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CGLMP INEQUALITY

The CGLMP Bell inequality [1] is a facet of the local polytope in the scenario in which Alice and Bob have binary
inputs x, y ∈ {1, 2} and respective outcomes a, b ∈ {0, . . . , d−1}, for some integer d ≥ 2. For any local hidden variable
theory, it holds that

Id =

⌊d/2⌋−1∑
k=0

(
1− 2k

d− 1

)[
P (a1 = b1 + k) + P (b1 = a2 + k + 1) + P (a2 = b2 + k) + P (b2 = a1 + k)

− P (a1 = b1 − k − 1)− P (b1 = a2 − k)− P (a2 = b2 − k − 1)− P (b2 = a1 − k − 1)
]
≤ 2,
(S1)

where we have defined

P (ax = by + z) =

d−1∑
a,b=0

P (a, b|x, y)δax, by+z mod d, (S2)

and

P (by = ax + z) =

d−1∑
a,b=0

P (a, b|x, y)δax+z mod d, by . (S3)

For the special case of d = 2 the CGLMP inequality reduces to the CHSH inequality.

To violate the CGLMP inequality, Alice and Bob can share the maximally entangled state

|ψ⟩ = 1√
d

d−1∑
j=0

|j⟩A |j⟩B , (S4)

The best-known measurement selections correspond to the following bases

|Kk|x⟩ =
1√
d

d−1∑
j=0

exp

(
i
2π

d
j(k + αx)

)
|j⟩A and (S5)

|Ll|y⟩ =
1√
d

d−1∑
j=0

exp

(
i
2π

d
j(−l + βy)

)
|j⟩B , (S6)

where α1 = 0, α2 = 1/2, β1 = 1/4 and β2 = −1/4. These are the eigenvectors from the Fourier and inverse Fourier
bases as defined in the original CGLMP inequality [1]. This gives rise to a joint probability of

P (k, l|x, y) = 1

d3
sin2 [π(k + αx) + π(−l + βy)]

sin2
[
π
d (k + αx) +

π
d (−l + βy)

] . (S7)

Here we have grouped Alice’s (k + αx) and Bob’s (−l + βy) terms together. The ks and ls are the measurement
outcomes, given a choice of basis x = 1, 2 for Alice and y = 1, 2 for Bob.



2

In our work, both Alice and Bob both perform measurements in the Fourier basis, with measurements corresponding
to

|ϕ⟩ = 1√
d

d−1∑
j=0

exp (−ijϕ) |j⟩ . (S8)

Note that in the original CGLMP work, the Fourier transform is defined without the negative sign. The complex
overlap is then

⟨ϕ|A ⟨ϕ|B |ψ⟩ = 1√
d

d−1∑
j=0

exp (ijϕA) ⟨j|A
1√
d

d−1∑
j=0

exp (ijϕB) ⟨j|B
1√
d

d−1∑
j=0

|j⟩A |j⟩B (S9)

=
1√
d3

d−1∑
j=0

exp (ij(ϕA + ϕB)) . (S10)

The joint probability parameterised by ϕA and ϕB that we measure is given by

P (ϕA, ϕB) = | ⟨ϕ|A ⟨ϕ|B |ψ⟩ |2 (S11)

=
1

d3

∣∣∣∣∣∣
d−1∑
j=0

exp (ij(ϕA + ϕB))

∣∣∣∣∣∣
2

(S12)

=
1

d3
sin2 [d(ϕA + ϕB)/2]

sin2 [(ϕA + ϕB)/2]
(S13)

=
1

d3
sin2

[
d
2ϕA + d

2ϕB
]

sin2
[
1
2ϕA + 1

2ϕB
] . (S14)

In practice, the finite resolution of our measurement system means that we record discrete phases. If, in any 2π
window, an experiment records N outcomes, these can be identified as the d outcomes from M measurement bases,
i.e. N =M × d.

The experimentally measured coincidences at the phases ϕA and ϕB can be mapped to the conditional probabilities
required for the CGLMP inequality via

ϕA → 2π

d

(
a+

x

M

)
and ϕB → 2π

d

(
mod(−b, d) + y

M
− 1

4

)
, (S15)

where a = {0, 1, ...d − 1} is the measurement outcome index for Alice, and x = {0, 1, ...,M − 1} is the measurement
bases index for Alice, and Bob’s measurement is indexed by b and y. This gives rise to the conditional probability

P (a, b|x, y) = 1

d3
sin2

[
π
(
(a+ x

M ) + (mod(−b, d) + y
M − 1

4 )
)]

sin2[πd
(
(a+ x

M ) + (mod(−b, d) + y
M − 1

4 )
)
]
, (S16)

where the measurement vectors are

|Aa|x⟩ =
1√
d

d−1∑
j=0

exp

(
−i2π

d
j
(
a+

x

M

))
|j⟩A and (S17)

|Bb|y⟩ =
1√
d

d−1∑
j=0

exp

(
−i2π

d
j

(
mod(−b, d) + y

M
− 1

4

))
|j⟩B . (S18)

We see that the outcomes k and l from the CGLMP inequality are the outcomes a and b in our work, and the
additional contributions to the phases αx and βy required for the basis choices are the terms x/M and y/M − 1/4.
Note that in the CGLMP work x, y are the binary inputs x, y ∈ {1, 2}, whereas in our work we measure in multiple
bases corresponding to x, y ∈ {0, 1, ...,M −1}. Whether the Fourier transform is defined with or without the negative
sign results in the same joint conditional probability, equation S16.
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FIG. 1. Visualisation of relationship between, ϕA (ϕB), and, a (b) and x (y) for d = 3 and M = 5. a, Theoretical
wrapped joint probability Pmod(ϕ, 2π)(ϕA, ϕB). b, Joint probability distribution sorted by measurement bases.

DATA ANALYSIS

Mapping the joint spectral intensity C(∆νA,∆νB) to the wrapped joint probability Pmod(ϕ, 2π)(ϕA, ϕB)

Whenever a function has a finite extent, its Fourier transform is modulated by an envelope. For example, single-slit
diffraction modulates the double-slit interference pattern in Young’s double slit experiment. Similarly, in our system,
the joint spectral intensity is modulated by a Gaussian envelope due to the finite widths σt of our Gaussian time
bins. Now consider the case where we are interested in the joint probability distribution P (ϕA, ϕB) in the Fourier
domain of our entangled state. The amplitude of the joint probability distribution P (ϕA, ϕB) decreases as we move
away from the distribution centre. Therefore, the modulated distribution over one phase period does not accurately
represent the sought after unmodulated P (ϕA, ϕB). Li and Zhao [2] showed that when only using one phase period of
the modulated P (ϕA, ϕB) to extract the necessary the CGLMP measurements, the maximal theoretically possible Bell
parameter decreases - in some cases to even below the LHVM limit. They propose mitigating this effect by carefully
selecting experimental parameters to suppress the envelope modulation of P (ϕA, ϕB). However, we recognise that the
unmodulated P (ϕA, ϕB) distribution can be recovered by mapping the modulated P (ϕA, ϕB) onto the wrapped joint
probability Pmod(ϕ, 2π)(ϕA, ϕB). This ensures that no outcomes are discarded.

This mapping of the joint spectral intensity C(∆νA,∆νB) onto Pmod(ϕ, 2π)(ϕA, ϕB) is achieved as follows. The
boundaries of the 2π phase periods are found by fitting three diagonal Gaussians to the principal interference fringes
in the C(∆νA,∆νB) data. Their separation was restricted to an integer multiple of d to ensure an integer number
of measurement bases M . We infer C(ϕA, ϕB) from the best fit of the principal fringes separation parameter. Now
that the cyclic 2π square regions have been identified, we stack these regions, i.e. sum them, to obtain the wrapped
Cmod(ϕ, 2π)(ϕA, ϕB). This coincidence distribution is normalised to Pmod(ϕ, 2π)(ϕA, ϕB) such that for each combination
of measurement basis x and y, the total probability for all measurement outcome combinations a and b sums to 1,
i.e.

∑d−1
a,b=0 P (a, b|x, y) = 1. The relationship between ϕA (ϕB), and a (b) and x (y) is given by equation 3 (4). For a

visualisation of these relationships, see Fig. 1.

Poisson statistics

Assuming the joint spectral intensity coincidence detection events C follow Poisson statistics, its standard deviation
σ is given by σ =

√
C.

The standard deviation on the Bell parameters Id in Fig. 5b in the main paper was determined as follows for
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each dimension d. A Poisson distribution was created where the expected number of events occurring was set
by the wrapped coincidence distribution Cmod(ϕ, 2π)(ϕA, ϕB). The Poisson distribution was then normalised to
Pmod(ϕ, 2π)(ϕA, ϕB) and its Bell parameter was extracted. This was repeated 50 times. The standard deviation
on each Bell parameter Id of the experimental data was calculated based on the set of the Bell parameters of its
respective 50 Poisson distributions. It was checked that 50 repeats were sufficient as increasing the number of Poisson
distribution repeats did not impact the magnitude of the standard deviation significantly.

Statistical significance

The estimate of the Bell parameter indicates a violation of the CGLMP inequality in dimensions up to eight.
Here, we discuss the statistical significance of these violations and show that they all come with vanishingly small
p-values. To quantify the statistical significance, we need to evaluate the probability that a local hidden variable
model (LHVM) could reproduce the measured finite-statistics values of the CGLMP parameter. The probability of
statistical fluctuations in the LHVM explaining the measured violations is called the p-value. Thus, a small p-value
corresponds to a high confidence in observing nonlocality.

To estimate the p-values for the violations obtained in the experiment, we use the method described in [3]. We
begin considering a general Bell inequality in the form

B =
∑

x,y,a,b

sxyabP (ab|xy) ≤ β (S19)

and estimate the probability of selecting settings (x, y) from the photon coincidences counts Na,b,x,y detected when
obtaining outcome (a, b)

P (x, y) =

∑
a,b

Na,b,x,y∑
a,b,x,y

Na,b,x,y
. (S20)

The inequality can then be rewritten as

B =
∑

x,y,a,b

sabxyP (x, y)P (ab|xy). (S21)

In this form, sabxy can be viewed as the weighted score that the observers obtain when they answer a and b to the
question x and y. Any round of the Bell game then corresponds to evaluating a cost function whose value is between
smax = max

a,b,x,y
sabxy and smin = min

a,b,x,y
sabxy. The total score that the observers obtain after n rounds of the experiment

will then be

c =

n∑
i=1

saibixiyi
(S22)

This form is favourable because the data can now be interpreted in terms of an n-round game in which a certain score
is awarded in every round. Since sabxy = sxyab/P (x, y), this score is influenced by the settings probability distribution.
In order to bound the p-value associated with the measured score, we use McDiarmid’s inequality [4]

p-value ≤

(
smax − β

smax − c/n

) smax − c/n

smax − smin
(

β − smin

c/n− smin

) c/n− smin

smax − smin


n

. (S23)

We apply this bound to the experiment’s data. Due to the high number of photon coincidences obtained with our setup
and the comparatively large estimated inequality violations, all p-values up to dimension 6 are all below 10−200. For
dimensions 7 and 8, the smaller estimated inequality violations lead to larger p-values but these are still vanishingly
small. Specifically, they are 8.7 · 10−81 and 9.7 · 10−25 for d = 7 and d = 8 respectively.
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More nonlocality from the same data?

The experiment provides measurement statistics in many local bases. It is therefore natural to ask whether it is
reasonable to focus on the CGLMP inequality given that this test only uses two bases per party.

In general, the nonlocality of any given bipartite probability distribution can be assessed by means of convex
programming techniques. In principle, this offers an exact solution. If the distribution is found to be nonlocal, one
can compute a suitable distance measure to the set of correlations realisable with LHVM. One can also use the duality
theory of convex programming to extract a Bell inequality that is violated by the target distribution [5]. However, all
this rapidly becomes expensive as the number of inputs and outputs grows, which is the case in our experiment.

To overcome this obstacle, we have used efficient approximation methods for determining whether the distribution
is nonlocal, and if so extracting the relevant Bell inequality. Our approach is based on the Frank-Wolfe algorithm [6,
7] and closely follows the method developed in [8].

As shown in Tab. I, by constructing Bell inequalities tailored to our measured data, we obtain sharper bounds in
scenarios with two measurement settings per party, improving the statistical significance beyond the CGLMP result.
Furthermore, when extending the method to more than two measurements settings, we observe no practical benefit. In
fact, the noise tolerance remains practically the same, only decreasing from v2 = 0.7423 to v30 = 0.7411 when moving
to 30 settings in dimension 2. A similar behaviour was observed in higher dimensions. For example, in dimension 8 the
critical resistance to noise remains unchanged, up to numerical resolution, when increasing the settings from 2 to 9.
Additionally, the statistical penality of adding more settings to the test overshadows those minor gains, ultimately
increasing the p-value in all cases.

A natural question could be whether the lack of improvements stems from using the theoretical probability dis-
tribution. To investigate this, we tested Bell inequalities obtained when using as target probability distribution the
no-singaling point closest to the experimental data. Since the results were nearly identical to those obtained with the
theoretical distribution, we do not elaborate further on this analysis.

d vCGLMP vopt p-valueCGLMP p-valueopt
2 0.7499 0.7482 ≈ 0 ≈ 0
3 0.7489 0.7423 ≈ 0 ≈ 0
4 0.7963 0.7800 ≈ 0 ≈ 0
5 0.8239 0.8129 ≈ 0 ≈ 0
6 0.8616 0.8615 ≈ 0 ≈ 0
7 0.9346 0.9331 8.72 · 10−81 3.04 · 10−83

8 0.9692 0.9640 9.74 · 10−25 1.35 · 10−34

TABLE I. Critical visibilities (vCGLMP, vopt) and corresponding p-values (p-valueCGLMP, p-valueopt), obtained when testing the
CGLMP ineqality and the optimal two settings inequality found numerically for dimensions d = {2, . . . , 8}.

EXPERIMENTAL DATA
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FIG. 2. Data for d = 2.
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FIG. 3. Data for d = 3.
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FIG. 4. Data for d = 4.
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FIG. 5. Data for d = 5.
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FIG. 6. Data for d = 6.
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FIG. 7. Data for d = 7.
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FIG. 8. Data for d = 8.
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