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Supplementary Text
1. Evaluation against independent CO; observations and the global mean CGR

We evaluate the posterior fluxes indirectly by comparing the forward simulated
atmospheric CO2 concentration with independent surface flask CO2 measurements from global
background stations'? (Fig. S2 and Table S1). Over the period 2015-2024, the time series of
the simulated CO2 concentrations match well the observations (Fig. S3), with the mean biases
(simulations minus observations, same thereafter) being 0.25 ppm and —0.09 ppm at the global
scale, and at the MLO station, respectively (Fig. S3). The magnitude and direction of the mean
biases at different latitudes are similar to previous studies®*, which may be related to the
different measurement uncertainties of the satellite at different latitudes. In 2024, the mean
biases of —0.18 ppm, 0.42 ppm, and —0.73 ppm in the NH high latitudes, NH mid latitudes, and
SH mid-to-high latitudes, respectively, are both within annual mean bias range for 2015-2023
and close to the average for this period (Fig. S4). Yet, we find a relatively high negative bias
over the tropics (—0.37 ppm). The negative bias observed in most latitudinal bands aligns with
the negative bias calculated using GCASv2 inversion-based global net carbon fluxes and global
mean CGR from MBL stations (Fig. S5). Overall, our evaluations indicate that the inverted
NBE fluxes may partially overestimate the land sink over the SH mid-to-high latitudes, the
tropics, and the NH high latitudes, and underestimate the land sink over the NH mid latitudes

in 2024.
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The GCASvV2 inversion-based net carbon fluxes align closely with the global mean CGR
from MBL stations, with the mean bias only —0.06 + 0.19 ppm yr™!' during 2015-2024 (Fig. S5).
The magnitude of bias in global CGR in 2024 is comparable to that observed in 2022. The
negative bias in global annual CGR between MBL observations and OCO-2-based inversions
may be related to the sparsity of MBL stations®. To account for this limitation, we calculate the
CGR from OCO-2 XCO:z retrievals using the same methodology that is employed for MBL
observations (i.e., the difference in concentration between the end of December and the start of
January within each calendar year)®. We also find a negative bias between MBL-based CGR
and OCO-2 XCO2-based CGR (Fig. SS5), although no OCO-2 observations are probably
available over the NH high latitudes on 1 January and 31 December. Moreover, we use a
constant conversion factor (2.086 PgC ppm™) to convert the MBL-based CGR to the whole-
atmosphere mass change, assuming uniform whole-atmosphere mixing within each calendar
year’. Yet, although the troposphere (containing ~80% of atmospheric mass) exhibits rapid
mixing timescales (< 1 year), stratosphere-troposphere exchange occurs over substantially
longer periods (2—4 years)®, which may introduce error in estimating whole-atmospheric CGR.
It should be noted that both MBL stations and OCO-2 observations show a record-high increase
in CGR in 2024 (Fig. S5), confirming the exceptional amount of CO: released into the

atmosphere that year.
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Supplementary Figures
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Fig. S1. Atmospheric annual mean CO; growth rate (CGR) from 1959 to 2024 in MBL
stations from the NOAA Global Monitoring Laboratory.
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Fig. S2. Distribution of the observation sites used for independent evaluation in this study.
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Fig. S5. Comparison between GCASv2 inversion-based global net carbon fluxes and
atmospheric CO: growth rates (CGR) from the MBL stations and the OCO-2 XCO;
retrievals (unit: ppm yr!). The annual global net carbon fluxes are calculated as the sum of
net biosphere exchange, ocean-atmosphere carbon exchanges, and fossil fuel and cement
carbon emissions, which represent the total changes of atmospheric CO: estimated by inversion
models. The unit of net carbon fluxes (PgC yr!) was converted to the ppm yr! using the 2.086
PgC ppm™! conversion factor’. The background color shows the intensity of El Nifio (red) and
La Nina (blue) events defined by MEI. Shaded areas indicate uncertainty of the inversions.
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Fig. S7. Spatial patterns of normalized difference vegetation index (NDVI) and solar-
induced chlorophyll fluorescence (SIF) anomalies in 2024 relative to 2022. (a) Spatial
patterns of NDVI anomalies in 2024. (b) Spatial patterns of SIF anomalies in 2024.
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(see Methods).

a
1 1 —
s /\
c
g 05 0.5
(@]
jo]
o
g Of - or -
g
£
§-0.5 05
x
2 50-90°N 23-50°N
-1 ‘ -1 :

J FMAMUJ J ASONTD J FMAMUJ J ASOND

Flux anomalies (PgC month'1) Q. Flux anomalies (PgC month'1) (=)

c

04 0.2

e

2

2 02 \ 1 2 o1

% Of- -\ - . 0=

9

©

: ¥,

202 0.1

[0]

x

2 23°N-23°S 23-60°S
JFMAMUJJASOND JFMAMUJJASOND

= ANBE == AGPP ATER === AFire

Fig. S9. Monthly anomalies of NBE, GPP, TER and wildfire emissions in 2024 over the
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Fig. S10. Anomalies of NBE (top row), GPP (second row), TER (third row) and wildfire
emissions (fourth row) over January—June (left column) and July—December (middle
column) in 2024.
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Fig. S13. Overview of global climate anomalies in 2024. (a—d) Spatial pattern of (a) air
temperature, (b) terrestrial water storage (TWS), (¢) vapor pressure deficit (VPD), and (d) solar
radiation anomalies in 2024 relative to 2022. Black dots indicate regions with climate anomalies
larger than V202, where ¢ is multi-year (2000-2021) standard deviation of the climate.

13



97
98
99
100
101
102

3 3 3

15 15 15 I
I Temperature [l VPD © 0 © 0 © 0
s srR
West/Central/South Asi

-1.5 -1.5 1.5
3| Europe 3 _3| Russia
" /
2 = - .
© 0 5 J——-—.—

2 -1
“ North America _3| East Asia
6

_3| Southeast Asia

50-90°N | 23-50°N | 23°N-23°S |  23-60°S 3| Africa -3| Oceania

South America

Fig. S14. Regional and latitudinal climate anomalies in 2024. The bottom left panel shows
anomalies of air temperature, TWS, VPD and SR at different latitudinal bands, including NH
high latitudes (50-90°N), NH mid latitudes (23—50°N), tropics (23°N-23°S), and SH mid-to-
high latitudes (23—60°S). Other panels show anomalies of air temperature, TWS, VPD and SR
in each RECCAP region. ¢ is multi-year (2000-2021) standard deviation of the climate

14



—~ 4 0.06 20
3)
Py £F i
L2t S % 003t S
: 2 2
Q @ =
2 T = ®
(0] o o ©
2 c 2 £
= T o
© 0 c
52t 2 9-003; @
. 3= E
K 50-90°N 50-90°N
B 006 ——— ]9
c JJFMAMUJJASONTD JJFMAMUJJASONTD
52— — — — 0.06 20
P £F <<
L q} S % o003t o =
: 5 3
Q @ =
2 T = ®
T 0 E g O €-A------------op-- - o 2
o 2 o o
E & 5 5
S0 2 003 10§
o .= a
£ 2F > &
o | 23-50°N 23-50 | 20
B 006 ———— T . o
e JJFMAMUJJASONTD f JJFMAMUJJ ASONTD
Y 4
o P
< PRGN N
n e © '
24t /\/—\/\_"2 s g S
(0] » ~ s
€ o 3 =
2 T = @
R e iaiatall 0 g g 2
(0] o o (0]
5 S c IS
2 T © [}
S -1 122 o1t 115 &
o o
S > &
o 23°N-23°S 23°N-23°S 1-30
S 02 e
g JJFMAMUJJASONTD h JJFMAMUJJASONTD
4
o P
@ 2f T w o
§ 12 g o €
© -~ = 2
= 1+ Qo p =
1<) 2L 0o =
c T G 2
© O i ) ¥ i U 4 S| 0 E E —
o S 5 ©
2 c g2 IS
81 o S 2
© R o
o | 22 8 ¢
£ 2 = &
] 23-60°S 23-60°S 1.
[N Bt o4 . . ., . . . . ,3-60
JJFMAMUJJASONTD JJFMAMUJJASONTD
103 ==o== ATemperature ==e== ATWS ==o==AVPD ==o==ASR

104  Fig. S15. Monthly anomalies of air temperature, TWS, VPD, and SR in 2024 over the NH
105  high latitudes (50—-90°N), NH mid latitudes (23—-50°N), tropics (23°N-23°S), and SH mid-
106  to-high latitudes (23—-60°S).

15



a Temperature anomalles (January—June) b Temperature anomalles (July—December)

kPa kPa
. .
-0.3 -0.15 0 0.15 03 -03 -0.15 0 0.15 0.3

g SR anomalles (January—June)

-300 -150 0 150 300 -300 -150 0 150 300
107

108  Fig. S16. Anomalies of air temperature (top row), TWS (second row), VPD (third row),
109 and SR (fourth row) over January—June (left column) and July—December (middle
110 column) in 2024.
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Fig. S23. Comparison of TWS anomalies between GRACE and GLDAS products. (a)
Spatial pattern of TWS anomalies for 2024 relative to 2022, calculated based on the GLDAS
dataset. (b) Time series of TWS anomalies from GRACE and GLDAS products.
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Supplementary Tables

Table S1. Information for atmospheric CO; stations used in this study.

Site ID Latitude Longitude Site name
ALT 82.451 -62.507 Alert, Nunavut, Canada
BMW 32.265 -64.879 Tudor Hill, Bermuda, United Kingdom
BRW 71.323 —156.611 Barrow Atmospheric Baseline Observatory, United States
CBA 55.210 -162.720 Cold Bay, Alaska, United States
CGO -40.683 144.690 Cape Grim, Tasmania, Australia
DSI 20.699 116.730 Dongsha Island, Taiwan
HPB 47.801 11.024 Hohenpeissenberg, Germany
HUN 46.956 16.652 Hegyhatsal, Hungary
1Z0O 28.309 -16.499 Izana, Tenerife, Canary Islands, Spain
KEY 25.665 —80.158 Key Biscayne, Florida, United States
KUM 19.561 —154.888 Cape Kumukahi, Hawaii, United States
LEF 45.945 -90.273 Park Falls, Wisconsin, United States
LLN 23.470 120.870 Lulin, Taiwan
LMP 35518 12.632 Lampedusa, Italy
MID 28.219 —177.368 Sand Island, Midway, United States
MLO 19.536 —155.576 Mauna Loa, Hawaii, United States
NWR 40.053 -105.586 Niwot Ridge, Colorado, United States
PSA —64.774 -64.053 Palmer Station, Antarctica, United States
RPB 13.165 -59.432 Ragged Point, Barbados
SEY —4.682 55.532 Mabhe Island, Seychelles
SGP 36.607 -97.489 Southern Great Plains, Oklahoma, United States
SMO —14.247 -170.564 Tutuila, American Samoa
TAP 36.738 126.133 Tae-ahn Peninsula, Republic of Korea
UTA 39.902 -113.718 Wendover, Utah, United States
WLG 36.288 100.896 Mt. WaliguanPeoples, Republic of China
ZEP 78.907 11.888 Ny-Alesund, Svalbard, Norway and Sweden
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137  Table S2. Mean bias of the evaluation during 2015-2024 for each station (unit: ppm).

Site ID 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
ALT 0.66 051 030 035 078 052 0.10 036 029 0.30
BMW 2.65 1.10 159 164 1.69 244 153 182 149 1.09
BRW 0.16 0.17 -025 0.19 -039 -0.04 071 032 -0.14 0.20
CBA -1.81 273 -126 -1.86 -220 -022 -0.71 -0.60 -1.44 -0.89
CGO -0.50 -0.77 -045 -0.63 -056 -0.88 -0.85 -0.65 -0.63 -0.80
DSI -0.15 -062 036 006 041 -024 -0.19 -0.59 -091 -0.68
HPB 0.38 1.93 201 1.39 —0.08 192 094 247 082 284
HUN -226 -1.08 -091 -2.03 -074 -336 080 0.09 081 0.06
170 0.49 0.14 0.33 0.78 0.41 0.16 0.47 0.65 026 -0.20
KEY -0.21 -033 0.17 -0.16 -0.20 0.27 0.17 -0.69 -0.11 0.16
KUM -0.09 -0.20 0.11 0.03 028 -0.08 0.10 -026 -0.06 -0.06
LEF 0.21 074 1.12 050 -1.06 224 -0.18 257 120 0.81
LLN -046 -0.81 -039 -054 -035 -1.01 0.53 0.03 -1.00 -1.93
LMP 008 -021 o0.11 -022 -0.13 -0.05 -059 -022 -0.76 0.16
MID 0.53 037 037 039 047 020 054 026 0.14 022
MLO -0.07 -0.04 003 005 -003 -0.09 -0.02 0.03 -036 -0.63
NWR 0.02 004 013 015 027 -0.17 0.02 060 033 -0.01
PSA -035 -049 -025 -045 -048 -0.59 -0.57 -0.38 -0.32 -0.68
RPB 0.15 002 023 012 021 011 -0.10 0.28 -0.07 -0.19
SEY 0.11 -0.01 0.13 -0.20 -0.05 0.36 0.08 0.00 032 -0.23
SGP 0.43 1.61 0.57 1.66 1.20 1.25 1.32 0.60 0.79 1.68
SMO -0.02 -0.02 0.08 -0.14 -008 -021 0.01 -0.08 -028 -046
TAP 2.07 2.49 4.52 1.61 1.60 2.14 4.35 2.06 1.70 0.11
UTA 2.55 361 278 277 299 271 348 3.06 252 2.11
WLG 0.23 0.06 001 038 075 1.00 1.08 030 0.76 0.06
ZEP 0.93 040 060 0.16 070 057 055 042 034 -0.04
Average 0.20 0.19 046 022 0.13 032 046 041 0.10 0.03
138
139  Table S3. Global carbon budget in 2024 and its anomalies relative to 2022.
Carbon flux (PgC yr?) 2024 2024-2022
Fire 222+0.44 0.65+0.13
Total ecosystem respiration (TER) 140.27 +£3.37 3.54 +0.88
Gross primary production (GPP) 142.66 £ 3.29 1.51£0.42
Net biosphere exchange (NBE) -0.32+£0.53 2.62+0.76
Ocean-atmosphere carbon exchange (Ocean flux) —2.77+0.16 —0.02+£0.24
Fossil fuel and cement (FFC) carbon emission 10.17 0.27
Global net carbon flux (NCF) 7.08 £ 0.55 2.87+0.80
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