

Supplementary Information for

2 Spectral-acoustic-coordinated astigmatic metalens for wide field-of-view and high-speed 3 spatiotemporal 3D imaging

4 Shujian Gong^{1,2,3†}, Yinghui Guo^{1,2,3,4†}, Xiaoyin Li^{1,2†}, Mingbo Pu^{1,2,3,4*}, Peng Tian^{1,2}, Qi Zhang^{1,2},
 5 Lianwei Chen^{1,2}, Wenyi Ye^{1,2,3}, Heping Liu⁵, Fei Zhang^{1,2}, Mingfeng Xu^{1,2}, and Xiangang Luo^{1,2,3*}

⁶ State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics,
⁷ Chinese Academy of Sciences, Chengdu 610209, China.

⁸ ²Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences,
⁹ Chengdu 610209, China.

10 ³College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences,
11 Beijing 100049, China.

¹² ⁴Sichuan Provincial Engineering Research Center of Digital Materials, Chengdu, 610213, China.

13 ⁵Tianfu Xinglong Lake Laboratory, Chengdu, 610213, China.

14 †These authors contributed equally to this work.

15 *Email: pmb@ioe.ac.cn, lxg@ioe.ac.cn

16 This file includes:

17 Section 1: Comparisons among related single-channel LiDARs.

18 Section 2: Low-crosstalk time-frequency multiplexing enabled by programmable spectral shaping.

19 Section 3: Spectral-acousto-optic scanning cascading the AML.

20 Section 4: Design of metalens unit cells.

21 Section 5: Characterization of the beam deflection angle and FOV.

22 Section 6: Characterization of the beam divergence angle.

23 Section 7: Data processing procedure.

24 Section 8: Discussion on ranging resolution.

25 Section 9: Power loss analysis & discussion on long-range detection.

26 Other supporting materials for this manuscript include the following:

27 Movie S1: Dynamic 3D imaging of a high-speed rotating fan in the *xy*-plane.

(Parameters: AOD scan points: 20×83 ; full-field scan points: $20 \times 83 \times 30$; frame rate: 183.5 fps at $\beta = 4$, 367 fps at $\beta = 2$, and 734 fps at $\beta = 1$)

30 Movie S2: Dynamic 3D imaging of two rotating cylindrical targets in the xz -plane.

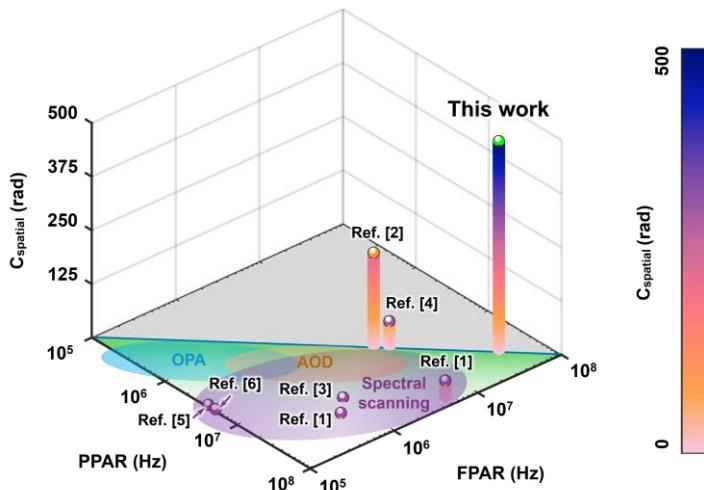
(Parameters: AOD scan points: 20×83 ; full-field scan points: $20 \times 83 \times 30$; frame rate: 122.3 fps at $\beta = 6$)

33 Movie S3: Dynamic 3D imaging of a 3kHz chopper.

(Parameters: AOD scan points: 1×60 ; full-field scan points: $1 \times 60 \times 30$; frame rate: 20.3×10^3 fps at $\beta = 1$ and 10.2×10^3 fps at $\beta = 2$)

36 **Supplementary Section 1: Comparisons among related single-channel LiDARs.**

37 **Table S1 | Comparison of the performance metrics of similar single-channel transceiver LiDAR systems.**


Ref.	Scanning manner	PPAR (MHz)	β (fast axis line rate / slow axis point rate)	FPAR (MHz)	fast axis FOV	fast axis angular resolution θ	$C_{\text{spatial-ID}}$ (rad) (**)
This work	Spectral scanning + 2-axisAOD	36.56	1	36.56	102°	~0.37°	487.6
Ref. 1	Spectral scanning + Mechanical scanning	30	50 (*)	~0.6	7°	~0.23°	3.67
	Mechanical scanning	88	17 (*)	~5.12	9°	~0.04°	40.2
Ref. 2	2-axis AOD	6.25	1	6.25	150°	~1.8°	217.3
Ref. 3	Spectral scanning + Mechanical scanning	21.38	24 (*)	~0.9	2°	~0.044°	1.57
Ref. 4	Spectral scanning + Mechanical scanning	7.6	1	7.6	7.1°	~0.015°	58.9
Ref. 5	Spectral scanning + Mechanical scanning	4.1	96	~0.04	2°	~0.04°	1.78
Ref. 6	Spectral scanning + Mechanical scanning	5.6	1000	~0.0056	~2°	~0.06°	1.95

38 (*) If not mentioned in the text, the mechanical scanning is calculated based on a maximum point scanning rate of 20 kHz.

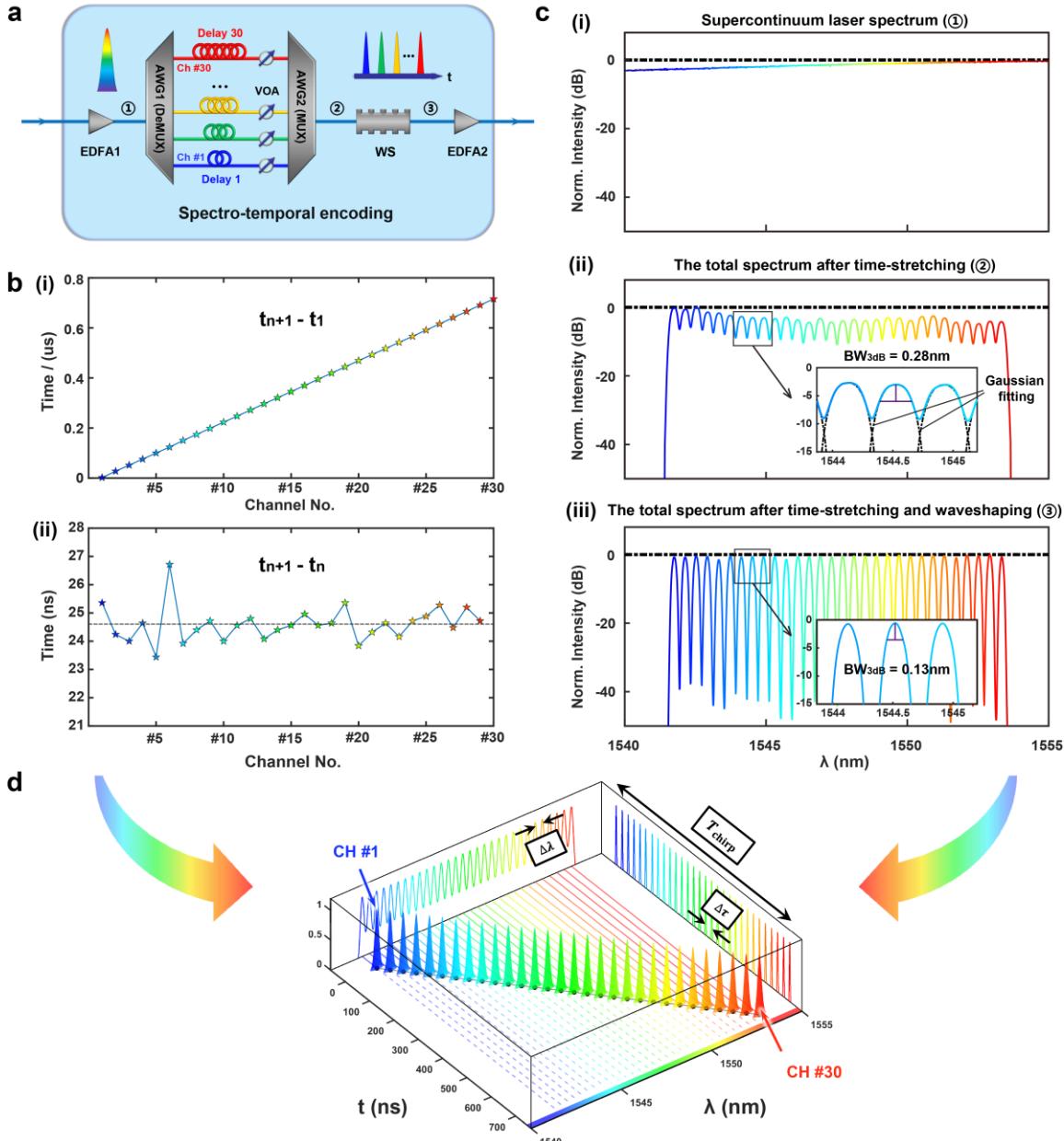
39 (***) Calculated by the fast axis ($C_{\text{spatial-ID}} = N \cdot \text{FOV} = \text{FOV}^2 / \theta$).

40 Table S1 and Fig. S1 present a comparison of the performance metrics of similar single-channel transceiver LiDAR
41 systems. These systems typically face one or more limitations: some suffer from a narrow FOV (Refs.^{1, 3-6}), some
42 experience rate mismatching that results in FPAR dropping below PPAR (Refs.^{1, 3-6}), and some encounter beam divergence
43 that reduces the number of resolvable points (Ref.²). Taken together, these issues lead to suboptimal comprehensive
44 spatiotemporal detection capabilities.

45 In contrast, in this work, we first improve the FPAR through rate matching enabled by spectral-acousto-optic
46 (spectral-AO) scanning. Then, to address the FOV mismatch in heterogeneous dual-axis cascade scanning, we uniquely
47 design an astigmatic metalens (AML) to correct beam astigmatism and field distortion caused by spectral-AO scanning,
48 while simultaneously expanding the FOV. This approach ultimately enables exceptional comprehensive spatiotemporal
49 detection capability.

50
51 **Fig. S1 | Comparison of this work with related studies.** The three coordinate axes represent PPAR, FPAR, and spatial detection
52 capability ($C_{\text{spatial-ID}}$). This work achieves both high FPAR and $C_{\text{spatial-ID}}$, demonstrating superior spatiotemporal detection capabilities.

53 **Supplementary Section 2: Low-crosstalk time-frequency multiplexing enabled by programmable
54 spectral shaping.**


55 Figure S2 provides a detailed illustration of how the spectro-temporal encoding module achieves time-
56 frequency multiplexing through time-stretching. Fig. S2a depicts the specific experimental setup, which
57 mainly consists of a pair of arrayed waveguide gratings (AWGs), 30 variable optical attenuators (VOAs) for
58 balancing the output power, and 30 single-mode fibers for time-stretching. AWG1 demultiplexes (DeMUX)
59 the input broadband laser source, producing 30 spectral channels with equal wavelength spacing. In an ideal
60 scenario, these 30 channels transmit through fibers of lengths in an arithmetic progression and are subsequently
61 combined by AWG2, functioning as a wavelength division multiplexer (MUX). This results in the output of
62 discrete chirped pulse sequences with perfectly equal temporal intervals ($\Delta\tau = 24.6$ ns) and equal wavelength
63 spacing ($\Delta\lambda$). Based on this, we can calculate the required common difference in fiber length (ΔL):

64
$$\Delta L = \frac{c}{n_{\text{eff}}} \cdot \Delta\tau \approx 5.03\text{m} \quad (\text{S1})$$

65 where c denotes the speed of light in vacuum and n_{eff} represents the effective refractive index of the fiber core.
66 To ensure accurate time-of-flight (TOF) calculations, we calibrate the delay times of the 30 time-stretched sub-
67 pulses by detecting the encoding module's output signal, using the laser pulse as a timing reference, as shown
68 in Fig. S2b. The horizontal axis represents the channel number, where channel No. 1 (Ch #1) corresponds to λ
69 = 1541.7 nm and channel No. 30 (Ch #30) corresponds to $\lambda = 1553.3$ nm. Fig. S2b(i) shows that the delay
70 times across channels increase almost linearly, consistent with expectations. Fig. S2b(ii) displays the pulse
71 intervals between adjacent channels. Due to deviations in fiber length differences (ΔL) from preset values, the
72 intervals are non-uniform, with the minimum value (~23.4 ns) slightly lower than the average (~24.6 ns).

73 In our experiment, the laser source generates a supercontinuum spectrum spanning 500-2000 nm,
74 which more than adequately covers the operational wavelength range of 1541-1554 nm, as illustrated
75 in Fig. S2c(i). The total output spectrum after time-stretching is presented in Fig. S2c(ii). The AWG
76 splits the original signal into 30 channels with a wavelength interval of $\Delta\lambda = 0.4$ nm. Although these
77 channels are temporally separated through time-stretching, each channel exhibits a 3 dB bandwidth
78 of 0.28 nm, leading to some spectral overlap and crosstalk between adjacent channels (as shown in
79 the inset of Fig. S2c(ii)). This spectral overlap degrades the spectral resolution and, consequently,
80 reduces the spatial resolution along the horizontal direction after grating dispersion.

81 To address this issue, we introduced a programmable spectral shaping device known as a
82 Waveshaper (WS), a passive optical component capable of arbitrarily modifying the spectral profile
83 of incident light. In our setup, the WS was configured to perform spectral-domain filtering in a comb-
84 like pattern, with each comb tooth centered at the wavelength corresponding to the 30 channels of the
85 AWG, and a linewidth of 0.13 nm. This configuration allows each channel from the AWG to undergo
86 narrowband filtering through the WS, while also enabling uniform channel intensities via differential
87 spectral attenuation. Fig. S2c(iii) illustrates the spectrum after time-stretching and subsequent WS
88 filtering. Compared to the AWG output spectrum shown in Fig. S2c(ii), the channels exhibit narrower
89 linewidths with reduced crosstalk, thereby significantly enhancing the spatial resolution in the
90 grating's dispersion direction.

91

92 **Fig. S2 | Implementation of time-frequency multiplexing.** (a) Spectro-temporal encoding module. It primarily consists of two
93 arrayed waveguide gratings (AWGs) and several fibers. The AWGs split the source into 30 channels with equal spectral intervals and
94 then combine them. Each channel propagates through fibers of increasing lengths, resulting in time-stretched time-frequency mapping
95 depicted by (d). (EDFA: erbium-doped fiber amplifier; VOA: variable optical attenuator; WS: waveshaper). (b) (i) Relative time delay
96 of the emitted pulses compared to the first channel (Ch #1); (ii) Relative time delay between emitted pulses of adjacent channels. (c)
97 Spectral variations at each stage of time-frequency multiplexing: (i) Spectrum of the incident laser source; (ii) Total spectrum of the 30
98 channels after time-stretching. The inset shows spectral overlap between adjacent channels; (iii) Total spectrum after time-stretching
99 and waveshaping. The inset shows significant suppression of channel crosstalk. (d) The achieved time-frequency mapping features an
100 equal time interval of $\Delta\tau$ between adjacent channels and a total chirped pulse sequence duration of T_{chirp} .

101 **Supplementary Section 3: Spectral-acousto-optic scanning cascading the AML.**

102 The schematic diagram of the spectral-AO cascade scanning is illustrated in Fig. S3a, with the corresponding scanning
 103 timing diagram presented in Fig. S3c. The scanning angles of the dual-axis AOD (AA Opto-electronic, DTSXY-A6-1550)
 104 are governed by the acousto-optic (AO) Bragg diffraction mechanism. Tuning the driving frequency of the x/y AOD from
 105 41 to 59 MHz yields the output angles $\Theta_{x,y\text{AOD}} \in [-1.227^\circ, 1.227^\circ]$.

106 Since the vertically oriented grating only provides spatial dispersion in the horizontal direction, the beam
 107 propagation in the two directions will not be symmetric. In the vertical plane (yz plane) depicted by Fig. S3d, the scanning
 108 direction of $y\text{AOD}$ is parallel to the orientation of the blazed grating (BG), causing the grating to merely function as a
 109 reflective mirror, resulting in an output angle $\Theta_{y\text{BG}} = \Theta_{y\text{AOD}} \in [-1.227^\circ, 1.227^\circ]$. In the horizontal plane (xz plane) depicted
 110 by Fig. S3e, the scanning direction of $x\text{AOD}$ is orthogonal to the BG's orientation, resulting in spatial dispersion with an
 111 angle extension of $\Theta_{x\text{BG}} \in [-3.95^\circ, 3.95^\circ]$, calculated by the grating equation:

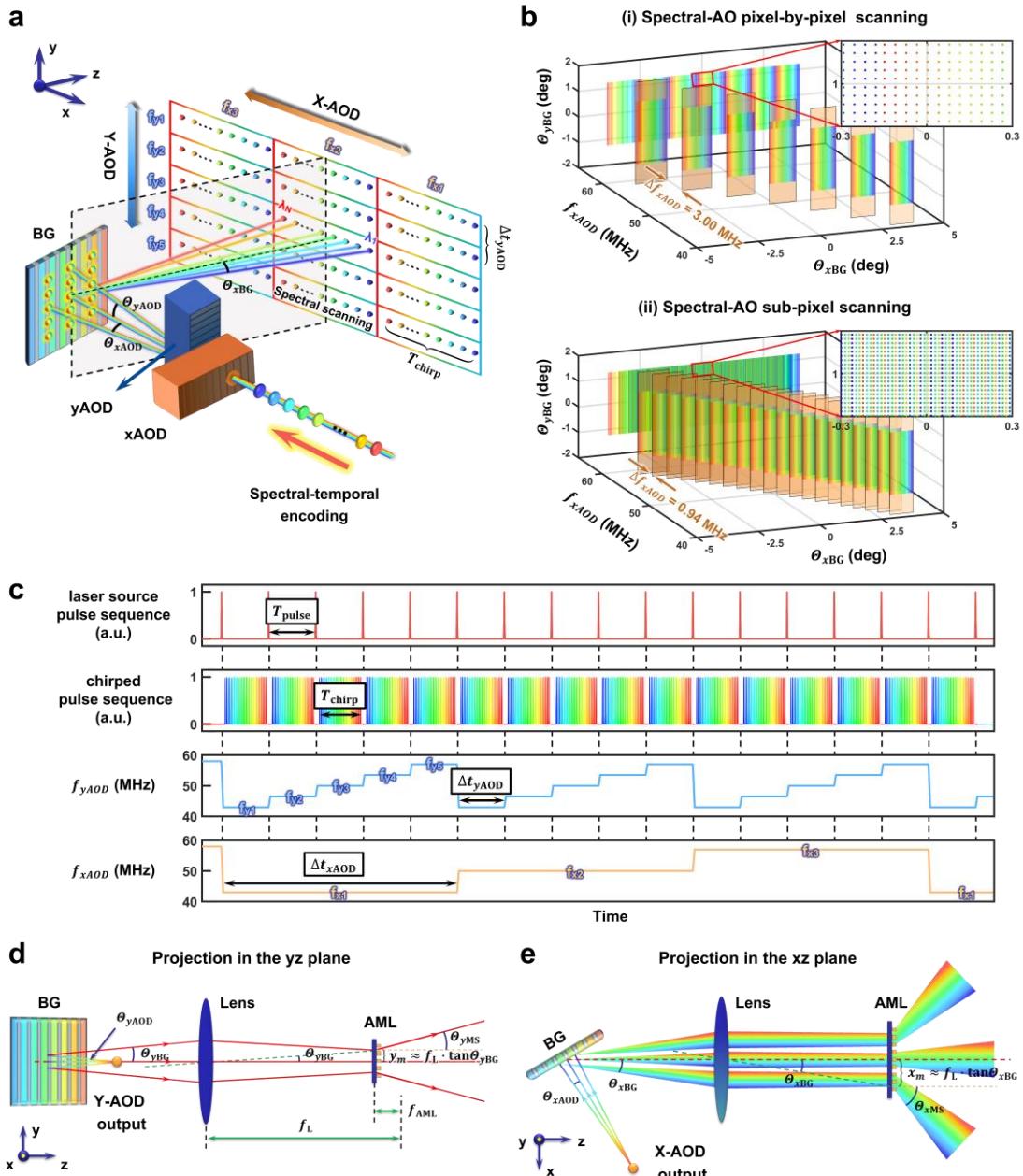
$$112 \quad \Theta_o = \arcsin\left(\frac{\lambda_n}{d} - \sin \Theta_{i_xn}\right) \quad (S2)$$

$$113 \quad \Theta_{x\text{BG}} = \Theta_o(\lambda_n, \Theta_{i_xn}) - \overline{\Theta_o} \quad (S3)$$

114 where λ_n is the wavelength of the incident light, $n = 1, 2, 3, \dots, 30$ denotes the channel number, and d is the grating
 115 constant (1/600 mm). The angle Θ_{i_xn} represents the incident angle at the grating and also corresponds to the $x\text{AOD}$'s
 116 output angle at its xn -th scanning position, while Θ_o is the diffracted angle of BG. Eq. (S3) is used to reference the angle
 117 0° because the optical axis also shifts upon diffraction. Moreover, Eq. (S2) reveals a nonlinear relationship between the
 118 output angle and both the incident angle and wavelength, leading to the slight asymmetry of the horizontal output angle
 119 of the BG, as shown in Fig. S3b(i).

120 Based on Eq. (S3), we can determine the output angle for $x\text{AOD}$ and the corresponding driving frequencies $f_{x\text{AOD}}$ to
 121 ensure that adjacent spectral scanning fields in the horizontal direction connect seamlessly without gaps, expressed as:

$$122 \quad \Theta_o(\lambda_{30}, \Theta_{i_x(n)}) \approx \Theta_o(\lambda_1, \Theta_{i_x(n+1)}) \quad (S4)$$


123 which derives 7 $x\text{AOD}$ scanning positions $f_{x\text{AOD}} = 41, 44, 47, \dots, 59$ MHz, as illustrated in Fig. S3b(i). Here, $\Delta f_{y\text{AOD}} =$
 124 0.244 MHz yields 83 scanning positions; combined with 30 spectral channels, this provides a total of $20 \times 83 \times 30$ scanning
 125 positions. Additionally, for finer scanning, we set $\Delta f_{x\text{AOD}} = 0.94$ MHz and $\Delta f_{y\text{AOD}} = 0.122$ MHz, resulting in a denser
 126 subpixel scanning lattice, as shown in Fig. S3b(ii).

127 Consequently, due to horizontal dispersion, the BG's output forms a rectangular FOV. Thus, the designed wide-FOV
 128 metalens also requires a phase profile over a rectangular area to match the scanning spot formed after focusing by the
 129 front lens.

130 The angular magnification of such a system resembling a Galileo telescope is given by $M = |f_L / f_{\text{AML}}|$. Since the
 131 effective focal length f_{AML} of the AML is limited by the periodicity of the meta-atoms, a longer focal length f_L for the
 132 focusing lens is preferable. However, with the maximum size of the AML set at $r_m = 5$ mm, it is crucial to ensure that the
 133 focused light spot falls within its effective area while leaving some margin:

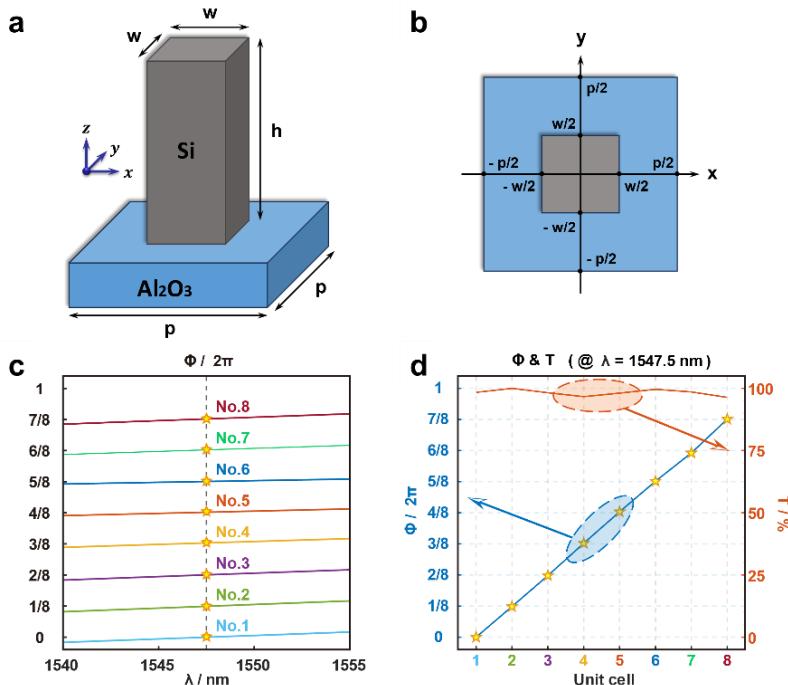
$$134 \quad \sqrt{x_m^2 + y_m^2} \approx f_L \cdot \sqrt{\tan^2 \Theta_{x\text{BG max}} + \tan^2 \Theta_{y\text{BG max}}} < 0.9 \cdot r_m \quad (S5)$$

135 where x_m and y_m represent the coordinates of the edges of the rectangular scanning area. This leads to the condition $f_L <$
 136 62 mm, prompting us to select $f_L = 60$ mm (LBTEK, MBCX10611) to maximize the angular magnification. Next, we
 137 optimize the phase distribution of the AML using commercial software (Zemax OpticStudio) to achieve a larger horizontal
 138 FOV while effectively suppressing beam divergence. The optimized phase profile, expressed by Eq. (8) in the main text,
 139 is shown in Fig. 3b, with the corresponding phase coefficients listed in Table S2.

140

141 **Fig. S3 | Spectral-acousto-optic scanning cascading the AML.** (a) Schematic of the spectral dual-AO cascade scanning. (b) 142 Implementation of (i) pixel-by-pixel scanning and (ii) sub-pixel scanning in spectral-AO scanning. (c) 143 Timing diagrams of spectral-dual-AO scanning corresponding to a. As an example, consider a complete scan frame comprising 5 yAOD and 3 xAOD scanning 144 positions. After completing a spectral scan, the yAOD swiftly transitions to the next position to achieve rate matching (within the time 145 gap T_{pulse} - T_{chirp}), while the xAOD operates in a similar manner. (d)(e) Schematic of the AML extending the FOV in two orthogonal 146 directions. (d) In the yz -plane, the BG acts as a planar mirror, with the vertical FOV extending solely through the AML. (e) In the xz - 147 plane, the BG introduces spatial dispersion that extends the initial horizontal FOV, which is further magnified by the combination of 148 the lens and AML, functioning similarly to a Galilean telescope.

Table S2 | Phase coefficients of the AML.


<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄	<i>c</i> ₅	<i>c</i> ₆	<i>c</i> ₇	<i>c</i> ₈	<i>c</i> ₉
10070	8099.4	-712.23	403.15	1200.0	260.88	320.00	320.00	320.00

150 The above coefficients represent the asymmetric modulation in the *x* and *y* directions, which reflect the astigmatic
 151 characteristics of the AML. By following the standard form of the non-astigmatic defocus phase $\Phi(r) = k_0 r^2/2f$, where k_0
 152 = $2\pi/\lambda$, the effective focal lengths of the AML in the *x/y* direction, $f_{AML,x,y}$, can be approximately derived as:

$$153 \quad f_{AML,x} \approx \frac{\pi r_m^2}{c_1 \lambda} = 5.0 \text{mm}, \quad f_{AML,y} \approx \frac{\pi r_m^2}{c_2 \lambda} = 6.2 \text{mm} \quad (\text{S6})$$

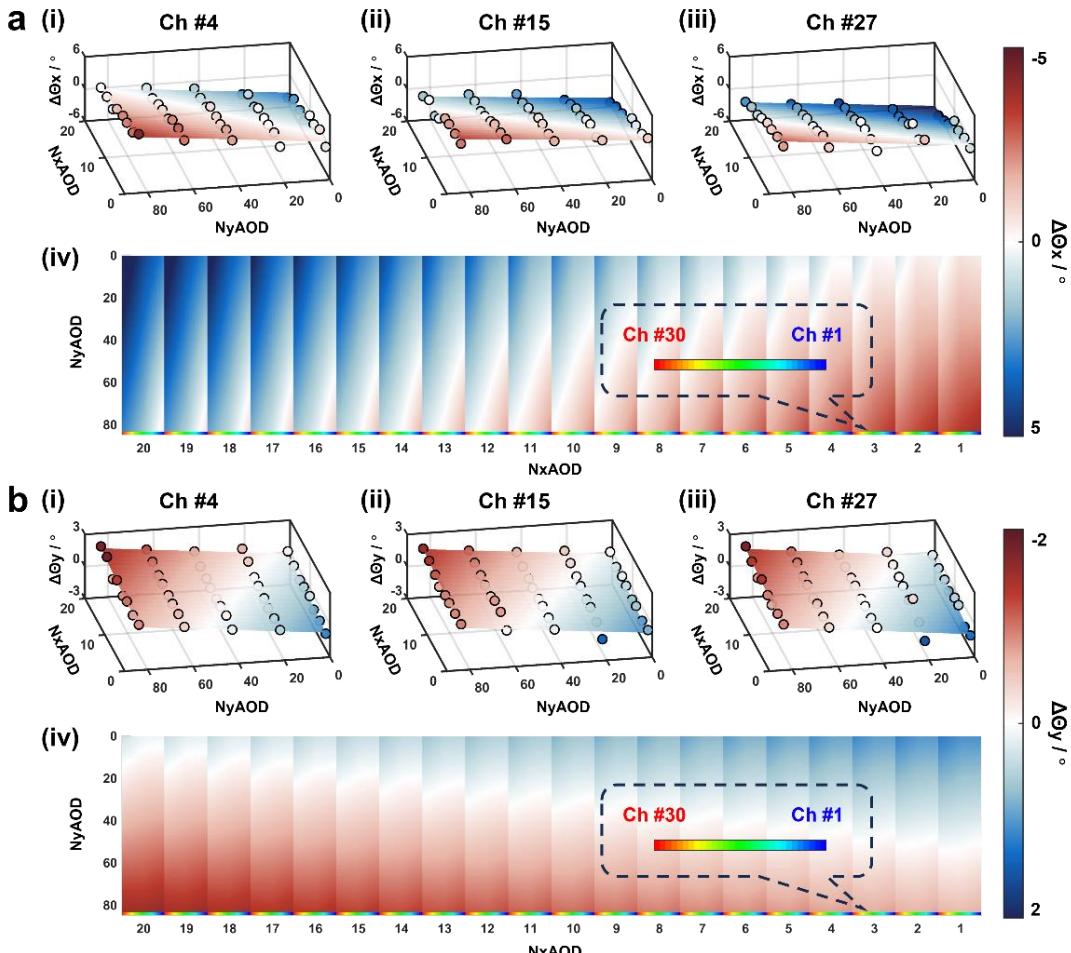
154 Based on their ratios with f_L , the angular magnification *M* is ~12-fold/10-fold in the *x/y* direction relative to the BG's
 155 output angles. These values agree closely with the simulated output angles $\Theta_{x,AML} \in [-51^\circ, 51^\circ]$ and $\Theta_{y,AML} \in [-13^\circ, 13^\circ]$
 156 (see Fig. 3c in the main text), with discrepancies mainly arising from higher-order phase modulation at the FOV edges.

157 **Supplementary Section 4: Design of metalens unit cells.**

159 **Fig. S4 | Metalens unit cell design at the operational wavelength.** (a) 3D and (b) top-view schematics of the unit cell. The nanopillars
 160 and substrate are composed of silicon (Si) and sapphire (Al_2O_3), respectively. Fixed structural parameters: height *h* = 800 nm and lattice
 161 constant *p* = 651 nm. (c) Simulated phase responses of 8 unit cells across the operational wavelength range of 1540-1555 nm. (d)
 162 Simulated phases and transmissivities of the 8 unit cells at the center wavelength of 1547.5 nm.

163 The unit cell is a silicon-on-sapphire (SOS) square nanopillar, with the Si nanopillar centered within the cell, as
 164 illustrated in Fig. S4a and b. Using the finite-difference time-domain (FDTD) method implemented in Lumerical for
 165 simulations, we optimized the structural parameters to yield 8 distinct unit cells, each exhibiting a unique phase response,
 166 as shown in Fig. S4c and d. The nanopillar widths (*w*) for units 1-8 are 222, 268, 293, 313, 332, 354, 382, and 485 nm,
 167 respectively. The minimum feature size, calculated as *p* - *w*_{max}, is 166 nm, which is compatible with standard micro- and
 168 nanofabrication techniques.

169 **Supplementary Section 5: Characterization of the beam deflection angle and FOV.**


170 **1. Characterization of beam deflection angle deviations**

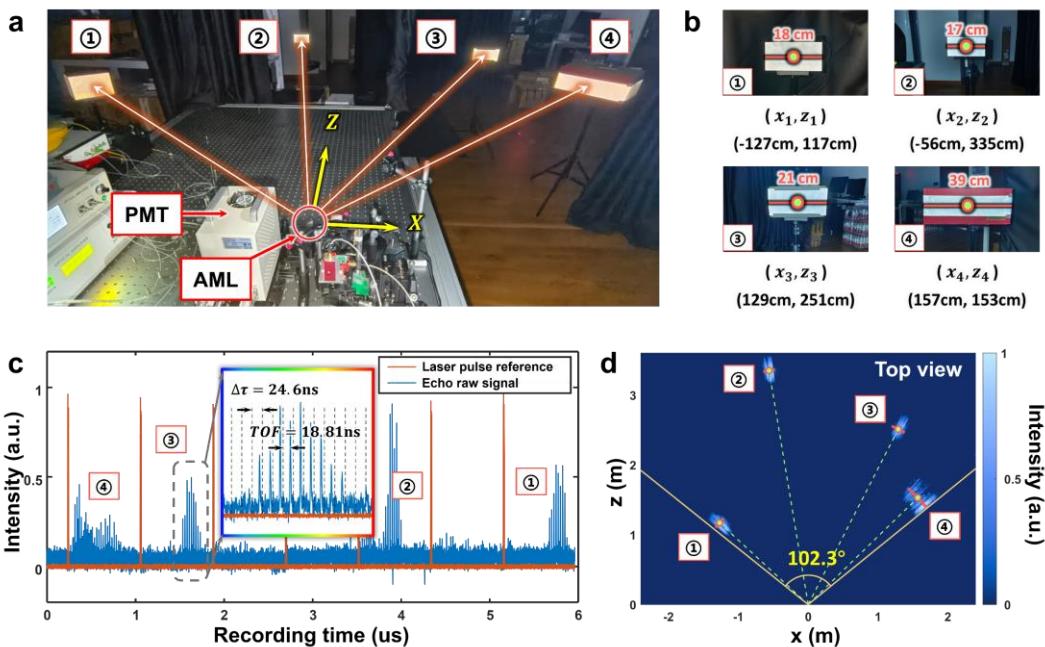
171 To validate the expanded FOV capability of the designed AML, we characterized the deviations between the measured
 172 and theoretical values of the system's output beam deflection angles:

173
$$\Delta\Theta_{x,y} = \Theta_{x,y}(\text{meas.}) - \Theta_{x,y}(\text{theo.}) \quad (\text{S7})$$

174 where $\Theta_{x,y}$ (meas.) and $\Theta_{x,y}$ (theo.) denote the measured and theoretical beam deflection angles in the x/y directions,
 175 respectively. The measured values were obtained by performing far-field spot position measurements at specific scanning
 176 positions, where a small reflector was moved to identify the location with the strongest echo signal. From this, the beam's
 177 azimuthal angles were calculated relative to the AML. The theoretical values were derived from the beam emission angles
 178 obtained through ZEMAX simulations.

179 For x/y AOD scanning points of 20 and 83, respectively (Δf_x AOD = 0.94 MHz, Δf_y AOD = 0.244 MHz), we measured
 180 the output angles Θ_x and Θ_y under varying scanning positions: N_x AOD : #1, #4, #7, #9, #12, #14, #17, #20; N_y AOD : #1, #21,
 181 #42, #63, #83; N_z : #4, #15, #27. This resulted in a total of $8 \times 5 \times 3 \times 2$ datasets. The deviations from theoretical values, $\Delta\Theta_x$
 182 and $\Delta\Theta_y$, are illustrated in Fig. S5a (i)-(iii) and b(i)-(iii). By performing linear fitting on these datasets, we determined the
 183 deviations across all scanning points and subsequently corrected the actual beam scanning angles, as shown in Fig. S5a
 184 (iv) and b (iv).

185


186 **Fig. S5 | Characterization of beam deflection angle deviations.** (a) $\Delta\Theta_x$ and (b) $\Delta\Theta_y$. (i)-(iii) Angular deviations for Ch #4, #15, and
 187 #27; (iv) Angular deviations across all scanning points derived from the linear fitting of (i)-(iii). The color bar in the inset indicates that
 188 each xAOD scanning position includes 30 spectral scanning points (totaling $20 \times 30 = 600$ scanning points in the x -direction).

189 **2. Wide-FOV 2D imaging experiment**

190 To characterize the wide-FOV performance of the fabricated AML, we conducted a 2D imaging experiment using a
 191 1D scanning beam. As shown in Fig. S6a, four objects with reflective tape are placed at different positions on the same
 192 horizontal plane. The horizontal width of the objects and their center positions on the horizontal plane (x_i, z_i) are indicated
 193 in Fig. S6b, corresponding to angle positions of $-47.35^\circ, -9.49^\circ, 27.20^\circ$, and 45.74° . The left edge angle of object 1 is $-$
 194 50.33° , while the right edge angle of object 4 is 50.84° , resulting in a required FOV of 101.17° .

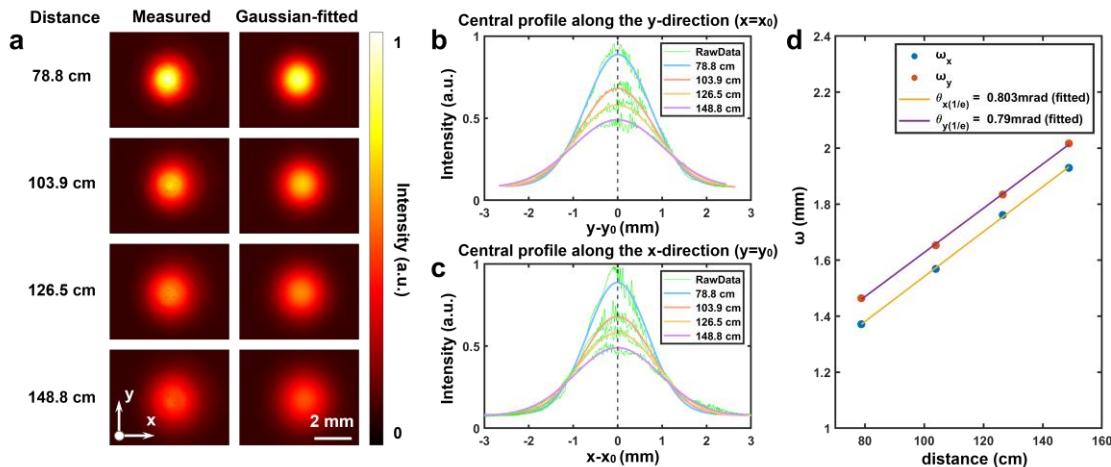
195 We fixed yAOD at its center driving frequency of 50MHz and varied xAOD's frequency, enabling spectral-AO
 196 cascade 1D beam scanning. This produced a series of horizontal scanning spots at $\Theta_y = 0^\circ$ as depicted in Fig. 3c of the
 197 main text, with a theoretical maximum FOV range of $[-51.30^\circ, 50.96^\circ]$, covering the edge FOV of the objects at $[-50.33^\circ,$
 198 $50.84^\circ]$. In Fig. S6c, an orange pulse along with the subsequent blue echoes represents a set of spectral scanning data
 199 (with $N_\lambda = 30$ angular spatial positions). There are 7 such sets of spectral scanning data, corresponding to 7 scanning
 200 points of xAOD (scanning towards the negative x-direction), resulting in a total of 7×30 angular positions.

201 As illustrated in the inset of Fig. S6c, the TOF information is obtained from the time delay between the echoes and
 202 the calibrated reference timing (gray dashed line). This allowed us to derive an intensity-distance mapping at 210 angular
 203 coordinates. By converting the polar coordinates to Cartesian coordinates, we were able to reconstruct a 2D image
 204 resembling the top view of the objects, as shown in Fig. S6d. This confirms that we successfully detected all four objects
 205 experimentally, thereby validating our theoretical FOV coverage of the area. Moreover, the spatial positions of the imaged
 206 objects closely match the actual measurements (green points and orange lines), further demonstrating the wide-FOV
 207 performance of the AML and the ranging capability of the LiDAR system.

208
 209 **Fig. S6 | Wide-FOV ranging capability.** (a) Imaging scenario with all objects positioned on the same horizontal plane. (b) Four
 210 objects covered with reflective tape, with their widths indicated by orange lines and their central positions on the horizontal plane
 211 denoted by green dots at coordinates (x_i, z_i) . (c) Raw echo signal of the scanned objects (blue curve) and reference laser pulse (orange
 212 curve) recorded during a single scanning cycle. (d) Ranging image of the four objects. Green dashed lines represent the true angular
 213 positions calculated from (b), while the orange line segments and green dots mark the central positions and widths of the objects. The
 214 graph illustrates the system's ability to detect all four objects, achieving a horizontal FOV exceeding 102° .

215 Our current maximum FOV is not a limit imposed by the AML itself; instead, it is constrained by the periodicity of
 216 the meta-atoms, which determines the maximum phase gradient they can provide. However, this periodicity is also limited
 217 by the constraints of micro-nano fabrication techniques. Theoretically, we could achieve larger FOV by utilizing a smaller
 218 meta-atom periodicity that offers a greater phase gradient.

219 **Supplementary Section 6: Characterization of the beam divergence angle.**


220 To characterize the astigmatism correction capability of the AML for practical beam conditions, we used a CCD (Allied
 221 Vision, Goldeye G-130 TEC1, 1280×1024 pixels, $5 \mu\text{m} \times 5 \mu\text{m}$ pixel size) to record the intensity distribution of the
 222 beam as it propagated downstream of the collimator (COL) (representing the input of the entire optical system), the COL
 223 + BG, and the AML (whole system). From these measurements, we fitted the divergence and deflection angles of the
 224 beams using the following Gaussian function model:

$$225 \quad I_{\text{gaussian_fitted}}(x, y) = A \cdot \exp\left(-\frac{(x - x_0)^2}{2\sigma_{\omega_x}^2} - \frac{(y - y_0)^2}{2\sigma_{\omega_y}^2}\right) + I_n \quad (\text{S8})$$

$$226 \quad \omega_x = 2\sigma_{\omega_x}, \quad \omega_y = 2\sigma_{\omega_y} \quad (\text{S9})$$

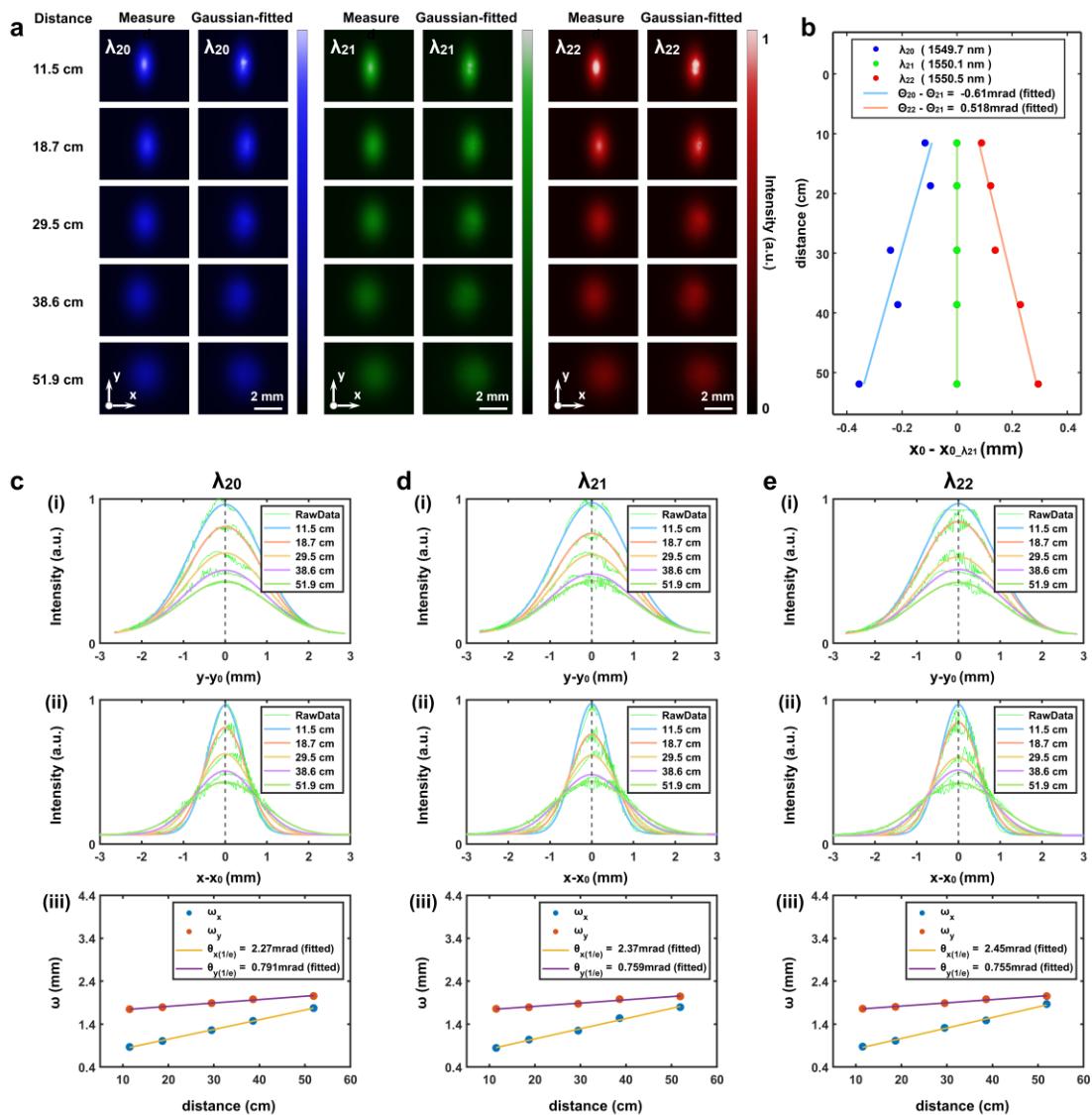
227 where I_n represents the background noise intensity, (x, y) are the 2D coordinates on the CCD, (x_0, y_0) are the Gaussian
 228 beam center positions, and ω_x, ω_y represent the beam waist radii in the x/y directions (the radius at which the intensity
 229 falls to e^{-2} of its maximum). The beam divergence angle $\theta_{x,y}$ is calculated by $d\omega_{x,y}/dz$, where z denotes the propagation
 230 distance.

231 Figure S7 shows the beam propagation evolution downstream of the COL. After fitting, the input divergence angles
 232 θ_x and θ_y were found to be 0.803 mrad and 0.790 mrad, respectively, indicating an almost perfectly circularly symmetric
 233 Gaussian beam.

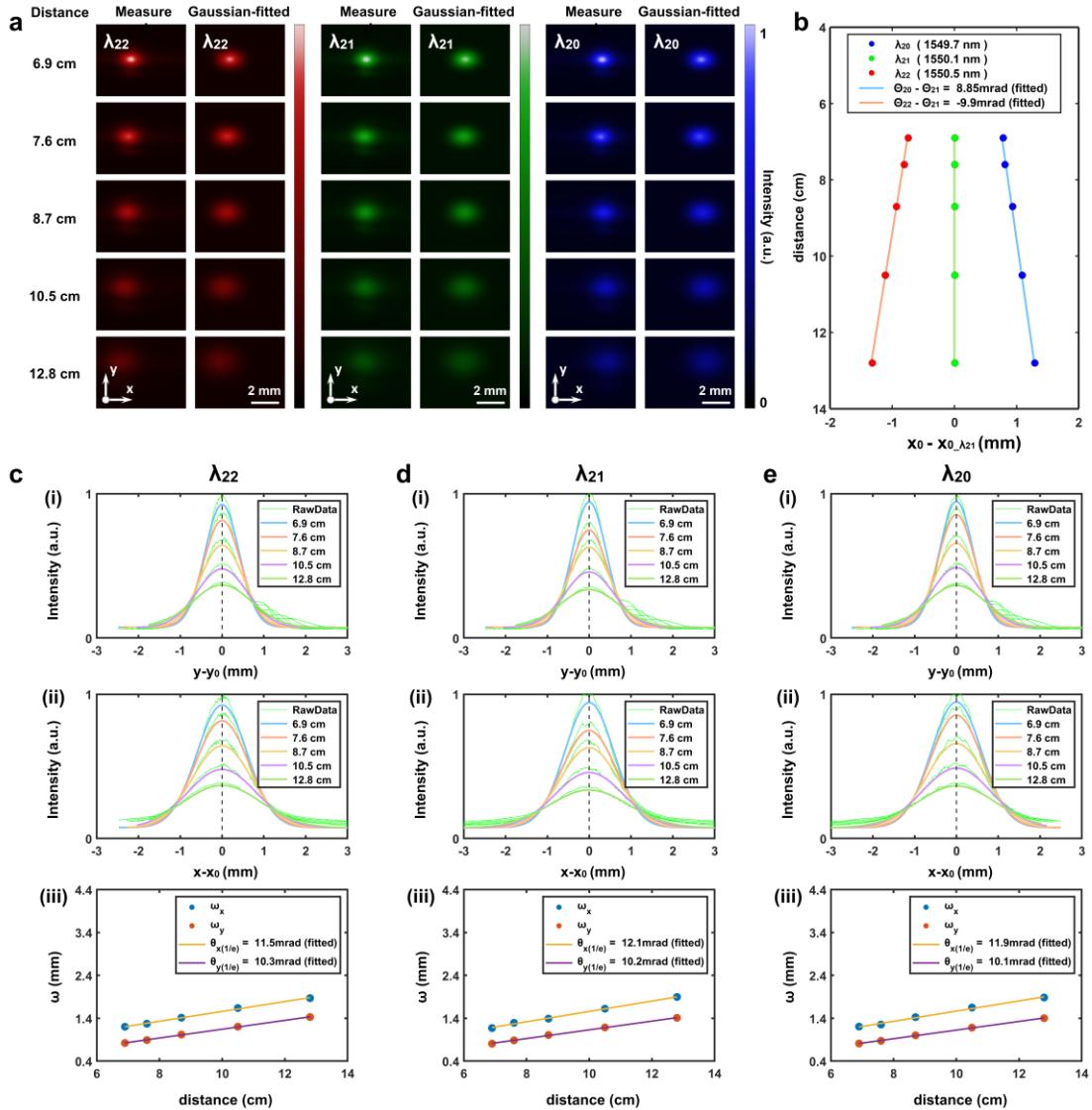
234

235 **Fig. S7 | Beam propagation evolution after the collimator (COL).** (a) Beam intensity distributions at different distances downstream
 236 of the COL (Left: measured; Right: Gaussian-fitted). (b)(c) Central intensity profiles of the beam along (b) the y -direction ($x = x_0$) and
 237 (c) the x -direction ($y = y_0$). (d) Beam waist radii ω_x, ω_y as functions of propagation distance, and the corresponding divergence angles
 238 θ_x, θ_y derived from linear fitting.

239 Figure S8 shows the beam propagation evolution downstream of the COL and the BG. We fitted the deflection angles
 240 Θ induced by grating dispersion based on the variation of the beam's center positions x_0 at different wavelengths (taking
 241 the center of the middle wavelength beam as the zero reference, calculated by $d(x_{0,i} - x_{0,j})/dz$), as shown in Fig. S8b.
 242 Through fitting, the average angular separation between adjacent wavelengths was found to be ~ 0.564 mrad. Additionally,
 243 the average beam divergence angles θ_x and θ_y were 2.36 mrad and 0.768 mrad, respectively, indicating significant
 244 astigmatic properties.


245 In comparison, Fig. S9 shows the beam propagation evolution downstream of the AML (whole system). Fig. S9b
 246 shows that the average angular separation between adjacent wavelengths is ~ 9.4 mrad. The fitted average beam
 247 divergence angles θ_x and θ_y were 11.8 mrad and 10.2 mrad, respectively, with significant suppression of astigmatism.

248 Moreover, we used the ratio of the deflection angle between adjacent wavelengths to the divergence angle of a single
 249 wavelength to describe the relative beam separation:


250
$$\frac{\overline{\Delta\Theta_{\lambda_i - \lambda_{i+1}}}}{\overline{\theta_x}} \text{ (before astigmatism correction)} = \frac{0.564 \text{ mrad}}{2.36 \text{ mrad}} = 23.9\% \quad (\text{S10})$$

251
$$\frac{\overline{\Delta\Theta_{\lambda_i - \lambda_{i+1}}}}{\overline{\theta_x}} \text{ (after astigmatism correction)} = \frac{9.4 \text{ mrad}}{11.8 \text{ mrad}} = 79.7\% \quad (\text{S11})$$

252 It is evident that after the AML corrects the astigmatism, the beam separation between adjacent spectral channels increases
 253 (~3.3-fold improvement), which is not achievable with conventional non-astigmatic telescopic systems that
 254 simultaneously amplify both the deflection and divergence angles.

255
 256 **Fig. S8 | Beam propagation evolution after the COL and BG.** (a) Beam intensity distributions for three adjacent wavelengths (λ_{20} ,
 257 λ_{21} , λ_{22}) at different distances downstream of the COL and BG. (b) Relative angular deviations of the adjacent wavelength beams
 258 obtained from the center positions x_0 of their intensity distributions. (c)-(e) Central intensity profiles of the beam along (i) the y -
 259 direction ($x=x_0$) and (ii) the x -direction ($y=y_0$). (iii) Beam waist radii ω_x , ω_y as functions of propagation distance, and the corresponding
 260 divergence angles θ_x , θ_y derived from linear fitting. Panels (c), (d), and (e) correspond to λ_{20} , λ_{21} , λ_{22} , respectively.

261

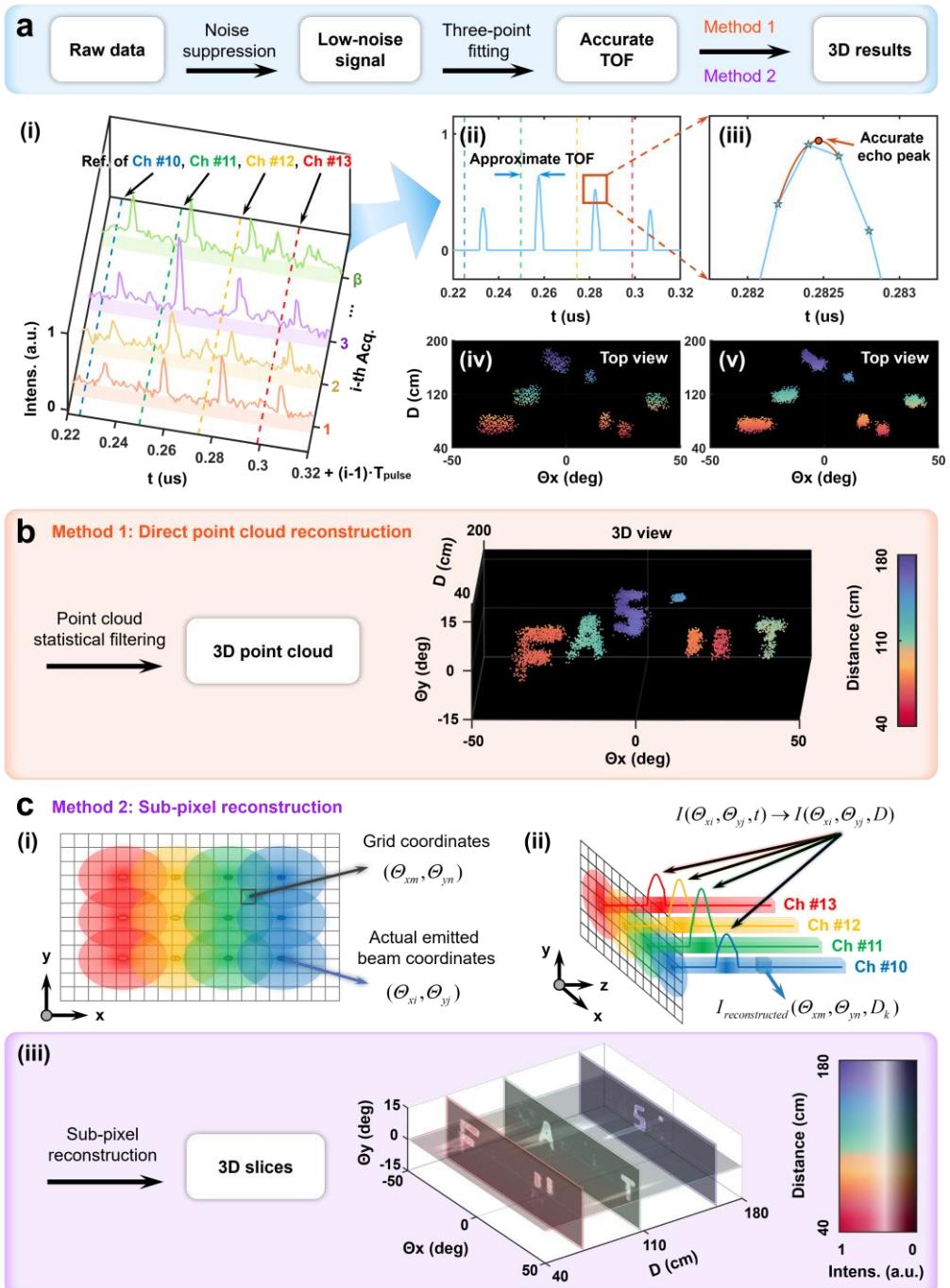
262 **Fig. S9 | Beam propagation evolution after the AML (whole system).** (a) Beam intensity distributions for three adjacent wavelengths
263 ($\lambda_{20}, \lambda_{21}, \lambda_{22}$) at different distances downstream of the AML. (b) Relative angular deviations of the adjacent wavelength beams obtained
264 from the center positions x_0 of their intensity distributions. (c)-(e) Central intensity profiles of the beam along (i) the y -direction ($x =$
265 x_0) and (ii) the x -direction ($y = y_0$). (iii) Beam waist radii ω_x, ω_y as functions of propagation distance, and the corresponding divergence
266 angles θ_x, θ_y derived from linear fitting. Panels (c), (d), and (e) correspond to $\lambda_{22}, \lambda_{21}, \lambda_{20}$, respectively.

267 **Supplementary Section 7: Data processing procedure.**

268 This work employs two data processing methods to reconstruct 3D information from the measured LiDAR raw echo
 269 signals, as illustrated in Fig. S10.

270 The first method directly extracts the TOF corresponding to the echo peak of each pulse to generate a point cloud
 271 (Fig. 4 of the main text). As depicted in Fig. S10a, we begin by applying a series of noise-suppression procedures to the
 272 raw echoes, including β -fold averaging (if $\beta > 1$), frequency-domain low-pass filtering, and intensity-threshold-based
 273 denoising. Then, we employ a three-point fitting method⁷ to further refine the TOF estimation. Once the preliminary point
 274 cloud is formed by assigning each TOF to (Θ_x, Θ_y, D) , a statistical filtering step (via MATLAB's *pcdenoise* function)
 275 removes outliers, yielding a cleaner point cloud reconstruction, as shown in Fig. S10b.

276 Rather than assigning a single TOF to each pulse, the second method accounts for beam divergence and integrates
 277 all echo signals to perform slice-based reconstruction across the entire 3D volume (Fig. 5 of the main text). As depicted
 278 in Fig. S10c, subpixel reconstruction integrates the Gaussian intensity distribution of the beams within the pixel grid $(\Theta_{xm},$
 279 $\Theta_{yn}, D_k)$. Each pixel's intensity is weighted by contributions from all nearby beams, as defined in the following equation:


$$280 I_{\text{reconstructed}}(\Theta_{xm}, \Theta_{yn}, D_k) = \frac{\sum_i \sum_j I(\Theta_{xi}, \Theta_{yi}, D_k) \cdot \exp\left(-\frac{(\Theta_{xi} - \Theta_{xm})^2}{2\sigma_x^2} - \frac{(\Theta_{yi} - \Theta_{yn})^2}{2\sigma_y^2}\right)}{\sum_i \sum_j 1 \cdot \exp\left(-\frac{(\Theta_{xi} - \Theta_{xm})^2}{2\sigma_x^2} - \frac{(\Theta_{yi} - \Theta_{yn})^2}{2\sigma_y^2}\right)} \quad (\text{S12})$$

$$281 \sigma_x = \frac{1}{2} \theta_x, \quad \sigma_y = \frac{1}{2} \theta_y \quad (\text{S13})$$

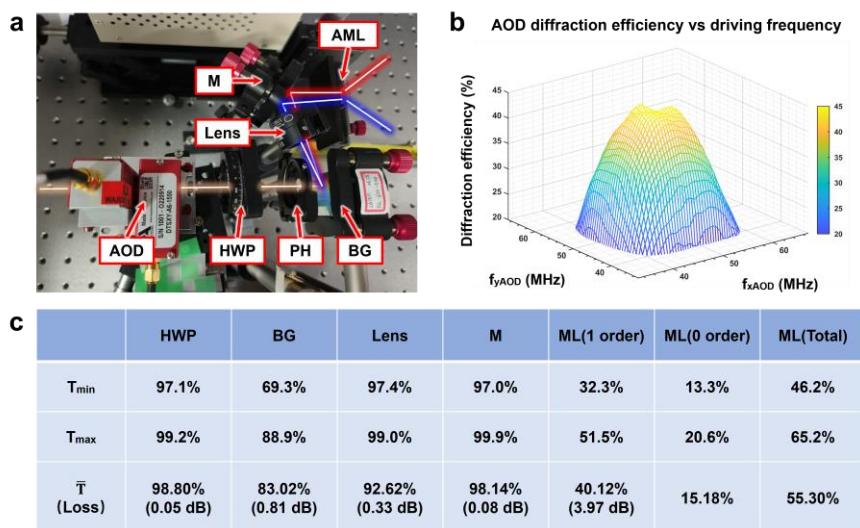
282 where $I(\Theta_{xi}, \Theta_{yi}, D_k)$ denotes the echo signal intensity at the i -th and j -th actual beam scanning positions in the x - and y -
 283 directions, respectively, and the k -th distance (corresponding to a specific echo timestamp). Meanwhile, $I_{\text{reconstructed}}(\Theta_{xm},$
 284 $\Theta_{yn}, D_k)$ represents the reconstructed intensity at the m/n -th grid position in the x/y -direction, and the k -th distance. The
 285 numerator on the right-hand side of Eq. S12 accounts for the combined influence of all nearby beams $(\Theta_{xi}, \Theta_{yi})$ on the
 286 grid position $(\Theta_{xm}, \Theta_{yn})$, while the denominator corrects for the non-uniform distribution of the actual beams. The Gaussian
 287 beam's standard deviation, $\sigma_{x,y}$, is defined as half of the divergence angle $\theta_{x,y}$ at which the beam intensity falls to e^{-2} of its
 288 maximum.

289 As shown in Fig. S10c(iii), the final reconstructed intensity $I_{\text{reconstructed}}(\Theta_x, \Theta_y, D)$ can be visualized as a series of
 290 distance slices, revealing fine spatial details that are difficult to resolve using direct point-cloud processing (Fig. 5 in the
 291 main text).

292

294 **Fig. S10 | Data processing for 3D reconstruction.** (a) Flowchart of the raw echo data processing procedure: (i) β repeated acquisitions
295 at a single scanning position. (ii) Apply multiple averaging steps, frequency-domain filtering, and threshold-based denoising to obtain
296 a low-noise signal. (iii) Use three-point fitting to extract more accurate TOF. (iv)&(v) Top view images of the reconstruction results
297 before and after three-point fitting, highlighting a substantial improvement in ranging resolution. (b) Method 1: Direct point cloud
298 reconstruction to generate the final 3D point cloud image. (c) Method 2: Subpixel reconstruction. (i) In method 1, every pulse is mapped
299 to a point $(\Theta_{xi}, \Theta_{yj}, D_{peak})$ based on the timestamp of the echo peak. In contrast, subpixel reconstruction accounts for beam divergence:
300 within the pixel grid $(\Theta_{xm}, \Theta_{yn})$, the intensity is no longer binary ("1 or 0") but is modulated by the Gaussian distribution of surrounding
301 beams. (ii) From each actual emitted beam, the entire echo waveform is used to obtain $I(\Theta_{xi}, \Theta_{yj}, D)$, enabling further 3D reconstruction
302 of $I_{reconstructed}(\Theta_{xm}, \Theta_{yn}, D_k)$ for every grid location. (iii) The resulting $I_{reconstructed}$ can be visualized as multiple slice views, revealing the
303 intensity distribution at various distances.

304 **Supplementary Section 8: Discussion on ranging resolution.**


305 The achieved ranging/depth resolution is determined by the timing precision of the system, which is influenced by several
 306 factors: (i) the stability of the laser source pulse period, (ii) the pulse width of the laser source, (iii) pulse broadening
 307 introduced by modulation devices, (iv) the inherent timing jitter of the detector, and (v) the sampling rate of the digitizer.
 308 In our experimental setup, the primary contributors to timing error are factors (iv) and (v).

309 On the one hand, the intrinsic error of the photomultiplier tube (PMT) arises from the transit time caused by its
 310 multi-stage amplification mechanism. When a single photon strikes the PMT, the photocathode converts it into
 311 photoelectrons, which are then multiplied through a series of dynodes before reaching the anode. The total transit time of
 312 the electron group depends on each incident photon, resulting in a dispersion known as transit time spread (TTS).
 313 According to the manufacturer's specifications, the PMT (HAMAMATSU, H10330C-75) has a TTS of 0.4 ns. On the
 314 other hand, in the experiments presented in Figs. 4 and 5 of the main text, we utilize a data acquisition card (Teledyne,
 315 ADQ7DC) as the digitizer, which records data at a sampling rate of 5 GS/s, yielding a time resolution of 0.2 ns.

316 As a result, the overall ranging resolution of our system is primarily constrained by the PMT's TTS of 0.4 ns, which
 317 corresponds to a theoretical ranging resolution of ~ 6 cm. However, as shown in Fig. 4b of the main text, we actually
 318 achieve an improved ranging standard deviation σ of ~ 3 cm. This enhancement is primarily attributed to the use of three-
 319 point fitting, which enables sub-sample TOF estimation. In addition, the measured σ reflects the statistical variation of
 320 echo returns from a relatively uniform target surface, rather than the intrinsic timing jitter associated with individual
 321 photon detection events.

322 **Supplementary Section 9: Power loss analysis & discussion on long-range detection.**

323 As shown in Fig. S11, the primary power losses in our system occur at the AOD and the AML, mainly due to fabrication
 324 defects. Consequently, the actual effective power at the transmitter end is only a few milliwatts, limiting the range of our
 325 imaging experiments, which were conducted at distances of <3.4 m. According to the inverse square law governing the
 326 relationship between received scattered power and detection distance, achieving longer-range detection requires
 327 addressing the challenge of weak echo signals. This can be approached through several strategies: (i) increasing the
 328 transmission power (with attention to the device's damage threshold); (ii) further suppressing angular divergence;
 329 employing more sensitive detectors; and (iv) performing frequency up-conversion on the echo signals to shift them into
 330 the visible spectrum, aligning within the high responsivity range of mature silicon-based photodetectors, thus improving
 331 detection efficiency^{8,9}.

332
 333 **Fig. S11 | Power loss analysis.** (a) Photograph of the optical system at the transmitter end, after the COL. (b) Diffraction efficiency of
 334 the dual-axis AOD. (c) Transmittance/diffraction efficiency of other optical elements (including a total of 50 measurements evenly
 335 distributed across the entire FOV, with the last row representing the average result after removing outliers).

336 **References**

337 1. Jiang Y, Karpf S, Jalali B. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. *Nature*
338 *photonics* **14**, 14-18 (2020).

339 2. Juliano Martins R, Marinov E, Youssef MAB, Kyrou C, Joubert M, *et al.* Metasurface-enhanced light detection
340 and ranging technology. *Nature Communications* **13**, 5724 (2022).

341 3. Zang Z, Li Z, Luo Y, Han Y, Li H, *et al.* Ultrafast parallel single-pixel LiDAR with all-optical spectro-temporal
342 encoding. *APL Photonics* **7**, 046102 (2022).

343 4. Qian R, Zhou KC, Zhang J, Viehland C, Dhalla A-H, *et al.* Video-rate high-precision time-frequency multiplexed
344 3D coherent ranging. *Nature communications* **13**, 1476 (2022).

345 5. Chen R, Shu H, Shen B, Chang L, Xie W, *et al.* Breaking the temporal and frequency congestion of LiDAR by
346 parallel chaos. *Nature Photonics* **17**, 306-314 (2023).

347 6. Lukashchuk A, Riemensberger J, Karpov M, Liu J, Kippenberg TJ. Dual chirped microcomb based parallel
348 ranging at megapixel-line rates. *Nature Communications* **13**, 3280 (2022).

349 7. Wang J, Lu Z, Wang W, Zhang F, Chen J, *et al.* Long-distance ranging with high precision using a soliton
350 microcomb. *Photonics Research* **8**, 1964-1972 (2020).

351 8. Albota MA, Wong FN. Efficient single-photon counting at 1.55 μm by means of frequency upconversion. *Optics*
352 *letters* **29**, 1449-1451 (2004).

353 9. Rehain P, Sua YM, Zhu S, Dickson I, Muthuswamy B, *et al.* Noise-tolerant single photon sensitive three-
354 dimensional imager. *Nature communications* **11**, 921 (2020).

355