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Additional file 1 - Revisiting VERTIGO and VERTIGO-CI: Identify-

ing confidentiality breaches and introducing a statistically sound, efficient

alternative

Appendix A Notation

Table A1 Glossary for general notation conventions

Random variable in R A Uppercase Non-italic
Random vector in Rp A Uppercase Non-italic bold
Scalar in R a Lowercase Italic
Vector in Rp a Lowercase Italic bold
Vector in Rp with all components equal to 1 1p -
Matrix in Rn×p A Uppercase Italic bold
Identity matrix in Rn×n In -
Gradient of f(θ) (column vector) ∇θf(θ) H for Hessian
∇θf(θ)|θ=a ∇θf(a) H(a) for Hessian
max1≤j≤p |aj | ||a||∞ Infinite norm∑p

j=1 |aj | ||a||1 ℓ1-norm√∑p
j=1 a2

i ||a||2 ℓ2-norm

Diagonal matrix with entries of a on diagonal diag(a) Dimension p× p for a ∈ Rp

Quantity · at iteration t (step count) ·(t) Starts with ·(0)

Table A2 Glossary for quantities that pertain to the regression settings

Analytical dataset with sample size n D = {. . .}ni=1

Covariate vector for ith individual xi = [xi1, . . . , xip]⊤

Covariate matrix in Rn×p X =

x11 · · · x1p

...
. . .

...
xn1 · · · xnp

 =

x
⊤
1

...
x⊤
n


Gram matrix K = [X 1n] [X 1n]

⊤

True (unknown) parameters β0⋆,β⋆

Penalized estimate of the parameter (penalty parameter λ) β̂λ
0 , β̂

λ

Penalized estimate of the parameter (intercept not penalized) β̂λ
0,alt, β̂

λ
alt

Log-likelihood ℓn(β0,β) =
1
n

∑n
i=1 log(·)

Penalized log-likelihood lλn(β0,β)
Penalized log-likelihood (intercept not penalized) lλn,alt(β0,β)

Table A3 Glossary for quantities specific to the vertical setting

Number of covariate-nodes K
Number of covariates at covariate-node k p(k)

Covariate matrix at covariate-node k X(k)

Dual parameter estimates α̂λ

Penalized estimate associated with covariate-node k β̂λ(k)
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Appendix B VERTIGO and VERTIGO-CI

Algorithms

Algorithm 3 provides the original VERTIGO algorithm [1], while algo-

rithm 4 provides the original VERTIGO-CI algorithm [2]. Some adjust-

ments have been made to the representation of the original algorithms

using the harmonized notation to facilitate the comparison. We note that

constrained optimization technique should be considered when numeri-

cally applying the Newton-Raphson steps because the components of the

parameter α are constrained in (0, 1).

Algorithm 3 VERTIGO Original [1]

Input Local data in each node X(k), k = 1, ...,K, shared response y, parameter λ,

initial solution α(s), s = 0

Output Global solution α̂λ

Procedure:

1. Node k: compute the local matrix K(k) and send K(k) to CC.

2. CC: compute the global matrix K.

3. Do:

(a) Node k: compute e(k)(α(s)), and send e(k)(α(s)) to CC.

(b) CC: calculate e(s) =
∑K

k=1 e
(k)(α(s)) and ∇αJ

λ(α(s)) (using Equation (10)).

(c) CC: compute the Hessian matrix H(α(s)) (using Equation (11)).

(d) CC: update α(s) ← α(s) −H−1(α(s))∇αJ
λ(α(s)) and send update α(s) to

each node.

s← s+ 1, until α(s) converges.

4. α̂λ ← α(s).

2
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Algorithm 4 VERTIGO-CI Original [2]

Input Local data in each node X(k), k = 1, ...,K, shared response y, parameter λ,

initial solution α(s), s = 0

Output Global solution β̂λ and associated variances.

Procedure:

1. Node k: compute the local matrix K(k) and send K(k) to CC.

2. CC: compute the global matrix K.

3. Do:

(a) Node k: compute e(k)(α(s)), and send e(k)(α(s)) to CC.

(b) CC: calculate e(s) =
∑K

k=1 e
(k)(α(s)) and ∇αJ

λ(α(s)) (using Equation (10)).

(c) CC: compute the modified Hessian matrix H(α(s)) = λ−1 diag(y)K diag(y)+

CIn.

(d) CC: update α(s) ← α(s) −H−1(α(s))∇αJ
λ(α(s)) and send update α(s) to

each node.

s← s+ 1, until α(s) converges.

4. CC: α̂λ ← α(s).

5. CC: send α̂λ to each node.

6. Node k, k ≤ K−1: Calculate β̂λ(k) = λ−1
∑n

i=1 α̂
λ
i yix

(k)
i . and send β̂λ(k) to CC.

7. Node K: Calculate β̂λ
0 = λ−1

∑n
i=1 α̂

λ
i yi and β̂λ(K) = λ−1

∑n
i=1 α̂

λ
i yix

(K)
i , and

send β̂λ
0 and β̂λ(K) to CC.

8. Client-to-client communication:

(a) Node k, k ≤ K−1: compute exp{(x(k)
i )⊤β̂λ(k)} for all i ∈ {1, . . . , n} and send

result to node 1.

(b) Node K: compute and send exp{β̂λ
0 } exp{(x

(K)
i )⊤β̂λ(K)} for all i ∈ {1, . . . , n}

and send result to node 1.

(c) Node 1: combine the results using exp{β̂λ
0 + x⊤

i β̂
λ} =

exp{β̂λ
0 }
∏K

k=1 exp{(x
(k)
i )⊤β̂λ(k)} for all i ∈ {1, . . . , n}, compute V λ (using

Equation (12)) and send V to all nodes k, k ∈ {2, . . . ,K}.
9. Node k, k ≤ K − 1: calculate (X(k))⊤(V λ)1/2 and send this quantity to CC.

10. Node K: calculate [X(K) 1n]
⊤(V λ)1/2 and send this quantity to CC.

11. CC: build [X 1n]
⊤V λ[X 1n] by block (see Algorithm 2 in [2] for details), and

invert the result to obtain variance estimates.

3
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Appendix C Equivalence between matrix and

expanded notation in dual optimization

To obtain the expression of Jλ(α) = 1
2λ
α⊤ diag(y)K diag(y)α +∑n

i=1 L(αi), it suffices to note that

α⊤ diag(y)K diag(y)α =
[
α1y1 · · · αnyn

]

x⊤
1 x1 + 1 · · · x⊤

1 xn + 1

...
. . .

...

x⊤
nx1+1 · · · x⊤

nxn + 1



α1y1
...

αnyn



=
[∑n

i=1 αiyi(x
⊤
i x1 + 1) · · ·

∑n
i=1 αiyi(x

⊤
i xn + 1)

]

α1y1
...

αnyn


=

n∑
j=1

n∑
i=1

αiyi(x
⊤
i xj + 1)αjyj

=
n∑

j=1

n∑
i=1

αiαjyiyj(x
⊤
i xj + 1) .

Appendix D Mathematical development for the dual

problem of the ridge logistic regression

maximum log-likelihood problem with

no penalty over the intercept

Proposition 1 Consider any D = {(x1, y1), . . . , (xn, yn)}, with yi ∈ {−1, 1}, xi ∈ Rp for

i = 1, . . . , n and n ≥ 2. Assume that
∑n

i=1 I(yi = 1) ∈ {1, . . . , n − 1} (i.e., there exists at

least one i such that yi = 1, and at least one j such that yj = −1). Then, for any λ > 0,

4
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there exists a unique solution (β̂λ
0,alt, β̂

λ
alt) to the optimization problem

max
β0∈R,β=[β1,...,βp]⊤∈Rp

lλn,alt(β0,β) . (D1)

Furthermore, (β̂λ
0,alt, β̂

λ
alt) satisfies

β̂λ
0,alt =

1

n

n∑
i=1

(
yi log{(α̂λ

i,alt)
−1 − 1} − x⊤

i β̂λ
alt

)
,

β̂λ
alt = λ−1X⊤ diag(y)α̂λ

alt ,

where α̂λ
alt = [α̂λ

1,alt, . . . , α̂
λ
n,alt]

⊤ is the unique solution to the following minimization

problem:

min
α∈(0,1)n

Jλ
alt(α) s.t.

n∑
i=1

yiαi = 0.

Proof of Proposition 1. We begin by showing that the optimization problem in (D1) has a

unique finite solution. To do this, we first compute that

∇βl
λ
n,alt(β0,β) =

n∑
i=1

yixi

1 + exp{yi(β0 + x⊤
i β)}

− λβ ,

and that

∂

∂β0
lλn,alt(β0,β) =

n∑
i=1

yi

1 + exp{yi(β0 + x⊤
i β)}

.

From this, we obtain that

∇2
β,β0

lλn,alt(β0,β)

=

n∑
i=1

− exp{yi(β0 + x⊤
i β)}

(1 + exp{yi(β0 + x⊤
i β)})2

xix
⊤
i xi

x⊤
i 1

− λ

Ip 0

0 0

 .

Hence, lλn,alt(β0,β) is strictly concave in (β0,β). Therefore, if l
λ
n,alt(β0,β) admits a max-

imizer, it must be unique. To conclude that the optimization problem in (D1) has a unique

solution, it remains to show that lλn,alt(β0,β) indeed has a maximizer.

5
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To establish this, it suffices to show that lλn,alt(β0,β) → −∞ as max{|β0|, ∥β∥∞} → ∞,

where we denote the infinite norm ||a||∞ := max1≤j≤p |aj | for a ∈ Rp. Observe that the log-

likelihood term is bounded above by 0. Therefore, if ∥β∥∞ → ∞, then regardless of whether

|β0| → ∞ or |β0| < ∞, the penalty term λβ⊤β dominates, and we have lλn,alt(β0,β) → −∞.

Now suppose ∥β∥∞ ̸→ ∞ but max{|β0|, ∥β∥∞} → ∞, which implies that |β0| → ∞ while

∥β∥∞ remains bounded. Because there is at least one yi = 1 and at least one yj = −1, there

exists at least one term in the log-likelihood of the form log
(
[(1 + exp{−yi(β0 + x⊤

i β)}]−1
)

that diverges to −∞ as |β0| → ∞ (since x⊤
i β remains bounded), while the others remain

bounded from above by 0. Therefore, lλn,alt(β0,β) → −∞ in this case as well.

The conclusion of the above discussion is that for any λ > 0, there exists a unique solution

(β̂λ
0,alt, β̂

λ
alt) to the optimization problem in (D1). This concludes the proof of the first part of

the proposition. The rest of the proof is dedicated to show the second part of the proposition.

Since lλn,alt(β0,β) is strictly concave and two times continuously differentiable,

(β̂λ
0,alt, β̂

λ
alt) is a stationary point of lλn,alt(β0,β), i.e.,

∇βl
λ
n,alt(β̂

λ
0,alt, β̂

λ
alt)

=

n∑
i=1

yixi exp{−yi(β̂
λ
0,alt + x⊤

i β̂λ
alt)}

1 + exp{−yi(β̂
λ
0,alt + x⊤

i β̂λ
alt)}

− λβ = 0 ,

and

∂

∂β0
lλn,alt(β̂

λ
0,alt, β̂

λ
alt) =

n∑
i=1

yi exp{−yi(β̂
λ
0,alt + x⊤

i β̂λ
alt)}

1 + exp{−yi(β̂
λ
0,alt + x⊤

i β̂λ
alt)}

=

n∑
i=1

{
I(yi = 1)−

exp (β̂λ
0,alt + x⊤

i β̂λ
alt)

1 + exp (β̂λ
0,alt + x⊤

i β̂λ
alt)

}
= 0 , (D2)

where, on the last line, I(A) denotes the indicator function taking the value 1 if A is true,

and 0 otherwise.

Using this result, we will next show that the search space in the optimization problem at

(D1) can be narrowed to a compact set (see (D5) below).

From the first equation, we deduce that

∥β̂λ
alt∥∞ ≤ λ−1

n∑
i=1

∥xi∥∞ . (D3)

6
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Rearranging the equation for ∂
∂β0

lλn,alt(β̂
λ
0,alt, β̂

λ
alt) gives

∑
i:yi=1

{
1−

exp (β̂λ
0,alt + x⊤

i β̂λ
alt)

1 + exp (β̂λ
0,alt + x⊤

i β̂λ
alt)

}

=
∑

i:yi=−1

exp (β̂λ
0,alt + x⊤

i β̂λ
alt)

1 + exp (β̂λ
0,alt + x⊤

i β̂λ
alt)

. (D4)

From the latter equation, we will derive in turns a lower bound and an upper bound for

β̂λ
0,alt. Starting with the upper bound, let n1 = #{i : yi = 1} and n−1 = #{i : yi = −1}.

Since we have assumed n1 ≥ 1, we have

∑
i:yi=1

{
1−

exp (β̂λ
0,alt + x⊤

i β̂λ
alt)

1 + exp (β̂λ
0,alt + x⊤

i β̂λ
alt)

}

≥ 1− max
i:yi=1

exp (β̂λ
0,alt + x⊤

i β̂λ
alt)

1 + exp (β̂λ
0,alt + x⊤

i β̂λ
alt)

= 1− max
i:yi=1

1

1 + exp{−(β̂λ
0,alt + x⊤

i β̂λ
alt)}

≥ 1− 1

1 + exp{−β̂λ
0,alt − ∥β̂λ

alt∥∞ max1≤i≤n ∥xi∥1}
,

where ||a||1 :=
∑p

j=1 |aj | for a ∈ Rp. On the other hand, the term on the second line of (D4)

satisfies

∑
i:yi=−1

exp (β̂λ
0,alt + x⊤

i β̂λ
alt)

1 + exp (β̂λ
0,alt + x⊤

i β̂λ
alt)

≤ n−1

1 + exp{−β̂λ
0,alt − ∥β̂λ

alt∥∞ max1≤i≤n ∥xi∥1}
.

Consequently,

1− 1

1 + exp{−β̂λ
0,alt − ∥β̂λ

alt∥∞ max1≤i≤n ∥xi∥1}

≤ n−1

1 + exp{−β̂λ
0,alt − ∥β̂λ

alt∥∞ max1≤i≤n ∥xi∥1}
,

which implies that

β̂λ
0,alt ≥ − log(n−1)− ∥β̂λ

alt∥∞ max
1≤i≤n

∥xi∥1

≥ − log(n)− p∥β̂λ
alt∥∞

n∑
i=1

∥xi∥∞ ,

7
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where, to obtain the last line, we used the fact that n−1 ≤ n, that for any a ∈ Rp, ∥a∥1 ≤

p∥a∥∞, and that max1≤i≤n ∥xi∥∞ ≤
∑n

i=1 ∥xi∥∞.

Since from similar arguments we can show that β̂λ
0,alt ≤ log(n) +

pmax1≤i≤n ∥xi∥∞∥β̂λ
alt∥∞, we conclude using (D3) that

|β̂λ
0,alt| ≤ log(n) + λ−1p

{ n∑
i=1

∥xi∥∞
}2

.

To summarize, we have just shown that the solution (β̂λ
0,alt, β̂

λ
alt) of (D1) lies in the

compact set Θx,λ = Θ0
x,λ × (Θ1

x,λ)
p, with

Θ0
x,λ = {β ∈ R : |β| ≤ log(n) + λ−1p

{ n∑
i=1

∥xi∥∞
}2}

and

Θ1
x,λ = {β ∈ R : |β| ≤ λ−1

n∑
i=1

∥xi∥∞} .

Consequently, the search space R×Rp in the optimization problem at (D1) can be restricted

to Θx,λ, and the optimization problem at (D1) is equivalent to

max
β0∈Θ0

x,λ,β∈(Θ1
x,λ)

p
lλn,alt(β0,β) . (D5)

Now from the relationship

min
α∈(0,1)

αx+ (1− α) log(1− α) + α log(α)

= log
( 1

1 + e−x

)
,

since for any β0 ∈ Θ0
x,λ and β ∈ (Θ1

x,λ)
p, we have

|β0 + β⊤xj | ≤ log(n) + λ−1p
{ n∑

i=1

∥xi∥∞
}2

+ λ−1p
{ n∑

i=1

∥xi∥∞
}

max
1≤j≤n

∥xj∥∞

≤ log(n) + 2λ−1p
{ n∑

i=1

∥xi∥∞
}2

< log(n) + 2 + 2λ−1p
{ n∑

i=1

∥xi∥∞
}2

:= cn,x,λ ,
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where we used the fact that |β⊤xj | ≤ p∥β∥∞∥xj∥∞ ≤ p∥β∥∞
∑n

i=1 ∥xi∥∞, we conclude

that

lλn,alt(β0,β) = min
α∈(Θ2

x,λ)
n
lλn,alt(β0,β,α)

with lλn,alt(β0,β,α) =

n∑
i=1

{
αiyi(β0 + x⊤

i β) + L(αi)
}
− λ

2
β⊤β

and Θ2
x,λ =

[ 1

1 + exp(cn,x,λ)
,

1

1 + exp(−cn,x,λ)

]
. (D6)

We recall L(αi) = (1 − αi) log(1 − αi) + αi log(αi). Since the solution α(β0,β) of the

optimization problem minα∈(Θ2
x,λ)

n lλn,alt(β0,β,α) satisfies

αi(β0,β) =
exp(−yi(β0 + x⊤

i β))

1 + exp(−yi(β0 + x⊤
i β))

for all i ∈ {1, . . . , n},

and as the optimal (β̂λ
0,alt, β̂

λ
alt) are such that

0 =

n∑
i=1

yi
exp(−yi(β̂

λ
0,alt + x⊤

i β̂λ
alt))

1 + exp(−yi(β̂
λ
0,alt + x⊤

i β̂λ
alt))

=

n∑
i=1

yiαi(β̂
λ
0,alt, β̂

λ
alt) ,

(see (D2)), then, the search space (Θ2
x,λ)

n can be further narrowed to

Θ3
x,λ := (Θ2

x,λ)
n ∩ {α :

n∑
i=1

αiyi = 0} . (D7)

Since for any α ∈ Θ3
x,λ the function lλn,alt(β0,β,α) satisfies

lλn,alt(β0,β,α) := lλn,alt(β,α)

=

n∑
i=1

{
αiyix

⊤
i β + L(αi)

}
− λ

2
β⊤β ,

the optimization problem in (D5) can be expressed as

max
β0∈Θ0

x,λ,β∈(Θ1
x,λ)

p
lλn,alt(β0,β) = max

β∈(Θ1
x,λ)

p

(
min

α∈Θ3
x,λ

lλn,alt(β,α)

)
. (D8)

Now for any fixed β the function α 7→ lλn,alt(β,α) is convex, and for any fixed α the function

β 7→ lλn,alt(β,α) is concave. Since Θ1
x,λ and Θ3

x,λ are compact convex sets, we can apply Sion’s

9
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minimax theorem [3] and swap the max and the min in the above equation and conclude that

max
β∈(Θ1

x,λ)
p

(
min

α∈Θ3
x,λ

lλn,alt(β,α)

)
= min

α∈Θ3
x,λ

(
max

β∈(Θ1
x,λ)

p
lλn,alt(β,α)

)

The inner problem can be solved exactly, by equating to 0 the gradient of lλn,alt(β,α) with

respect to β. The solution β(α) of this equation is given by the following equation:

β(α) = λ−1
n∑

i=1

αiyixi .

Plugging the expression of β(α) into the definition of lλn,alt(β,α) yields lλn,alt(β(α),α) =

Jλ
alt(α), and therefore

max
β∈(Θ1

x,λ)
p

(
min

α∈Θ3
x,λ

lλn,alt(β,α)

)
= min

α∈Θ3
x,λ

(
Jλ
alt(α)

)

= min
α∈(Θ2

x,λ)
n

(
Jλ
alt(α)

)
s.t.

n∑
i=1

yiαi = 0 .

To obtain the last line, we used the definition of Θ3
x,λ in (D7).

The optimization problem on the last line is strongly convex with a linear equality

constraint. It therefore has a unique solution provided the feasible set {α ∈ (Θ2
x,λ)

n :∑n
i=1 αiyi = 0} is non empty. This is the case, since, as we have assumed n1 ≥ 1 and n−1 ≥ 1

with n ≥ 2, the point αf = (αf
1 , . . . , α

f
n)

⊤ with αf
i = 1/(2n−1) if yi = −1 and αf

i = 1/(2n1)

if yi = 1 is feasible. To see why this is the case, recalling the definition of Θ2
x,λ in (D6), it

suffices to note that the inequality 1/(1 + exp{x}) ≤ exp(−x) implies that

1

2max(n−1, n1)
≥ (2n)−1 ≥ exp{− log(n)− log(2)}

≥ exp{− log(n)− 2} ≥ 1

1 + exp{log(n) + 2}

≥ 1

1 + exp(cn,x,λ)
,

and the inequality 1/2 ≤ (1 + exp{−2})−1 implies that

1

2min(n−1, n1)
≤ 1

2
≤ 1

1 + exp(−2)
≤ 1

1 + exp(−cn,x,λ)
.
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496
497
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499
500
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504
505
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Combining these relationships shows that αf
i ∈ Θ2

x,λ for all 1 ≤ i ≤ n. The proof of the

proposition follows from the fact that, since the solution to the optimization problem

min
α∈(Θ2

x,λ)
n

(
Jλ
alt(α)

)
s.t.

n∑
i=1

yiαi = 0

is reached at a stationary point that cancels the Lagrangian, it can be equivalently expressed

as

min
α∈(0,1)n

(
Jλ
alt(α)

)
s.t.

n∑
i=1

yiαi = 0 .

Finally, the expression β̂λ
0,alt =

1
n

∑n
i=1

(
yi log{(α̂λ

i,alt)
−1 − 1}−x⊤

i β̂λ
alt

)
can directly be

retrieved using the following:

α̂λ
i,alt =

1

1 + exp(yi(β̂
λ
0,alt + x⊤

i β̂λ
alt))

for all i ∈ {1, . . . , n}.

□

Appendix E Alternative reverse-engineering

procedure

An alternative procedure can be employed to construct the diagonal

matrix V λ at the CC when executing VERTIGO-CI, which enables

the CC to follow the steps outlined in the main text and subsequently

reverse-engineer the feature data of all individuals. Recall the definition

of the diagonal matrix V λ, with its entries specified in Equation (12).

Also, recall the expression of ∇αJ
λ(α) (Equation (10)), that α̂λ sat-

isfies ∇αJ
λ(α̂λ) = 0, that β̂λ(k) = λ−1

∑n
i=1 α̂

λ
i yix

(k)
i and that β̂λ

0 =

λ−1
∑n

i=1 α̂
λ
i yi.
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Using these expression, we derive that the jth component of ∇αJ
λ(α)

satisfies

0 = [∇αJ
λ(α̂λ)]j

=
K∑
k=1

e
(k)
j (α̂λ) + log

(
α̂λ
j

1− α̂λ
j

)

=
K∑
k=1

(λ−1

n∑
i=1

α̂λ
i yiyj(x

(k)
i )⊤x

(k)
j ) + λ−1

n∑
i=1

α̂λ
i yiyj + log

(
α̂λ
j

1− α̂λ
j

)

= yj

K∑
k=1

((x
(k)
j )⊤β̂λ(k)) + yjβ̂

λ
0 + log

(
α̂λ
j

1− α̂λ
j

)

= yj(x
⊤
j β̂

λ + β̂λ
0 ) + log

(
α̂λ
j

1− α̂λ
j

)
.

By isolating α̂λ
j , we obtain that

α̂λ
j =

[
1 + exp{yj(x⊤

j β̂
λ + β̂λ

0 )}
]−1

.

Since 1− α̂λ
j = [1+ exp{−yj(x⊤

j β̂
λ + β̂λ

0 )}]−1, and as yj ∈ {−1, 1}, we

deduce from the latter equation that

α̂λ
j (1− α̂λ

j )

=
[
1 + exp{(x⊤

j β̂
λ + β̂λ

0 )}
]−1[

1 + exp{−(x⊤
j β̂

λ + β̂λ
0 )}
]−1

= V λ
jj .
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Since α̂λ
j is computed at the CC, the latter can determine each diagonal

entry V λ
jj for all j ∈ 1, . . . , n and proceed, as outlined in the main text,

to reverse-engineer the individual feature data. Notably, this approach

allows the CC to reconstruct the matrix V λ without requiring access to

the response vector y.
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