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ABSTRACT

The bilayer nickelate superconductor LagNioO7 undergoes a density wave transition near
150 K that has attracted intensive scrutiny, yet its microscopic origin remains elusive. Here
we report polarization-resolved electronic Raman scattering measurements on high-quality
single crystals of LagNisO7. Below 150K, we observe a pronounced, symmetry-dependent
redistribution of spectral weight in B;, and Bye channels, consistent with the formation of
spin-density wave (SDW) gaps. Quantitative analysis reveals momentum-selective SDW gap
amplitudes, with intermediate-to-strong coupling on the pockets centered at (£7/2, £7/2)
and weaker coupling at (£m, 0) and (0, £), pointing to an unconventional SDW driven
by anisotropic electronic correlations. Our results establish the electronic character of the
SDW in LagNiyO7, and provide a microscopic foundation for understanding the emergence

of high-temperature superconductivity under pressure in nickelates.
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INTRODUCTION

High-temperature superconductivity is often observed in proximity to an antiferromagnetic
(AFM) order, as seen in cuprates [1], iron pnictides and chalcogenides [2], and more recently,
the Ruddlesden-Popper (RP) phase of nickelates [3]. This recurring association suggests that
magnetism may serve as a common thread in the quest for microscopic origin of high-temperature
superconductivity [4-6].

The bilayer RP phase of LagNiyO7 has been found to exhibit high temperature superconductiv-
ity above 77 K under high pressure [7—12]. At ambient pressure, LagNipO7 exhibits density-wave
(DW) like transitions near 150 K, which have been extensively studied by multiple experimen-
tal techniques [13-31]. While optical measurements, including ultrafast and infrared spectroscopy
[21, 26], reported gap-opening signatures associated with DW transitions, angle resolved photoe-
mission spectroscopy (ARPES) measurements on LazNipO7 show no clear gap opening [32-35].
Resolving this experimental dichotomy between optical and ARPES observations may provide key

insights into the microscopic nature of DW ordering.

Spin density wave (SDW) and charge density wave (CDW) orders have been shown to be closely
intertwined [19, 28, 36] with the SDW component exhibiting a larger amplitude, as evidenced by
resonant inelastic X-ray scattering (RIXS) [22], neutron scattering [24], uSR [28] and nuclear
magnetic resonance (NMR) [29] experiments. Efforts to elucidate the nature of SDW in LagNiy Oy
fall into two regimes, depending on the underlying coupling strength. In the weak coupling regime
[37-42], density-wave instabilities are driven by Fermi surface nesting [32-34]. In this context,
possible nesting wavevectors, denoted Q1 and Q2, are superimposed on the calculated Fermi surface
as shown in Fig. 1 a. Consequently, SDW gaps open around the Fermi energy Fr on these nested

Fermi surfaces in conjunction with the density wave transition (Fig. 1 b).

In the strong coupling regime, by contrast, localized spin orders are stabilized [43-50] driven
by strong correlation effect and Hund’s coupling [49, 51-53]. This scenario is strongly supported
by RIXS measurements, which directly reveal an SDW-type magnetic excitation [22]. Notably, the
dispersive magnetic excitations soften to zero energy at the wavevector (7/2, 7/2), indicating the
formation of quasi-static spin order near Tgpw~~150 K. As a consequence, the spectral function
becomes markedly incoherent in the strong-coupling regime, with the Fermi surface appearing
substantially broadened across the BZ (Fig. 1 c¢), distinct from the sharp, coherent Fermi surface
depicted in Fig. 1 a. Simultaneously, spectral weight spreads broadly across the phase space (Fig.

1 d), accompanied by a transfer of spectral weight between particle-like and hole-like excitations
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across the Fermi level, and the emergence of partial gaps associated with the SDW transition.
Raman spectroscopy, which probes both particle—particle and particle-hole excitations at ¢ —
0, is a powerful tool for accessing electronic states across different regions of the Brillouin zone
via polarization selection rules [54]. Importantly, the Raman susceptibility is sensitive to the
strength of electronic interactions. In the weak-coupling regime, the Raman response typically
exhibits a sharp 2A singularity with an extended high-energy tail (Fig. 1 e). In contrast, strong-
coupling behavior leads to a broad continuum-like response, often lacking a distinct singularity and
manifesting as a broad peak, which may or may not be symmetric (Fig. 1 f). To resolve the nature
of SDW order in LagNioO7, we performed polarization-resolved electronic Raman measurements
to distinguish between weak- and strong-coupling regimes. Below the transition temperature,
T < Tspw, the Raman response of B, channel exhibits a sharp coherence peak with asymmetric
lineshape. In contrast, the Bos channel displays a broad, incoherent, and symmetric-like peak.
The temperature dependence of both channels is closely correlated with the SDW transition at
Tspw ~ 150K. Guided by Raman selection rules, we attribute gap openings on 3 and 3’ pockets,
with extracted magnitudes of Ag = 23.0 meV, and Ag = 37.5 meV. These correspond to gap ratios
of 2Ap /kpTspw =~ 3.4 and 2Ag/kpTspw ~ 5.5, indicative of weak and medium-to-strong coupling
SDW mechanisms, respectively. Thus, these results establish Raman spectroscopy as a sensitive
probe of SDW electronic nature in LagNis O and provide critical insight into the microscopic origin

of density-wave formation in this single crystal.

RESULTS

LasgNiaO7 single crystals belong to the Doy, point group [7]. Factor group analysis predicts ten
Ay and twelve Big phonons to be Raman-active for light polarizations within the ab-plane (see
Supplementary Material A for details). We identified two A, and three Bz phonon modes, labeled

AP, AP and B{Y-BY)

1g —Biy » respectively (Fig. 2). A similar Raman spectrum of LagNisO7, without

polarization and temperature dependence, has been previously reported in Refs. [26, 30]. The
temperature-dependent phonon frequencies and linewidths are shown in Fig. S2 of Supplementary
Materials A. In addition to phonon modes, we observed broad peaks marked by green triangles,
located at approximately 650cm~'and 370cm~!in the zy and z'y’ channels, respectively (see
Fig. 2 f and h). These features originate from electronic Raman scattering.

To better understand the selection rules governing the electronic Raman response, we adopt a

pseudo-tetragonal point group symmetry, Dyy,, which yields three relevant irreducible representa-
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tions: A1g, Big, and By,. Note that the Bj, phonon modes in the Doy, point group correspond to
the By channel in the Dy, point group. The corresponding Raman vertices, which are proportional
to the crystal harmonics [54, 55], are illustrated in the insets of Fig. 3. These vertices highlight
the momentum-space regions where particle-hole excitations are selectively probed: A4 (22 +5?)
projects electronic states near the Brillouin zone center and corners (associated with the  and o’
pockets), Big (22 — y?) predominantly selects the 3’ pockets at the X and Y points, and By, (zy)
emphasizes the S pocket at the X7 point.

Figure 3 presents the electronic Raman responses in the A1y , Big, and Bg, channels of LagNioO7
over the range 100-1000 cm ™! at 50 K and 160 K. The difference spectra [x” (50 K) - x”(160K)] are
shown as light blue curves. A clear redistribution of the the spectral weight is observed in both the
Big and By symmetries, whereas no significant redistribution is found in the A;, spectra. Note
that the Aj, spectra are extracted using a linear combination of parallel and cross configurations
(see more details in Supplementary Materials B). The dips at 390cm~!and 570 cm~!in the Aj,
difference spectra arise from temperature-induced changes in phonon modes (see Fig. 3a). In the

Lag

Big channel, an asymmetric peak with a tail at the high energy side emerges near 370 cm™
low temperature (Fig. 3b). In contrast, the Bs, channel displays a pronounced redistribution
characterized by a spectral weight loss below 600cm™!and a corresponding gain between 600
and 720 cm~! (Fig. 3c). The line shape is nearly symmetric. The temperature evolution of these

electronic Raman features is discussed further in Supplementary Materials C.

To further investigate the redistribution of spectral weight, we perform a quantitative analysis
of the electronic continuum, as shown in Fig. 4. The background scattering is modeled using a
Drude response [54], combined with a linear term to account for stray light, surface impurities,

and other extrinsic effects:

Qr
? Q) =Npy?———— +¢Q 1
XDrude( ) F7 1+ (QT)Q + i, ( )

where Np is the density of states at the Fermi level, v is the scattering amplitude, 1/7 is the
effective scattering rate, and c is a constant.

Given the distinct lineshapes of the electronic Raman responses in the B, and By, symmetries,
we adopt two different models for fitting. For asymmetric lineshapes, we use the Tsuneto-Maki
(TM) function [56], which is typically applied in superconducting systems but also applicable to

density-wave states [57]:
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Q> 2A, (2)

where A denotes the density-wave gap.
For nearly symmetric lineshapes, the inelastic Raman response is empirically modeled by a

Lorentzian function:

2A r
" Q _
XLorentz( ) T 4(Q - QO)2 + T2’ (3)

where A is the resonance amplitude, € is the resonance frequency, and I' is the linewidth. Note
that the Lorentzian function describes an isolated oscillator and does not incorporate coherence
effects characteristic of superconductivity [58] or SDW transitions [59]. It is employed here purely
as a phenomenological tool to extract the peak position and integrated intensity.

We fit the By and Bag spectra using X" = X} uq0 +XTn 204 X7 = XDrude + Xl orentz» TeSPECtivEly,
as shown in Fig. 4a and b. The fits reproduce the experimental data well. Additional fits at various
temperatures can be found in Figs. S4 and S5 of the Supplementary Materials D.

The corresponding integrated spectral weights from 0 to 1000cm™! are plotted in Fig. 4c
and d. A transition temperature around 150K is clearly identified in both symmetries. In the
By symmetry (Fig. 4c), the spectral weight remains nearly constant below the transition, then
decreases above it. In contrast, in the Byz symmetry (Fig. 4d), the spectral weight first increases
and then decreases with rising temperature. At 50K, a total spectral weight loss of up to 10%
of the maximum intensity is observed. Unlike optical conductivity, Raman scattering does not
obey a sum rule, and therefore the spectral weight loss and gain are not required to balance each
other [60]. The observed transition is attributed to SDW ordering, which will be discussed in detail
in the Discussion section.

Figure 4 e presents the spectra above 150 K in the By, symmetry. A residual intensity peaked
at approximately 570cm™'is observed. Unlike the spectral weight redistribution below 150K,
where both gain and loss of the spectral weight are evident, the high-temperature behavior is
characterized solely by an intensity gain. Additionally, the peak intensity gradually decreases as
the temperature increases.

The temperature-dependent SDW gap is plotted in Fig. 4 f. The gap size at the 8’ pocket (from
the Big spectra) is extracted directly from the fits, with a maximum value of Ag ~ 23meV. In

contrast, the maximum gap at the S pocket (from the By, spectra), estimated from the crossing
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point between spectra measured at 50 K and at 160K, is Ag ~ 37.5meV. These correspond to
ratios of 2Ag /kpTspw ~ 3.4 and 2Ag/kpTspw ~ 5.5, respectively. The lineshape of the Raman
response provides key insights into the underlying SDW gap structure. The SDW gap on the
B’ pocket is isotropic, whereas the gap on the 3 pocket exhibits slight anisotropy. Notably, the
temperature dependence of both gaps is significantly weaker than predicted by mean-field theory
(see blue curves in Fig. 4 f). For comparison, the SDW gaps obtained from Infrared [21] and
ultrafast optical spectroscopy [26] are also plotted in Fig. 4 f. These values are higher than those
observed in our Raman measurements, which may be attributed to differences in probe sensitivity
and/or variations in oxygen content across samples [61]. To sum up, our observation reveals
two distinct SDW gaps on 3 and ' pockets characterized by different gap magnitudes, coupling
strengths, and even gap structures. These findings underscore the anisotropic SDW nature in

La3N1207 .

DISCUSSION

We performed systematic Raman spectroscopy on LagNisO; at ambient pressure. First, no
anomalies were observed in the phonon modes across the transition, arguing against a dominant
CDW instability (see Supplementary Materials A), consistent with previous studies reporting a
magnetic transition near 150 K [22, 23, 29]. Second, we detected a redistribution of spectral weight
associated with the opening of an SDW gap, a characteristic feature also observed in the iron
pnictide BaFeaAse [59]. While the presence of coupled spin—charge ordering cannot be entirely
excluded, our findings, together with earlier reports, indicate that SDW formation is the primary
electronic instability in the normal state of LagNisO7 [22].

The SDW in LagNisO7 has been proposed to originate from Fermi surface nesting with a wave
vector Qq, connecting the o and 8 pockets, as suggested by Wang et al. [38]. Alternatively, a
nesting scenario involving a wave vector Qg, connecting the 3 and 3 pockets, has been supported
by the observation of a 'translated” 8 Fermi surface, consistent with scattering processes involving
Q2. [35]. The Q; scenario would imply a comparable gap opening on the o pocket, which should, in
principle, be observable in the A;, Raman spectra. However, this is not straightforward. Screening
effects can suppress the Raman intensity of gap-related excitations, particularly in conventional
metals [54]. If the screening is negligible, as observed in Ba;_,K,FesAsy [62], then the absence of
gap signatures in the A;, spectra would argue against the nesting vector Q.

In contrast, the observed gap features in the Biy and Ba, spectra may support wavevector Qo,
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connecting the 8’ and B pockets. The distinct spectral lineshape and different 2A /kpThw ratio,
however, indicate an unconventional SDW microscopic mechanism in LagNisO7. Specifically, the
gap associated with the 8’ pocket exhibits weak coupling, while the 3 pocket shows a medium-to-
strong coupling strength. Such strong coupling can lead to incoherency of the bands, and partial gap
opening over a large momentum space in ARPES measurements, instead of clean leading-edge gap,
as reported in 2H-Na,TaSs [63] and NbSez [64]. This may account for the absence of a well-defined
gap in ARPES measurements [32-35]. However, the weak-coupling gap on the /3’ pocket, which
should in principle be observable by ARPES, has not yet been detected. This discrepancy may
stem from the differing sensitivities of the probes. Raman spectroscopy is bulk-sensitive, whereas
ARPES primarily probes the surface, potentially leading to divergent observations. The variation
in coupling strengths across different pockets suggests the presence of anisotropic coherency of the
quasiparticles in LagNiaO7, a phenomenon widely reported in Fe-based superconductors [65, 66]
and often attributed to strong Hund’s coupling effects involving multiple orbitals.

Moreover, a residual peak centered at approximately 570 cm ™! is observed in the By, spectrum
above Tspw, whose intensity gradually decreases with increasing temperature. This feature reflects
a characteristic energy scale of about 70meV in LagNisO7 , potentially indicating the presence of
short-range magnetic order or Lorentz-type spin fluctuations. Consistent with this interpretation,
RIXS measurements report that the magnon coherence length remains finite (5-10 nm) above Tspw
and diminishes gradually with increasing temperature [22]. Additionally, the deviation of the gap’s
temperature dependence from mean-field behavior further highlights the unconventional nature of
the SDW gaps, possibly indicating the presence of spin fluctuations above Tspw [67].

Recent puSR experiments have reported that the SDW order in LagNisO7 is enhanced under
increasing pressure [28]. This finding highlights the importance of exploring the pressure de-
pendence of the electronic Raman response. High-pressure Raman measurements would directly
track the evolution of the SDW gaps, offering a valuable spectroscopic probe of the underlying
electronic structure changes. Such investigations could provide critical insights into the interplay
between magnetism and superconductivity in high-T,. nickelate superconductors, potentially un-

covering key mechanisms that drive the emergence of superconductivity in these complex materials.

Methods
Samples: High-quality LagNisO7 single crystals were synthesized using a vertical optical-image
floating zone technique. The growth process was conducted under an oxygen pressure of 15 bar,

utilizing a 5 kW Xenon arc lamp. The samples were mechanically cleaved to obtain a flat surface
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for the measurements.

Light scattering: The inelastic light scattering experiments were performed in a confocal geome-
try. The samples were mounted on the cold finger of a commercial Stirling fridge (ColdStation-50,
MultiFields Tech.), allowing for temperature variation from 50K to 350K. A solid-state laser
emitting at 532nm was used. In our experiments, the laser power was set at P = 3.0mW,
resulting in a heating rate of ~1K/mW. We present the Raman susceptibilities Rx"(Q2,T) =
{1 +n(Q,T)}15(g ~ 0,Q) where R is an experimental constant, x” is the imaginary part of
Raman response function, S(g ~ 0, ) is the dynamical structure factor that is proportional to the
rate of scattered photons, and n(2,T") is the Bose-Einstein distribution function [54]. To achieve
high energy resolution for the phonon lines, we used a grating with 1800 g/mm and a focal length
of 800 mm, resulting in an energy resolution of 1.66 cm~! . For measurements of the electronic con-
tinuum, we used a grating with 600 g/mm, achieving an energy resolution of 5.90 cm™! to enhance

the Raman intensity.

Data Availability
All relevant data that support the findings of this study are presented in the manuscript and sup-
plementary information file. All data are available upon reasonable request from the corresponding

authors.
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Figure 1. Comparison of the electronic structure and Raman spectroscopic characteristics in
weak and strong coupling regimes in LazNi;O;. a, Fermi surface in the weak coupling regime,
calculated using an 8-band tight-binding model (see Supplementary Materials E for details). The solid
lines represent the Brillouin zone (BZ) of the ideal unit cell (without considering tilted Ni-O octahedra),
while the dashed lines indicate the BZ of the real unit cell (with tilted Ni-O octahedra). The blue and
red curves denote hole (8) and electron (a, 8’, ') pockets arising from band 3 and band 4, respectively.
The black arrows indicate the wavevectors Q; connecting o and 3 pockets and Qg connecting 8 and 3’
pockets, respectively. b, Spectral weight A(k,w) calculated within a mean-field approximation considering
a density wave gap A induced by Fermi surface nesting with a specific wave vector. c, Fermi patches in
the strong coupling regime, where strong interactions lead to a broadened distribution of electronic states
near the Fermi level across the BZ. d, Spectral weight A(k,w) in the strong coupling regime, where a broad
continuum appears due to incoherent particle-hole mixing, allowing excitations both below and above the
Fermi level, unlike the sharp features in a normal band picture. e, Typical Raman spectral features of
an SDW system in the weak coupling regime, exhibiting well-defined coherence peaks. f, Example Raman
spectral response of an SDW system in the strong coupling regime, characterized by a broad redistribution

of spectral weight instead of sharp features.
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Figure 2. Polarization configurations and corresponding Raman spectra. a-d, Schematic defini-
tions of the polarization configurations, where red and yellow spheres represent oxygen and nickel atoms,
respectively. The z- and y-axes are aligned along the Ni-O-Ni bond directions. The z’ and 3’ polarizations
are rotated by 45° clockwise from the x and y axes, respectively. e-h, Raman spectra measured at 50 K and
300K for the corresponding configurations. Raman-active phonon modes are labeled as indicated. Green

triangles denote the presence of additional electronic Raman responses in the zy and x’y’ channels.
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Figure 3. Normal and SDW state Raman spectra of LagNi;O; at temperatures as indicated. The
difference spectra between 50 K and 160 K are overlaid as light blue curves. Spectral weight redistribution
is clearly observed in the By and By, channels. The spectral weight loss is highlighted in blue, while the
gain is indicated in red. Insets: Color maps of Raman vertices in the first BZ for the Ay, Big, and By,

symmetries, respectively.
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Figure 4. Spectral weight and energy gap in LasNi;O7. a and b, Fits of the electronic continuum at
50 K using phenomenological Drude-Tsuneto-Maki and Drude-Lorentz models for the B;, and Byg spectra,
respectively. ¢ and d, Integrated spectral weight from 0 to 1000 cm ™ (red solid circles) as a function of
temperature in the By, and By, channels. The SDW transition temperature is marked by the light blue
vertical bands. e, Raman response in the Bi, symmetry at 160K, 200K, 260K, and 300 K. f, Temperature
dependence of the SDW energy gaps. The half-filled circles and squares are adapted from ultrafast spec-
troscopy [26] and optical conductivity [21], respectively. Red and blue points represent the energy gaps at

the 8 and (' pockets extracted from the Raman measurements. The deviation from the mean-field theory



Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

» SlAnisotropicElectronicCorrelationsintheSpinDensityWaveStateofLa3Ni207.pdf


https://assets-eu.researchsquare.com/files/rs-6952484/v1/101db8868bc967b02585beed.pdf

	Anisotropic Electronic Correlations in the Spin Density Wave State of La3Ni2O7
	Abstract
	Abstract
	Introduction


	Results
	Discussion
	References


