(a) Generation: 1,
Error: 0.8605.

(b) Generation: 12,
Error: 0.4535.

(c) Generation: 26,
Error: 0.4535.

(d) Generation: 102,
Error: 0.3605.

Fig. 12: Snapshots on different generations of the best individual evolved to match the
polyomino target Dog (Figure 9e), using the Monodirectional grammar (Figure 6a).

symbols) in the grammar makes it impossible to fully reconstruct the Dog shape.
Again, these figures confirm the practical importance of being able to conveniently
incorporate some domain knowledge in the optimization process through a grammar.

In contrast, when employing a grammar not specifically designed to the target,
such as the Alternated grammar applied to the Circle, Worm-1, Worm-2, and Dog
problems, the EA tended to get trapped in local minima after a few iterations. This is
indicated by the size of the fittest individual, which remains unchanged, highlighting
the EA difficulty to explore the solution space effectively under these circumstances.

Overall, these experiments show that it is possible to evolve a polyomino towards
a predefined target while ensuring it adheres to specific constraints encoded in a user
defined PoCFG.

4.3.2 Evolving simulated modular soft robots

In order to further test the capability of our approach to evolve polyominoes adhering a
grammar, we considered the more realistic case of the optimization of the morphology
of (simulated) modular soft robots—namely VSRs—required to perform some task.
As anticipated earlier, the body of a VSR can be described by a labeled polyomino,
with labels corresponding to voxel types. Consistently with the rest of this study, we
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experimented with 2-D VSRs, which have been widely used for research in evolution-
ary robotics [6, 45], rather than with their 3-D counterpart, which can be actually
fabricated [30, 37], but whose body is not a 2-D polyomino.

In the next sections, we first provide a brief background on VSRs, then we present
our experiments and discuss the results.

Voxel-based soft robots (VSRs)

A VSR is an assembly of soft modules (voxels), each with the ability to actively expand
or contract its size. For our simulated 2-D VSRs, each module is a square. Modules are
rigidly linked together at the vertices with each adjacent module. We simulate softness,
in discrete time, through a compound of masses placed at the vertices of the module
and spring-damper systems (SDSs) between masses [45]. We model active expansion
or contraction of the module by changing the rest-length of the SDSs: in this work we
allow for SDSs on different sides of each module to act independently, hence modeling
the capability of the module to actively deform itself. With respect to the reference

system of the module, we denote by ρ
(k)
N , ρ

(k)
E , ρ

(k)
S , ρ

(k)
W the target relative length of

the top side (N), right side (E), bottom side (S), and left side (W) at time step k: for
each of them, 1 means that the module side is required to stay at nominal length, a
value < 1 means contraction, a value > 1 means expansion. During the simulation,
the actual shape of each module depends on its softness, the external forces applied
on the module, and the module target relative side lengths. By replacing the SDSs
with rigid links, we can model rigid modules, i.e., squares whose area never changes.

The morphology of the VSR, i.e., the way modules are assembled together, can be
described by a polyomino. The controller of the VSR is in charge of determining how

the area of each module changes over time, i.e., of determining ρ
(k)
N , ρ

(k)
E , ρ

(k)
S , ρ

(k)
W .

While in other works there is a clear distinction between the morphology and the
controller of a VSR, often called respectively the body and the brain [15, 16], in
this work we assume that the controller is indeed part of each module and hence is
distributed across the morphology. Namely, we assume that there are six kinds of
module that differ in how they change their shape over time:

• passive hard (PH) modules (from now on denoted with ), whose area never
changes;

• passive soft (PS) modules ( ), whose area changes only based on external forces,

i.e., ρ
(k)
N = ρ

(k)
S = ρ

(k)
E = ρ

(k)
W = 1;

• active horizontal (AH) modules ( ), whose top and bottom side target lengths
change periodically following a sinusoidal function with a frequency of 1Hz, i.e.,

ρ
(k)
N = ρ

(k)
S = 1 + ρmax sin(2πkδt) and ρ

(k)
E = ρ

(k)
W = 1;

• active vertical (AV) modules ( ), whose right and left side target lengths change

periodically following a sinusoidal function with a frequency of 1Hz, i.e., ρ
(k)
E =

ρ
(k)
W = 1 + ρmax sin(2πkδt) and ρ

(k)
N = ρ

(k)
S = 1.

• active sinusoidal (AS) modules ( ), for which all sides target length changes

periodically following a sinusoidal function with a frequency of 1Hz, i.e., ρ
(k)
N =

ρ
(k)
E = ρ

(k)
S = ρ

(k)
W = 1 + ρmax sin(2πkδt);
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(a) t = 1.0 s (b) t = 1.6 s (c) t = 2.2 s

Fig. 13: A VSR composed of 20 modules taken at three time steps separated by 0.6 s.
The two top rows of modules are composed of active modules, a group of four AV ( )
modules on the left, four AH ( ) in the middle, four AH ( ) on the right; the legs are
PH ( ) modules; the feet ar PS ( ) modules. That is, . In the figure, the color of
each module represents its current area ratio (with respect to the original area): the
closer to red, the smaller (< 1), the closer to white, the larger (> 1); gray modules are
PH. The short light gray lines at the vertices are the rigid links which link together
the voxels. The gray object with a checkerboard pattern is the ground, where the VSR
is staying.

• active cosinusoidal (AC) modules ( ), for which all sides target length changes

periodically following a cosinusoidal function with a frequency of 1Hz, i.e., ρ
(k)
N =

ρ
(k)
E = ρ

(k)
S = ρ

(k)
W = 1 + ρmax cos(2πkδt) (i.e., AC modules contract in counter-

phase with respect to AS modules).

Based on the literature [49] and previous experiments, we set the maximum relative
side length change to ρmax ≈ 0.095 and the time step for the simulation to δt = 1

60 s.
Figure 13 shows a VSR composed of 20 modules where four types of modules are
represented.

We remark that the kind of control used in these experiments is open-loop, as
the voxels determine their sides target relative length not considering any input from
the environment, hence not exploiting any perception or proprioception. Data-driven
controller synthesis techniques exist in general for both open- and closed-loop con-
trollers [60, 61]. For VSRs, periodic signals are often used as open-loop controllers (as
in this case) and artificial neural networks are often used as closed-loop controllers [72].
Recently, some symbolic artifacts, as, e.g., graphs or ensembles of regression trees
have also been explored, possibly for favoring transparency [47, 54]. Interestingly, due
to their soft bodies which induce complex dynamics, VSRs can exhibit quite elabo-
rated behaviors even when employing simple open-loop controllers: this is a form of
morphological computation [53].

Optimization for efficient locomotion

Task. We considered the task of directed locomotion.
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In this task, we placed the VSR on a flat terrain and we performed a simulation
lasting 30 s. At the end of the simulation, we measured the average speed vx of the
VSR along the x-axis and the average actuation power p. For the former, we considered
the displacement of the center of mass of the VSR between t = 0 and t = 30 s.

For the average actuation power p, we proceeded as follows. At every time step
k and for each side of every voxel, we considered the current relative length ρ̂(k)

(computed as the ratio between the current length and the nominal length of the
SDS of the voxel side) and the target relative length ρ(k). Then, we accounted for an
amount of energy e(k) spent on that voxel side as follows:

e(k) =







(ρ̂(k) − 1)(ρ(k) − 1), if ρ̂(k) > 1 ∧ ρ(k) > 1

(1− ρ̂(k))(1− ρ(k)), if ρ̂(k) < 1 ∧ ρ(k) < 1

0, otherwise

That is, the energy required to change the length of a side was positive only if it was
being further expanded when already expanded or further contracted when already
contracted. We define the average power p taken by the VSR as the sum of all the
energy amounts spent for all the sides during the entire simulation divided by the
duration of the simulation.

We looked for VSRs which were both fast and energy efficient, i.e., we considered
a bi-objective optimization problem consisting in maximizing vx and minimizing p.
Clearly, there is a trade-off between the two objectives: in particular, a VSR composed
only of passive voxels (PH or PS) scores perfect in p, but is not actually able to actively
move (while it might rotate for a while if its morphology allows to do that).

Evolutionary algorithm (EA). We used the non-dominated sorting genetic algorithm
II (NSGA-II) for tackling the bi-objective optimization problem of the efficient loco-
motion of VSRs. We remark that the approach proposed in this work is agnostic with
respect to the EA being used for the optimization in the space of polyominoes. Indeed,
with this experiment we also wanted to validate this claim.

We used the implementation of NSGA-II available in JGEA with default parame-
ters. Namely, we set it to use a population of 100 individuals and to build the offspring
using crossover for 80% of the new individuals and mutation for the remaining ones.
As we dealt with a discrete genotype space (see next section), we employed a simple
diversity promotion mechanism: whenever we generated a new genotype (either dur-
ing the initialization or in the reproduction phase), we discarded it and generated a
new one if it was already present in the population.

Representation. We employed a representation of VSRs based on our approach. In
particular, we (a) designed a PoCFG GVSR for describing a set of VSRs where to search
for and (b) we chose the bits(1024) representation (see Section 3.3.3), i.e., we used
the genotype space G = {0, 1}1024, with the Recency criterion and no overwriting (see
Section 3.3.2).

We show GVSR in Figure 14a. It has six terminal symbols (T = { , , , , , },
corresponding to PH, PS, AH, AV, AS, AC voxels, respectively), six non-terminal
symbols (N = { , , , , , }), and 17 production rules. Intuitively, GVSR describes
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::= | | seed for the trunk

::= | 1-voxel trunk

::= | 2-voxel trunk

::= | 3-voxel trunk

::= | leg

::= | | | | | generic voxel

(a) The PoCFG GVSR for describing biped-like VSRs.

→ → → → → → → → → → →

→ → → → → → → →

(b) An example of the development of a VSR adhering to GVSR.

Fig. 14: The PoCFG GVSR for biped-like polyominoes, used in our experiments with
VSRs, and an example of development of a polyomino adhering to GVSR (with the
Recency sorting criterion and no overwriting). In 14a, the thick black border denotes
the reference cell. In 14b, the thick black border denotes the cell being replaced.

the subset of VSRs whose morphology resemble a biped, i.e., a trunk with two legs.
In particular, the horizontal trunk can be one, two, or three voxels wide and with a
unbounded length; each of the vertical legs is one voxel wide and with a length ranging
from zero to infinite—note that the two legs can be of different length. Voxels of any
type can be used in every part of the morphology. In Figure 14b we show an example
of the development (with the Recency criterion and no overwriting) of a polyomino
adhering to GVSR.

As a comparison baseline, we also employed another representation of VSRs
which does not constrain the robots to have a specific, grammar-based morphol-
ogy. In this representation, which we called grid-based, the genotype space is G =
{0, 1, 2, 3, 4, 5, 6}24 and the mapping process works as follows. Given a int string g ∈ G,
we first reshape it to a 6 × 4 matrix, then we consider the larger polyomino in the
matrix formed by non-zero elements, and finally we map each matrix element greater
than zero to a corresponding value in { , , , , , }.

Summarizing, we compared two approaches for tackling the efficient locomotion
optimization problem. Both use NSGA-II as EA and search in the space of (a subset
of) VSRs. The GVSR-based approach uses {0, 1}1024 as genotype space; the grid-based
approach uses {0, 1, 2, 3, 4, 5, 6}24 as genotype space. For both, we used the uniform
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Fig. 15: Average speed vx (right) and power p (left) of the fastest robot in the
population during the evolution, for the two approaches. The shaded area corresponds
to the interquartile range, the line to the median across 10 runs.

crossover and the point-mutation as genetic operators and the random initialization
in the domain of each genotype element for population initialization.

Results and discussion

We executed 10 evolutionary runs for each of the two approaches. We used JGEA for
the optimization and 2D-VSR-SIM [45] for simulating the VSRs. We set npop = 100,
pmut =

1
|g| (i.e.,

1
1024 for the GVSR-based approach and 1

24 for the grid-based one), and

stopped each run after 20 000 fitness evaluations.
Figure 15 shows the progression of the speed vx and power p of the fastest VSR

in the population during the evolution for the two representations. We remark that
we considered a bi-objective optimization problem: however, we arbitrarly chose to
prioritize vx in this visualization by choosing the fastest VSR. For vx, the greater, the
better; for p, the opposite.

It can be noticed from Figure 15 that VSRs evolved with the grammar-based rep-
resentation were in general slower, but more efficient, at least until the last stage of
the evolution, when grid-based VSRs tended to become equally efficient. This differ-
ence can be explained in two ways. First, the subsets of VSRs in which the EA was
searching with the two representations corresponded to different trade-offs between
speed and power: namely, bipeds-like VSRs are likely slower than “free-form” VSRs.
Second, the different directedness of the genotype-phenotype mapping induced differ-
ent fitness landscapes which were more or less convenient to navigate for the EA. We
do not have strong arguments for none of the two hypotheses. In particular, concern-
ing the former, the properties that make a VSR body more or less controllable for
a given task have yet to be completely characterized, but in general appear hard to
capture [73].

What really matters for our study is that with the GVSR-based representation,
we were actually able to constrain the search to a precisely defined subset of VSRs,
which we have conveniently defined through a PoCFG. Indeed, we show in Figure 16
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(a) GVSR-based best VSRs.

(b) Grid-based best VSRs.

Fig. 16: The fastest VSR obtained in each one of the 10 evolutionary runs for the
two approaches.

the fastest VSR obtained in each of the 10 repetitions for the two approaches. It can
be easily noted that all the VSRs evolved with the GVSR-based are actually bipeds—
some of them with zero-long legs, some with short trunks. Conversely, robots evolved
with the grid-based approach are actually free-form (though always of size of at most
6 × 4). In order to apply the biped-like constraint to the grid-based case, one would
have had to (a) design and implement a non-trivial algorithm for determining whether
(or the degree to which) a polyomino is a biped and (b) integrate it in the EA as a
hard constraint, a penalization in the fitness, or maybe a third objective. Arguably,
the effort would have been greater than the one required to define GVSR.

Finally, to further remark the effects of constraining the search using a PoCFG,
we show in Figure 17 the values of the objectives for each VSR in the population for
the two best repetitions of the two approaches, i.e., the ones giving the fastest VSR
at the end of the evolution. For a few VSRs for each approach, we also show the
corresponding morphology.

It can be seen that the two representations were apparently differently able to cover
different regions of the Pareto frontier, i.e., different vx-p trade-offs. In particular, the
GVSR-based representation delivered more robots in the “middle”, while the grid-based
representation delivered more faster and efficient robots. Moreover, by “counting”
the markers for the two colors, it can be seen that the grid-based representation
apparently produced more VSRs. As the two representations were used with the same
EA (and the same population size of npop = 100), this means that the GVSR-based
representation lead to a less phenotypically diverse population. We recall that (a) we
enforced genotype diversity in both cases at the level of the EA and (b) the two sets
of polyominoes corresponding to the two representations are differently large. The
grid-based set size is < 724 while the grammar-based one is infinite. The tendency of
grammar-based representations to suffer from poor phenotype diversity is not new and
is related to degeneracy and redundancy [44, 50]. More broadly, we believe it is a price
to pay for the possibility of conveniently restrict the search space through a grammar.

5 Conclusions

In this work, we introduced the concept of polyomino context-free grammars (PoCFGs)
and a novel algorithm to develop polyominoes that meet predetermined requirements,
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Fig. 17: Average speed vx and power p of each VSR in the final population of the
best run for the two approaches (i.e., the one delivering the VSR with the greatest
vx among the 10 evolutionary runs). For three VSRs for each approach, we show the
morphology.

defined by a PoCFG. The development algorithm can be driven by a source of informa-
tion (a list of integers, bits, or similar data structures). This way it can be integrated
within an evolutionary algorithm (EA) where the genotypes of individuals are the
source of information used by the development algorithm. In brief, the latter can be
integrated in any EA to solve optimization problems where the search space is a set
of labeled polyominoes defined by a grammar.

We performed three experimental campaigns and discussed the results. In the first
one, we characterized experimentally the impact of the key components of our devel-
opment algorithm. Namely, we considered four different kinds of genotypes and two
ways of developing the polyomino and compared them in terms of well-established
property for representations: validity, uniqueness, and locality. In the second set of
experiments, we defined a set of synthetic optimization problems where the goal was
to evolve a polyomino with a given shape: this way, we showed that our grammar-
based representation can actually be used by an EA in the context of evolutionary
optimization. Finally, in the third experiment, we considered a more realistic optimiza-
tion problem where the goal was to find a modular soft robot (namely, a voxel-based
soft robot (VSR), whose body can be described by a labeled polyomino) that runs
fast and efficiently.

Our results showed that it is actually possible to use general-purpose EAs to solve
optimization problems with polyominoes. Nevertheless, we also found that our repre-
sentation, like other grammar-based representations, tend to suffer from diversity and
locality issues. This finding aligns with existing literature on grammar-guided genetic
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programming (G3P). However, we also confirmed how convenient is the possibility
of sharply defining constraints on the search space by means of a grammar. Such a
practical advantage might be relevant in other scenarios where the “physical struc-
ture” of the solution is important, as in the generation of maps for games [32] or DNA
shapes [70].
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