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Abstract

Background:    Dental  caries  affects  75%  of  the global population, yet traditional visual examina- tion  suffers  from  high  subjectivity  and  difficulty in early detection.   This  study developed  an en- hanced  deep  learning  algorithm  to  improve  au- tomated  caries  detection  accuracy  in   oral  pho- tographs.

Methods:    We designed MSFAPN_CDA incorpo- rating multi-scale feature fusion and adaptive pyra- mid networks.  The algorithm was trained and val- idated on 2,000 oral photographs from two institu- tions.  Performance was evaluated using precision, recall, mAP@0.5, and compared against state-of- the-art detection algorithms through statistical anal- ysis.
Results:    MSFAPN_CDA       achieved       94.7% mAP@0.5,  87.0%  precision,   and  88.7%  recall, representing a 7.9 percentage point improvement over  baseline  YOLO11.    The  algorithm  signifi- cantly outperformed YOLOv5 (89.2%), YOLOv8 (88.7%),   and   RT-DETR   (82.2%)   with   9.86ms inference time.   Ablation  studies  confirmed  each component’s contribution (p<0.001).

Conclusions:    MSFAPN_CDA  demonstrates  su- perior performance for automated caries detection with real-time capability, providing valuable techni-
cal support for early diagnosis and oral health man- 	agement in clinical practice.
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Background

Dental caries is a progressive destructive disease of tooth hard tissues caused by multiple factors.  According to the World Health Organization’s 2022 Global Oral Health Status Report, it affects 75% of the global population, making it one of the most common chronic diseases [1]. Early accurate detection of caries is of significant clinical importance for preventing disease progression, reducing treatment complexity, and de- creasing medical costs [2,3].
Traditional caries detection primarily relies on clinical vi- sual examination and probe inspection, which have signifi- cant limitations. First, detection results are highly dependent on clinicians’ experience and subjective judgment, leading to considerable inter-examiner diagnostic variability [4].   Sec- ond, early carious lesions often present as subtle color and texture changes that are difficult to accurately identify us- ing traditional methods [5].  Additionally, complex intraoral anatomical structures and lighting conditions further increase detection difficulty and affect diagnostic efficiency [6].
In recent years,  the rapid development of deep learning technologies in medical imaging has provided new opportu- nities for automated diagnosis of oral diseases [7,8]. Convo- lutional Neural Networks (CNNs) have demonstrated power- ful feature extraction and pattern recognition capabilities in medical image analysis [9,10].  Object detection algorithms, particularly the You Only Look Once (YOLO) series, have gained widespread attention in medical imaging applications due to their excellent accuracy-speed balance [11,12].

YOLO11, as the latest version of the series, achieves sig- nificant  improvements  in  feature  extraction  capability  and computational efficiency through the introduction of C2PSA (Cross Stage Partial with Spatial Attention) modules and op- timized C3k2 architecture  [13].   However,  caries  detection faces unique technical challenges.  First, carious lesions ex- hibit diverse morphological features and significant scale vari- ations, ranging from early point lesions to large-area tooth defects [14].  Second, the visual feature differences between early caries and normal tooth tissues are minimal, requiring more refined feature representation capabilities [15].  Exist- ing detection methods have significant gaps in handling multi- scale feature fusion, particularly in accurate identification of small-scale carious lesions [16,17].
To address these technical challenges, this study proposes an enhanced YOLO11-based caries detection algorithm.  Our core innovations include: (1) designing a Multi-scale Feature Mixer (MFM) module for effective cross-hierarchical feature fusion; (2) constructing a Multi-level Adaptive Feature Pyra- mid Network (MAFPN) to enhance small target detection ca- pability; (3) optimizing detection head architecture design to improve recognition accuracy for caries of different scales.

Methods

Study design and ethics approval
This technical development study was designed to develop and validate a deep learning-based automated dental caries detection algorithm.  The research was conducted with joint support  from  Guilin  University  of  Electronic  Technology, Guilin Medical University, and Guilin People’s Hospital. The study was approved by the Ethics Committee of Guilin Med- ical University (Clinical trial number:  not applicable.).  All participants provided written informed consent for the use of their oral imaging data for research purposes.

Dataset construction and data collection
A custom dataset was jointly constructed containing intrao- ral photographs collected during free oral health screening programs  and  clinical  examinations  [26].    High-resolution intraoral 2D images were captured using a Canon EOS R5 full-frame mirrorless camera equipped with an RF  100mm f/2.8L IS USM macro lens under standardized lighting con- ditions,  with  a  ring  LED  flash  at  a  color  temperature  of 5600K±200K. Image resolution was 640×640 pixels, 24-bit true color depth, JPEG format, 95% lossless compression ra- tio, with BRISQUE quality scores of 25.3±4.8 [27].
Image annotation was performed independently by three oral physicians with more than 5 years of clinical experience, including caries location, extent,  and severity.   For images with inconsistent annotations, consensus was reached through expert discussion.   Final  annotation  accuracy  was  quality- controlled and reviewed by senior oral physicians.


Limitations of traditional PAFPN and proposal of MS- FAPN_CDA
Traditional  Path  Aggregation  Feature  Pyramid  Network (PAFPN) exhibits significant structural deficiencies in med- ical image  object  detection tasks,  which  severely  limit  its application effectiveness in refined medical diagnostic tasks such as caries detection.  First, traditional PAFPN employs simple feature concatenation or element-wise addition mech- anisms for multi-scale feature fusion.   This rigid linear fu- sion strategy cannot dynamically adjust fusion weights ac- cording to different input image feature distributions, result- ing in apparent adaptability deficiencies when facing complex and variable caries pathological morphologies.  Second, tra- ditional PAFPN ignores channel-level attention mechanisms during feature fusion, failing to effectively identify and en- hance  feature  channels  most  discriminative  for  object  de- tection tasks, leading to high feature expression redundancy while relatively insufficient discriminability.
To  address these technical  challenges,  we  propose MS- FAPN_CDA (Multiscale Features and Adaptive Pyramid Net- work for Caries Detection Algorithm), an innovative feature fusion architecture specifically designed for caries detection tasks. The core contribution of MSFAPN_CDA lies in intro- ducing adaptive feature mixing mechanisms that achieve deep fusion and precise control of multi-scale features through in- telligent weight allocation strategies.

[image: ]

Figure   1:      Overall   architecture   of   the   proposed   MS- FAPN_CDA algorithm. The network consists of a backbone feature extractor, the Multi-scale Features and Adaptive Pyra- mid Network (MSFAPN), and detection heads.  MFM mod- ules are integrated at different scales to enable adaptive fea- ture fusion.
The core innovation concept of MSFAPN_CDA transforms traditional linear feature aggregation into an intelligent fea- ture integration process based on attention mechanisms.  The algorithm  first  extracts  multi-scale  feature  representations from different levels of the backbone network, then performs adaptive weight allocation and deep fusion of these hetero- geneous features through the innovative Multi-scale Feature Mixer (MFM) module, ultimately constructing an enhanced feature pyramid with rich semantic information and precise
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spatial localization capabilities.

Algorithm development
Overall architecture and innovation concepts
MSFAPN_CDA’s core innovation concept transforms tradi- tional linear feature aggregation into an intelligent feature in- tegration process based on attention mechanisms.  The algo- rithm first extracts multi-scale feature representations from different levels of the backbone network, then performs adap- tive weight allocation and deep fusion of these heterogeneous features  through  the  innovative  Multi-scale  Feature  Mixer (MFM) module, ultimately constructing an enhanced feature pyramid with rich semantic information and precise spatial localization capabilities.
MSFAPN_CDA  is  initially  based  on  tensor  representa- tions of multi-scale feature spaces.  Let the multi-level fea- ture set extracted by the backbone network be Fbackbone   = {FP3, FP4, FP5}, where each feature map has different se- mantic abstraction degrees and spatial resolution characteris- tics.  The algorithm achieves cross-hierarchical information propagation by constructing complex feature interaction net- works, with its mathematical expression formalized as:

[image: ]
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In this complex mathematical transformation, Φi represents the preprocessing transformation function acting on the i-th layer features, U denotes the union operation of feature sets, and ΨMSFAPN  is the core transformation operator of MS- FAPN_CDA, which encapsulates the entire adaptive feature fusion process. The construction process of the enhanced fea- ture pyramid can be further represented as recursive fusion operations based on MFM modules:

F (ˆ)Pi  = MFM ({FP(i (r)aw) , ↑ FP(i (p)[image: ]1 (c)essed) , ↓ FP(i (p)[image: ]1 (cessed)) })
◦ RPi
(2)
where ↑ and ↓ represent upsampling and downsampling op- erations respectively, RPi  is the level-specific feature recon- struction function, and ◦ denotes function composition.

Multi-scale Feature Mixer (MFM) module
The Multi-scale Feature Mixer (MFM) module achieves in- telligent integration of heterogeneous features through con- structing complex mathematical transformation chains, with its working principles involving multiple key steps includ- ing feature standardization, statistical feature extraction, at- tention weight calculation, probability distribution modeling, and weighted fusion.


[image: ]

Figure 2: Detailed structure of the Multi-scale Feature Mixer (MFM) module.   The module performs channel alignment, adaptive weight calculation through Global Average Pooling (GAP) and FC layers with Softmax normalization, followed by weighted feature fusion.

Let    the    input    feature    map    set    be    Finput         = {F1 , F2,..., Fn },   where   Fi      ∈    RB×Ci ×Hi ×Wi      repre- sents  the  i-th  input  feature  map.     To  ensure  consistency and  effectiveness  of  subsequent  mathematical  operations, the  MFM  module  performs  adaptive  channel  alignment operations on each input feature map, achieved through pa- rameterized convolution transformations with mathematical expressions embodying conditional mapping characteristics:

[image: ]
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Figure 3: Detailed data flow diagram oftheMSFAPN network showing the multi-scale feature processing pipeline.  P3, P4, and P5 features from different resolution levels are processed through MFM modules with upsampling and downsampling connections.
In this conditional transformation formula, Tθi   represents the  adaptive  transformation  function  with  parameters   θi , Wθi     ∈  RCtarget ×Ci × 1 × 1  is the learned convolution kernel weight tensor, Bθi    ∈ RCtarget    is the bias parameter vector, σ(·) is the ReLU activation function, ⋆ denotes the convolu-
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tion operator, and I represents the identity mapping.
After  channel  alignment  processing,  the  MFM  module needs to extract global statistical information of multi-scale features  to  guide  subsequent  attention  weight  calculation. This process first constructs aggregated feature representa- tions through summation operations in the scale dimension. The calculation process of aggregated features can be repre- sented as element-wise summation operations of multiple fea- ture maps at the pixel level:
n
[image: ]
i=1
[image: ]                                       (4)
∈ RB×Ctarget ×H×W
where 田 represents the tensor summation operator, ensur- ing that feature information from different scales can be inte- grated with equal initial weights.
Next, the MFM module employs global adaptive average pooling operations to extract global statistical characteristics of features, based on the expectation value calculation theory in statistics, effectively eliminating interference from spatial positional information on attention weight calculation.  The mathematical definition of global adaptive average pooling can be represented as the discretized form of integral oper- ations over spatial dimensions:

[image: ]
∈ RB×Ctarget
(5)
In this mathematical expression, the double summation op-
eration Σh (H)=1 Σw (W)=1 traverses all spatial positions of the fea-
[image: ]
statistical  significance  of  the  output.    The  colon  notation Faggregate (:, :, h, w) represents extracting feature values for all batches and channels at fixed spatial coordinates (h, w).
Based on the extracted global statistical features, the MFM module constructs a complex multi-layer perceptron network to learn adaptive attention weights, fully considering the bal- ance between computational efficiency and expressive capa- bility, with its mathematical modeling embodying the core concept of hierarchical feature transformation in deep learn- ing:
 (
(6)
)Alogits  = MLP(G)
= W2 · ReLU(W1 · G(Faggregate ))
In this complex nonlinear transformation,  the first layer weight   matrix   W1     is   responsible   for   mapping   high- dimensional   input   features   to    a   low-dimensional   bot- tleneck   space,   where   the   bottleneck   dimension   d  = max(⌊Ctarget /r⌋, 4) and r ≥ 2 is the dimensionality reduc- tion ratio parameter.  The second layer weight matrix W2  is


responsible for decoding bottleneck features back to the re- quired output dimension.
To  ensure  that   attention  weights  have   good  probabil- ity  distribution  characteristics  and  numerical  stability,  the MFM module applies Softmax normalization operations to MLP outputs.  Softmax normalization not only ensures non- negativity and normalization constraints of weights but also enhances the discriminability of weight distributions through the nonlinear characteristics of exponential functions.   The calculation process of attention weights can be represented as normalization transformations based on exponential func- tions:
[image: ]
∀i ∈ {1,..., n}, j ∈ {1,..., Ctarget }
where  Alogits,i·Ctarget +j   represents  the  original  weight value corresponding to the j-th channel of the i-th scale in the MLP  output.    The use  of exponential  function  exp(·) ensures non-negativity of weights,  while the normalization term in the denominator guarantees that the sum of weights across all scales equals 1 for each channel dimension.  This Softmax normalization ensures that attention weights A  ∈ Rn×Ctarget    satisfy basic constraints of probability distribu-
tions: Σ[image: ] Ai,j  = 1 and Ai,j  ≥ 0.
Finally,   the   MFM   module   generates   output   features through weighted fusion based on learned attention weights. The mathematical expression of fusion output embodies the concept of weighted averaging in linear algebra while incor- porating the core idea of attention mechanisms in deep learn- ing:
 (
(8)
)[image: ]
[image: ]
In this final fusion formula,  ⊙ represents the Hadamard product  (element-wise  multiplication),   and  Broadcast(Ai ) represents broadcasting the two-dimensional weight tensor Ai   ∈ RCtarget   to the same four-dimensional tensor dimen- sion as the feature map RB×Ctarget ×H×W, allowing weights to act uniformly across spatial dimensions.

Algorithm performance and effectiveness
The  MSFAPN_CDA  algorithm  successfully  addresses  the core technical challenges faced by traditional feature pyra- mid networks in caries detection tasks through its innova- tive multi-scale feature adaptive fusion mechanism, achieving comprehensive improvements in detection accuracy, compu- tational efficiency, and model robustness.  The most signif- icant advantage of this algorithm lies in its ability to intel- ligently integrate feature information from different seman- tic levels. By introducing adaptive weight allocation mecha- nisms based on statistical learning, the network can dynami-

4
cally optimize fusion strategies according to the feature dis- tribution characteristics of input images, thereby significantly improving the identification accuracy and spatial localization precision of caries lesion areas.  The MFM module in MS- FAPN_CDA  achieves fine-grained control over the feature fusion process through complex mathematical modeling, not only solving the problems of weight rigidity and feature re- dundancy in traditional methods, but also enhancing the net- work’s perception capability for fine-grained lesion features through multi-path feature interaction mechanisms, enabling it to demonstrate efficient detection performance and general- ization capability when processing morphologically complex and scale-diverse caries lesions.

Training configuration and experimental setup
Experiments were conducted on an NVIDIA RTX 3050 GPU platform  with  24GB  memory  capacity  using  the  PyTorch 2.1.0 deep learning framework [32] configured with CUDA
12.6 acceleration libraries. Training batch size was set to 16. The learning rate strategy employed cosine annealing decay scheduling with an initial value of 1 × 10-3, training period set to 300 epochs, with early stopping mechanisms based on validation set mAP metrics to prevent overfitting.
Efficient parallel augmentation operations were performed using the Albumentations library, including random rotation, flipping, brightness adjustment, contrast variation, and other data augmentation techniques to improve model generaliza- tion capability.

Statistical analysis
Statistical analysis was performed using Python 3.10, with in- dependent samples t-tests used to compare performance dif- ferences between algorithms, setting significance level α = 0.05.  95% confidence intervals were calculated for all per- formance metrics.  Paired t-tests were used to evaluate com- ponent contributions in ablation experiments. Bonferroni cor- rection was applied for multiple comparison adjustments.
Evaluation   metrics   included   Mean   Average   Precision (mAP@0.5 and mAP@0.5:0.95), precision, recall, F1-score, inference  time,  and  model  parameters  and  computational complexity (GFLOPs).

Results
Performance comparison with state-of-the-art methods
To  validate  the  superiority  of  the  MSFAPN_CDA  model, comprehensive  comparisons  were  conducted  with  current state-of-the-art object detection models, including YOLO11n, Hyper-YOLO,  YOLOv5,  YOLOv6,  YOLOv8,  YOLOv9c, YOLOv10, and RT-DETR.
The    MSFAPN_CDA    model    achieved    breakthrough progress  in  key  performance  indicators.    Specifically,  the model reached 0.947 on the mAP@0.5 metric, representing a 6.28% improvement compared to the  second-best model


Table 1: Performance comparison of different models

	Model
	Precision
	Recall
	mAP@0.5
	mAP@0.5:0.95

	YOLO11n
	0.804
	0.832
	0.868
	0.691

	Hyper-YOLO
	0.794
	0.841
	0.886
	0.706

	YOLOv5
	0.799
	0.884
	0.892
	0.692

	YOLOv6
	0.711
	0.879
	0.880
	0.705

	YOLOv8
	0.794
	0.860
	0.887
	0.704

	YOLOv9c
	0.805
	0.858
	0.891
	0.723

	YOLOv10
	0.807
	0.842
	0.883
	0.702

	RT-DETR
	0.836
	0.843
	0.822
	0.665

	MSFAPN_CDA
	0.870
	0.887
	0.947
	0.773



[image: ]

Figure 4:  Comprehensive performance radar chart compar- ing MSFAPN_CDA with other state-of-the-art detection algo- rithms across multiple metrics including Precision (P), Recall (R), mAP@0.5, and mAP@0.5:0.95.

YOLOv9c (0.891). Under the more stringent mAP(0.5-0.95) evaluation   standard,    it   achieved   excellent   performance of 0.773,  surpassing  all  comparison  models.    In  terms  of precision and recall, it achieved 0.870 and 0.887 respectively, realizing good balance between precision and recall.
While ensuring high accuracy, the MSFAPN_CDA model demonstrated excellent computational efficiency.   The total model parameters were only 2.6M, representing an 87.68% reduction  compared  to  YOLOv9c’s  21.1M;  computational complexity was 6.7 GFLOPs,  significantly lower than RT- DETR’s 58.3 GFLOPs, achieving an 88.51% reduction.

Ablation study results
To validate the effectiveness of each component in the pro- posed  method,   systematic  ablation  experiments  were  de- signed.   The experiments used mAP@0.5 as the evaluation metric and provided 95% confidence intervals to ensure sta- tistical reliability of results.
Starting from the baseline model (mAP@0.5=86.8%), dif-
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Figure 5:  Detailed performance comparison across four key
metrics: (a) Precision comparison, (b) Recall comparison, (c) mAP@0.5 comparison, and (d) mAP@0.5:0.95 comparison. MSFAPN_CDA (highlighted in red) shows superior perfor- mance across all metrics.
[image: ]

Figure 6:  Computational efficiency  analysis:  (a) Computa- tional complexity (GFLOPs) comparison and (b) Model pa- rameters  (millions)  comparison.   MSFAPN_CDA  achieves excellent performance while maintaining low computational overhead.

ferent configurations of Multi-scale Feature Mixer  (MFM) modules were gradually introduced. Adding MFM(P5) alone improved performance to 88.7% (+1.9%, p<0.001), indicating statistically significant improvement effects.  The final MS- FAPN complete version achieved 94.7% mAP@0.5 (+7.9%, p<0.001),  obtaining  significant and consistent performance improvements compared to the baseline model.
Real-time performance analysis
The optimized MSFAPN_CDA model achieved 25 FPS real- time inference performance on the NVIDIA Jetson Nano em- bedded platform, effectively meeting strict real-time process- ing requirements in clinical applications.  Inference time was 9.86ms, satisfying time requirements of clinical workflows.

Qualitative results
Figure 8 shows representative detection results on dental pho-
tographs. The MSFAPN_CDA algorithm demonstrates robust


Table 2: Ablation experiment results

	Configuration
	mAP@0.5(%)
	95% CI
	Improvement

	Baseline Model
	86.8
	[86.2, 87.4]
	-

	+MFM(P5)
	88.7
	[88.1, 89.3]
	+1.9%

	+MFM(P4+P5)
	88.6
	[88.0, 89.2]
	+1.8%

	+MFM(P3+P4+P5)
	89.9
	[89.2, 90.6]
	+3.1%

	+MFM(P3 Secondary)
	91.6
	[90.4, 92.0]
	+4.8%

	+MFM(P4 Multi-scale)
	93.5
	[93.1, 94.5]
	+6.7%

	MSFAPN Complete
	94.7
	[93.8, 95.0]
	+7.9%



[image: ]

Figure 7: Ablation study analysis: (a) Individual component contributions showing the incremental improvement of each module, and (b) Positive component contributions distribution showing the relative importance of different components in the final performance.


performance in detecting caries lesions of varying scales and morphologies.   The detection results show high confidence scores ranging from 0.59 to 0.89, indicating reliable identifi- cation of carious lesions across different dental surfaces and anatomical locations.


Generalization capability evaluation

To further validate the generalization capability of the pro- posed  MSFAPN_CDA   architecture,  we  conducted   cross- domain  evaluation  experiments  on  traffic  sign  detection datasets from Changsha University of Science and Technol- ogy National Key Laboratory.
Figure 10 demonstrates the remarkable cross-domain adap- tation capability of our MSFAPN_CDA algorithm.  Without any domain-specific fine-tuning, the algorithm achieved im- pressive performance on traffic sign detection,  successfully identifying prohibitory signs (confidence scores 0.8-0.9), dan- ger signs (0.7-0.9), and mandatory signs (0.4-0.9). This cross- domain validation confirms that the multi-scale feature fusion and adaptive pyramid network design principles are not lim- ited to dental caries detection but can be effectively applied to diverse object detection tasks, highlighting the fundamen- tal robustness and generalizability of our architectural inno- vations.
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Figure 8: Qualitative detection results on dental images show- ing successful detection ofcaries lesions with high confidence scores.
[image: ]

Figure 9:  Detection confidence distribution and precision- recall analysis across different caries severity levels.

Discussion
The  MSFAPN_CDA   algorithm  developed  in  this   study demonstrated  significant performance  advantages in  dental caries detection tasks,  effectively addressing limitations of traditional methods in multi-scale feature fusion and small tar- get detection through systematic technical innovations.

Technical contributions and clinical significance
The proposed Multi-scale Feature Mixer (MFM) and Multi- level Adaptive Feature Pyramid Network (MAFPN) architec- tural designs provide effective solutions for the special chal- lenges of caries detection [35,36].  The MFM module effec- tively alleviates semantic difference problems in traditional fusion methods through adaptive weight learning and cross- scale feature interaction mechanisms, significantly improving adaptability to diverse caries morphologies.


[image: ]

Figure 10: Generalization experiment: Excellent performance on traffic sign dataset from Changsha University of Science and Technology National Key Laboratory. The algorithm suc- cessfully detects various traffic signs including prohibitory, danger,  and  mandatory  signs with high confidence  scores, demonstrating strong cross-domain generalization capability.

The 94.7% mAP@0.5 performance achieved a 7.9 percent- age point improvement compared to existing best methods, which is significant in the medical AI field.   The balanced performance in precision and recall (87.0% vs 88.7%) indi- cates that the algorithm can effectively reduce misdiagnosis and missed diagnosis in clinical applications.

Clinical translation potential
This research achievement has important clinical translation value [37,38].  The algorithm can effectively improve early caries diagnosis accuracy, reduce subjective judgment errors, enhance diagnostic efficiency, and provide reliable technical support for intelligent diagnosis of oral diseases.   In actual clinical applications, this system can serve as an auxiliary di- agnostic tool, helping clinicians, especially those with rela- tively less experience, improve diagnostic accuracy and re- duce human errors.

Study limitations
This study has some limitations that need improvement in subsequent work.  First, the dataset scale is relatively limited (2,000 images).   Although professionally annotated, larger- scale multi-center data validation of algorithm generalization performance is still needed. Second, the research is primarily based on 2D intraoral photographs; future exploration of inte- gration with 3D imaging technologies is needed. Third, there is a lack of large-scale prospective clinical validation.

Future research directions
Future  research  directions  include:   (1)  expanding  dataset scale  and  incorporating  more  diverse  case  types;   (2)  de- veloping multi-modal fusion technologies integrating multi- ple imaging modalities; (3) establishing standardized clinical
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evaluation protocols;  (4) exploring federated learning tech- nologies for multi-center collaboration while protecting pa- tient privacy; (5) developing complete clinical decision sup- port systems.
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Conclusions

This study successfully developed the enhanced YOLO11- based caries detection algorithm MSFAPN_CDA. Through innovative multi-scale feature mixer  and  adaptive pyramid network designs, it effectively solved cross-hierarchical fea- ture fusion problems and significantly enhanced small target detection capabilities. Experimental results on a high-quality caries dataset containing 2,000 images showed that the MS- FAPN_CDA algorithm achieved 94.7% mAP@0.5, represent- ing a 7.9% improvement compared to the baseline YOLO11 model.
The algorithm achieved 87.0%, 88.7%, and 82.9% in preci- sion, recall, and F1-score respectively, with inference time of only 9.86ms, fully meeting real-time detection requirements for clinical applications. Systematic ablation experiments val- idated the effectiveness of each core module, proving the ra- tionality of the proposed architectural design and synergistic effects between components.
This study not only achieved important technical break- throughs but  also has  significant clinical translation value. This algorithm provides reliable technical support for early caries diagnosis and oral health management, contributing to the development of oral medicine toward intelligent and pre- cision directions.
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