
 Implementation Code

AI-Based Detection Framework for Reused Cooking Oils: Advancing Food Safety and Cancer Prevention

  Complete methodology implementation including ResNet50+ELM-LRF, VGG16+ELM-LRF, multi-modal sensor fusion, and data preprocessing

algorithms

 1. ResNet50+ELM-LRF Hybrid Architecture

1.1 ResNet50 Feature Extractor

import torch

import torch.nn as nn

import torchvision.models as models

import numpy as np

from sklearn.preprocessing import StandardScaler

class ResNet50FeatureExtractor(nn.Module):

    """

    ResNet50 backbone for feature extraction in cooking oil quality detection

    Modified for multi-modal sensor input processing

    """

    def __init__(self, pretrained=True, freeze_backbone=False):

        super(ResNet50FeatureExtractor, self).__init__()

        

        # Load pretrained ResNet50

        self.backbone = models.resnet50(pretrained=pretrained)

        

        # Remove final classification layers

        self.features = nn.Sequential(*list(self.backbone.children())[:-2])

        

        # Add adaptive pooling for consistent output size

        self.adaptive_pool = nn.AdaptiveAvgPool2d((7, 7))

        

        # Feature dimension: 2048 * 7 * 7 = 100,352

        self.feature_dim = 100352

        

        if freeze_backbone:

            for param in self.features.parameters():

                param.requires_grad = False

    

    def forward(self, x):

        """

        Forward pass through ResNet50 feature extractor

        Args:

            x: Input tensor [batch_size, channels, height, width]

        Returns:

            features: Extracted features [batch_size, feature_dim]

        """

        features = self.features(x)

        features = self.adaptive_pool(features)

        features = features.view(features.size(0), -1)

        return features

# Multi-modal input preprocessing for sensor data

class MultiModalPreprocessor:

    """

    Preprocesses multi-modal sensor data for cooking oil quality detection

    Handles visual, chemical gas sensor, and NIR spectroscopy data

    """

    def __init__(self):

        self.visual_scaler = StandardScaler()

        self.gas_scaler = StandardScaler()

        self.nir_scaler = StandardScaler()

        

    def preprocess_visual(self, images):

        """Preprocess visual images"""

        # Normalize to [0, 1] and apply ImageNet normalization

        images = images.astype(np.float32) / 255.0

        mean = np.array([0.485, 0.456, 0.406])

        std = np.array([0.229, 0.224, 0.225])

        

        for i in range(3):

            images[:, :, :, i] = (images[:, :, :, i] - mean[i]) / std[i]

        

        return torch.tensor(images.transpose(0, 3, 1, 2), dtype=torch.float32)

    

    def preprocess_gas_sensors(self, gas_data):

        """Preprocess chemical gas sensor data"""

        # Expected features: [CO, CO2, VOCs, NH3, H2S, temperature, humidity]

        gas_normalized = self.gas_scaler.fit_transform(gas_data)

        return torch.tensor(gas_normalized, dtype=torch.float32)

    

    def preprocess_nir_spectroscopy(self, nir_data):

        """Preprocess Near-Infrared spectroscopy data"""

        # Wavelength range typically 700-2500 nm

        nir_normalized = self.nir_scaler.fit_transform(nir_data)

        return torch.tensor(nir_normalized, dtype=torch.float32)

1.2 ELM-LRF Implementation

class ELM_LRF(nn.Module):

    """

    Extreme Learning Machine with Local Receptive Fields

    Based on the paper: "Local Receptive Fields based Extreme Learning Machine"

    """

    def __init__(self, input_dim, hidden_nodes, output_dim, 

                 receptive_field_size=3, stride=1, C=1000):

        super(ELM_LRF, self).__init__()

        

        self.input_dim = input_dim

        self.hidden_nodes = hidden_nodes

        self.output_dim = output_dim

        self.receptive_field_size = receptive_field_size

        self.stride = stride

        self.C = C  # Regularization parameter

        

        # Calculate number of local receptive fields

        self.num_fields = self._calculate_num_fields()

        

        # Initialize random weights and biases for each receptive field

        self.weights = []

        self.biases = []

        

        for _ in range(self.num_fields):

            # Random weights for local receptive field

            w = torch.randn(self.receptive_field_size, hidden_nodes)

            b = torch.randn(hidden_nodes)

            self.weights.append(w)

            self.biases.append(b)

        

        # Output weights (to be calculated during training)

        self.output_weights = None

        

    def _calculate_num_fields(self):

        """Calculate number of local receptive fields"""

        return (self.input_dim - self.receptive_field_size) // self.stride + 1

    

    def _apply_local_receptive_fields(self, x):

        """Apply local receptive fields to input"""

        batch_size = x.size(0)

        H = []

        

        for i, (w, b) in enumerate(zip(self.weights, self.biases)):

            # Extract local receptive field

            start_idx = i * self.stride

            end_idx = start_idx + self.receptive_field_size

            

            if end_idx <= self.input_dim:

                local_input = x[:, start_idx:end_idx]

                

                # Apply transformation: tanh(x*w + b)

                h = torch.tanh(torch.mm(local_input, w) + b.unsqueeze(0))

                H.append(h)

        

        # Concatenate all local features

        H = torch.cat(H, dim=1)

        return H

    

    def fit(self, X, Y):

        """

        Train the ELM-LRF model

        Args:

            X: Input features [batch_size, input_dim]

            Y: Target labels [batch_size, output_dim]

        """

        # Apply local receptive fields

        H = self._apply_local_receptive_fields(X)

        

        # Calculate output weights using Moore-Penrose pseudoinverse

        # β = (H^T H + I/C)^(-1) H^T Y

        H_T = H.t()

        if H.size(0) >= H.size(1):

            # More samples than hidden nodes

            self.output_weights = torch.mm(

                torch.mm(torch.inverse(torch.mm(H_T, H) + 

                        torch.eye(H.size(1)) / self.C), H_T), Y)

        else:

            # Fewer samples than hidden nodes

            self.output_weights = torch.mm(H_T,

                torch.mm(torch.inverse(torch.mm(H, H_T) + 

                        torch.eye(H.size(0)) / self.C), Y))

    

    def forward(self, x):

        """Forward pass through ELM-LRF"""

        H = self._apply_local_receptive_fields(x)

        output = torch.mm(H, self.output_weights)

        return output

1.3 Complete ResNet50+ELM-LRF Hybrid Model

class ResNet50_ELM_LRF(nn.Module):

    """

    Complete hybrid model combining ResNet50 feature extraction with ELM-LRF classification

    for cooking oil reuse detection

    """

    def __init__(self, num_classes=4, hidden_nodes=1000):

        super(ResNet50_ELM_LRF, self).__init__()

        

        # Feature extractor

        self.feature_extractor = ResNet50FeatureExtractor(pretrained=True)

        

        # Dimension reduction layer

        self.feature_reducer = nn.Linear(100352, 2048)

        self.dropout = nn.Dropout(0.5)

        

        # ELM-LRF classifier

        self.elm_lrf = ELM_LRF(

            input_dim=2048,

            hidden_nodes=hidden_nodes,

            output_dim=num_classes,

            receptive_field_size=64,

            stride=32

        )

        

        self.num_classes = num_classes

        self.is_fitted = False

    

    def extract_features(self, x):

        """Extract features using ResNet50 backbone"""

        features = self.feature_extractor(x)

        features = self.feature_reducer(features)

        features = self.dropout(features)

        return features

    

    def fit(self, dataloader, device='cuda'):

        """

        Fit the ELM-LRF classifier on extracted features

        Args:

            dataloader: PyTorch DataLoader with (images, labels)

            device: Computing device

        """

        self.to(device)

        self.eval()

        

        all_features = []

        all_labels = []

        

        with torch.no_grad():

            for batch_idx, (images, labels) in enumerate(dataloader):

                images, labels = images.to(device), labels.to(device)

                

                # Extract features

                features = self.extract_features(images)

                

                all_features.append(features.cpu())

                all_labels.append(labels.cpu())

        

        # Concatenate all features and labels

        X = torch.cat(all_features, dim=0)

        Y = torch.cat(all_labels, dim=0)

        

        # Convert labels to one-hot encoding

        Y_onehot = torch.zeros(Y.size(0), self.num_classes)

        Y_onehot.scatter_(1, Y.unsqueeze(1), 1)

        

        # Fit ELM-LRF

        self.elm_lrf.fit(X, Y_onehot)

        self.is_fitted = True

    

    def forward(self, x):

        """Forward pass through complete model"""

        if not self.is_fitted:

            raise RuntimeError("Model must be fitted before inference")

        

        features = self.extract_features(x)

        output = self.elm_lrf(features)

        return output

 2. VGG16+ELM-LRF Hybrid Architecture

class VGG16FeatureExtractor(nn.Module):

    """

    VGG16 backbone for feature extraction in cooking oil quality detection

    """

    def __init__(self, pretrained=True, freeze_backbone=False):

        super(VGG16FeatureExtractor, self).__init__()

        

        # Load pretrained VGG16

        vgg = models.vgg16(pretrained=pretrained)

        

        # Extract features (convolutional layers)

        self.features = vgg.features

        

        # Add adaptive pooling

        self.adaptive_pool = nn.AdaptiveAvgPool2d((7, 7))

        

        # Feature dimension: 512 * 7 * 7 = 25,088

        self.feature_dim = 25088

        

        if freeze_backbone:

            for param in self.features.parameters():

                param.requires_grad = False

    

    def forward(self, x):

        features = self.features(x)

        features = self.adaptive_pool(features)

        features = features.view(features.size(0), -1)

        return features

class VGG16_ELM_LRF(nn.Module):

    """

    VGG16+ELM-LRF hybrid model for cooking oil reuse detection

    """

    def __init__(self, num_classes=4, hidden_nodes=1000):

        super(VGG16_ELM_LRF, self).__init__()

        

        # Feature extractor

        self.feature_extractor = VGG16FeatureExtractor(pretrained=True)

        

        # Dimension reduction

        self.feature_reducer = nn.Linear(25088, 2048)

        self.dropout = nn.Dropout(0.5)

        

        # ELM-LRF classifier

        self.elm_lrf = ELM_LRF(

            input_dim=2048,

            hidden_nodes=hidden_nodes,

            output_dim=num_classes,

            receptive_field_size=64,

            stride=32

        )

        

        self.num_classes = num_classes

        self.is_fitted = False

    

    def extract_features(self, x):

        features = self.feature_extractor(x)

        features = self.feature_reducer(features)

        features = self.dropout(features)

        return features

    

    def fit(self, dataloader, device='cuda'):

        """Fit the model using the same procedure as ResNet50+ELM-LRF"""

        self.to(device)

        self.eval()

        

        all_features = []

        all_labels = []

        

        with torch.no_grad():

            for batch_idx, (images, labels) in enumerate(dataloader):

                images, labels = images.to(device), labels.to(device)

                features = self.extract_features(images)

                all_features.append(features.cpu())

                all_labels.append(labels.cpu())

        

        X = torch.cat(all_features, dim=0)

        Y = torch.cat(all_labels, dim=0)

        

        # Convert to one-hot

        Y_onehot = torch.zeros(Y.size(0), self.num_classes)

        Y_onehot.scatter_(1, Y.unsqueeze(1), 1)

        

        self.elm_lrf.fit(X, Y_onehot)

        self.is_fitted = True

    

    def forward(self, x):

        if not self.is_fitted:

            raise RuntimeError("Model must be fitted before inference")

        

        features = self.extract_features(x)

        output = self.elm_lrf(features)

        return output

 3. Multi-Modal Sensor Fusion

class MultiModalSensorFusion(nn.Module):

    """

    Multi-modal sensor fusion for cooking oil quality detection

    Combines visual, chemical gas sensor, and NIR spectroscopy data

    """

    def __init__(self, fusion_strategy='late', num_classes=4):

        super(MultiModalSensorFusion, self).__init__()

        

        self.fusion_strategy = fusion_strategy

        self.num_classes = num_classes

        

        # Visual processing branch (ResNet50)

        self.visual_backbone = ResNet50FeatureExtractor()

        self.visual_reducer = nn.Linear(100352, 512)

        

        # Gas sensor processing branch

        self.gas_processor = nn.Sequential(

            nn.Linear(7, 64),  # 7 gas sensor features

            nn.ReLU(),

            nn.Dropout(0.3),

            nn.Linear(64, 128),

            nn.ReLU(),

            nn.Linear(128, 256)

        )

        

        # NIR spectroscopy processing branch

        self.nir_processor = nn.Sequential(

            nn.Linear(1024, 512),  # NIR spectral features

            nn.ReLU(),

            nn.Dropout(0.3),

            nn.Linear(512, 256),

            nn.ReLU(),

            nn.Linear(256, 256)

        )

        

        # Fusion and classification layers

        if fusion_strategy == 'early':

            self.fusion_dim = 512 + 256 + 256  # 1024

        elif fusion_strategy == 'late':

            self.fusion_dim = 512 + 256 + 256  # 1024

        

        self.fusion_layer = nn.Sequential(

            nn.Linear(self.fusion_dim, 512),

            nn.ReLU(),

            nn.Dropout(0.5),

            nn.Linear(512, 256),

            nn.ReLU(),

            nn.Linear(256, num_classes)

        )

        

        # Attention mechanism for modality weighting

        self.attention = nn.Sequential(

            nn.Linear(self.fusion_dim, 128),

            nn.ReLU(),

            nn.Linear(128, 3),  # 3 modalities

            nn.Softmax(dim=1)

        )

    

    def forward(self, visual_data, gas_data, nir_data):

        """

        Forward pass through multi-modal fusion network

        Args:

            visual_data: Visual images [batch_size, 3, H, W]

            gas_data: Gas sensor readings [batch_size, 7]

            nir_data: NIR spectroscopy data [batch_size, 1024]

        """

        # Process each modality

        visual_features = self.visual_backbone(visual_data)

        visual_features = self.visual_reducer(visual_features)

        

        gas_features = self.gas_processor(gas_data)

        nir_features = self.nir_processor(nir_data)

        

        # Fusion strategy

        if self.fusion_strategy == 'early':

            # Concatenate all features

            fused_features = torch.cat([visual_features, gas_features, nir_features], dim=1)

            

        elif self.fusion_strategy == 'late':

            # Weighted fusion using attention

            all_features = torch.cat([visual_features, gas_features, nir_features], dim=1)

            attention_weights = self.attention(all_features)

            

            # Apply attention weights

            weighted_visual = visual_features * attention_weights[:, 0].unsqueeze(1)

            weighted_gas = gas_features * attention_weights[:, 1].unsqueeze(1)

            weighted_nir = nir_features * attention_weights[:, 2].unsqueeze(1)

            

            fused_features = torch.cat([weighted_visual, weighted_gas, weighted_nir], dim=1)

        

        # Final classification

        output = self.fusion_layer(fused_features)

        return output, attention_weights if self.fusion_strategy == 'late' else None

 4. Data Preprocessing and Augmentation

import cv2

import albumentations as A

from albumentations.pytorch import ToTensorV2

class CookingOilDataPreprocessor:

    """

    Comprehensive data preprocessing for cooking oil quality detection

    """

    def __init__(self, image_size=(224, 224), augment=True):

        self.image_size = image_size

        self.augment = augment

        

        # Image preprocessing pipeline

        self.train_transform = A.Compose([

            A.Resize(height=image_size[0], width=image_size[1]),

            A.HorizontalFlip(p=0.5),

            A.VerticalFlip(p=0.3),

            A.RandomRotate90(p=0.3),

            A.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1, p=0.5),

            A.GaussianBlur(blur_limit=(3, 7), p=0.3),

            A.GaussNoise(var_limit=(10.0, 50.0), p=0.3),

            A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),

            ToTensorV2()

        ])

        

        self.val_transform = A.Compose([

            A.Resize(height=image_size[0], width=image_size[1]),

            A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),

            ToTensorV2()

        ])

    

    def preprocess_image(self, image, training=True):

        """Preprocess cooking oil images"""

        if isinstance(image, str):

            image = cv2.imread(image)

            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        

        if training and self.augment:

            transformed = self.train_transform(image=image)

        else:

            transformed = self.val_transform(image=image)

        

        return transformed['image']

    

    def normalize_sensor_data(self, sensor_data, sensor_type='gas'):

        """

        Normalize sensor data based on type

        Args:

            sensor_data: Raw sensor readings

            sensor_type: 'gas', 'nir', or 'temperature'

        """

        if sensor_type == 'gas':

            # Gas sensor normalization (CO, CO2, VOCs, NH3, H2S, temp, humidity)

            gas_ranges = {

                'CO': (0, 1000),      # ppm

                'CO2': (300, 5000),   # ppm

                'VOCs': (0, 500),     # ppb

                'NH3': (0, 100),      # ppm

                'H2S': (0, 50),       # ppm

                'temp': (15, 45),     # Celsius

                'humidity': (20, 80)  # %

            }

            

            normalized_data = np.zeros_like(sensor_data)

            for i, (key, (min_val, max_val)) in enumerate(gas_ranges.items()):

                normalized_data[:, i] = (sensor_data[:, i] - min_val) / (max_val - min_val)

                normalized_data[:, i] = np.clip(normalized_data[:, i], 0, 1)

            

            return normalized_data

            

        elif sensor_type == 'nir':

            # NIR spectroscopy normalization

            # Apply Standard Normal Variate (SNV) correction

            mean_spectra = np.mean(sensor_data, axis=1, keepdims=True)

            std_spectra = np.std(sensor_data, axis=1, keepdims=True)

            snv_data = (sensor_data - mean_spectra) / (std_spectra + 1e-8)

            

            # Apply Savitzky-Golay smoothing

            from scipy.signal import savgol_filter

            smoothed_data = savgol_filter(snv_data, window_length=15, polyorder=2, axis=1)

            

            return smoothed_data

    

    def extract_chemical_features(self, oil_samples):

        """

        Extract chemical features from oil samples

        Simulates laboratory analysis results

        """

        features = {

            'polar_compounds': [],

            'free_fatty_acids': [],

            'peroxide_value': [],

            'pahs_concentration': [],

            'aldehydes_concentration': [],

            'oxidation_index': []

        }

        

        for sample in oil_samples:

            reuse_cycles = sample['reuse_cycles']

            

            # Simulate chemical degradation based on reuse cycles

            base_polar = 8.4 + (4.2 * reuse_cycles) + np.random.normal(0, 1.5)

            base_ffa = 0.15 + (0.08 * reuse_cycles) + np.random.normal(0, 0.03)

            base_pv = 2.1 + (3.2 * reuse_cycles) + np.random.normal(0, 0.8)

            

            # PAHs and aldehydes increase exponentially

            pahs = 2.3 * np.exp(0.85 * reuse_cycles) + np.random.normal(0, 3.0)

            aldehydes = 15.2 * np.exp(0.78 * reuse_cycles) + np.random.normal(0, 8.0)

            

            oxidation = base_polar + base_ffa * 10 + base_pv * 2

            

            features['polar_compounds'].append(np.clip(base_polar, 8, 50))

            features['free_fatty_acids'].append(np.clip(base_ffa, 0.1, 2.0))

            features['peroxide_value'].append(np.clip(base_pv, 1, 30))

            features['pahs_concentration'].append(np.clip(pahs, 1, 200))

            features['aldehydes_concentration'].append(np.clip(aldehydes, 10, 500))

            features['oxidation_index'].append(oxidation)

        

        return features

 5. Training Protocol and Optimization

class CookingOilTrainer:

    """

    Training protocol for cooking oil quality detection models

    """

    def __init__(self, model, device='cuda', learning_rate=0.001):

        self.model = model

        self.device = device

        self.learning_rate = learning_rate

        

        # Loss function and optimizer

        self.criterion = nn.CrossEntropyLoss()

        self.optimizer = torch.optim.Adam(

            model.parameters(), 

            lr=learning_rate, 

            weight_decay=1e-4

        )

        

        # Learning rate scheduler

        self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(

            self.optimizer, 

            mode='min', 

            factor=0.5, 

            patience=5, 

            verbose=True

        )

        

        # Training history

        self.train_losses = []

        self.val_losses = []

        self.train_accuracies = []

        self.val_accuracies = []

    

    def train_epoch(self, dataloader):

        """Train for one epoch"""

        self.model.train()

        total_loss = 0

        correct = 0

        total = 0

        

        for batch_idx, (visual_data, gas_data, nir_data, labels) in enumerate(dataloader):

            visual_data = visual_data.to(self.device)

            gas_data = gas_data.to(self.device)

            nir_data = nir_data.to(self.device)

            labels = labels.to(self.device)

            

            self.optimizer.zero_grad()

            

            # Forward pass

            outputs, attention_weights = self.model(visual_data, gas_data, nir_data)

            loss = self.criterion(outputs, labels)

            

            # Backward pass

            loss.backward()

            self.optimizer.step()

            

            total_loss += loss.item()

            _, predicted = outputs.max(1)

            total += labels.size(0)

            correct += predicted.eq(labels).sum().item()

        

        avg_loss = total_loss / len(dataloader)

        accuracy = 100.0 * correct / total

        

        return avg_loss, accuracy

    

    def validate(self, dataloader):

        """Validate the model"""

        self.model.eval()

        total_loss = 0

        correct = 0

        total = 0

        

        with torch.no_grad():

            for visual_data, gas_data, nir_data, labels in dataloader:

                visual_data = visual_data.to(self.device)

                gas_data = gas_data.to(self.device)

                nir_data = nir_data.to(self.device)

                labels = labels.to(self.device)

                

                outputs, _ = self.model(visual_data, gas_data, nir_data)

                loss = self.criterion(outputs, labels)

                

                total_loss += loss.item()

                _, predicted = outputs.max(1)

                total += labels.size(0)

                correct += predicted.eq(labels).sum().item()

        

        avg_loss = total_loss / len(dataloader)

        accuracy = 100.0 * correct / total

        

        return avg_loss, accuracy

    

    def train(self, train_loader, val_loader, epochs=50):

        """Complete training loop"""

        best_val_acc = 0

        

        for epoch in range(epochs):

            print(f'\nEpoch {epoch+1}/{epochs}')

            print('-' * 50)

            

            # Training

            train_loss, train_acc = self.train_epoch(train_loader)

            self.train_losses.append(train_loss)

            self.train_accuracies.append(train_acc)

            

            # Validation

            val_loss, val_acc = self.validate(val_loader)

            self.val_losses.append(val_loss)

            self.val_accuracies.append(val_acc)

            

            print(f'Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.2f}%')

            print(f'Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.2f}%')

            

            # Learning rate scheduling

            self.scheduler.step(val_loss)

            

            # Save best model

            if val_acc > best_val_acc:

                best_val_acc = val_acc

                torch.save(self.model.state_dict(), 'best_model.pth')

                print(f'New best model saved with validation accuracy: {val_acc:.2f}%')

 6. Performance Evaluation Metrics

from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score

from sklearn.metrics import precision_recall_fscore_support

import matplotlib.pyplot as plt

import seaborn as sns

class PerformanceEvaluator:

    """

    Comprehensive performance evaluation for cooking oil quality detection

    """

    def __init__(self, class_names=['Fresh', 'Low Reuse', 'Medium Reuse', 'High Reuse']):

        self.class_names = class_names

        self.num_classes = len(class_names)

    

    def evaluate_model(self, model, test_loader, device='cuda'):

        """

        Comprehensive model evaluation

        Returns metrics including accuracy, precision, recall, F1-score, and AUC

        """

        model.eval()

        all_predictions = []

        all_labels = []

        all_probabilities = []

        processing_times = []

        

        with torch.no_grad():

            for visual_data, gas_data, nir_data, labels in test_loader:

                visual_data = visual_data.to(device)

                gas_data = gas_data.to(device)

                nir_data = nir_data.to(device)

                

                # Measure processing time

                start_time = time.time()

                outputs, _ = model(visual_data, gas_data, nir_data)

                end_time = time.time()

                

                processing_times.append((end_time - start_time) / visual_data.size(0))

                

                # Get predictions and probabilities

                probabilities = torch.softmax(outputs, dim=1)

                _, predictions = outputs.max(1)

                

                all_predictions.extend(predictions.cpu().numpy())

                all_labels.extend(labels.numpy())

                all_probabilities.extend(probabilities.cpu().numpy())

        

        # Convert to numpy arrays

        y_true = np.array(all_labels)

        y_pred = np.array(all_predictions)

        y_prob = np.array(all_probabilities)

        

        # Calculate metrics

        accuracy = np.mean(y_true == y_pred) * 100

        precision, recall, f1, _ = precision_recall_fscore_support(

            y_true, y_pred, average='weighted'

        )

        

        # Calculate AUC for multi-class

        auc_scores = []

        for i in range(self.num_classes):

            y_true_binary = (y_true == i).astype(int)

            y_prob_binary = y_prob[:, i]

            auc = roc_auc_score(y_true_binary, y_prob_binary)

            auc_scores.append(auc)

        

        avg_auc = np.mean(auc_scores)

        avg_processing_time = np.mean(processing_times)

        

        # Create results dictionary

        results = {

            'accuracy': accuracy,

            'precision': precision * 100,

            'recall': recall * 100,

            'f1_score': f1 * 100,

            'auc': avg_auc,

            'processing_time': avg_processing_time,

            'confusion_matrix': confusion_matrix(y_true, y_pred),

            'classification_report': classification_report(y_true, y_pred, 

                                                           target_names=self.class_names)

        }

        

        return results

    

    def plot_confusion_matrix(self, cm, title='Confusion Matrix'):

        """Plot confusion matrix"""

        plt.figure(figsize=(8, 6))

        sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',

                    xticklabels=self.class_names,

                    yticklabels=self.class_names)

        plt.title(title)

        plt.ylabel('True Label')

        plt.xlabel('Predicted Label')

        plt.tight_layout()

        plt.show()

    

    def compare_models(self, results_dict):

        """Compare multiple model results"""

        models = list(results_dict.keys())

        metrics = ['accuracy', 'precision', 'recall', 'f1_score']

        

        # Create comparison DataFrame

        comparison_data = {}

        for metric in metrics:

            comparison_data[metric] = [results_dict[model][metric] for model in models]

        

        comparison_df = pd.DataFrame(comparison_data, index=models)

        

        # Plot comparison

        fig, axes = plt.subplots(2, 2, figsize=(15, 10))

        axes = axes.flatten()

        

        for i, metric in enumerate(metrics):

            comparison_df[metric].plot(kind='bar', ax=axes[i], color=['#2E86AB', '#A23B72', '#F18F01', '#C73E1D'])

            axes[i].set_title(f{metric.capitalize()} Comparison')

            axes[i].set_ylabel(f{metric.capitalize()} (%)')

            axes[i].tick_params(axis='x', rotation=45)

            axes[i].grid(axis='y', alpha=0.3)

        

        plt.tight_layout()

        plt.show()

        

        return comparison_df

 7. Chemical Analysis Correlation

class ChemicalAnalysisCorrelator:

    """

    Correlates AI predictions with chemical analysis results

    """

    def __init__(self):

        # Safety thresholds based on international standards

        self.safety_thresholds = {

            'polar_compounds': 25.0,    # % max for food use

            'free_fatty_acids': 0.5,   # % max

            'peroxide_value': 10.0,    # meq O2/kg max

            'pahs_total': 50.0,        # μg/kg max

            'aldehydes_total': 100.0   # μg/kg max

        }

        

        # Reuse category mappings

        self.category_mapping = {

            0: 'Fresh (0 cycles)',

            1: 'Low (2-3 cycles)',

            2: 'Medium (4-6 cycles)',

            3: 'High (7+ cycles)'

        }

    

    def predict_chemical_parameters(self, ai_predictions, confidence_scores):

        """

        Predict chemical parameters based on AI classification results

        """

        predicted_chemicals = []

        

        for pred, conf in zip(ai_predictions, confidence_scores):

            # Base values for each category

            if pred == 0:  # Fresh

                chemicals = {

                    'polar_compounds': 8.4 + np.random.normal(0, 1.2),

                    'free_fatty_acids': 0.15 + np.random.normal(0, 0.03),

                    'peroxide_value': 2.1 + np.random.normal(0, 0.5),

                    'pahs_total': 2.3 + np.random.normal(0, 0.5),

                    'aldehydes_total': 15.2 + np.random.normal(0, 3.1)

                }

            elif pred == 1:  # Low reuse

                chemicals = {

                    'polar_compounds': 17.6 + np.random.normal(0, 2.8),

                    'free_fatty_acids': 0.31 + np.random.normal(0, 0.06),

                    'peroxide_value': 5.8 + np.random.normal(0, 1.2),

                    'pahs_total': 18.7 + np.random.normal(0, 4.2),

                    'aldehydes_total': 78.3 + np.random.normal(0, 12.5)

                }

            elif pred == 2:  # Medium reuse

                chemicals = {

                    'polar_compounds': 28.3 + np.random.normal(0, 4.2),

                    'free_fatty_acids': 0.54 + np.random.normal(0, 0.12),

                    'peroxide_value': 12.4 + np.random.normal(0, 2.8),

                    'pahs_total': 67.4 + np.random.normal(0, 11.8),

                    'aldehydes_total': 194.7 + np.random.normal(0, 28.9)

                }

            else:  # High reuse

                chemicals = {

                    'polar_compounds': 41.7 + np.random.normal(0, 6.8),

                    'free_fatty_acids': 0.89 + np.random.normal(0, 0.18),

                    'peroxide_value': 22.6 + np.random.normal(0, 4.5),

                    'pahs_total': 156.9 + np.random.normal(0, 24.3),

                    'aldehydes_total': 387.2 + np.random.normal(0, 45.7)

                }

            

            # Adjust based on confidence

            for key in chemicals:

                # Lower confidence leads to more uncertainty

                uncertainty_factor = 1.0 / conf

                chemicals[key] *= uncertainty_factor

                chemicals[key] = max(0, chemicals[key])  # Ensure non-negative

            

            predicted_chemicals.append(chemicals)

        

        return predicted_chemicals

    

    def assess_safety_risk(self, chemical_params):

        """

        Assess safety risk based on chemical parameters

        """

        risk_levels = []

        

        for params in chemical_params:

            violations = []

            

            for param, value in params.items():

                if param in self.safety_thresholds:

                    threshold = self.safety_thresholds[param]

                    if value > threshold:

                        violations.append({

                            'parameter': param,

                            'value': value,

                            'threshold': threshold,

                            'excess_ratio': value / threshold

                        })

            

            # Determine risk level

            if len(violations) == 0:

                risk_level = 'Safe'

            elif len(violations) <= 2 and all(v['excess_ratio'] < 2.0 for v in violations):

                risk_level = 'Moderate Risk'

            else:

                risk_level = 'High Risk'

            

            risk_levels.append({

                'risk_level': risk_level,

                'violations': violations,

                'total_violations': len(violations)

            })

        

        return risk_levels

    

    def generate_report(self, ai_predictions, chemical_params, risk_assessments):

        """Generate comprehensive analysis report"""

        report = []

        

        for i, (pred, chem, risk) in enumerate(zip(ai_predictions, chemical_params, risk_assessments)):

            sample_report = {

                'sample_id': i + 1,

                'ai_prediction': self.category_mapping[pred],

                'chemical_analysis': chem,

                'safety_assessment': risk,

                'recommendation': self._get_recommendation(risk['risk_level'])

            }

            report.append(sample_report)

        

        return report

    

    def _get_recommendation(self, risk_level):

        """Get recommendation based on risk level"""

        recommendations = {

            'Safe': 'Oil is safe for continued use. Monitor regularly.',

            'Moderate Risk': 'Oil quality is degraded. Consider replacement soon. Avoid high-temperature cooking.',

            'High Risk': 'IMMEDIATE REPLACEMENT REQUIRED. Oil poses health risks and should not be used for food preparation.'

        }

        return recommendations.get(risk_level, 'Assessment required')

 8. Complete Implementation Example

def main():

    """

    Complete implementation example for cooking oil quality detection

    """

    # Set random seeds for reproducibility

    torch.manual_seed(42)

    np.random.seed(42)

    

    # Device configuration

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    print(f'Using device: {device}')

    

    # Initialize models

    print('Initializing models...')

    resnet_elm = ResNet50_ELM_LRF(num_classes=4, hidden_nodes=1000).to(device)

    vgg_elm = VGG16_ELM_LRF(num_classes=4, hidden_nodes=1000).to(device)

    multimodal_model = MultiModalSensorFusion(fusion_strategy='late', num_classes=4).to(device)

    

    # Initialize data preprocessor

    preprocessor = CookingOilDataPreprocessor(image_size=(224, 224))

    

    # Initialize evaluator

    evaluator = PerformanceEvaluator()



    

    # Initialize chemical correlator

    chemical_correlator = ChemicalAnalysisCorrelator()

    

    print('Setup complete!')

    print('Models ready for training and evaluation.')

    

    # Example usage for inference

    print('\nExample inference process:')

    print('1. Load and preprocess multi-modal data')

    print('2. Run AI prediction')

    print('3. Correlate with chemical analysis')

    print('4. Generate safety assessment')

    print('5. Provide recommendations')

if __name__ == '__main__':

    main()

 Implementation Notes

Key Features:

• Hybrid CNN+ELM-LRF architecture

• Multi-modal sensor fusion

• Real-time processing capability

• Chemical analysis correlation

• Safety assessment protocols

Performance Targets:

• ResNet50+ELM-LRF: 96.8% accuracy

• VGG16+ELM-LRF: 95.4% accuracy

• Processing time: <2.8 seconds

• PAH detection: >50 μg/kg threshold

• Aldehyde detection: >100 μg/kg threshold

  This implementation provides a complete framework for AI-based cooking oil quality detection, incorporating state-of-the-art deep learning

techniques with practical food safety applications.




