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In this Supplemental Material, we provide the following results. Section 1 gives the calculations

of distances and similarity matrix. Section 2 gives the theoretical proof for calculating the first

three moments of Td,r under null hypothesis. In Section 3, the quantile-quantile plot is used to

examine the approximate accuracy of Pearson type III distribution. In Section 4, we provide the

simulation result for scenarios of binary phenotypes.

1 Calculation of distances and similarity matrix

In this section, we briefly introduce the distance used in this paper for measuring the similarity

between samples in the context of microbiome data and the detailed calculation for the similarity

matrix.

When phylogeny tree information is available, tree-based weighted UniFrac distance is the most

commonly used distance measure[1]. Let pil and pjl denote the proportion of the OTUs descending

from branch l(l = 1, 2..., L) for samples i and j(i, j = 1, 2, ..., n), respectively. The weighted UniFrac

distances dij,1 between samples i and j are defined as

dij,1 =

∑L
l=1 bl(pil + pjl)

α|pil − pjl|∑L
l=1 bl(pil + pjl)α

,

here α ∈ [0, 1]. We use α = 0.5 throughout this paper, because it is considered more robust

compare to other value of α[1]. Another commonly used tree based distance is the unweighted

UniFrac distance[2], which is defined as

dij,2 =

∑L
l=1 bl|I(pil > 0)− I(pjl > 0)|∑L

l=1 bl
,

here I(.) is an indicator function. The unweighted UniFrac distance complete ignore the abundance

of OTUs and only compare the presence/absence information.

Bray-Curtis distance[3] is the most commonly used distance without using the phylogeny tree

information. Let pik and pjk denote the abundance of OTU k(k = 1, 2, ...K) in samples i and

j(i, j = 1, 2, ..., n), respectively. Bray-Curtis distance between sample j and k, denote as dij,2, is

defined as

dij,3 =

∑K
k=1 |pik − pjk|∑K
k=1(pik + pjk)

.
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Each distance has its features, and the choice of distance metrics will affect the final power of the

association test. Throughout the paper we use the aforementioned three distance because they are

the most commonly used. Denote D = (dij)n×n the distance matrix regarding the K dimensional

variable among the n subjects calculated based on the distances mentioned above, where dij is the

distance between the ith and jth subject, i, j = 1, 2, · · ·n. Then the similarity matrix denotes as

S = (sij)n×n can be calculated as sij = −1
2
d2ij.

2 P-value calculation of Td,r

Normally, the permutation procedure is needed for PERMANOVA-based method, which is compu-

tationally expensive and generates different results run multiple times on the same dataset. This

variability arises due to their reliance on generating random samples to compute permutation null

distributions. E-MANOVA can completely avoid intensive computation procedure and generate the

same result with the same data.

Recall that the E-MANOVA test statistics with fix d and r in main text section 2.3 is

Td,r = tr{(HX −HX2)(K
∗)r}.

It can further be rewritten in the form of

Td,r = tr(AW ),

where A = HX − HX2 and W = H(K∗)rH . It is easily to be proven since H is a centering

matrix and all the columns of X are already centered, thus HX = X and HX2 = X2. To avoid

the potential computational burden, we adopt an alternative strategy based on the result derived

in [4] that can directly calculate the moments of permuted null distribution without generating its

null distribution and approximating the empirical null distribution with a known distribution that

matches its moments. The following lemma 1 proves the properties of matrix W and Theorem 1

establishes the first three moments of Td,r without using permutation.

Lemma 1: Denote Eij, i ̸= j as a n×n matrix exchanging ith row and jth row of identity matrix

In. Then,

W
∣∣
i↔j

= EijWEij,

here W
∣∣
i↔j

indicates W switching ith sample and jth samples.

Proof: Since the elements in S, denote as sij, represent the similarity between ith and jth subjects.

Thus, it is easy to see that

S
∣∣
i↔j

= EijSEij, i, j = 1, 2, · · · , n.
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Since H is a symmetric matrix, we have

HEijSEijH = EijHSHEij.

HSH can be decomposed as HSH = QΛQ⊤ where Q is an orthogonal matrix whose columns are

the orthogonal eigenvectors of HSH , and Λ is a diagonal matrix whose entries are the eigenvalues

of HSH . We have

EijHSHEij = EijQΛQ⊤Eij.

The matrix K∗ is obtained by K∗ = QΛ∗Q⊤, with Λ∗ = diag(|λ1|, |λ2|, · · · , |λn|). Thus, we can

conclude that

K∗
i↔j = EijK

∗Eij.

Next, since W = H(K∗)rH , we have

(K∗
i↔j)

r = (EijK
∗Eij)

r.

Then, we can write that

(EijK
∗Eij)

r = (EijQΛ∗Q⊤Eij)
r = ((EijQ)Λ∗(EijQ

⊤))r,

where Q is orthonormal, resulting in that EijQ is the eigenvectors of EijK
∗Eij. Thus, by the

definition of the rth power of matrix, we can conclude that

(EijK
∗Eij)

r = (EijQ(Λ∗)rQ⊤Eij).

Finally, we conclude the proof that

Wi↔j = H(EijQ(Λ∗)rQ⊤Eij)H = EijWEij.

The last step is because H is symmetric, thus H and Eij are exchangeable.

Lemma 1 indicates switching ith sample with jth of sample of W is equal to exchanging both

rows and columns i and j. With this propriety of W , we can directly use the theorem 1 to calculate

the first three moments of Td,r without permutation.
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Theorem 1: Let A be a symmetric matrix, with A1n = 0, W is a symmetric matrix and satisfies

the condition that switching ith sample with jth sample is equivalent to exchanging both rows and

columns i and j of W . Then the first three moments of the test statistics T = tr(AW ) can be

directly calculated in close form. Denote the first three moments of T considering all n! permutations

as Ep(T ), V arp(T ), and Ep(T
3), we have

Ep(T ) =
tr(A) tr(W )

n− 1
,

V arp(T ) =
2((n− 1)L2 − L2)((n− 1)L̃2 − L̃2)

(n− 1)2(n+ 1)(n− 2)

+
(n(n+ 1)M2 − (n− 1)(L2 + 2L2))(n(n+ 1)M̃2 − (n− 1)(L̃2 + 2L̃2))

(n+ 1)n(n− 1)(n− 2)(n− 3)
,

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)Ep(T
3) = n2(n+ 1)(n2 + 15n− 4)M3M̃3

+ 4(n4 − 8n3 + 19n2 − 4n− 16)UŨ + 24(n2 − n− 4)(UB̃ +BŨ) + 6(n4 − 8n3 + 21n2 − 6n− 24)BB̃

+ 12(n4 − n3 − 8n2 + 36n− 48)RR̃ + 12(n3 − 2n2 + 9n− 12)(LM2R̃ +RL̃M̃2)

+ 3(n4 − 4n3 − 2n2 + 9n− 12)LL̃M2M̃2 + 24{(n3 − 3n2 − 2n+ 8)(RŨ + ŨR)

+ (n3 − 2n2 − 3n+ 12)(RB̃ +BR̃)}+ 12(n2 − n+ 4)(LM2Ũ + UL̃M̃2)

+ 6(2n3 − 7n2 − 3n+ 12)(LM2B̃ +BL̃M̃2)− 2n(n− 1)(n2 − n+ 4){(2U + 3B)M̃3 + (2Ũ + 3B̃)M3}

− 3n(n− 1)2(n+ 4){(LM2 + 4R)M̃3 + (L̃M̃2 + 4R̃)M3}+ 2n(n− 1)(n− 2){(L3 + 6LL2 + 8L3)M̃3

+ (L̃3 + 6L̃L̃2 + 8L̃3)M3}+ L3((n3 − 9n2 + 23n− 14)L̃3 + 6(n− 4)L̃L̃2 + 8L̃3) + 6LL2((n− 4)L̃3

+ (n3 − 9n2 + 24n− 14)L̃L̃2 + 4(n− 3)L̃3) + 8L3(L̃
3 + 3(n− 3)L̃L̃2 + (n3 − 9n2 + 26n− 22)L̃3)

− 16(L3Ũ + UL̃3)− 6(LL2Ũ + UL̃L̃2)(2n
2 − 10n+ 16)− 8(L3Ũ + UL̃3)(3n

2 − 15n+ 16)

− (L3B̃ +BT̃ 3)(6n2 − 30n+ 24)− 6(LL2B̃ +BL̃L̃2)(4n
2 − 20n+ 24)

− 8(L3B̃ +BL̃3)(3n
2 − 15n+ 24)− (n− 2){24(L3R̃ +RL̃3) + 6(LL2R̃ +RL̃L̃2)(2n

2 − 10n+ 24)

+ 8(L3R̃ +RL̃3)(3n
2 − 15n+ 24) + (3n2 − 15n+ 6)(L3L̃M̃2 + LM2L̃

3)

+ 6(LL2L̃M̃2 + LM2L̃L̃2)(n
2 − 5n+ 6) + 48(L3L̃M̃2 + LM2L̃3)},

where L = tr(A), L2 = tr(A2), L3 = tr(A3), L̃ = tr(W ), L̃2 = tr(W 2), L̃3 = tr(W 3), M2 =∑n
i=1 a

2
ii, M3 =

∑n
i=1 a

3
ii, M̃2 =

∑n
i=1w

2
ii, M̃3 =

∑n
i=1w

3
ii, U =

∑n
i=1

∑n
i=1 a

3
ij, Ũ =

∑n
i=1

∑n
i=1w

3
ij,

R = (diag(A))⊤(diag(A2)), B = (diag(A))⊤A(diag(A)), R̃ = (diag(W ))⊤(diag(W )2), B̃ =

(diag(W ))⊤W (diag(W )).
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The proof of theorem 1 is similar to [4] after rewriting Td,r as Td,r = tr(AW ), where A and W

satisfy the condition of theorem 1. We can then calculate the close from expression of the three

moments of Td,r without using any permutation procedure.

3 Approximation accuracy

In this section, we use quantile-quantile plot to demonstrate the approximation of Pearson type

III distribution for Td,r with different values of d and r. From the figures, we can see that the

approximation performs well enough with different d and r.
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Figure 1: The empirical distribution of Td,r and theoretical Pearson type III distribution with

parameter estimated based on the method in Section 1. Different scenarios were considered with

binary outcome variable, r = 0.125, 2 and d = 1, 2, 3 represent two different distances (weight

UniFrac distance, Unweighted UniFrac distance and Bray-Curtis distance). All quantile-quantile

plots are drawn based on 1000 random samples.
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Figure 2: The empirical distribution of Td,r and theoretical Pearson type III distribution with

parameter estimated based on the method in Section 1. Different scenarios were considered with

continuous outcome variable, r = 0.125, 2 and d = 1, 2, 3 represent two different distances (weight

UniFrac distance, Unweighted UniFrac distance and Bray-Curtis distance). All quantile-quantile

plots are drawn based on 1000 random samples.
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4 Additional simulation results

This section provides additional simulation results focusing on a binary phenotype. The simulation

strategy is outlined in the main text section methods. Table 1 presents the empirical type I error

rates, while empirical power results are depicted in Figures 3. The findings from both the table

and figures lead to the conclusion that similar results are observed with binary and continuous

phenotypes.

Table 1: Type I error rates of binary phenotypes with significance level α = 0.05 and α = 0.01

MIRKAT MISPU P-S E-MANOVA

S1, Independent covariates α = 0.05 0.049 0.046 0.042 0.059

S1, correlated covariates α = 0.05 0.056 0.047 0.044 0.062

S2, Independent covariates α = 0.05 0.051 0.048 0.041 0.062

S2, correlated covariates α = 0.05 0.049 0.055 0.042 0.059

S3, Independent covariates α = 0.05 0.045 0.045 0.042 0.052

S3, correlated covariates α = 0.05 0.045 0.047 0.040 0.057

S4, Independent covariates α = 0.05 0.048 0.051 0.044 0.056

S4, correlated covariates α = 0.05 0.055 0.055 0.055 0.059
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Figure 3: Empirical powers of E-MANOVA(red), MiRKAT(purple), MiSPU(green) and P-S(blue)

with bianry phenotypes and independent covariates under scenairo S1 to S4 with significance level

0.05.
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