10

11
12

13

14

15

Supplementary Information for “Self-Reconfiguring Mod-

ular Robotic Boats”

Wei Wang''*, Niklas Hagemann?*, Alejandro Gonzalez-Garcia®", Carlo Ratti*5, Daniela Rus?"

"Marine Robotics Lab, Department of Mechanical Engineering, College of Engineering, University
of Wisconsin-Madison, Madison, USA

2Computer Science and Atrtificial Intelligence Lab (CSAIL), Massachusetts Institute of Technology,
Cambridge, USA

SMECO Research Team, Department of Mechanical Engineering, KU Leuven, Belgium

4Senseable City Laboratory, Massachusetts Institute of Technology, Cambridge, USA

SABC Department, Politecnico di Milano, Milano, Italia

"These authors contributed equally to this work.

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Supplementary Note 1

Mini Thruster Design

Due to the lack of commercially available brushless thrusters of suitable size for the miniature robotic
boats, we design custom mini thrusters, with mechanical details provided in (see Supplementary Fig. 3b).
To facilitate integration and maintenance, we further develop detachable holders for the thrusters (see
Supplementary Fig. 3a). Additionally, to enhance the rotational inertia of the robot and improve yaw con-

trol, we implement a detachable fin, as shown in see Supplementary Fig. 3a.

Electronics and Sensors

Each FloatForm module relies on an onboard embedded computer (Raspberry Pi 4), running Ubuntu
20.04 operating system, and Robot Operating System (ROS). The Raspberry Pi controls the robot’s basic
behaviors, communication with other agents, and interactions with a base station. Each robot also in-
cludes an STM32 microcontroller for lower-level control of peripheral hardware. The microcontroller
receives force and latching commands from the Raspberry Pi. It translates these commands into signals
for the Electronic Speed Controllers (ESCs), which drive the thrusters and signals to the micro-servo mo-
tor to actuate the latching mechanism. On the sensing side, a low-cost Adafruit BNO055 IMU provides
angular velocity data, and two Marvelmind acoustic beacons provide position and heading data. Experi-
mental data is logged onto an onboard microSD card. All electronics are connected to a custom printed
circuit board (PCB). An 11.1-V 2650-mAH Li-Po battery provides power for up to 3 hours of runtime and
is placed in the base of the hull for stability. Assembling a module takes around 2 hours: starting with the
assembly of the thrusters, placement of the battery and electronics, wiring, fixation with screws, place-

ment of the latching system, and fixation of the localization beacons on the acrylic cover.

Localization

Localization of all robots is facilitated using the Marvelmind Navigation System: an off-the-shelf in-

2

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

door navigation system, designed to provide precise (£ 2 cm) location data to autonomous robots via mo-
bile ultrasonic beacons. The navigation system consists of a network of stationary beacons interconnected
via a radio interface in a license-free band; two mobile beacons installed on each module to be tracked;
and a modem providing a gateway to the system from a base-station computer. The location of each mo-
bile beacon can be inferred from the propagation delay of ultrasonic pulses (Time-Of-Flight or TOF) be-
tween stationary and mobile beacons using a trilateration algorithm. An Extended Kalman Filter is then
used to provide a more accurate and higher frequency estimation of the robot state (pose and velocity) by
fusing the data from the beacons with values from the onboard IMU. Nonetheless, the localization data
from the robots is naturally noisy due to two main factors. First, the confined water surface causes com-
plex multi-path effects that affect trilateration. Second, the presence of numerous neighbors causes con-
sistent disturbances that further impact trilateration. As a result, incomplete and imperfect representations
may occur during self-reconfiguration behaviors.

Each FloatForm robot can obtain its neighbor’s position at a sampling rate of 50 Hz using a multi-master
communication framework implemented in ROS via Wi-Fi. Although each robot can theoretically know
the position of all its neighbors within our testing area, the communication range during experiments was
artificially limited by actively discarding messages originating outside the desired communication range
(0.5 m in our case). This limited range reduces the communication load between neighbors and allows the
coordination algorithm to be compatible with different sensing or communication strategies, such as infra-

red or cameras.

Supplementary Note 2

Thrust allocation

Given that the thrusters used in the robot are incapable of bi-directional motion (they only provide

forward thrust), have a limited rotational speed, and the vehicle is over-actuated, the following procedure

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

is required to allocate the appropriate command into each thruster. First, consider the forces and moments

vector T = [7y,7,,7,]7 and the actuators vector f = [fi, fo, f3 f4]7, where its relationship is:

B*t (1)

\H
I

Notice that the Moore-Penrose pseudo-inverse is used since B is not a square matrix. Nevertheless, this
allows negative values to be sent to each thruster, which would mean reversing the thruster blade’s rota-
tion. Then, each desired thruster signal needs to be mapped to ensure a positive command. First, the min-

imum value f; = min (f) is computed. If f; < 0, then f; = f; — f;, withi = 1,2,3,4.

However, the thrust could still be larger than the maximum value f,,.4. Likewise, if each thruster is
limited to f,.x, the thrust ratio or direction could be lost, resulting in a different movement than the de-
sired one, i.e., the motion vector would be redirected. Thus, the maximum command is then identified as

frn = max(f). If the maximum command is larger than the maximum allowed thrust, f;, > fi,ax, then f; =

fifmax

, which maintains the original motion direction. Nevertheless, this means the rotational velocity may
h

be diminished given its different performance range compared to linear velocities. Hence, the procedure is

followed again using a new vector T = Bf, where 7, is replaced by the original heading controller ,..

Supplementary Note 3

Centralized Task assignment algorithm to solve local imperfections

For the centralized part of the proposed system, each module is assigned a position from a shape ma-
trix G. The position assignment is introduced to ensure that a perfect structure is achieved, as the potential
field algorithm can approximate a shape without guarantees to avoid imperfect square lattices. First, the
shape matrix G = [gy, gz,...,gu]" is composed of goal positions g, € R?, form = 1,2, ... M, where M is

the total number of goals/robots (assuming the shape is designed with the same number of available goal

83

84

85

86

87

88

&9

90

91

92

93

94

95

96

97

98

99

100

101

102

103

positions as there are robots). Next, a distance matrix D is computed using the distance between each

FloatForm module’s position p, and each goal g,, as

Dim = |Ipk = gml|”)

Then, an assignment matrix @ is considered, where each matrix position is set to 1 if the robot is assigned
to a goal m, or to 0 if the robot is not assigned to said goal m. Thus, it results in the following linear as-

signment problem:
II:’,/I=1 2%:1 d)k,ka,m (3)

which is solved via the Hungarian algorithm'. After each module has received a fixed position, the decen-

tralized position-reference potential field algorithm drives each module to its respective goal.

Distributed position-reference algorithm towards perfect assembly

At the final stage of the shape formation process, once the task assignment algorithm has assigned
each robot a desired position, a position-reference formation algorithm is employed to bring the swarm
gradually into the correct configuration. Specifically, each robot receives a position reference, p;, that
indicates its designated location within the target shape G. This algorithm is based on the Artificial Poten-
tial Field method and will compute the desired velocities [ug, v4]7 based on the potential force E, (Equa-
tion 9 in the Methods section). The repulsive force F,., responsible for preventing collisions and maintain-
ing safe spacing between neighboring robots, remains unchanged from Equation 11 in the Methods sec-
tion. However, the attractive force, which pulls each FloatForm module toward its assigned goal pg, is
defined by a different equation. The attractive force uses the error vector e, = pg —p, i.e., the differ-
ence between the desired position and the robot’s current position. Mathematically, the attractive force is

expressed as:

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Fa,p = ka,3exp(|| ep”) €y 4)

where k, 3 is a gain parameter, exp(|| e,||) is an exponential term that increases with the distance to the
goal pg, and e, is the current positional error. Again, the potential field force F, is initially calculated in
the inertial reference frame and then transformed into u,, v; with equation 14 in the Methods section.

Thus, the surge and sway speed controllers can drive the module to its assigned position pg.

Collective transport algorithm

When the swarm has latched together into a floating structure, the system can perform collective mo-

tion. In this sense, the assembled structure can hold its position or navigate as a single unit. The collective
transport algorithm uses a shape matrix Gy = [go1,Joz, > Jom]”» Where gom = [Axm, Aym]Tare the rela-
tive positions with respect to the shape center, where m = 1,2, ..., M. When the collective structure is
tasked to move as a unit, a target shape Gr(gcr) = [9r1 + Ger» 12 + err -0 Grm + Ger]” is computed

based on the desired target shape center g.; € R? and the structure desired orientation 8, angle:

9rm = R(6a)gom Q)

where R(6,) is a rotation matrix dependent on 8;:

R(0y) = (6)

cosf; —sinby
sinf; cosfy

This computation describes the translation and rotation of the shape matrix G, to the desired position and
orientation of the floating structure. Following the task assignment solution, each robot can receive its

updated desired position p,, and navigate there using the attractive force from Equation 4.

123

124

125

126

127

128

129

130

131

132

133

134

135

136

References

1 Kuhn, H. W. The Hungarian Method for the assignment problem. Nav Res Log 52, 7-21 (2005).

https://doi.org/DOI 10.1002/nav.20053

https://doi.org/DOI

137

138

139

140

141

142

143

144

Continuous-
rotation micro
servo

3D printed
planetary gearbox
(8:1 reduction)

N

Auxetic square Permanent magnets

mechanism: (alternating polarities)
rigid portions

(PLA, 3D Flexible hinges

printed) (EPDM rubber)

SUPPLEMENTARY FIGURE 1 Mechanical details of the latching mechanism showing the servo

motor, origami-inspired auxetic mechanism, and 3D printed gearbox assembly.

145
146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

Auxetic mechanism Integration with FloatForm modules

Magnets extended

SUPPLEMENTARY FIGURE 2. Latching mechanism design. (a) The auxetlc mechanism before as-

sembly with the motor and gearbox, showing rigid (3D printed PLA) and flexible (EPDM rubber) por-
tions. Magnets are arranged in an alternating fashion; rotation at the center causes the mechanism to con-
tract from all sides, bringing the magnets into their retracted (de-latched) positions (b and d). ¢, and e

show the mechanism in its latched state.

163

164

165

166

167

Detachable
motor holder (3D
printed nylon)

2-part housing Impeller (3D
(3D printed printed nylon)
nylon)

Detachable x-y fin
(3D printed PLA)

SUPPLEMENTARY FIGURE 3 Mechanical details of the robot thrusters: (a) showing the detacha-
ble fin for altering the rotational inertia of the boat and detachable holders for the thrusters, (b) mechani-

cal details of the customized mini thrusters that were developed.

10

168

Top-cover
l Beacons
(x2)
Latching o —
system - R e—— Hull

Modular
thrusters (x4)

X-Y Fin

169

170 SUPPLEMENTARY FIGURE 4 Exploded view of the robot assembly.
171
172
173
174
175
176

177
11

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

Supplementary Video 1: Motion Demonstration

https://voutu.be/n2NeAlJIIRM

Demonstrates individual module maneuverability in water.
Supplementary Video 2: Latching Mechanism

https://youtu.be/KXmRcd14U6k

[lustrates the magnetic latching process between modules during docking and undocking.
Supplementary Video 3: Self-Assembly and Reconfiguration with Four Modules

https://youtu.be/PDxQCSw4x1U

Shows self-assembly and reconfiguration using a small-scale four-module setup.
Supplementary Video 4: Self-Assembly, Reconfiguration, and Collective Transport with
Eight Modules

https://youtu.be/DidZ9nz3ax4

Demonstrates self-assembly, reconfiguration and coordinated transport using eight modules.

12

https://youtu.be/n2NeAlJllRM
https://youtu.be/KXmRcd14U6k
https://youtu.be/PDxQCSw4xlU
https://youtu.be/DidZ9nz3ax4

