z"-.l turnitin Page 1 of 14 - Cover Page Submission ID trn:oid:::3618:99936562

24k 12
=117 m

Hierarchical Adaptive Attention and Multi-Sc-
ale for Ghost-Free HDR Imaging

€ No repository

Document Details

Submission ID

trn:oid:::3618:99936562 12 Pages

Submission Date 7,590 Words

Jun 9, 2025, 9:25 AM GMT+8
42,737 Characters

Download Date

Jun 9, 2025, 9:28 AM GMT+8

File Name

917816300296732672_iF#; i&@_Hierarchical Adaptive Attention and Multi-Scale Transformer for ....docx

File Size

652.4 KB

z'l—.l turnltln Page 1 of 14 - Cover Page Submission ID trn:oid:::3618:99936562



z'l-.l turnitin' Page 2 of 14 - Al Writing Overview Submission ID trn:oid:::3618:99936562

O% d e-l-ec-l-ed as A I Caution: Review required.

The percentage indicates the combined amount of likely Al-generated text as It is essential to understand the limitations of Al detection before making decisions

well as likely Al-generated text that was also likely Al-paraphrased. about a student’s work. We encourage you to learn more about Turnitin’s Al detection
capabilities before using the tool.

Detection Groups

0 Al-generated only 0%
Likely Al-generated text from a large-language model.

ée 0 Al-generated text that was Al-paraphrased 0%
Likely Al-generated text that was likely revised using an Al-paraphrase tool
or word spinner.

Disclaimer

Our Al writing assessment is designed to help educators identify text that might be prepared by a generative Al tool. Our Al writing assessment may not always be accurate (it may misidentify
writing that is likely Al generated as Al generated and Al paraphrased or likely AI generated and Al paraphrased writing as only Al generated) so it should not be used as the sole basis for
adverse actions against a student. It takes further scrutiny and human judgment in conjunction with an organization's application of its specific academic policies to determine whether any
academic misconduct has occurred.

Frequently Asked Questions

How should I interpret Turnitin's AI writing percentage and false positives?

The percentage shown in the AT writing report is the amount of qualifying text within the submission that Turnitin's Al writing

detection model determines was either likely Al-generated text from a large-language model or likely Al-generated text that was '
likely revised using an Al-paraphrase tool or word spinner.

False positives (incorrectly flagging human-written text as Al-generated) are a possibility in Al models.

Al detection scores under 20%, which we do not surface in new reports, have a higher likelihood of false positives. To reduce the
likelihood of misinterpretation, no score or highlights are attributed and are indicated with an asterisk in the report (*%).

The Al writing percentage should not be the sole basis to determine whether misconduct has occurred. The reviewer/instructor
should use the percentage as a means to start a formative conversation with their student and/or use it to examine the submitted
assignment in accordance with their school's policies.

What does 'qualifying text' mean?

Our model only processes qualifying text in the form of long-form writing. Long-form writing means individual sentences contained in paragraphs that make up a
longer piece of written work, such as an essay, a dissertation, or an article, etc. Qualifying text that has been determined to be likely Al-generated will be
highlighted in cyan in the submission, and likely Al-generated and then likely Al-paraphrased will be highlighted purple.

Non-qualifying text, such as bullet points, annotated bibliographies, etc., will not be processed and can create disparity between the submission highlights and the
percentage shown.

z"j turnltln Page 2 of 14 - Al Writing Overview Submission ID trn:oid:::3618:99936562



Page 3 of 14 - Al Writing Submission

7] turnitin

Submission ID trn:oid:::3618:99936562

Hierarchical Adaptive Attention and Multi-Scale
Transformer for Ghost-Free HDR Imaging

ZEBIN WEN?, SHU GONG?

1Guangdong University of Science and Technology, Dong Guan 523000 CHINA (e-mail: 2079331865@qq.com)
2Guangdong University of Science and Technology, Dong Guan 523000 CHINA (e-mail: @qg.com)

Corresponding author: GONG SHU (e-mail: @qg.com).

This work was supported in part by the Ministry of Education of China under Grant 23JDSZ3152.

ABSTRACT High Dynamic Range (HDR) imaging synthesizes vivid images by merging multiple low
dynamic range (LDR) images of different exposures. Nevertheless, in dynamic scenes, object motion
or camera commonly introduce ghosting artifacts, severely degrading image quality. Although numerous
DNN-based methods have been proposed to address this issue, existing solutions remain unsatisfactory.
Spatial attention-based approaches often struggle to cope with complex scenarios characterized by random
luminance fluctuations and large-scale motion, while conventional HDR deghosting models that rely on
CNN during the fusion stage are hampered by limited receptive fields, lack of dynamic weighting and the
absence of multi-scale capabilities.To overcome these limitations, we propose two innovative modules. The
Luminance Adaptive Channel Attention (LACA) module dynamically and adaptively modulates channel-
wise weights across multiple scales. This enables precise information balancing among channels, effectively
suppressing ghosting artifacts and alleviating color saturation issues, thereby yielding refined feature
representations that enhance the HDR fusion process.The Multi-Scale Residual Swin Transformer Block
(MSRSTB), empowered by a multi-scale Transformer architecture, provides an expansive receptive field
and dynamic weighting mechanism. It adeptly handles diverse motion patterns, integrating features in a
hierarchical, coarse-to-fine manner, and efficiently manages regions with varying exposure levels. As a
result, it significantly reduces saturation artifacts and mitigates ghosting, facilitating high-quality HDR
image reconstruction in challenging scenarios. Comprehensive qualitative and quantitative evaluations
emonstrate that our proposed modules outperform state-of-the-art methods.

INDEX TERMS High Dynamic Range imaging, Ghosting artifacts, Saturation, Luminance Adaptive Chan-
nel Attention, Multiple Scales, Multi-Scale Residual Swin Transformer Block, Coarse-to-Fine, Expansive

Receptive Field, Dynamic Weighting Mechanism.

I. INTRODUCTION

NATURAL scenes exhibit a vast spectrum of illumination,
yet standard digital camera sensors are only capable of
capturing a restricted dynamic range. Consequently,
camera-captured images frequently contain saturated or un-
derexposed areas, resulting in poor visual quality due to sig-
nificant loss of detail. High Dynamic Range (HDR) imaging
has emerged as a solution to these constraints, enabling the
display of more detailed visual content. A typical approach
in HDR imaging involves fusing a sequence of Low Dy-
namic Range (LDR) images with varying exposures. While
this method can generate high-quality HDR images in static
scenes with stationary cameras, it often produces ghosting ar-
tifacts when dealing with moving objects or images captured
by handheld cameras.
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Currently, numerous solutions have been put forward to
tackle this issue. Rejection-based methods [1]-[4], [87]-
[89] are capable of rapidly detecting misaligned regions and
eliminating them during the image fusion process. While
these methods demonstrate relatively good performance in
predominantly static scenes, they still struggle with ghosting
artifacts when dynamic objects cannot be accurately detected.
Alignment-based methods adopt an explicit strategy to align
non-reference images with a pre-selected reference image.
These methods either fail to handle complex object motions
effectively or are highly error-prone when dealing with mo-
tion and occlusion. Patch-based methods aim to generate
pure static low dynamic range images from dynamic input
images. However, it is characterized by high computational
complexity and requires a longer time for scene inference.
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The advent of Deep Neural Networks (DNNs) has spurred
numerous studies that utilize Convolutional Neural Networks
(CNNs) to directly model the complex mapping between Low
Dynamic Range (LDR) and High Dynamic Range (HDR)
images. These models [17], [61] commonly first align LDR
images using optical flow or homography. However, such
alignment methods are error-prone which leads to ghosting
artifacts in the presence of complex foreground motion. Con-
versely, the attention-based models [75], [78] mitigate motion
and saturation issues through spatial attention mechanisms.
Building on AHDRNet, subsequent works [66], [77], [82],
[83] have aimed to further eliminate ghosting artifacts. The
spatial attention modules in these works generate attention
maps, which modulate non-reference features by element-
wise multiplication. This mechanism selectively suppresses
motion and saturation and accentuates informative content
which improves HDR image quality.

However, existing spatial attention-based methods mainly
focus on spatial-level suppression and enhancement, which
may fall short in handling complex scenarios with randomly
varying luminance and large-scale motion. In such challeng-
ing conditions, the ghosting artifacts and saturation issues
in HDR imaging persist due to the inability to effectively
manage the information flow across different channels in a
multi-scale context. To address these limitations, we propose
the Luminance Adaptive Channel Attention (LACA) module.
Unlike traditional approaches, LACA adaptively modulates
the weights of different channels in a multi-scale and dynamic
manner. By doing so, it can precisely capture and balance the
information from various channels, even under extreme lumi-
nance changes and significant motion. This multi-scale dy-
namic weight adjustment strategy not only suppresses ghost-
ing artifacts more effectively but also mitigates saturation
issues. As a result, it provides a more refined feature repre-
sentation, which is highly beneficial for the fusion stage in
HDR reconstruction. This ensures that the final HDR images
exhibit higher quality with enhanced details and fewer visual
artifacts.

Moreover, existing HDR deghosting models that predom-
inantly rely on CNNs in the fusion stage are constrained
by their limited receptive fields and are devoid of dynamic
weighting mechanisms and multi-scale capabilities. As a re-
sult, they struggle to effectively fuse features from motion-
affected and saturated regions in a coarse-to-fine manner,
particularly in complex scenarios with large luminance varia-
tions and large-scale motions.To overcome these limitations,
we introduce the Multi-Scale Residual Swin Transformer
Block (MSRSTB). Leveraging the power of a multi-scale
Transformer architecture, MSRSTB offers an extensive re-
ceptive field which enables the model to capture global con-
text while also attending to fine-grained details. The dynamic
weighting scheme within the MSRSTB adaptively adjusts the
importance of different features across multiple scales, allow-
ing it to handle a wide range of motions, from subtle local
displacements to large-scale global movements. This multi-
scale and dynamic feature integration mechanism enables the
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MSRSTB to more effectively manage regions with varying
exposure levels, reducing saturation artifacts and mitigating
ghosting issues. By fusing features in a hierarchical, coarse-
to-fine fashion, theMSRSTB provides a more comprehensive
and accurate representation of the scene which is crucial for
the high-quality reconstruction of HDR images even in the
most challenging scenarios.

In summary, we introduce the LACA and MSRDTB mod-
ules which are designed to dynamically process motion-
affected and saturated regions with multi-scale capabilities
and a large receptive field. These modules effectively handle
ghosting artifacts and enable superior fusion of HDR images,
as shown in Figure 1. In conclusion, the principal contribu-
tions of this paper can be summarized as follows:

- We propose the Luminance Adaptive Channel Atten-
tion (LACA) module and the Multi-Scale Residual
Swin Transformer Block (MSRSTB). The LACA mod-
ule dynamically and adaptively modulates channel-wise
weights across multiple scales which effectively sup-
pressing ghosting artifacts and alleviating color satura-
tion under extreme luminance variations and significant
motions. This results in refined feature representations
which are highly conducive to the fusion stage.

- The proposed MSRSTB is powered by a multi-scale
Transformer architecture which offers an expansive re-
ceptive field. Its dynamic weighting mechanism adap-
tively integrates features across various scales enabling
it to handle diverse motion patterns ranging from fine-
grained local displacements to large-scale global move-
ments. By fusing features in a hierarchical and coarse-to-
fine manner, the MSRSTB effectively manages regions
with different exposure levels, reducing saturation and
ghosting issues, and thus facilitating high-quality HDR
image reconstruction even in complex scenarios.

- Extensive qualitative and quantitative experiments con-
ducted on two datasets with ground truth and two with-
out ground truth demonstrate the superior performance
of our proposed modules, validating their effectiveness
and robustness.

ll. RELATED WORK

Existing HDR deghosting algorithms are primarily classified
into three categories: image registration methods, motion
rejection methods and CNN-based methods.

Image registration methods. Bogoni employed optical
flow to estimate motion vectors and utilized specific param-
eters to warp pixels within the exposure images. Kang et al.
first transformed LDR images intensities into the luminance
domain by leveraging exposure time information. Then, they
estimated optical flow to merge these LDR images. Zim-
mer et al. leveraged the energy-based optic flow method to
align the LDR images in order to achieve more accurate
alignment results Sen et al. presented a new patch-based
energy-minimization method, which combines alignment and
reconstruction through joint optimization. Hu et al. carried
out alignment of images within an HDR image stack. This
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FIGURE 1. The proposed approach is capable of efficiently eliminating
ghosting artifacts and delivers excellent visual quality.

process propagates intensity and gradient information on the
transformed domain. Hafner et al. put forward an energy
minimization approach that computes HDR irradiance and
displacement fields simultaneously. Although image registra-
tion methods generate dense matching, they still suffer from
large motion and occlusion. In addition, they exhibit high
computational complexity and require more time for scene
inference.

Motion rejection methods. Motion rejection methods first
perform global registration on the LDR images and detect
motion regions, then they reject the misalignment pixels and
merge static regions to reconstruct HDR images. Grosch et
al. [4] identified motion regions and estimated an error which
was based on alignment color differences to generate ghost-
free HDR images. Pece et al. [27] used the median threshold
bitmap of the LDR images to detect and reject motion areas.
Jacobs et al. marked misaligned locations through the vari-
ance of weighted intensity. Zhang et al. [59] calculated a mo-
tion weighting map using quality measures based on image
gradients. Moreover, several methods [32], [58] utilized rank
minimization approach to identify motion regions to generate
an HDR image without ghosted regions. Unfortunately, these
approaches often exhibit significant limitations, resulting in
the lack of contents. This is attributable to the fact that valu-
able information is irretrievably lost during the pixel rejection
phase.

CNN-based method. Kalantari et al. [17] first performed
optical flow alignment then employed a convolutional neural
network to merge LDR images. Wu et al. [61] utilized an
image homography transformer to account for camera motion
by framing the HDR imaging as an image translation task.
Yan et al. [75] developed an attention module to suppress
motion and saturation in order to reconstruct ghost-free HDR
images. Yan et al. [6] used multi-scale network to refine the
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generated results. Yan et al. [76] designed a nonlocal block to
capture the constraints of the local receptive field for global
HDR merging. Niu et al. [62] introduced HDR-GAN which
is leveraging Generative Adversarial Networks to synthesize
missing content.

1. METHOD
A. PROBLEM DEFINITION

Given a set of Low-Dynamic-Range (LDR) images captured
from a dynamic scene with varying exposure levels, the ob-
jective istoreconstruct a High-Dynamic-Range (HDR) image
H that is precisely aligned with a designated reference image
. In this paper, the intermediate LDR image is selected
as the reference. Specifically, we comprise three LDR
images (T J-I+ ) and designate' as the reference image

Following previous work [17], we construct a linearized

image . forevery using gamma correction as follows
H=L /1 1)
where indicates the exposure time of LDR image.

denotes the gamma correction parameter and we set | to
2.2. Subsequently, we combine, and| along the
channel dimension resulting in a 6-channel input denoted
as XTI/ Giventheinputs X;, Xz and X3, our model

generates an HDR image H through the following process:

P~ b v (2)

denotes the HDR deghosting network, | is the
parameters of the network.

where

B. OVERVIEW

The proposed method aimsto remove the ghosted regions and
construct a high-quality HDR image. As shown in Figure 2 ,
our proposed network is composed of two subnetworks, a dy-
namic alignment subnetwork and a multi-scale Transformer-
based fusion subnetwork. The alignment network is to sup-
press moving regions, and the fusion subnetwork aims to
produce details for the degraded regions. The alignment
subnetwork incorporates a dynamic weight motion removal
mechanism. This mechanism effectively eliminates motion
in non-reference images and enhances feature representation
simultaneously, thereby suppressing saturated regions. We
employ a multi-scale Transformer-based subnetwork to ef-
fectively integrate features extracted at different scales. The
multi-scale Transformer module adaptively integrates feature
representations of moving regions, ranging from fine-grained
local mations to large-scale global displacements across mul-
tiple scales. Additionally, it dynamically fuses regions with
varying exposures to mitigate the saturation problem.

C. ALIGNMENT SUBNETWORK

Feature Extraction. We obtain three 6-channel LDR images
A7-123 , then we extract features Fui  of using

feature extraction layersjy. )

A PN ©)
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FIGURE 2. The framework of the proposed method.

Note that Femeg “ "

Spatial Attention. Inspired by [75], in order to alleviate
the ghosting artifacts between the reference and the non-
reference images, the non-reference features Farfi=13

are processed with the reference feature map Fea; through
a series of specialized spatial attention modules denoted as

,{QQ=;3 . It should be noted that .. is the
extracted featuresfii, from X,. The attention map
A (F=L3) is calculated as follows:

A @
We apply sigmoid function to constrain the values of the
attention map within the range of 0 to 1. Subsequently, we per-
form an element-wise multiplication operation between the

feature maps Fgf;=13 of the non-reference images and
their corresponding estimated attetion maps: . Finally, we

obtain the refined feature maps [ for each non-

reference image.

Ty A

(®)

where | represents the element-wise multiplication. As
shown in 1, this mechanism enables the precise identification
of spatial inconsistencies, which is fundamental for fusion
stage.
LACA Module. Even though spatial attention demonstrates
remarkable effectiveness in reducing the misalignment dis-
crepancies between the reference and non-reference images,
in scenes with intricate luminance and color variations, spatial
attention fails to fully harness channel information, prevent-
ing it from effectively removing artifacts in complex motion
regions and thus leaving ghosting artifacts. To solve this
problem, we design a Luminance Adaptive Channel Attention
(LACA) module to adaptively adjust the weight of differ-
ent channel which can more effectively balance information
from different channels, mitigating the motion and saturation
problem. The LACA module consists of multi-scale squeeze
submodule, adaptive excitation submodule and reweighting
submodule.

In the mylti-scale squeeze submodule, given an input fea-

ture map Jewe <" we first perform global pooling
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with different kernel sizes to obtain multi-scale global feature.

For each channel c in the input feature map? we
calculate the global feature as follows:
Y (6)

where ; is the global feature of the c-th channel under
the m-th pooling operation. This results in N sets of global
features Z n-N forpaad X 2N\ . We then concatenate
these multi-scale global features to get Z:

@)

where Z ;
We then use two adaptive fully-connected layers to learn
the channel weights. The first fully-connected layer is defined

as:
F2e8 6)
where 1 =; © ", and the Mish function is formulated as:
P, = ER P T ©
The second fully-connected layer is defined as:
=) (10)

where T g; “ and: isthe sigmoid activation

function.
Subsequently, we perform a channel-wise multiplication of

the learned channel weights with the input feature and get the

output feature :

X et (11)
- [ g _

where _X'm S and represents the -th non

reference feature.
After the LACA module, we get I

which contains harmless information. Then we concatenate
I e andl for fusion subnetwork.

TS (1)

and ]  feature
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D. FUSION SUBNETWORK

Inspired by SWIN-IR [70], the fusion subnetwork
con- sists of several Multi-Scale Residual Transformer
Blocks (MSRSTBs) to dynamically integrates features
ranging from fine-grained local motions to large-scale
global displace- ments across multiple scales. The input
feature map F = "% is first embedded into token

embeddings, then we adopt several MSRSTBs and a
convolution block to recon- struct an HDR image without
motion and saturation.

MSRSTB. To further boost multi-scale feature
extraction capabilities, we present an innovative approach
to reconstruct ghost-free HDR images in a distinct way.
We first generate multi-scale. ,¢ and ' matrices by

applying convolutional layers with different kernel sizes
and strides to the input feature map. For the -th scale

level (j L.\ ), the query matrix is obtained as:

GETTTD 9
where (aai) epresents the convolutional operation, | is
the weight matrix at the -th scale, is the stride and
is the kernel size. Similarly, the key matrix. and value
matrix | for the -th scale level is generated by:
L= NTETD (14)
=70 (15)

Subsequently, we calculate the intra-scale attention
for each scale level

e N
A == & +B (16)

L )
where is a learnable position encoding, ;| is the

dimension of We also adopt shifted windows

mechanism. After that, we calculate the cross-scale
attention scores for each scale with respect to all other
scales (:z; )to capture cross-scale features:

(@9
AT = —_ 45 (18)
‘ J
T=LT as)
Then, we aggregate the intra-scale and cross-scale
attention outputs for each scale
(20)

RICTTTT

where » and » are weighting hyperparameters.

Finally, we use bilinear interpolation to upsample
the lower-scale features. Then, we concatenate the
upsampled features along the channel dimension:

2P

(21)
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Lastly, we use convolutional layers to obtain the final
output feature:

D (22)

E. TRAINING LOSS

As HDR images are presented in the tonemapped domain, we
adopt the . -law [17] to transform the images from the linear

domain to the tonemapped domain:
(12
T@:"'@a_ﬂ)

io(1+13

is the tonemapped function and we set ;=311

(23)

where T3

Considering the predicted result * and the ground truth
, we calculate the tonemapped per-pixel loss and perceptual
loss as described:

= s e e L L

where | represents the feature extracted from VGGL19,
»=001 Iis aweighting hyperparameter.

(24)

F. IMPLEMENTATION DETAILS

We extract 256 x 256 patches with a stride of 64 for the
training. To optimize our model, we employ Adam optimizer.
The window size of the fusion subnetwork is set to 8. The
batch size is set to 4 and the learning rate is set at 2 x 10 ™.
Additionally, we set the hyperparameters of the Adam opti-

mizer such that" is 0.9, is 0.999 and' is 10 . Our
model is implemented using the PyTorch framework with 2
NVIDIA GeForce 3090 GPUs for 200 epochs. We use the
ES\R—¢ score computed on validation set to save the best

checkpoint.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS

Dataset. We train all the methods on two publicly datasets,
Kalantari’s dataset [17] and Hu’'s dataset [73]. Kalantari's
dataset consists of real-world scenario. It contains 74 sam-
ples for training and 15 for testing. In each sample, three
distinct LDR images are captured. The exposure biases for

these captures are either {(—2, 0, +2} or {—3, 0, +3}. On the
other hand, Hu’s dataset is a synthetic dataset. The images in
this dataset are captured at three exposure levels, specifically
{—2, 0, +2}. For our experiments, we focus on the dynamic

scene images from Hu's dataset and select the 85 samples for
training purposes and the remaining 15 samples for testing. To
assess the generalization ability of our model, we also conduct
evaluations on Sen’s dataset [35] and Tursun’s dataset [48]
which do not have ground truth.

Evaluation Metrics. We use PSNR, PSRN-|, SSIM, SSIM-
p and HDR-VDP-2 [46] metrics for evaluation, where PSNR
denotes linear domain and PSNR-u represents tonemapped
domain and the same goes for SSIM.

B. QUALITATIVE EVALUATIONS

We evaluate the performance of the proposed method and
compare it with several state-of-the-art methods, which con-
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tains two patch-based methods and five deep learning-based
methods: Kalantari [17], AHDRNet [75] , DeepHDR [61],

NHDRRNet [76], ADNet [66] and HDR-GAN [62].

As llustrated in Figure 3 and 4, both datasets
include challenging samples with extensive foreground
motions and over/under-exposed regions.  Most
competing methods yield ghosting artifacts in these areas
because of large motion and occlusion. Kalantari’'s method
and DeepHDR attempt to align the images using optical
flow and tomographies. However, due to the error-prone
nature of these alignment methods, they fail to effectively
handle background motion. This results in undesirable
ghosting artifacts which is shown in Figure 3 and 4.
Although AHDRNet and ADNet effectively miti- gates
ghosting artifacts by exploiting spatial attention mech-
anisms, it inevitably dampens some advantageous
contextual information. Moreover, it struggles to
reconstruct large-scale motion in over/under-exposed
regions. These limitations are clearly shown in the
highlighted regions of Figure 3 and 4. As for Tursun’s
[48] and Sen’s [35] datasets, which do not have ground
truth, visual comparisons are shown in Fig- ure 5. These
comparisons reveal that most methods struggle to
reconstruct large-scale saturated regions and motions. In
Figure 5, as highlighted by the red block, other
methods produce a noticeable halo effect around the sun,
resulting in saturated ghosting artifacts. Similarly, Figure 5
demonstrates persistent over-exposure issues across
these methods. The proposed LACA and MSRSTB
modules play important roles in resolving ghosting and
saturated problems. The LACA module adaptively
modulates the weights assigned to dif- ferent channels,
thereby enabling a more sophisticated and effective
equilibrium of information across channels. This
dynamic weight strategy significantly alleviates motion
blur and color saturation which improves the model
performance. The MSRSTB module excels at integrating
features extracted at various scales. The multi-scale
Transformer component within it adaptively combines
feature representations of mov- ing regions. It can handle
motions from fine-grained local dis- placements to large-
scale global movements across multiple scales.
Moreover, it dynamically fuses regions with different
exposure levels, thereby reducing the saturation problem.

zl'-_l turnitin Page 8 of 14 - Al Writing Submission

Submission ID trn:oid:::3618:99936562

Submission ID trn:oid:::3618:99936562



z'l-.l turnitin  Page 9 of 14 - Atwriting Submission Submission ID tr:oid::3618:99936562

LDR patches

=

Kalantari DeepHDR AHDR NHDRR HDR-GAN ADNET Ours GT

FIGURE 3. Results of Kalantari’s dataset.

TABLE 1. The evaluation results on Kalantari’'s [17] and Hu’s [73] datasets. The best and the second best results are highlighted in Bold and Underline,
respectively.

Datasets Models | Sen Hu Kalantari_ DeepHDR AHDRNet NHDRR HDR-GAN ADNet Ours

PSNR-y 40.95 3579 42.74 41.65 43.63 42.41 43.92 4376 4435
PSNR-L 38.31 30.76 41.22 40.88 41.14 41.43 41.57 41.27 42.20
Kalantari SSIM-y 0.9805 0.9717 0.9877 0.9860 0.9900 0.9887 0.9905  0.9904 0.9916
SSIM-L 09726 0.9503 0.9848 0.9858 0.9862 0.9857 0.9865  0.9860 0.9889

HDR-VDP-2 59.38 57.05 63.51 64.90 64.61 61.21 65.45 64.21 66.03
PSNR-p 31.37 36.52 41.60 41.08 45.69 45.01 45.83 46.68 47.35

PSNR-L 33,52 36.90 43.67 41.16 49.14 48.72 49.10 50.33 50.92

Hu SSIM-p - [0.9529 0.9823 0.9911 0.9868 0.9953 0.9941 0.9956  0.9906 0.9957
SSIM-L  [0.9632 0.9874 0.9937 0.9939 0.9976 0.9986 0.9980  0.9986 0.9990
HDR-VDP-2| 66.36 67.55 72.91 70.79 75.01 74.83 75.16 76.18 76.83
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FIGURE 4. Results of Hu’s dataset.
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FIGURE 5. Results of Tursun’s and Sen’s dataset.
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C. QUANTITATIVE EVALUATIONS

Table 1 displays the quantitative evaluations of the pro-
posed method on two datasets. Remarkably, the proposed
approach consistently outperforms existing state-of-the-art
(SOTA) methods across all five evaluation metrics for both
datasets. Specifically, on Kalantari’'s dataset [17], our method
achieves significant improvements, exceeding the second-
best methods by 0.43 dB and 0.63 dB in PSNR-p and PSNR-
L, respectively. Similarly, on Hu’'s dataset [73], it demon-
strates even more pronounced enhancements, outperforming
the runner-up by 0.67 dB in PSNR-p and 0.59 dB in PSNR-
L. In terms of SSIM-L and SSIM-y, our method also sig-
nificantly surpasses the second-best methods on Kalantari’s
and Hu'’s dataset. Our method achieves the best HDR-VDP-
2 of all the compared approaches. The proposed LACA and
MSRSTB modules contribute significantly to the model’s
performance. The LACA module adaptively adjusts channel
weights, enabling a more refined balance of inter-channel
information. This adaptive weighting mechanism effectively
mitigates motion blur and color saturation issues, enhancing
overall model performance. The MSRSTB module is de-
signed to integrate multi-scale features efficiently. Its multi-
scale Transformer component adaptively combines feature
representations of moving regions, handling a wide range of
motions from fine-grained local displacements to large-scale
global movements. Additionally, it dynamically fuses regions
with varying exposure levels, reducing saturation problems
and further improving the model’s effectiveness.

D. ABLATION STUDY

To assess the efficacy of the proposed components within
our model, we devise multiple variants. The ablation study
proceeds through the comparison of these model variants,
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TABLE 2. Ablation study on the network structure.

Model PSNR-y PSNR-L HDR-VDP-2
Baseline 43.62 41.03 62.30
Modell 43.85 41.43 64.97
Model2 44.02 41.86 65.54
Model3 44.27 42.12 65.96

Ours 44.35 42.20 66.03

aiming to isolate and quantify the individual contributions of
each component.

- Baseline (AHDRNet). It is the vanilla AHDRNet. [75].

- Modell. We add a LACA module to AHDRNet.

- Model2. Based on Modell, we replace the DRDB fusion
module in AHDRNet with RSTB module in SwinIR
[70].

- Model3. Based on Model2, we replace the RSTB mod-
ule with the proposed MSRSTB module.

- Ours. The full model of the proposed method. Based
Model3, we add perceptual loss to the model.

LACA Module. In comparison with the Baseline presented
in Table 2, Model 1 integrated with the LACA module demon-
strates superior performance. It achieves a notable improve-
ment, with a gain of 0.23 dB in PSNR-y, 0.4 dB in PSNR-L,
and 2.67 in HDR-VDP-2.This enhancement can be primarily
attributed to the LACA module we proposed. It adaptively
modulates the weights of different channels, which allows
for a more sophisticated equilibrium of information across
channels. By doing so, this adaptive weighting approach ef-
fectively alleviates motion blur and color saturation problems,
thereby enhancing the overall performance of the model.

MSRSTB Module. As shown in Table 2, Model 3 which
incorporates the MSRSTB module outperforms Model 1
significantly. Model 3 achieves PSNR-L of 44.27, PSNR-
u of 42.12 and HDR-VDP-2 of 65.96 compared to Model
1's 43.85, 41.43, and 64.97, respectively. This results in an
increase of 0.69 in HDR-VDP-2, 0.69 in PSNR-u, and 0.42
in PSNR-L. When we replace the MSRSTB module with the
RSTB module, the results decreases 0.25db, 0.26db and 0.45
in terms of PSNR-L, PSNR-u and HDR-VDP-2. It shows that
the proposed MSRSTB module performs better than RSTB
module. It is because the MSRSTB module is engineered
to efficiently integrate multi-scale features. Its multi-scale
Transformer component adeptly combines feature represen-
tations of moving regions, effectively managing motions that
range from minute local displacements to extensive global
movements. Moreover, by dynamically fusing regions with
different exposure levels, the MSRSTB module mitigates
saturation issues, thereby enhancing the model's overall ef-
fectiveness.

Loss function. To validate the efficacy of the perceptual
loss, we train the model in two scenarios: with and without the
perceptual loss term. The experimental results as presented
in the Table 2 clearly demonstrate that incorporating the
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perceptual loss significantly enhances the performance of our
proposed model.

V. CONCLUSION

In this paper, we introduce two noveld modules. The LACA
module adaptively modulates channel-wise weights across
multiple scales, precisely balancing information among chan-
nels. This effectively suppresses ghosting artifacts and re-
duces color saturation, enhancing feature representation for
HDR fusion. The MSRSTB leverages a multi-scale Trans-
former architecture to offer a large receptive field and dy-
namic weighting. It manages diverse motion patterns and
integrates features in a coarse-to-fine hierarchical manner,
efficiently handling regions with varying exposures. Con-
sequently, it significantly reduces saturation and ghosting,
enabling high-quality HDR image reconstruction in challeng-
ing scenarios. We also conduct comprehensive qualitative
and quantitative evaluations which confirm that our proposed
modules outperform existing state-of-the-art methods and
improve the quality of HDR reconstruction.
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