
1

Supplementary Information for “Self‐Reconfiguring Mod-1

ular Robotic Boats” 2

 3

Wei Wang1,†,*, Niklas Hagemann2,*, Alejandro Gonzalez-Garcia3,*, Carlo Ratti4,5, Daniela Rus2,† 4

1Marine Robotics Lab, Department of Mechanical Engineering, College of Engineering, University 5

of Wisconsin-Madison, Madison, USA 6

2Computer Science and Artificial Intelligence Lab (CSAIL), Massachusetts Institute of Technology, 7

Cambridge, USA 8

3MECO Research Team, Department of Mechanical Engineering, KU Leuven, Belgium 9

4Senseable City Laboratory, Massachusetts Institute of Technology, Cambridge, USA 10

5ABC Department, Politecnico di Milano, Milano, Italia 11
 12

 13

*These authors contributed equally to this work. 14

 15

2

Supplementary Note 1 16

Mini Thruster Design 17

Due to the lack of commercially available brushless thrusters of suitable size for the miniature robotic 18

boats, we design custom mini thrusters, with mechanical details provided in (see Supplementary Fig. 3b). 19

To facilitate integration and maintenance, we further develop detachable holders for the thrusters (see 20

Supplementary Fig. 3a). Additionally, to enhance the rotational inertia of the robot and improve yaw con-21

trol, we implement a detachable fin, as shown in see Supplementary Fig. 3a. 22

Electronics and Sensors 23

Each FloatForm module relies on an onboard embedded computer (Raspberry Pi 4), running Ubuntu 24

20.04 operating system, and Robot Operating System (ROS). The Raspberry Pi controls the robot’s basic 25

behaviors, communication with other agents, and interactions with a base station. Each robot also in-26

cludes an STM32 microcontroller for lower-level control of peripheral hardware. The microcontroller 27

receives force and latching commands from the Raspberry Pi. It translates these commands into signals 28

for the Electronic Speed Controllers (ESCs), which drive the thrusters and signals to the micro-servo mo-29

tor to actuate the latching mechanism. On the sensing side, a low-cost Adafruit BNO055 IMU provides 30

angular velocity data, and two Marvelmind acoustic beacons provide position and heading data. Experi-31

mental data is logged onto an onboard microSD card. All electronics are connected to a custom printed 32

circuit board (PCB). An 11.1-V 2650-mAH Li-Po battery provides power for up to 3 hours of runtime and 33

is placed in the base of the hull for stability. Assembling a module takes around 2 hours: starting with the 34

assembly of the thrusters, placement of the battery and electronics, wiring, fixation with screws, place-35

ment of the latching system, and fixation of the localization beacons on the acrylic cover. 36

Localization 37

Localization of all robots is facilitated using the Marvelmind Navigation System: an off-the-shelf in-38

3

door navigation system, designed to provide precise (± 2 cm) location data to autonomous robots via mo-39

bile ultrasonic beacons. The navigation system consists of a network of stationary beacons interconnected 40

via a radio interface in a license-free band; two mobile beacons installed on each module to be tracked; 41

and a modem providing a gateway to the system from a base-station computer. The location of each mo-42

bile beacon can be inferred from the propagation delay of ultrasonic pulses (Time-Of-Flight or TOF) be-43

tween stationary and mobile beacons using a trilateration algorithm. An Extended Kalman Filter is then 44

used to provide a more accurate and higher frequency estimation of the robot state (pose and velocity) by 45

fusing the data from the beacons with values from the onboard IMU. Nonetheless, the localization data 46

from the robots is naturally noisy due to two main factors. First, the confined water surface causes com-47

plex multi-path effects that affect trilateration. Second, the presence of numerous neighbors causes con-48

sistent disturbances that further impact trilateration. As a result, incomplete and imperfect representations 49

may occur during self-reconfiguration behaviors. 50

Each FloatForm robot can obtain its neighbor’s position at a sampling rate of 50 Hz using a multi-master 51

communication framework implemented in ROS via Wi-Fi. Although each robot can theoretically know 52

the position of all its neighbors within our testing area, the communication range during experiments was 53

artificially limited by actively discarding messages originating outside the desired communication range 54

(0.5 m in our case). This limited range reduces the communication load between neighbors and allows the 55

coordination algorithm to be compatible with different sensing or communication strategies, such as infra-56

red or cameras. 57

Supplementary Note 2 58

Thrust allocation 59

Given that the thrusters used in the robot are incapable of bi-directional motion (they only provide 60

forward thrust), have a limited rotational speed, and the vehicle is over-actuated, the following procedure 61

4

is required to allocate the appropriate command into each thruster. First, consider the forces and moments 62

vector 𝜏𝜏 = [𝜏𝜏𝑢𝑢, 𝜏𝜏𝑣𝑣 , 𝜏𝜏𝑟𝑟]𝑇𝑇 and the actuators vector 𝑓𝑓 = [𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3,𝑓𝑓4]𝑇𝑇, where its relationship is: 63

𝑓𝑓 = 𝐵𝐵+𝜏𝜏 (1) 64

Notice that the Moore-Penrose pseudo-inverse is used since 𝐵𝐵 is not a square matrix. Nevertheless, this 65

allows negative values to be sent to each thruster, which would mean reversing the thruster blade’s rota-66

tion. Then, each desired thruster signal needs to be mapped to ensure a positive command. First, the min-67

imum value 𝑓𝑓𝑙𝑙 = min (𝑓𝑓) is computed. If 𝑓𝑓𝑙𝑙 < 0, then 𝑓𝑓𝑖𝑖 = 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑙𝑙, with 𝑖𝑖 = 1,2,3,4. 68

However, the thrust could still be larger than the maximum value 𝑓𝑓max. Likewise, if each thruster is 69

limited to 𝑓𝑓max, the thrust ratio or direction could be lost, resulting in a different movement than the de-70

sired one, i.e., the motion vector would be redirected. Thus, the maximum command is then identified as 71

𝑓𝑓ℎ = max(𝑓𝑓). If the maximum command is larger than the maximum allowed thrust, 𝑓𝑓ℎ > 𝑓𝑓max, then 𝑓𝑓𝑖𝑖 =72

𝑓𝑓𝑖𝑖𝑓𝑓max
𝑓𝑓ℎ

, which maintains the original motion direction. Nevertheless, this means the rotational velocity may 73

be diminished given its different performance range compared to linear velocities. Hence, the procedure is 74

followed again using a new vector 𝜏̂𝜏 = 𝐵𝐵𝐵𝐵, where 𝜏̂𝜏𝑟𝑟 is replaced by the original heading controller 𝜏𝜏𝑟𝑟. 75

Supplementary Note 3 76

Centralized Task assignment algorithm to solve local imperfections 77

For the centralized part of the proposed system, each module is assigned a position from a shape ma-78

trix 𝐺𝐺. The position assignment is introduced to ensure that a perfect structure is achieved, as the potential 79

field algorithm can approximate a shape without guarantees to avoid imperfect square lattices. First, the 80

shape matrix 𝐺𝐺 = [𝑔𝑔1,𝑔𝑔2, . . . ,𝑔𝑔𝑀𝑀]𝑇𝑇 is composed of goal positions 𝑔𝑔𝑚𝑚 𝜖𝜖 𝑅𝑅2, for 𝑚𝑚 = 1,2, …𝑀𝑀, where 𝑀𝑀 is 81

the total number of goals/robots (assuming the shape is designed with the same number of available goal 82

5

positions as there are robots). Next, a distance matrix 𝐷𝐷 is computed using the distance between each 83

FloatForm module’s position 𝑝𝑝𝑘𝑘 and each goal 𝑔𝑔𝑚𝑚 as 84

𝐷𝐷𝑘𝑘,𝑚𝑚 = �|𝑝𝑝𝑘𝑘 − 𝑔𝑔𝑚𝑚|�2 (2) 85

Then, an assignment matrix 𝛷𝛷 is considered, where each matrix position is set to 1 if the robot is assigned 86

to a goal 𝑚𝑚, or to 0 if the robot is not assigned to said goal 𝑚𝑚. Thus, it results in the following linear as-87

signment problem: 88

∑ ∑ 𝛷𝛷𝑘𝑘,𝑚𝑚𝐷𝐷𝑘𝑘,𝑚𝑚
𝑀𝑀
𝑚𝑚=1

𝑀𝑀
𝑘𝑘=1 (3) 89

which is solved via the Hungarian algorithm1. After each module has received a fixed position, the decen-90

tralized position-reference potential field algorithm drives each module to its respective goal. 91

Distributed position-reference algorithm towards perfect assembly 92

At the final stage of the shape formation process, once the task assignment algorithm has assigned 93

each robot a desired position, a position-reference formation algorithm is employed to bring the swarm 94

gradually into the correct configuration. Specifically, each robot receives a position reference, 𝑝𝑝𝑑𝑑, that 95

indicates its designated location within the target shape 𝐺𝐺. This algorithm is based on the Artificial Poten-96

tial Field method and will compute the desired velocities [𝑢𝑢𝑑𝑑 , 𝑣𝑣𝑑𝑑]𝑇𝑇 based on the potential force 𝐹𝐹𝑝𝑝 (Equa-97

tion 9 in the Methods section). The repulsive force 𝐹𝐹𝑟𝑟, responsible for preventing collisions and maintain-98

ing safe spacing between neighboring robots, remains unchanged from Equation 11 in the Methods sec-99

tion. However, the attractive force, which pulls each FloatForm module toward its assigned goal 𝑝𝑝𝑑𝑑, is 100

defined by a different equation. The attractive force uses the error vector 𝑒𝑒𝑝𝑝 = 𝑝𝑝𝑑𝑑 − 𝑝𝑝, i.e., the differ-101

ence between the desired position and the robot’s current position. Mathematically, the attractive force is 102

expressed as: 103

6

𝐹𝐹𝑎𝑎,𝑝𝑝 = 𝑘𝑘𝑎𝑎,3exp(|| 𝑒𝑒𝑝𝑝||) 𝑒𝑒𝑝𝑝 (4) 104

where 𝑘𝑘𝑎𝑎,3 is a gain parameter, exp(|| 𝑒𝑒𝑝𝑝||) is an exponential term that increases with the distance to the 105

goal 𝑝𝑝𝑑𝑑, and 𝑒𝑒𝑝𝑝 is the current positional error. Again, the potential field force 𝐹𝐹𝑝𝑝 is initially calculated in 106

the inertial reference frame and then transformed into 𝑢𝑢𝑑𝑑 , 𝑣𝑣𝑑𝑑 with equation 14 in the Methods section. 107

Thus, the surge and sway speed controllers can drive the module to its assigned position 𝑝𝑝𝑑𝑑. 108

Collective transport algorithm 109

When the swarm has latched together into a floating structure, the system can perform collective mo-110

tion. In this sense, the assembled structure can hold its position or navigate as a single unit. The collective 111

transport algorithm uses a shape matrix 𝐺𝐺0 = [𝑔𝑔01,𝑔𝑔02, … ,𝑔𝑔0𝑀𝑀]𝑇𝑇, where 𝑔𝑔0m = �Δ𝑥𝑥𝑥𝑥,Δ𝑦𝑦𝑦𝑦�
𝑇𝑇

are the rela-112

tive positions with respect to the shape center, where 𝑚𝑚 = 1, 2, … ,𝑀𝑀. When the collective structure is 113

tasked to move as a unit, a target shape 𝐺𝐺𝑇𝑇(𝑔𝑔𝑐𝑐𝑐𝑐) = [𝑔𝑔𝑇𝑇1 + 𝑔𝑔𝑐𝑐𝑐𝑐 ,𝑔𝑔𝑇𝑇2 + 𝑔𝑔𝑐𝑐𝑐𝑐 , . . . ,𝑔𝑔𝑇𝑇𝑇𝑇 + 𝑔𝑔𝑐𝑐𝑐𝑐]𝑇𝑇 is computed 114

based on the desired target shape center 𝑔𝑔𝑐𝑐𝑐𝑐 𝜖𝜖 𝑅𝑅2 and the structure desired orientation 𝜃𝜃𝑑𝑑 angle: 115

𝑔𝑔𝑇𝑇𝑇𝑇 = 𝑅𝑅(𝜃𝜃𝑑𝑑)𝑔𝑔0𝑚𝑚 (5) 116

where 𝑅𝑅(𝜃𝜃𝑑𝑑) is a rotation matrix dependent on 𝜃𝜃𝑑𝑑: 117

𝑅𝑅(𝜃𝜃𝑑𝑑) = �cos 𝜃𝜃𝑑𝑑 − sin𝜃𝜃𝑑𝑑
sin𝜃𝜃𝑑𝑑 cos 𝜃𝜃𝑑𝑑

� (6) 118

This computation describes the translation and rotation of the shape matrix 𝐺𝐺0 to the desired position and 119

orientation of the floating structure. Following the task assignment solution, each robot can receive its 120

updated desired position 𝑝𝑝𝑑𝑑, and navigate there using the attractive force from Equation 4. 121

 122

7

References 123

1 Kuhn, H. W. The Hungarian Method for the assignment problem. Nav Res Log 52, 7-21 (2005). 124

https://doi.org/DOI 10.1002/nav.20053 125

 126

 127

 128

 129

 130

 131

 132

 133

 134

 135

 136

https://doi.org/DOI

8

 137

SUPPLEMENTARY FIGURE 1 Mechanical details of the latching mechanism showing the servo 138

motor, origami-inspired auxetic mechanism, and 3D printed gearbox assembly. 139

 140

 141

 142

 143

 144

9

145
SUPPLEMENTARY FIGURE 2. Latching mechanism design. (a) The auxetic mechanism before as-146

sembly with the motor and gearbox, showing rigid (3D printed PLA) and flexible (EPDM rubber) por-147

tions. Magnets are arranged in an alternating fashion; rotation at the center causes the mechanism to con-148

tract from all sides, bringing the magnets into their retracted (de-latched) positions (b and d). c, and e 149

show the mechanism in its latched state. 150

 151

 152

 153

 154

 155

 156

 157

 158

 159

 160

 161

 162

10

 163

SUPPLEMENTARY FIGURE 3 Mechanical details of the robot thrusters: (a) showing the detacha-164

ble fin for altering the rotational inertia of the boat and detachable holders for the thrusters, (b) mechani-165

cal details of the customized mini thrusters that were developed. 166

 167

11

 168

 169

SUPPLEMENTARY FIGURE 4 Exploded view of the robot assembly. 170

 171

 172

 173

 174

 175

 176

 177

12

Supplementary Video 1: Motion Demonstration 178

https://youtu.be/n2NeAlJllRM 179

Demonstrates individual module maneuverability in water. 180

Supplementary Video 2: Latching Mechanism 181

https://youtu.be/KXmRcd14U6k 182

Illustrates the magnetic latching process between modules during docking and undocking. 183

Supplementary Video 3: Self-Assembly and Reconfiguration with Four Modules 184

https://youtu.be/PDxQCSw4xlU 185

Shows self-assembly and reconfiguration using a small-scale four-module setup. 186

Supplementary Video 4: Self-Assembly, Reconfiguration, and Collective Transport with 187

Eight Modules 188

https://youtu.be/DidZ9nz3ax4 189

Demonstrates self-assembly, reconfiguration and coordinated transport using eight modules. 190

 191

 192

https://youtu.be/n2NeAlJllRM
https://youtu.be/KXmRcd14U6k
https://youtu.be/PDxQCSw4xlU
https://youtu.be/DidZ9nz3ax4

