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In this Supplemental Material, we provide the following results. Section 1 gives the calculations
of distances and similarity matrix. Section 2 gives the theoretical proof for calculating the first
three moments of 7, under null hypothesis. In Section 3, the quantile-quantile plot is used to
examine the approximate accuracy of Pearson type III distribution. In Section 4, we provide the

simulation result for scenarios of binary phenotypes.

1 Calculation of distances and similarity matrix

In this section, we briefly introduce the distance used in this paper for measuring the similarity
between samples in the context of microbiome data and the detailed calculation for the similarity
matrix.

When phylogeny tree information is available, tree-based weighted UniFrac distance is the most
commonly used distance measure[l]. Let p; and p;; denote the proportion of the OTUs descending
from branch [(I = 1, 2..., L) for samples i and j(i, 7 = 1,2, ...,n), respectively. The weighted UniFrac

distances d;;; between samples ¢ and j are defined as

diiq = Zlel bi(pa +pjl)a‘pil - pjl|
l]? -
S bi(pa + pin)°

here a € [0,1]. We use o = 0.5 throughout this paper, because it is considered more robust

compare to other value of a[l]. Another commonly used tree based distance is the unweighted

UniFrac distance[2], which is defined as

g = Zlel bill(py > 0) — I(pj; > 0)]
) ZlL:1 bl

here I(.) is an indicator function. The unweighted UniFrac distance complete ignore the abundance

d

9

of OTUs and only compare the presence/absence information.

Bray-Curtis distance[3] is the most commonly used distance without using the phylogeny tree
information. Let p;, and pj, denote the abundance of OTU k(k = 1,2,...K) in samples ¢ and
j(i,5 = 1,2,...,n), respectively. Bray-Curtis distance between sample j and k, denote as d;;2, is

defined as «
Ao — > ket [Pk — P
5,3 — K .
> o1 (Pik + Djk)
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Each distance has its features, and the choice of distance metrics will affect the final power of the
association test. Throughout the paper we use the aforementioned three distance because they are
the most commonly used. Denote D = (d;;)nx, the distance matrix regarding the K dimensional
variable among the n subjects calculated based on the distances mentioned above, where d;; is the
distance between the ¢th and jth subject, 7,7 = 1,2,---n. Then the similarity matrix denotes as

S = (Sij)nxn can be calculated as s;; = —%dfj.

2 P-value calculation of 7},

Normally, the permutation procedure is needed for PERMANOVA-based method, which is compu-
tationally expensive and generates different results run multiple times on the same dataset. This
variability arises due to their reliance on generating random samples to compute permutation null
distributions. E-MANOVA can completely avoid intensive computation procedure and generate the
same result with the same data.

Recall that the E-MANOVA test statistics with fix d and r in main text section 2.3 is

Ta, =tr{(Hx — Hx,)(K")"}.
It can further be rewritten in the form of
Tdﬂn = t?"(AW),

where A = Hx — Hx, and W = H(K*)"H. It is easily to be proven since H is a centering
matrix and all the columns of X are already centered, thus HX = X and H X, = X5. To avoid
the potential computational burden, we adopt an alternative strategy based on the result derived
in [4] that can directly calculate the moments of permuted null distribution without generating its
null distribution and approximating the empirical null distribution with a known distribution that
matches its moments. The following lemma 1 proves the properties of matrix W and Theorem 1

establishes the first three moments of 7}, without using permutation.

Lemma 1: Denote E;;, i # j as a n x n matriz exchanging ith row and jth row of identity matriz
I,. Then,
W\, = E;WE;y,
here W‘i<—>j indicates W switching ith sample and jth samples.
Proof: Since the elements in S, denote as s;;, represent the similarity between ith and jth subjects.
Thus, it is easy to see that

S|

4>

j = EijSEij,Z',j = 1,27'" , N.
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Since H is a symmetric matrix, we have

HSH can be decomposed as HSH = QAQ" where Q is an orthogonal matrix whose columns are
the orthogonal eigenvectors of HSH , and A is a diagonal matrix whose entries are the eigenvalues
of HSH. We have

E ;HSHE;; = E;;QAQ"E;;.

The matrix K* is obtained by K* = QA*Q', with A* = diag(|\], |Xa], -, |[A\a]). Thus, we can
conclude that

Next, since W = H(K*)"H, we have

(K.

4]

)" = (B K Ey)".
Then, we can write that
(B K*E;;)" = (EjQAN QT E;)" = (E;Q)A*(E;QT))",

where @ is orthonormal, resulting in that E;;Q is the eigenvectors of E;; K*E;;. Thus, by the

definition of the rth power of matrix, we can conclude that
(E; K E;)" = (E;Q(A") Q' Ey).
Finally, we conclude the proof that
Wi.; = H(E,;Q(A*)' Q" Ey;)H = E;;WE;;.

The last step is because H is symmetric, thus H and E;; are exchangeable.
Lemma 1 indicates switching ith sample with jth of sample of W is equal to exchanging both
rows and columns ¢ and j. With this propriety of W, we can directly use the theorem 1 to calculate

the first three moments of T, without permutation.



Theorem 1: Let A be a symmetric matriz, with A1, =0, W is a symmetric matriz and satisfies
the condition that switching ith sample with jth sample is equivalent to exchanging both rows and
columns i and j of W. Then the first three moments of the test statistics T = tr(AW) can be
directly calculated in close form. Denote the first three moments of T' considering all n! permutations
as Ey,(T), Var,(T), and E,(T?), we have

EP(T) = %7
Vary(r) = 20 = DLa = I)((n =L, ~ L)

(n—=12n+1)(n—2) N
N (n(n+ 1)My — (n — 1)(L2 + 2Ly))(n(n + 1) My — (n — 1)(L? + 2L,))
(n+Dn(n—1)(n —2)(n—3) ’

n(n—1)(n—2)(n —3)(n —4)(n — 5)E,(T?) = n*(n + 1)(n* + 15n — 4) M5 M;

+ 4(n* — 8n® +19n? — 4n — 16)UU + 24(n® —n — 4)(UB + BU) + 6(n* — 8n® 4 21n® — 6n — 24)BB
+12(n* — n® — 8n? + 36n — 48)RR + 12(n® — 2n® + 9n — 12)(LMyR + RLM)

+3(n* — 4n® — 2n% + 9n — 12) LLMy M, + 24{(n® — 3n> — 2n + 8)(RU + UR)

+ (n® — 21 = 3n+ 12)(RB + BR)} + 12(n® — n 4 4)(LMyU + ULM,)

+6(2n° — Tn® — 3n + 12)(LMyB + BLM,) — 2n(n — 1)(n® — n + 4){(2U + 3B)M; + (2U + 3B) M}
—3n(n — 1)%(n + 4){(LMy + AR)Ms + (LM + 4R)Ms} + 2n(n — 1)(n — 2){(L® + 6L Ly + 8L3)Ms
+ (L 4 6LLy + 8Ls) M3} + L*((n® — 9n® + 23n — 14)L? + 6(n — 4)LLy + 8L3) + 6LLy((n — 4) L

+ (n® — 9n® 4 24n — 14)LLy + 4(n — 3)L3) + 8Ls(L? + 3(n — 3)LLy + (n® — 9n? + 26n — 22)Ls)
~16(L3U + UL®) — 6(LLoU + ULLy)(2n% — 100 + 16) — 8(LsU + UL) (302 — 150 + 16)

— (L*B + BT?)(6n* — 30n + 24) — 6(LLyB + BLLy)(4n* — 20n + 24)

— 8(L3B + BL3)(3n® — 150 + 24) — (n — 2){24(L*R + RL?) + 6(LLyR + RLL,)(2n> — 10n + 24)

4 8(LsR + RL)(3n% — 150 + 24) + (30 — 15n + 6)(L* LMy + LM,L?)

+ 6(LLyLM; + LM;LLy)(n? — 5n + 6) + 48(Lys LM, + LM>Ls)},

where L = tr(A), Ly = tr(A?), Ly tr(A?’) L = tr(W), Ly = tr(W?), Ly = tr(W3), M, =
211 ag; Mz = 2?1 Qi s M2 Z wy, M3 Zz 1wz7U Z 1211 z]?U Zz 1Ez 1w
R = (diag(A))"(diag(A?)), B = (dmg(A>)TA(dwg(A))7 R = (diag(W))" (diag(W)?), B =
(diag(W)) "W (diag(W)).



The proof of theorem 1 is similar to [4] after rewriting Ty, as Ty, = tr(AW), where A and W
satisfy the condition of theorem 1. We can then calculate the close from expression of the three

moments of T, without using any permutation procedure.

3 Approximation accuracy

In this section, we use quantile-quantile plot to demonstrate the approximation of Pearson type
IIT distribution for Ty, with different values of d and r. From the figures, we can see that the

approximation performs well enough with different d and r.
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Figure 1: The empirical distribution of 7, and theoretical Pearson type III distribution with
parameter estimated based on the method in Section 1. Different scenarios were considered with
binary outcome variable, r = 0.125,2 and d = 1,2,3 represent two different distances (weight
UniFrac distance, Unweighted UniFrac distance and Bray-Curtis distance). All quantile-quantile

plots are drawn based on 1000 random samples.
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Figure 2: The empirical distribution of 7, and theoretical Pearson type III distribution with
parameter estimated based on the method in Section 1. Different scenarios were considered with
continuous outcome variable, r = 0.125,2 and d = 1,2, 3 represent two different distances (weight

UniFrac distance, Unweighted UniFrac distance and Bray-Curtis distance). All quantile-quantile
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plots are drawn based on 1000 random samples.
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4 Additional simulation results

This section provides additional simulation results focusing on a binary phenotype. The simulation
strategy is outlined in the main text section methods. Table 1 presents the empirical type I error
rates, while empirical power results are depicted in Figures 3. The findings from both the table
and figures lead to the conclusion that similar results are observed with binary and continuous

phenotypes.

Table 1: Type I error rates of binary phenotypes with significance level @ = 0.05 and o = 0.01

MIRKAT | MISPU | P-S | EEMANOVA
S1, Independent covariates | = 0.05 0.049 0.046 | 0.042 0.059
S1, correlated covariates a=0.05 0.056 0.047 | 0.044 0.062
S2, Independent covariates | a = 0.05 0.051 0.048 0.041 0.062
S2, correlated covariates a =0.05 0.049 0.055 | 0.042 0.059
S3, Independent covariates | o = 0.05 0.045 0.045 0.042 0.052
S3, correlated covariates a =0.05 0.045 0.047 | 0.040 0.057
S4, Independent covariates | o = 0.05 0.048 0.051 0.044 0.056
S4, correlated covariates a=0.05 0.055 0.055 0.055 0.059




S1 S2
=@ E-MANOVA 1.00- =@ E-MANOVA
0.8- =@ MiRKAT ! -®- MiRKAT
=@ MiSPU =@ MiSPU
® P-s @ P-s
0.75-
0.6-
g g
z 2 0.50-
T 0.4- a
0.25-
0.2-
0.00-
05 1.0 15 2.0 25 05 1.0 15 2.0 2’5
Effect B Effect B
(a) (b)
S3 sS4
=@ E-MANOVA 1.00- =@ E-MANOVA
@ MiRKAT . -® MiRKAT
@ MiSPU =@ MiSPU
0.150- @ p-s —~ .
0.75-
0.125-
g g
z 2 0.50-
o a
0.100-
0.25-
0.075-
0.00-
05 10 15 2.0 25 05 10 15 2.0 25
Effect B Effect B
(c) (d)

Figure 3: Empirical powers of E-MANOVA (red), MiRKAT (purple), MiSPU(green) and P-S(blue)
with bianry phenotypes and independent covariates under scenairo S1 to S4 with significance level
0.05.
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