
 Implementation Code

AI-Based Detection Framework for Reused Cooking Oils: Advancing Food Safety and Cancer Prevention

 Complete methodology implementation including ResNet50+ELM-LRF, VGG16+ELM-LRF, multi-modal sensor fusion, and data preprocessing

algorithms

 1. ResNet50+ELM-LRF Hybrid Architecture

1.1 ResNet50 Feature Extractor

import torch

import torch.nn as nn

import torchvision.models as models

import numpy as np

from sklearn.preprocessing import StandardScaler

class ResNet50FeatureExtractor(nn.Module):

 """

 ResNet50 backbone for feature extraction in cooking oil quality detection

 Modified for multi-modal sensor input processing

 """

 def __init__(self, pretrained=True, freeze_backbone=False):

 super(ResNet50FeatureExtractor, self).__init__()

 # Load pretrained ResNet50

 self.backbone = models.resnet50(pretrained=pretrained)

 # Remove final classification layers

 self.features = nn.Sequential(*list(self.backbone.children())[:-2])

 # Add adaptive pooling for consistent output size

 self.adaptive_pool = nn.AdaptiveAvgPool2d((7, 7))

 # Feature dimension: 2048 * 7 * 7 = 100,352

 self.feature_dim = 100352

 if freeze_backbone:

 for param in self.features.parameters():

 param.requires_grad = False

 def forward(self, x):

 """

 Forward pass through ResNet50 feature extractor

 Args:

 x: Input tensor [batch_size, channels, height, width]

 Returns:

 features: Extracted features [batch_size, feature_dim]

 """

 features = self.features(x)

 features = self.adaptive_pool(features)

 features = features.view(features.size(0), -1)

 return features

Multi-modal input preprocessing for sensor data

class MultiModalPreprocessor:

 """

 Preprocesses multi-modal sensor data for cooking oil quality detection

 Handles visual, chemical gas sensor, and NIR spectroscopy data

 """

 def __init__(self):

 self.visual_scaler = StandardScaler()

 self.gas_scaler = StandardScaler()

 self.nir_scaler = StandardScaler()

 def preprocess_visual(self, images):

 """Preprocess visual images"""

 # Normalize to [0, 1] and apply ImageNet normalization

 images = images.astype(np.float32) / 255.0

 mean = np.array([0.485, 0.456, 0.406])

 std = np.array([0.229, 0.224, 0.225])

 for i in range(3):

 images[:, :, :, i] = (images[:, :, :, i] - mean[i]) / std[i]

 return torch.tensor(images.transpose(0, 3, 1, 2), dtype=torch.float32)

 def preprocess_gas_sensors(self, gas_data):

 """Preprocess chemical gas sensor data"""

 # Expected features: [CO, CO2, VOCs, NH3, H2S, temperature, humidity]

 gas_normalized = self.gas_scaler.fit_transform(gas_data)

 return torch.tensor(gas_normalized, dtype=torch.float32)

 def preprocess_nir_spectroscopy(self, nir_data):

 """Preprocess Near-Infrared spectroscopy data"""

 # Wavelength range typically 700-2500 nm

 nir_normalized = self.nir_scaler.fit_transform(nir_data)

 return torch.tensor(nir_normalized, dtype=torch.float32)

1.2 ELM-LRF Implementation

class ELM_LRF(nn.Module):

 """

 Extreme Learning Machine with Local Receptive Fields

 Based on the paper: "Local Receptive Fields based Extreme Learning Machine"

 """

 def __init__(self, input_dim, hidden_nodes, output_dim,

 receptive_field_size=3, stride=1, C=1000):

 super(ELM_LRF, self).__init__()

 self.input_dim = input_dim

 self.hidden_nodes = hidden_nodes

 self.output_dim = output_dim

 self.receptive_field_size = receptive_field_size

 self.stride = stride

 self.C = C # Regularization parameter

 # Calculate number of local receptive fields

 self.num_fields = self._calculate_num_fields()

 # Initialize random weights and biases for each receptive field

 self.weights = []

 self.biases = []

 for _ in range(self.num_fields):

 # Random weights for local receptive field

 w = torch.randn(self.receptive_field_size, hidden_nodes)

 b = torch.randn(hidden_nodes)

 self.weights.append(w)

 self.biases.append(b)

 # Output weights (to be calculated during training)

 self.output_weights = None

 def _calculate_num_fields(self):

 """Calculate number of local receptive fields"""

 return (self.input_dim - self.receptive_field_size) // self.stride + 1

 def _apply_local_receptive_fields(self, x):

 """Apply local receptive fields to input"""

 batch_size = x.size(0)

 H = []

 for i, (w, b) in enumerate(zip(self.weights, self.biases)):

 # Extract local receptive field

 start_idx = i * self.stride

 end_idx = start_idx + self.receptive_field_size

 if end_idx <= self.input_dim:

 local_input = x[:, start_idx:end_idx]

 # Apply transformation: tanh(x*w + b)

 h = torch.tanh(torch.mm(local_input, w) + b.unsqueeze(0))

 H.append(h)

 # Concatenate all local features

 H = torch.cat(H, dim=1)

 return H

 def fit(self, X, Y):

 """

 Train the ELM-LRF model

 Args:

 X: Input features [batch_size, input_dim]

 Y: Target labels [batch_size, output_dim]

 """

 # Apply local receptive fields

 H = self._apply_local_receptive_fields(X)

 # Calculate output weights using Moore-Penrose pseudoinverse

 # β = (H^T H + I/C)^(-1) H^T Y

 H_T = H.t()

 if H.size(0) >= H.size(1):

 # More samples than hidden nodes

 self.output_weights = torch.mm(

 torch.mm(torch.inverse(torch.mm(H_T, H) +

 torch.eye(H.size(1)) / self.C), H_T), Y)

 else:

 # Fewer samples than hidden nodes

 self.output_weights = torch.mm(H_T,

 torch.mm(torch.inverse(torch.mm(H, H_T) +

 torch.eye(H.size(0)) / self.C), Y))

 def forward(self, x):

 """Forward pass through ELM-LRF"""

 H = self._apply_local_receptive_fields(x)

 output = torch.mm(H, self.output_weights)

 return output

1.3 Complete ResNet50+ELM-LRF Hybrid Model

class ResNet50_ELM_LRF(nn.Module):

 """

 Complete hybrid model combining ResNet50 feature extraction with ELM-LRF classification

 for cooking oil reuse detection

 """

 def __init__(self, num_classes=4, hidden_nodes=1000):

 super(ResNet50_ELM_LRF, self).__init__()

 # Feature extractor

 self.feature_extractor = ResNet50FeatureExtractor(pretrained=True)

 # Dimension reduction layer

 self.feature_reducer = nn.Linear(100352, 2048)

 self.dropout = nn.Dropout(0.5)

 # ELM-LRF classifier

 self.elm_lrf = ELM_LRF(

 input_dim=2048,

 hidden_nodes=hidden_nodes,

 output_dim=num_classes,

 receptive_field_size=64,

 stride=32

)

 self.num_classes = num_classes

 self.is_fitted = False

 def extract_features(self, x):

 """Extract features using ResNet50 backbone"""

 features = self.feature_extractor(x)

 features = self.feature_reducer(features)

 features = self.dropout(features)

 return features

 def fit(self, dataloader, device='cuda'):

 """

 Fit the ELM-LRF classifier on extracted features

 Args:

 dataloader: PyTorch DataLoader with (images, labels)

 device: Computing device

 """

 self.to(device)

 self.eval()

 all_features = []

 all_labels = []

 with torch.no_grad():

 for batch_idx, (images, labels) in enumerate(dataloader):

 images, labels = images.to(device), labels.to(device)

 # Extract features

 features = self.extract_features(images)

 all_features.append(features.cpu())

 all_labels.append(labels.cpu())

 # Concatenate all features and labels

 X = torch.cat(all_features, dim=0)

 Y = torch.cat(all_labels, dim=0)

 # Convert labels to one-hot encoding

 Y_onehot = torch.zeros(Y.size(0), self.num_classes)

 Y_onehot.scatter_(1, Y.unsqueeze(1), 1)

 # Fit ELM-LRF

 self.elm_lrf.fit(X, Y_onehot)

 self.is_fitted = True

 def forward(self, x):

 """Forward pass through complete model"""

 if not self.is_fitted:

 raise RuntimeError("Model must be fitted before inference")

 features = self.extract_features(x)

 output = self.elm_lrf(features)

 return output

 2. VGG16+ELM-LRF Hybrid Architecture

class VGG16FeatureExtractor(nn.Module):

 """

 VGG16 backbone for feature extraction in cooking oil quality detection

 """

 def __init__(self, pretrained=True, freeze_backbone=False):

 super(VGG16FeatureExtractor, self).__init__()

 # Load pretrained VGG16

 vgg = models.vgg16(pretrained=pretrained)

 # Extract features (convolutional layers)

 self.features = vgg.features

 # Add adaptive pooling

 self.adaptive_pool = nn.AdaptiveAvgPool2d((7, 7))

 # Feature dimension: 512 * 7 * 7 = 25,088

 self.feature_dim = 25088

 if freeze_backbone:

 for param in self.features.parameters():

 param.requires_grad = False

 def forward(self, x):

 features = self.features(x)

 features = self.adaptive_pool(features)

 features = features.view(features.size(0), -1)

 return features

class VGG16_ELM_LRF(nn.Module):

 """

 VGG16+ELM-LRF hybrid model for cooking oil reuse detection

 """

 def __init__(self, num_classes=4, hidden_nodes=1000):

 super(VGG16_ELM_LRF, self).__init__()

 # Feature extractor

 self.feature_extractor = VGG16FeatureExtractor(pretrained=True)

 # Dimension reduction

 self.feature_reducer = nn.Linear(25088, 2048)

 self.dropout = nn.Dropout(0.5)

 # ELM-LRF classifier

 self.elm_lrf = ELM_LRF(

 input_dim=2048,

 hidden_nodes=hidden_nodes,

 output_dim=num_classes,

 receptive_field_size=64,

 stride=32

)

 self.num_classes = num_classes

 self.is_fitted = False

 def extract_features(self, x):

 features = self.feature_extractor(x)

 features = self.feature_reducer(features)

 features = self.dropout(features)

 return features

 def fit(self, dataloader, device='cuda'):

 """Fit the model using the same procedure as ResNet50+ELM-LRF"""

 self.to(device)

 self.eval()

 all_features = []

 all_labels = []

 with torch.no_grad():

 for batch_idx, (images, labels) in enumerate(dataloader):

 images, labels = images.to(device), labels.to(device)

 features = self.extract_features(images)

 all_features.append(features.cpu())

 all_labels.append(labels.cpu())

 X = torch.cat(all_features, dim=0)

 Y = torch.cat(all_labels, dim=0)

 # Convert to one-hot

 Y_onehot = torch.zeros(Y.size(0), self.num_classes)

 Y_onehot.scatter_(1, Y.unsqueeze(1), 1)

 self.elm_lrf.fit(X, Y_onehot)

 self.is_fitted = True

 def forward(self, x):

 if not self.is_fitted:

 raise RuntimeError("Model must be fitted before inference")

 features = self.extract_features(x)

 output = self.elm_lrf(features)

 return output

 3. Multi-Modal Sensor Fusion

class MultiModalSensorFusion(nn.Module):

 """

 Multi-modal sensor fusion for cooking oil quality detection

 Combines visual, chemical gas sensor, and NIR spectroscopy data

 """

 def __init__(self, fusion_strategy='late', num_classes=4):

 super(MultiModalSensorFusion, self).__init__()

 self.fusion_strategy = fusion_strategy

 self.num_classes = num_classes

 # Visual processing branch (ResNet50)

 self.visual_backbone = ResNet50FeatureExtractor()

 self.visual_reducer = nn.Linear(100352, 512)

 # Gas sensor processing branch

 self.gas_processor = nn.Sequential(

 nn.Linear(7, 64), # 7 gas sensor features

 nn.ReLU(),

 nn.Dropout(0.3),

 nn.Linear(64, 128),

 nn.ReLU(),

 nn.Linear(128, 256)

)

 # NIR spectroscopy processing branch

 self.nir_processor = nn.Sequential(

 nn.Linear(1024, 512), # NIR spectral features

 nn.ReLU(),

 nn.Dropout(0.3),

 nn.Linear(512, 256),

 nn.ReLU(),

 nn.Linear(256, 256)

)

 # Fusion and classification layers

 if fusion_strategy == 'early':

 self.fusion_dim = 512 + 256 + 256 # 1024

 elif fusion_strategy == 'late':

 self.fusion_dim = 512 + 256 + 256 # 1024

 self.fusion_layer = nn.Sequential(

 nn.Linear(self.fusion_dim, 512),

 nn.ReLU(),

 nn.Dropout(0.5),

 nn.Linear(512, 256),

 nn.ReLU(),

 nn.Linear(256, num_classes)

)

 # Attention mechanism for modality weighting

 self.attention = nn.Sequential(

 nn.Linear(self.fusion_dim, 128),

 nn.ReLU(),

 nn.Linear(128, 3), # 3 modalities

 nn.Softmax(dim=1)

)

 def forward(self, visual_data, gas_data, nir_data):

 """

 Forward pass through multi-modal fusion network

 Args:

 visual_data: Visual images [batch_size, 3, H, W]

 gas_data: Gas sensor readings [batch_size, 7]

 nir_data: NIR spectroscopy data [batch_size, 1024]

 """

 # Process each modality

 visual_features = self.visual_backbone(visual_data)

 visual_features = self.visual_reducer(visual_features)

 gas_features = self.gas_processor(gas_data)

 nir_features = self.nir_processor(nir_data)

 # Fusion strategy

 if self.fusion_strategy == 'early':

 # Concatenate all features

 fused_features = torch.cat([visual_features, gas_features, nir_features], dim=1)

 elif self.fusion_strategy == 'late':

 # Weighted fusion using attention

 all_features = torch.cat([visual_features, gas_features, nir_features], dim=1)

 attention_weights = self.attention(all_features)

 # Apply attention weights

 weighted_visual = visual_features * attention_weights[:, 0].unsqueeze(1)

 weighted_gas = gas_features * attention_weights[:, 1].unsqueeze(1)

 weighted_nir = nir_features * attention_weights[:, 2].unsqueeze(1)

 fused_features = torch.cat([weighted_visual, weighted_gas, weighted_nir], dim=1)

 # Final classification

 output = self.fusion_layer(fused_features)

 return output, attention_weights if self.fusion_strategy == 'late' else None

 4. Data Preprocessing and Augmentation

import cv2

import albumentations as A

from albumentations.pytorch import ToTensorV2

class CookingOilDataPreprocessor:

 """

 Comprehensive data preprocessing for cooking oil quality detection

 """

 def __init__(self, image_size=(224, 224), augment=True):

 self.image_size = image_size

 self.augment = augment

 # Image preprocessing pipeline

 self.train_transform = A.Compose([

 A.Resize(height=image_size[0], width=image_size[1]),

 A.HorizontalFlip(p=0.5),

 A.VerticalFlip(p=0.3),

 A.RandomRotate90(p=0.3),

 A.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1, p=0.5),

 A.GaussianBlur(blur_limit=(3, 7), p=0.3),

 A.GaussNoise(var_limit=(10.0, 50.0), p=0.3),

 A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),

 ToTensorV2()

])

 self.val_transform = A.Compose([

 A.Resize(height=image_size[0], width=image_size[1]),

 A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),

 ToTensorV2()

])

 def preprocess_image(self, image, training=True):

 """Preprocess cooking oil images"""

 if isinstance(image, str):

 image = cv2.imread(image)

 image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

 if training and self.augment:

 transformed = self.train_transform(image=image)

 else:

 transformed = self.val_transform(image=image)

 return transformed['image']

 def normalize_sensor_data(self, sensor_data, sensor_type='gas'):

 """

 Normalize sensor data based on type

 Args:

 sensor_data: Raw sensor readings

 sensor_type: 'gas', 'nir', or 'temperature'

 """

 if sensor_type == 'gas':

 # Gas sensor normalization (CO, CO2, VOCs, NH3, H2S, temp, humidity)

 gas_ranges = {

 'CO': (0, 1000), # ppm

 'CO2': (300, 5000), # ppm

 'VOCs': (0, 500), # ppb

 'NH3': (0, 100), # ppm

 'H2S': (0, 50), # ppm

 'temp': (15, 45), # Celsius

 'humidity': (20, 80) # %

 }

 normalized_data = np.zeros_like(sensor_data)

 for i, (key, (min_val, max_val)) in enumerate(gas_ranges.items()):

 normalized_data[:, i] = (sensor_data[:, i] - min_val) / (max_val - min_val)

 normalized_data[:, i] = np.clip(normalized_data[:, i], 0, 1)

 return normalized_data

 elif sensor_type == 'nir':

 # NIR spectroscopy normalization

 # Apply Standard Normal Variate (SNV) correction

 mean_spectra = np.mean(sensor_data, axis=1, keepdims=True)

 std_spectra = np.std(sensor_data, axis=1, keepdims=True)

 snv_data = (sensor_data - mean_spectra) / (std_spectra + 1e-8)

 # Apply Savitzky-Golay smoothing

 from scipy.signal import savgol_filter

 smoothed_data = savgol_filter(snv_data, window_length=15, polyorder=2, axis=1)

 return smoothed_data

 def extract_chemical_features(self, oil_samples):

 """

 Extract chemical features from oil samples

 Simulates laboratory analysis results

 """

 features = {

 'polar_compounds': [],

 'free_fatty_acids': [],

 'peroxide_value': [],

 'pahs_concentration': [],

 'aldehydes_concentration': [],

 'oxidation_index': []

 }

 for sample in oil_samples:

 reuse_cycles = sample['reuse_cycles']

 # Simulate chemical degradation based on reuse cycles

 base_polar = 8.4 + (4.2 * reuse_cycles) + np.random.normal(0, 1.5)

 base_ffa = 0.15 + (0.08 * reuse_cycles) + np.random.normal(0, 0.03)

 base_pv = 2.1 + (3.2 * reuse_cycles) + np.random.normal(0, 0.8)

 # PAHs and aldehydes increase exponentially

 pahs = 2.3 * np.exp(0.85 * reuse_cycles) + np.random.normal(0, 3.0)

 aldehydes = 15.2 * np.exp(0.78 * reuse_cycles) + np.random.normal(0, 8.0)

 oxidation = base_polar + base_ffa * 10 + base_pv * 2

 features['polar_compounds'].append(np.clip(base_polar, 8, 50))

 features['free_fatty_acids'].append(np.clip(base_ffa, 0.1, 2.0))

 features['peroxide_value'].append(np.clip(base_pv, 1, 30))

 features['pahs_concentration'].append(np.clip(pahs, 1, 200))

 features['aldehydes_concentration'].append(np.clip(aldehydes, 10, 500))

 features['oxidation_index'].append(oxidation)

 return features

 5. Training Protocol and Optimization

class CookingOilTrainer:

 """

 Training protocol for cooking oil quality detection models

 """

 def __init__(self, model, device='cuda', learning_rate=0.001):

 self.model = model

 self.device = device

 self.learning_rate = learning_rate

 # Loss function and optimizer

 self.criterion = nn.CrossEntropyLoss()

 self.optimizer = torch.optim.Adam(

 model.parameters(),

 lr=learning_rate,

 weight_decay=1e-4

)

 # Learning rate scheduler

 self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(

 self.optimizer,

 mode='min',

 factor=0.5,

 patience=5,

 verbose=True

)

 # Training history

 self.train_losses = []

 self.val_losses = []

 self.train_accuracies = []

 self.val_accuracies = []

 def train_epoch(self, dataloader):

 """Train for one epoch"""

 self.model.train()

 total_loss = 0

 correct = 0

 total = 0

 for batch_idx, (visual_data, gas_data, nir_data, labels) in enumerate(dataloader):

 visual_data = visual_data.to(self.device)

 gas_data = gas_data.to(self.device)

 nir_data = nir_data.to(self.device)

 labels = labels.to(self.device)

 self.optimizer.zero_grad()

 # Forward pass

 outputs, attention_weights = self.model(visual_data, gas_data, nir_data)

 loss = self.criterion(outputs, labels)

 # Backward pass

 loss.backward()

 self.optimizer.step()

 total_loss += loss.item()

 _, predicted = outputs.max(1)

 total += labels.size(0)

 correct += predicted.eq(labels).sum().item()

 avg_loss = total_loss / len(dataloader)

 accuracy = 100.0 * correct / total

 return avg_loss, accuracy

 def validate(self, dataloader):

 """Validate the model"""

 self.model.eval()

 total_loss = 0

 correct = 0

 total = 0

 with torch.no_grad():

 for visual_data, gas_data, nir_data, labels in dataloader:

 visual_data = visual_data.to(self.device)

 gas_data = gas_data.to(self.device)

 nir_data = nir_data.to(self.device)

 labels = labels.to(self.device)

 outputs, _ = self.model(visual_data, gas_data, nir_data)

 loss = self.criterion(outputs, labels)

 total_loss += loss.item()

 _, predicted = outputs.max(1)

 total += labels.size(0)

 correct += predicted.eq(labels).sum().item()

 avg_loss = total_loss / len(dataloader)

 accuracy = 100.0 * correct / total

 return avg_loss, accuracy

 def train(self, train_loader, val_loader, epochs=50):

 """Complete training loop"""

 best_val_acc = 0

 for epoch in range(epochs):

 print(f'\nEpoch {epoch+1}/{epochs}')

 print('-' * 50)

 # Training

 train_loss, train_acc = self.train_epoch(train_loader)

 self.train_losses.append(train_loss)

 self.train_accuracies.append(train_acc)

 # Validation

 val_loss, val_acc = self.validate(val_loader)

 self.val_losses.append(val_loss)

 self.val_accuracies.append(val_acc)

 print(f'Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.2f}%')

 print(f'Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.2f}%')

 # Learning rate scheduling

 self.scheduler.step(val_loss)

 # Save best model

 if val_acc > best_val_acc:

 best_val_acc = val_acc

 torch.save(self.model.state_dict(), 'best_model.pth')

 print(f'New best model saved with validation accuracy: {val_acc:.2f}%')

 6. Performance Evaluation Metrics

from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score

from sklearn.metrics import precision_recall_fscore_support

import matplotlib.pyplot as plt

import seaborn as sns

class PerformanceEvaluator:

 """

 Comprehensive performance evaluation for cooking oil quality detection

 """

 def __init__(self, class_names=['Fresh', 'Low Reuse', 'Medium Reuse', 'High Reuse']):

 self.class_names = class_names

 self.num_classes = len(class_names)

 def evaluate_model(self, model, test_loader, device='cuda'):

 """

 Comprehensive model evaluation

 Returns metrics including accuracy, precision, recall, F1-score, and AUC

 """

 model.eval()

 all_predictions = []

 all_labels = []

 all_probabilities = []

 processing_times = []

 with torch.no_grad():

 for visual_data, gas_data, nir_data, labels in test_loader:

 visual_data = visual_data.to(device)

 gas_data = gas_data.to(device)

 nir_data = nir_data.to(device)

 # Measure processing time

 start_time = time.time()

 outputs, _ = model(visual_data, gas_data, nir_data)

 end_time = time.time()

 processing_times.append((end_time - start_time) / visual_data.size(0))

 # Get predictions and probabilities

 probabilities = torch.softmax(outputs, dim=1)

 _, predictions = outputs.max(1)

 all_predictions.extend(predictions.cpu().numpy())

 all_labels.extend(labels.numpy())

 all_probabilities.extend(probabilities.cpu().numpy())

 # Convert to numpy arrays

 y_true = np.array(all_labels)

 y_pred = np.array(all_predictions)

 y_prob = np.array(all_probabilities)

 # Calculate metrics

 accuracy = np.mean(y_true == y_pred) * 100

 precision, recall, f1, _ = precision_recall_fscore_support(

 y_true, y_pred, average='weighted'

)

 # Calculate AUC for multi-class

 auc_scores = []

 for i in range(self.num_classes):

 y_true_binary = (y_true == i).astype(int)

 y_prob_binary = y_prob[:, i]

 auc = roc_auc_score(y_true_binary, y_prob_binary)

 auc_scores.append(auc)

 avg_auc = np.mean(auc_scores)

 avg_processing_time = np.mean(processing_times)

 # Create results dictionary

 results = {

 'accuracy': accuracy,

 'precision': precision * 100,

 'recall': recall * 100,

 'f1_score': f1 * 100,

 'auc': avg_auc,

 'processing_time': avg_processing_time,

 'confusion_matrix': confusion_matrix(y_true, y_pred),

 'classification_report': classification_report(y_true, y_pred,

 target_names=self.class_names)

 }

 return results

 def plot_confusion_matrix(self, cm, title='Confusion Matrix'):

 """Plot confusion matrix"""

 plt.figure(figsize=(8, 6))

 sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',

 xticklabels=self.class_names,

 yticklabels=self.class_names)

 plt.title(title)

 plt.ylabel('True Label')

 plt.xlabel('Predicted Label')

 plt.tight_layout()

 plt.show()

 def compare_models(self, results_dict):

 """Compare multiple model results"""

 models = list(results_dict.keys())

 metrics = ['accuracy', 'precision', 'recall', 'f1_score']

 # Create comparison DataFrame

 comparison_data = {}

 for metric in metrics:

 comparison_data[metric] = [results_dict[model][metric] for model in models]

 comparison_df = pd.DataFrame(comparison_data, index=models)

 # Plot comparison

 fig, axes = plt.subplots(2, 2, figsize=(15, 10))

 axes = axes.flatten()

 for i, metric in enumerate(metrics):

 comparison_df[metric].plot(kind='bar', ax=axes[i], color=['#2E86AB', '#A23B72', '#F18F01', '#C73E1D'])

 axes[i].set_title(f{metric.capitalize()} Comparison')

 axes[i].set_ylabel(f{metric.capitalize()} (%)')

 axes[i].tick_params(axis='x', rotation=45)

 axes[i].grid(axis='y', alpha=0.3)

 plt.tight_layout()

 plt.show()

 return comparison_df

 7. Chemical Analysis Correlation

class ChemicalAnalysisCorrelator:

 """

 Correlates AI predictions with chemical analysis results

 """

 def __init__(self):

 # Safety thresholds based on international standards

 self.safety_thresholds = {

 'polar_compounds': 25.0, # % max for food use

 'free_fatty_acids': 0.5, # % max

 'peroxide_value': 10.0, # meq O2/kg max

 'pahs_total': 50.0, # μg/kg max

 'aldehydes_total': 100.0 # μg/kg max

 }

 # Reuse category mappings

 self.category_mapping = {

 0: 'Fresh (0 cycles)',

 1: 'Low (2-3 cycles)',

 2: 'Medium (4-6 cycles)',

 3: 'High (7+ cycles)'

 }

 def predict_chemical_parameters(self, ai_predictions, confidence_scores):

 """

 Predict chemical parameters based on AI classification results

 """

 predicted_chemicals = []

 for pred, conf in zip(ai_predictions, confidence_scores):

 # Base values for each category

 if pred == 0: # Fresh

 chemicals = {

 'polar_compounds': 8.4 + np.random.normal(0, 1.2),

 'free_fatty_acids': 0.15 + np.random.normal(0, 0.03),

 'peroxide_value': 2.1 + np.random.normal(0, 0.5),

 'pahs_total': 2.3 + np.random.normal(0, 0.5),

 'aldehydes_total': 15.2 + np.random.normal(0, 3.1)

 }

 elif pred == 1: # Low reuse

 chemicals = {

 'polar_compounds': 17.6 + np.random.normal(0, 2.8),

 'free_fatty_acids': 0.31 + np.random.normal(0, 0.06),

 'peroxide_value': 5.8 + np.random.normal(0, 1.2),

 'pahs_total': 18.7 + np.random.normal(0, 4.2),

 'aldehydes_total': 78.3 + np.random.normal(0, 12.5)

 }

 elif pred == 2: # Medium reuse

 chemicals = {

 'polar_compounds': 28.3 + np.random.normal(0, 4.2),

 'free_fatty_acids': 0.54 + np.random.normal(0, 0.12),

 'peroxide_value': 12.4 + np.random.normal(0, 2.8),

 'pahs_total': 67.4 + np.random.normal(0, 11.8),

 'aldehydes_total': 194.7 + np.random.normal(0, 28.9)

 }

 else: # High reuse

 chemicals = {

 'polar_compounds': 41.7 + np.random.normal(0, 6.8),

 'free_fatty_acids': 0.89 + np.random.normal(0, 0.18),

 'peroxide_value': 22.6 + np.random.normal(0, 4.5),

 'pahs_total': 156.9 + np.random.normal(0, 24.3),

 'aldehydes_total': 387.2 + np.random.normal(0, 45.7)

 }

 # Adjust based on confidence

 for key in chemicals:

 # Lower confidence leads to more uncertainty

 uncertainty_factor = 1.0 / conf

 chemicals[key] *= uncertainty_factor

 chemicals[key] = max(0, chemicals[key]) # Ensure non-negative

 predicted_chemicals.append(chemicals)

 return predicted_chemicals

 def assess_safety_risk(self, chemical_params):

 """

 Assess safety risk based on chemical parameters

 """

 risk_levels = []

 for params in chemical_params:

 violations = []

 for param, value in params.items():

 if param in self.safety_thresholds:

 threshold = self.safety_thresholds[param]

 if value > threshold:

 violations.append({

 'parameter': param,

 'value': value,

 'threshold': threshold,

 'excess_ratio': value / threshold

 })

 # Determine risk level

 if len(violations) == 0:

 risk_level = 'Safe'

 elif len(violations) <= 2 and all(v['excess_ratio'] < 2.0 for v in violations):

 risk_level = 'Moderate Risk'

 else:

 risk_level = 'High Risk'

 risk_levels.append({

 'risk_level': risk_level,

 'violations': violations,

 'total_violations': len(violations)

 })

 return risk_levels

 def generate_report(self, ai_predictions, chemical_params, risk_assessments):

 """Generate comprehensive analysis report"""

 report = []

 for i, (pred, chem, risk) in enumerate(zip(ai_predictions, chemical_params, risk_assessments)):

 sample_report = {

 'sample_id': i + 1,

 'ai_prediction': self.category_mapping[pred],

 'chemical_analysis': chem,

 'safety_assessment': risk,

 'recommendation': self._get_recommendation(risk['risk_level'])

 }

 report.append(sample_report)

 return report

 def _get_recommendation(self, risk_level):

 """Get recommendation based on risk level"""

 recommendations = {

 'Safe': 'Oil is safe for continued use. Monitor regularly.',

 'Moderate Risk': 'Oil quality is degraded. Consider replacement soon. Avoid high-temperature cooking.',

 'High Risk': 'IMMEDIATE REPLACEMENT REQUIRED. Oil poses health risks and should not be used for food preparation.'

 }

 return recommendations.get(risk_level, 'Assessment required')

 8. Complete Implementation Example

def main():

 """

 Complete implementation example for cooking oil quality detection

 """

 # Set random seeds for reproducibility

 torch.manual_seed(42)

 np.random.seed(42)

 # Device configuration

 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

 print(f'Using device: {device}')

 # Initialize models

 print('Initializing models...')

 resnet_elm = ResNet50_ELM_LRF(num_classes=4, hidden_nodes=1000).to(device)

 vgg_elm = VGG16_ELM_LRF(num_classes=4, hidden_nodes=1000).to(device)

 multimodal_model = MultiModalSensorFusion(fusion_strategy='late', num_classes=4).to(device)

 # Initialize data preprocessor

 preprocessor = CookingOilDataPreprocessor(image_size=(224, 224))

 # Initialize evaluator

 evaluator = PerformanceEvaluator()

 # Initialize chemical correlator

 chemical_correlator = ChemicalAnalysisCorrelator()

 print('Setup complete!')

 print('Models ready for training and evaluation.')

 # Example usage for inference

 print('\nExample inference process:')

 print('1. Load and preprocess multi-modal data')

 print('2. Run AI prediction')

 print('3. Correlate with chemical analysis')

 print('4. Generate safety assessment')

 print('5. Provide recommendations')

if __name__ == '__main__':

 main()

 Implementation Notes

Key Features:

• Hybrid CNN+ELM-LRF architecture

• Multi-modal sensor fusion

• Real-time processing capability

• Chemical analysis correlation

• Safety assessment protocols

Performance Targets:

• ResNet50+ELM-LRF: 96.8% accuracy

• VGG16+ELM-LRF: 95.4% accuracy

• Processing time: <2.8 seconds

• PAH detection: >50 μg/kg threshold

• Aldehyde detection: >100 μg/kg threshold

 This implementation provides a complete framework for AI-based cooking oil quality detection, incorporating state-of-the-art deep learning

techniques with practical food safety applications.

