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 ABSTRACT   High Dynamic Range (HDR) imaging synthesizes vivid images by merging multiple low 

dynamic range (LDR) images of different exposures. Nevertheless, in dynamic  scenes, object motion 

or camera commonly introduce ghosting artifacts, severely degrading image quality. Although numerous 

DNN-based methods have been proposed to address this issue, existing solutions remain unsatisfactory. 

Spatial attention-based approaches often struggle to cope with complex scenarios characterized by random 

luminance fluctuations and large-scale motion, while conventional HDR deghosting models that rely on 

CNN during the fusion stage are hampered by limited receptive fields, lack of dynamic weighting and the 

absence of multi-scale capabilities.To overcome these limitations, we propose two innovative modules. The 

Luminance Adaptive Channel Attention (LACA) module dynamically and adaptively modulates channel- 

wise weights across multiple scales. This enables precise information balancing among channels, effectively 

suppressing  ghosting  artifacts  and  alleviating  color  saturation  issues,  thereby  yielding  refined  feature 

representations that enhance the HDR fusion process.The Multi-Scale Residual Swin Transformer Block 

(MSRSTB), empowered by a multi-scale Transformer architecture, provides an expansive receptive field 

and dynamic weighting mechanism. It adeptly handles diverse motion patterns, integrating features in a 

hierarchical, coarse-to-fine manner, and efficiently manages regions with varying exposure levels. As a 

result, it significantly reduces saturation artifacts and mitigates ghosting, facilitating high-quality HDR 

image reconstruction in challenging  scenarios.  Comprehensive qualitative  and quantitative evaluations 

emonstrate that our proposed modules outperform state-of-the-art methods. 

 

 INDEX TERMS High Dynamic Range imaging, Ghosting artifacts, Saturation, Luminance Adaptive Chan- 

nel Attention, Multiple Scales, Multi-Scale Residual Swin Transformer Block, Coarse-to-Fine, Expansive 

Receptive Field, Dynamic Weighting Mechanism. 

 
 
I.  INTRODUCTION 

 

NATURAL scenes exhibit a vast spectrum of illumination, 

yet standard digital camera sensors are only capable of 

capturing a restricted dynamic range. Consequently, 

camera-captured images frequently contain saturated or un- 

derexposed areas, resulting in poor visual quality due to sig- 

nificant loss of detail. High Dynamic Range (HDR) imaging 

has emerged as a solution to these constraints, enabling the 

display of more detailed visual content. A typical approach 

in HDR imaging involves fusing a sequence of Low Dy- 

namic Range (LDR) images with varying exposures. While 

this method can generate high-quality HDR images in static 

scenes with stationary cameras, it often produces ghosting ar- 

tifacts when dealing with moving objects or images captured 

by handheld cameras.  

 

Currently, numerous solutions have been put forward to 

tackle  this  issue.  Rejection-based  methods  [1]–[4],  [87]– 

[89] are capable of rapidly detecting misaligned regions and 

eliminating them during the image fusion process. While 

these methods demonstrate relatively good performance in 

predominantly static scenes, they still struggle with ghosting 

artifacts when dynamic objects cannot be accurately detected. 

Alignment-based methods adopt an explicit strategy to align 

non-reference images with a pre-selected reference image. 

These methods either fail to handle complex object motions 

effectively or are highly error-prone when dealing with mo- 

tion  and  occlusion.  Patch-based  methods  aim  to  generate 

pure static low dynamic range images from dynamic input 

images. However, it is characterized by high computational 

complexity and requires a longer time for scene inference. 

Page 3 of 14 - AI Writing Submission Submission ID trn:oid:::3618:99936562

Page 3 of 14 - AI Writing Submission Submission ID trn:oid:::3618:99936562



 

 

 

The advent of Deep Neural Networks (DNNs) has spurred 

numerous studies that utilize Convolutional Neural Networks 

(CNNs) to directly model the complex mapping between Low 

Dynamic Range (LDR) and High Dynamic Range (HDR) 

images. These models [17], [61] commonly first align LDR 

images using optical flow or homography. However, such 

alignment methods are error-prone which leads to ghosting 

artifacts in the presence of complex foreground motion. Con- 

versely, the attention-based models [75], [78] mitigate motion 

and saturation issues through spatial attention mechanisms. 

Building on AHDRNet, subsequent works [66], [77], [82], 

[83] have aimed to further eliminate ghosting artifacts. The 

spatial attention modules in these works generate attention 

maps, which modulate non-reference features by element- 

wise multiplication. This mechanism selectively suppresses 

motion and saturation and accentuates informative content 

which improves HDR image quality. 

However, existing spatial attention-based methods mainly 

focus on spatial-level suppression and enhancement, which 

may fall short in handling complex scenarios with randomly 

varying luminance and large-scale motion. In such challeng- 

ing conditions, the ghosting artifacts and saturation issues 

in HDR imaging persist due to the inability to effectively 

manage the information flow across different channels in a 

multi-scale context. To address these limitations, we propose 

the Luminance Adaptive Channel Attention (LACA) module. 

Unlike traditional approaches, LACA adaptively modulates 

the weights of different channels in a multi-scale and dynamic 

manner. By doing so, it can precisely capture and balance the 

information from various channels, even under extreme lumi- 

nance changes and significant motion. This multi-scale dy- 

namic weight adjustment strategy not only suppresses ghost- 

ing artifacts more effectively but also mitigates saturation 

issues. As a result, it provides a more refined feature repre- 

sentation, which is highly beneficial for the fusion stage in 

HDR reconstruction. This ensures that the final HDR images 

exhibit higher quality with enhanced details and fewer visual 

artifacts. 

Moreover, existing HDR deghosting models that predom- 

inantly rely on CNNs in the fusion  stage are constrained 

by their limited receptive fields and are devoid of dynamic 

weighting mechanisms and multi-scale capabilities. As a re- 

sult, they struggle to effectively fuse features from motion- 

affected and  saturated regions in a coarse-to-fine manner, 

particularly in complex scenarios with large luminance varia- 

tions and large-scale motions.To overcome these limitations, 

we introduce the Multi-Scale Residual  Swin Transformer 

Block (MSRSTB). Leveraging the power of a multi-scale 

Transformer architecture, MSRSTB offers an extensive re- 

ceptive field which enables the model to capture global con- 

text while also attending to fine-grained details. The dynamic 

weighting scheme within the MSRSTB adaptively adjusts the 

importance of different features across multiple scales, allow- 

ing it to handle a wide range of motions, from subtle local 

displacements to large-scale global movements. This multi- 

scale and dynamic feature integration mechanism enables the 
 

 

MSRSTB to more effectively manage regions with varying 

exposure levels, reducing saturation artifacts and mitigating 

ghosting issues. By fusing features in a hierarchical, coarse- 

to-fine fashion, theMSRSTB provides a more comprehensive 

and accurate representation of the scene which is crucial for 

the high-quality reconstruction of HDR images even in the 

most challenging scenarios. 

In summary, we introduce the LACA and MSRDTB mod- 

ules  which  are  designed  to  dynamically  process  motion- 

affected and saturated regions with multi-scale capabilities 

and a large receptive field. These modules effectively handle 

ghosting artifacts and enable superior fusion of HDR images, 

as shown in Figure 1. In conclusion, the principal contribu- 

tions of this paper can be summarized as follows: 

•   We  propose the Luminance Adaptive Channel Atten- 

tion  (LACA)  module  and  the  Multi-Scale  Residual 

Swin Transformer Block (MSRSTB). The LACA mod- 

ule dynamically and adaptively modulates channel-wise 

weights across multiple scales which effectively sup- 

pressing ghosting artifacts and alleviating color satura- 

tion under extreme luminance variations and significant 

motions. This results in refined feature representations 

which are highly conducive to the fusion stage. 

•   The  proposed MSRSTB is powered by  a multi-scale 

Transformer architecture which offers an expansive re- 

ceptive field. Its dynamic weighting mechanism adap- 

tively integrates features across various scales enabling 

it to handle diverse motion patterns ranging from fine- 

grained local displacements to large-scale global move- 

ments. By fusing features in a hierarchical and coarse-to- 

fine manner, the MSRSTB effectively manages regions 

with different exposure levels, reducing saturation and 

ghosting issues, and thus facilitating high-quality HDR 

image reconstruction even in complex scenarios. 

•   Extensive qualitative and quantitative experiments con- 

ducted on two datasets with ground truth and two with- 

out ground truth demonstrate the superior performance 

of our proposed modules, validating their effectiveness 

and robustness. 

II.  RELATED WORK 

Existing HDR deghosting algorithms are primarily classified 
into  three  categories:  image  registration  methods,  motion 
rejection methods and CNN-based methods. 

Image registration methods. Bogoni employed optical 

flow to estimate motion vectors and utilized specific param- 

eters to warp pixels within the exposure images. Kang et al. 

first transformed LDR images intensities into the luminance 

domain by leveraging exposure time information. Then, they 

estimated optical flow to merge these LDR images. Zim- 

mer et al. leveraged the energy-based optic flow method to 

align the LDR images in order to achieve more accurate 

alignment results  Sen  et  al.  presented  a  new  patch-based 

energy-minimization method, which combines alignment and 

reconstruction through joint optimization. Hu et al. carried 

out alignment of images within an HDR image stack. This 
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FIGURE 1.  The proposed approach is capable of efficiently eliminating 

ghosting artifacts and delivers excellent visual quality. 

 

 

process propagates intensity and gradient information on the 

transformed domain. Hafner et al. put forward an energy 

minimization approach that computes HDR irradiance and 

displacement fields simultaneously. Although image registra- 

tion methods generate dense matching, they still suffer from 

large motion and occlusion. In addition, they exhibit high 

computational complexity and require more time for scene 

inference. 

Motion rejection methods. Motion rejection methods first 

perform global registration on the LDR images and detect 

motion regions, then they reject the misalignment pixels and 

merge static regions to reconstruct HDR images. Grosch et 

al. [4] identified motion regions and estimated an error which 

was based on alignment color differences to generate ghost- 

free HDR images. Pece et al. [27] used the median threshold 

bitmap of the LDR images to detect and reject motion areas. 

Jacobs et al. marked misaligned locations through the vari- 

ance of weighted intensity. Zhang et al. [59] calculated a mo- 

tion weighting map using quality measures based on image 

gradients. Moreover, several methods [32], [58] utilized rank 

minimization approach to identify motion regions to generate 

an HDR image without ghosted regions. Unfortunately, these 

approaches often exhibit significant limitations, resulting in 

the lack of contents. This is attributable to the fact that valu- 

able information is irretrievably lost during the pixel rejection 

phase. 

CNN-based method. Kalantari et al. [17] first performed 

optical flow alignment then employed a convolutional neural 

network to merge LDR images. Wu et al. [61] utilized an 

image homography transformer to account for camera motion 

by framing the HDR imaging as an image translation task. 

Yan et al. [75] developed an attention module to suppress 

motion and saturation in order to reconstruct ghost-free HDR 

images. Yan et al. [6] used multi-scale network to refine the 

 

generated results. Yan et al. [76] designed a nonlocal block to 

capture the constraints of the local receptive field for global 

HDR merging. Niu et al. [62] introduced HDR-GAN which 

is leveraging Generative Adversarial Networks to synthesize 

missing content. 

 
III.  METHOD 

A .  PROBLEM DEFINITION 

Given a set of Low-Dynamic-Range (LDR) images captured 

from a dynamic scene with varying exposure levels, the ob- 

jective istoreconstruct a High-Dynamic-Range (HDR) image 

H that is precisely aligned with a designated reference image  

. In this paper, the intermediate LDR image is selected 
as the reference. Specifically, we comprise three LDR 
images (  ) and designate as the reference image

. 

Following previous work [17], we construct a linearized 

image  for every using gamma correction as follows  

  (1) 

 where indicates the exposure time of LDR image ,  

denotes the gamma correction parameter and we set to 

2.2. Subsequently, we combine and along the 

channel dimension resulting in a 6-channel input denoted 
as  Given the inputs X1, X2 and X3 , our model 

generates an HDR image H through the following process: 

                       (2) 

where denotes the HDR deghosting network, is the 

parameters of the network. 

 
B.  OVERVIEW 

The proposed method aimsto remove the ghosted regions and 

construct a high-quality HDR image. As shown in Figure 2 , 

our proposed network is composed of two subnetworks, a dy- 

namic alignment subnetwork and a multi-scale Transformer- 

based fusion subnetwork. The alignment network is to sup- 

press moving regions, and the fusion subnetwork aims to 

produce  details  for  the  degraded regions.  The  alignment 

subnetwork incorporates a dynamic weight motion removal 

mechanism. This mechanism effectively eliminates motion 

in non-reference images and enhances feature representation 

simultaneously, thereby  suppressing  saturated regions. We 

employ a multi-scale Transformer-based subnetwork to ef- 

fectively integrate features extracted at different scales. The 

multi-scale Transformer module adaptively integrates feature 

representations of moving regions, ranging from fine-grained 

local motions to large-scale global displacements across mul- 

tiple scales. Additionally, it dynamically fuses regions with 

varying exposures to mitigate the saturation problem. 

C. ALIGNMENT SUBNETWORK 

Feature Extraction. We obtain three 6-channel LDR images 

, then we extract features of using 

feature extraction layers . 

  (3) 
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FIGURE 2.  The framework of the proposed method. 

 

Note that  

Spatial Attention. Inspired by  [75],  in  order to  alleviate 

the ghosting artifacts between the reference and the non- 

reference images, the non-reference features  

are processed with the reference feature map Fear  through 

a series of specialized spatial attention modules denoted as 

. It should be noted that is the 

extracted features from X2. The attention map 

is calculated as follows: 

  (4) 

We apply sigmoid function to constrain the values of the 
attention map within the range of 0 to 1. Subsequently, we per- 
form an element-wise multiplication operation between the 

feature maps of the non-reference images and 

their corresponding estimated attetion maps . Finally, we 

obtain the refined feature maps for each non-
reference image. 

  (5) 

where represents  the  element-wise  multiplication.  As 
shown in 1, this mechanism enables the precise identification 
of spatial inconsistencies, which is fundamental for fusion 

stage. 

LACA Module. Even though spatial attention demonstrates 

remarkable effectiveness in reducing the misalignment dis- 

crepancies between the reference and non-reference images, 

in scenes with intricate luminance and color variations, spatial 

attention fails to fully harness channel information, prevent- 

ing it from effectively removing artifacts in complex motion 

regions  and  thus  leaving  ghosting  artifacts.  To  solve  this 

problem, we design a Luminance Adaptive Channel Attention 

(LACA) module to adaptively adjust the weight of differ- 

ent channel which can more effectively balance information 

from different channels, mitigating the motion and saturation 

problem. The LACA module consists of multi-scale squeeze 

submodule, adaptive excitation submodule and reweighting 

submodule. 

In the multi-scale squeeze submodule, given an input fea- 

ture map we first perform global pooling 

 

with different kernel sizes to obtain multi-scale global feature. 

For each channel c in the input feature map we 

calculate the global feature as follows: 

  (6) 

where is the global feature of the c-th channel under 

the m-th pooling operation. This results in N  sets of global 

features for . We then concatenate 

these multi-scale global features to get Z: 

  (7) 

where . 

We then use two adaptive fully-connected layers to learn 

the channel weights. The first fully-connected layer is defined 

as: 

  (8) 

where , and the Mish function is formulated as: 

  (9) 

The second fully-connected layer is defined as: 

  (10) 

where  a nd   is the sigmoid activation 

function. 
Subsequently, we perform a channel-wise multiplication of 

the learned channel weights with the input feature and get the 

output feature  : 

  (11) 

 where and  represents  the -th non- 

reference feature. 

After the LACA module, we get and feature 

which contains harmless information. Then we concatenate 

, and  for fusion subnetwork. 

 (12)
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D. FUSION SUBNETWORK 

Inspired  by  SWIN-IR   [70],  the  fusion  subnetwork  
con- sists  of  several  Multi-Scale  Residual  Transformer  
Blocks (MSRSTBs) to dynamically integrates features 
ranging from fine-grained  local  motions  to  large-scale  
global  displace- ments across multiple scales. The input 

feature map is first embedded into token 

embeddings, then we adopt several MSRSTBs and a 
convolution block to recon- struct an HDR image without 
motion and saturation. 
MSRSTB. To further boost multi-scale feature 

extraction capabilities, we present an innovative approach 

to reconstruct ghost-free HDR images in a distinct way. 

We first generate multi-scale , and matrices by 

applying convolutional layers with different kernel  sizes  

and  strides to the input feature map. For the -th scale 

level ( ), the query matrix   is obtained as: 

  (13) 

where represents the convolutional operation,  is 

the weight matrix at the -th scale,  is the stride and   

is the kernel size. Similarly, the key matrix and value 

matrix for the -th scale level is generated by: 

  (14) 

  (15) 

Subsequently,  we  calculate  the  intra-scale  attention  

for each scale level : 

  (16) 

  (17) 

where is a learnable position encoding, is the 

dimension of .We also adopt shifted windows 

mechanism. After that, we calculate the cross-scale 

attention scores for each scale with respect to all other 

scales ( )to capture cross-scale features: 

  (18) 

  (19) 

Then, we aggregate the intra-scale and cross-scale 

attention outputs for each scale : 

  (20) 

where and are weighting hyperparameters. 

Finally,  we  use  bilinear  interpolation  to  upsample  
the lower-scale features. Then, we concatenate the 
upsampled features along the channel dimension: 

  (21) 

  

Lastly, we use convolutional layers to obtain the final 
output feature: 

  (22) 

 E.  TRAINING LOSS 

As HDR images are presented in the tonemapped domain, we 
adopt the -law [17] to transform the images from the linear 

domain to the tonemapped domain: 

  (23) 

where is the tonemapped function and we set 
. 

Considering the predicted result and the ground truth 

, we calculate the tonemapped per-pixel loss and perceptual 

loss as described: 

    (24) 

where represents the feature extracted from VGG19, 

is a weighting hyperparameter. 

F. IMPLEMENTATION DETAILS 

We extract 256  × 256 patches with a stride of 64 for the 
training. To optimize our model, we employ Adam optimizer. 
The window size of the fusion subnetwork is set to 8. The 
batch size is set to 4 and the learning rate is set at 2 × 10 −4 . 
Additionally, we set the hyperparameters of the Adam opti- 

mizer such that is 0.9, is 0.999 and is 10−8 . Our 
model is implemented using the PyTorch framework with 2 
NVIDIA GeForce 3090 GPUs for 200 epochs. We use the 

 score computed on validation set to save the best 

checkpoint. 

 

IV.  EXPERIMENTS 

A. EXPERIMENTAL SETTINGS 

Dataset. We train all the methods on two publicly datasets, 
Kalantari’s dataset  [17] and Hu’s dataset  [73]. Kalantari’s 
dataset consists of real-world scenario. It contains 74 sam- 
ples for training and  15 for testing. In each sample, three 
distinct LDR images are captured. The exposure biases for 

these captures are either {—2, 0, +2} or {—3, 0, +3}. On the 

other hand, Hu’s dataset is a synthetic dataset. The images in 
this dataset are captured at three exposure levels, specifically 

{—2, 0, +2}. For our experiments, we focus on the dynamic 

scene images from Hu’s dataset and select the 85 samples for 
training purposes and the remaining 15 samples for testing. To 
assess the generalization ability of our model, we also conduct 
evaluations on Sen’s dataset [35] and Tursun’s dataset [48] 
which do not have ground truth. 

Evaluation Metrics. We use PSNR, PSRN-µ, SSIM, SSIM- 

µ and HDR-VDP-2 [46] metrics for evaluation, where PSNR 

denotes linear domain and PSNR-µ represents tonemapped 

domain and the same goes for SSIM. 

B.  QUALITATIVE EVALUATIONS 

We evaluate the performance of the proposed method and 

compare it with several state-of-the-art methods, which con- 
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tains two patch-based methods and five deep learning-based 

methods: Kalantari [17], AHDRNet [75] , DeepHDR [61], 

NHDRRNet [76], ADNet [66] and HDR-GAN [62]. 

As illustrated in Figure  3  and 4, both  datasets 

include challenging samples with extensive foreground 

motions and over/under-exposed regions. Most 

competing methods yield ghosting artifacts in these areas 

because of large motion and occlusion. Kalantari’s method 

and DeepHDR attempt to align the images using optical 

flow and tomographies. However, due to the error-prone 

nature of these alignment methods, they fail to effectively 

handle background motion. This results in undesirable 

ghosting artifacts which is shown in Figure 3 and 4. 

Although AHDRNet and ADNet effectively miti- gates 

ghosting artifacts by exploiting spatial attention mech- 

anisms, it inevitably dampens some advantageous 

contextual information. Moreover, it struggles to 

reconstruct large-scale motion in over/under-exposed 

regions. These limitations are clearly shown in the 

highlighted regions of Figure 3 and 4. As for Tursun’s 

[48] and Sen’s [35] datasets, which do not have ground 

truth, visual comparisons are shown in Fig- ure 5. These 

comparisons reveal that most methods struggle to 

reconstruct large-scale saturated regions and motions. In 

Figure 5, as highlighted by the red block, other 

methods produce a noticeable halo effect around the sun, 

resulting in saturated ghosting artifacts. Similarly, Figure 5 

demonstrates persistent over-exposure issues across 

these methods. The proposed LACA and MSRSTB 

modules play important roles in resolving ghosting and 

saturated problems. The LACA module adaptively 

modulates the weights assigned to dif- ferent channels, 

thereby enabling a more sophisticated and effective 

equilibrium of information across channels. This 

dynamic weight strategy significantly alleviates motion 

blur and color saturation which improves the model 

performance. The MSRSTB module excels at integrating 

features extracted at various scales. The multi-scale 

Transformer component within it adaptively combines 

feature representations of mov- ing regions. It can handle 

motions from fine-grained local dis- placements to large-

scale global movements across multiple scales. 

Moreover, it dynamically fuses regions with different 

exposure levels, thereby reducing the saturation problem. 
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FIGURE 3.  Results of Kalantari’s dataset. 

 

TABLE 1.  The evaluation results on Kalantari’s [17] and Hu’s [73] datasets. The best and the second best results are highlighted in Bold and Underline, 

respectively. 

 

 Datasets      Models        Sen       Hu     Kalantari  DeepHDR  AHDRNet  NHDRR  HDR-GAN  ADNet    Ours     
 

Kalantari 

 

 

PSNR-μ 
PSNR-L 

SSIM-μ 
SSIM-L 

HDR-VDP-2 

 

35.79  

30.76  

0.9717 

0.9503 

57.05 

 

42.74  

41.22  

0.9877 

0.9848 

63.51 

 

41.65  

40.88  

0.9860 

0.9858 

64.90 

 

43.63  

41.14  

0.9900 

0.9862 

64.61 

 

42.41  

41.43  

0.9887 

0.9857 

61.21 

 

43.92  

41.57  

0.9905 

0.9865 

65.45 

 

43.76  

41.27  

0.9904 

0.9860 

64.21 

 

44.35  
42.20  

0.9916 

0.9889 

66.03 

 

Hu 

PSNR-μ 31.37 36.52 41.60 41.08 45.69 45.01 45.83 46.68 47.35 

PSNR-L 33.52 36.90 43.67 41.16 49.14 48.72 49.10 50.33 50.92 

SSIM-μ 0.9529 0.9823 0.9911 0.9868 0.9953 0.9941 0.9956 0.9906 0.9957 

SSIM-L 0.9632 0.9874 0.9937 0.9939 0.9976 0.9986 0.9980 0.9986 0.9990 

HDR-VDP-2 66.36 67.55 72.91 70.79 75.01 74.83 75.16 76.18 76.83 

40.95  

38.31  

0.9805 

0.9726 

59.38 
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FIGURE 4.  Results of Hu’s dataset. 

 

 

FIGURE 5.  Results of Tursun’s and Sen’s dataset.
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C.  QUANTITATIVE EVALUATIONS 

Table  1  displays  the  quantitative  evaluations  of  the  pro- 

posed method on two datasets. Remarkably, the proposed 

approach consistently outperforms existing  state-of-the-art 

(SOTA) methods across all five evaluation metrics for both 

datasets. Specifically, on Kalantari’s dataset [17], our method 

achieves  significant  improvements,  exceeding the  second- 

best methods by 0.43 dB and 0.63 dB in PSNR-μ and PSNR- 

L, respectively. Similarly, on Hu’s dataset [73], it demon- 

strates even more pronounced enhancements, outperforming 

the runner-up by 0.67 dB in PSNR-μ and 0.59 dB in PSNR- 

L. In terms of SSIM-L and SSIM-μ, our method also sig- 

nificantly surpasses the second-best methods on Kalantari’s 

and Hu’s dataset. Our method achieves the best HDR-VDP- 

2 of all the compared approaches. The proposed LACA and 

MSRSTB modules contribute significantly to the model’s 

performance. The LACA module adaptively adjusts channel 

weights, enabling a more refined balance of inter-channel 

information. This adaptive weighting mechanism effectively 

mitigates motion blur and color saturation issues, enhancing 

overall model performance. The MSRSTB module is de- 

signed to integrate multi-scale features efficiently. Its multi- 

scale Transformer component adaptively combines feature 

representations of moving regions, handling a wide range of 

motions from fine-grained local displacements to large-scale 

global movements. Additionally, it dynamically fuses regions 

with varying exposure levels, reducing saturation problems 

and further improving the model’s effectiveness. 

 

D. ABLATION STUDY 

To assess the efficacy of the proposed components within 
our model, we devise multiple variants. The ablation study 
proceeds through the comparison of these model variants, 

 

TABLE 2.  Ablation study on the network structure. 

 
Model PSNR-μ PSNR-L HDR-VDP-2 

Baseline 43.62 41.03 62.30 

Model1 43.85 41.43 64.97 

Model2 44.02 41.86 65.54 

Model3 44.27 42.12 65.96 

Ours 44.35 42.20 66.03 

 

aiming to isolate and quantify the individual contributions of 

each component. 

•   Baseline (AHDRNet). It is the vanilla AHDRNet. [75]. 

•   Model1. We add a LACA module to AHDRNet. 

•   Model2. Based on Model1, we replace the DRDB fusion 
module in AHDRNet with RSTB module in SwinIR 
[70]. 

•   Model3. Based on Model2, we replace the RSTB mod- 
ule with the proposed MSRSTB module. 

•   Ours. The full model  of the proposed method. Based 
Model3, we add perceptual loss to the model. 

LACA Module. In comparison with the Baseline presented 

in Table 2, Model 1 integrated with the LACA module demon- 

strates superior performance. It achieves a notable improve- 

ment, with a gain of 0.23 dB in PSNR-μ, 0.4 dB in PSNR-L, 

and 2.67 in HDR-VDP-2.This enhancement can be primarily 

attributed to the LACA module we proposed. It adaptively 

modulates the weights of different channels, which allows 

for a more sophisticated equilibrium of information across 

channels. By doing so, this adaptive weighting approach ef- 

fectively alleviates motion blur and color saturation problems, 

thereby enhancing the overall performance of the model. 

MSRSTB Module. As shown in Table 2, Model 3 which 

incorporates  the  MSRSTB  module  outperforms  Model   1 

significantly. Model 3 achieves PSNR-L of 44.27, PSNR- 

μ of 42.12 and HDR-VDP-2 of 65.96 compared to Model 

1’s 43.85, 41.43, and 64.97, respectively. This results in an 

increase of 0.69 in HDR-VDP-2, 0.69 in PSNR-μ, and 0.42 

in PSNR-L. When we replace the MSRSTB module with the 

RSTB module, the results decreases 0.25db, 0.26db and 0.45 

in terms of PSNR-L, PSNR-μ and HDR-VDP-2. It shows that 

the proposed MSRSTB module performs better than RSTB 

module. It is because the MSRSTB module is engineered 

to efficiently integrate multi-scale features. Its multi-scale 

Transformer component adeptly combines feature represen- 

tations of moving regions, effectively managing motions that 

range from minute local displacements to extensive global 

movements. Moreover, by dynamically fusing regions with 

different exposure levels, the MSRSTB module mitigates 

saturation issues, thereby enhancing the model’s overall ef- 

fectiveness. 

Loss function. To validate the efficacy of the perceptual 

loss, we train the model in two scenarios: with and without the 

perceptual loss term. The experimental results as presented 

in the Table  2  clearly  demonstrate  that  incorporating  the 
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perceptual loss significantly enhances the performance of our 

proposed model. 

 
V.  CONCLUSION 

In this paper, we introduce two noveld modules. The LACA 

module adaptively modulates channel-wise weights across 

multiple scales, precisely balancing information among chan- 

nels. This effectively suppresses ghosting artifacts and re- 

duces color saturation, enhancing feature representation for 

HDR fusion. The MSRSTB leverages a multi-scale Trans- 

former architecture to offer a large receptive field and dy- 

namic weighting. It manages diverse motion patterns and 

integrates features in a coarse-to-fine hierarchical manner, 

efficiently handling regions with varying exposures. Con- 

sequently, it significantly reduces saturation and ghosting, 

enabling high-quality HDR image reconstruction in challeng- 

ing  scenarios. We  also  conduct comprehensive qualitative 

and quantitative evaluations which confirm that our proposed 

modules  outperform  existing  state-of-the-art  methods  and 

improve the quality of HDR reconstruction. 
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