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Table A1l Glossary for general notation conventions 011
012
Random variable in R A Uppercase Non-italic 013
Random vector in RP A Uppercase Non-italic bold 014
Scalar in R a Lowercase Italic 015
Vector in RP a Lowercase Italic bold
Vector in R? with all components equal to 1 1, B 016
Matrix in R?*XP A Uppercase Italic bold 017
Identity matrix in R®»*™ I, - 018
Gradient of f(0) (column vector) Vo f(0) H for Hessian 019
Vof(0)o=a Ve f(a) H(a) for Hessian
max;<;<p |aj| [la||so Infinite norm 020
35 1 lagl [lall: £1-norm 021
\/ b, a? llal|2 £2-norm 022
Diagonal matrix with entries of @ on diagonal diag(a) Dimension p X p for a € R? 023
Quantity - at iteration ¢ (step count) “(4) Starts with - (o) 024
Table A2 Glossary for quantities that pertain to the regression settings 8;2
Analytical dataset with sample size n D={. .} 027
Covariate vector for ith individual T = [Ti1,. .., Tip] | 028
il ot Tip x| 029
Covariate matrix in R?»*P X = Lo = : 030
Inl *** Tnp EI 031
Gram matrix K=[X1,]|X ln]T 032
True (unknown) parameters Box, Bx 033
Penalized estimate of the parameter (penalty parameter \) ﬁé,ﬂA 034
Penalized estimate of the parameter (intercept not penalized) Bé,alw ,Bg‘lt 035
Log-likelihood £ (Bo,B) = £ 37 log(+)
Penalized log-likelihood 12 (Bo, B) 036
Penalized log-likelihood (intercept not penalized) 1 1B, B) 037
038
Table A3 Glossary for quantities specific to the vertical setting 039
. 040
Number of covariate-nodes K 041
Number of covariates at covariate-node k p(F)
Covariate matrix at covariate-node k X (k) 042
Dual parameter estimates a’ 043
Penalized estimate associated with covariate-node k B 044
045
046
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Appendix B VERTIGO and VERTIGO-CI

Algorithms

Algorithm 3 provides the original VERTIGO algorithm [1], while algo-
rithm 4 provides the original VERTIGO-CI algorithm [2]. Some adjust-
ments have been made to the representation of the original algorithms
using the harmonized notation to facilitate the comparison. We note that
constrained optimization technique should be considered when numeri-
cally applying the Newton-Raphson steps because the components of the

parameter o are constrained in (0, 1).

Algorithm 3 VERTIGO Original [1]

Input Local data in each node X *), k =1, ..., K, shared response y, parameter \,

initial solution (4, s =0
Output Global solution a*
Procedure:
1. Node k: compute the local matrix K* and send K* to CC.
2. CC: compute the global matrix K.
3. Do:
(a) Node k: compute e(’“)(oz(s))7 and send e(k)(a(s)) to CC.
(b) CC: calculate e(5) = Z,f:l e(k)(a(s)) and Vo J* (a(s)) (using Equation (10)).
(c) CC: compute the Hessian matrix H () (using Equation (11)).
(d) CC: update auy) + s — Hil(a(s))VaJ)‘(a(s)) and send update o) to
each node.
s < s+ 1, until a4 converges.

4. a* Qs)-




Algorithm 4 VERTIGO-CI Original [2]

Input Local data in each node X (*), k =1, ..., K, shared response y, parameter \,

initial solution a(4),s =0

Output Global solution Bk and associated variances.

Procedure:

1.
2.
3.

NS o

8.

10.
11.

Node k: compute the local matrix KK and send K® to CC.
CC: compute the global matrix IC.
Do:

(a) Node k: compute e(k)(a(s)), and send e(k)(a(s)) to CC.

(b) CC: calculate e(y) = Zszl e®) (o) and VaJ* (as)) (using Equation (10)).

(¢) CC: compute the modified Hessian matrix H (oy5)) = A" diag(y) K diag(y) +
CI,.

(d) CC: update ay) + o) — Hil(a(s))VaJA(a(s)) and send update o) to
each node.

s < s+ 1, until o) converges.

CC: a* «+ o).

CC: send @ to each node.

Node k, k < K —1: Calculate BA(’“) =1y a;\yimgk) . and send B’\(k) to CC.
Node K: Calculate 33 = A~! S, aty; and BINE) = A1 Sy &f‘yimgm ,
send Bé‘ and B2 to CC.

Client-to-client communication:

(a) Node k, k < K —1: compute exp{(mgk))—rﬁ)‘(k)} foralli € {1,...,n} and send
result to node 1.

(b) Node K: compute and send exp{ 3} exp{(mEK))TaA(K)} foralli e {1,...,n}
and send result to node 1.

(c) Node 1: combine the results using exp{B + :E;FB)‘} =
exp{Bé‘}Hszl exp{(mgk))T,@)‘(k)} for all i € {1,...,n}, compute V* (using
Equation (12)) and send V to all nodes k, k € {2,..., K}.

Node k, k < K — 1: calculate (X *))T(V*)1/2 and send this quantity to CC.
Node K: calculate [X (%) 1,]T(V*)1/2 and send this quantity to CC.
CC: build [X 1,,)]TV*[X 1,] by block (see Algorithm 2 in [2] for details), and

invert the result to obtain variance estimates.
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Appendix C Equivalence between matrix and

expanded notation in dual optimization

To obtain the expression of J*a) = Fa' diag(y)Kdiag(y)o +

Yy L(ay), it suffices to note that

$1T$1 +1--- aleacn + 1| | oqn
o' diag(y)K diag(y)a = |:051y1 e U
w;lz—wl-i-l T wzwn +1 OnYn
a1
= S ol w4 1) - S (e, + 1)

CnlYn

=D awilzla; + Dayy

j=1 i=1

= Z Z oziozjyiyj(acjwj + 1) .

j=1 i=1

Appendix D Mathematical development for the dual
problem of the ridge logistic regression
maximum log-likelihood problem with
no penalty over the intercept

Proposition 1 Consider any D = {(x1,y1),- .., (Tn,yn)}, with y; € {-1,1}, =; € RP for
i=1,....,n and n > 2. Assume that > ;1 I(y; = 1) € {1,...,n — 1} (i.e., there exists at

least one i such that y; = 1, and at least one j such that y; = —1). Then, for any A > 0,



there exists a unique solution (B\())\,alt’ﬁélt) to the optimization problem

fo,B) - D1
Bo€R,B=[1 ] T ERP bt o ) (v
Furthermore, (Bé\,altfﬁélt) salisfies
> 1 = _ A -1 T 3)
B0, a1t = - Z (yilog{ (@7 air) " — 1} — ; Baw) ,
i=1

25N —1+T 5. ~\
ﬂalt:)‘ X dlag(y)aalt7

where &, = [ g+ oyl | s the unique solution to the following minimization
problem:

n
. A
min J (« s.t. E io; = 0.
a0y alt( ) : Yiyg

Proof of Proposition 1. We begin by showing that the optimization problem in (D1) has a

unique finite solution. To do this, we first compute that

n
Yisi

V b A b

,@nalt /60 12211+6Xp{y7, 504_1:7,6)} :6

and that

n

0 A
8/80 nalt BOa ; 1Jrexp{yZ 0 +x;rﬁ)} .

From this, we obtain that

V3.5l a1t (B0, B)

T
Z —exp{yi(Bo + =] B)} iy L A I 0
(I+exp{yi(Bo+z/B)N? | o7 1 00

Hence, l;),alt (Bo, B) is strictly concave in (Bg, 3). Therefore, if lf‘%alt(ﬁo, 3) admits a max-

imizer, it must be unique. To conclude that the optimization problem in (D1) has a unique

solution, it remains to show that lfz\,alt(ﬂov () indeed has a maximizer.
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To establish this, it suffices to show that liz,alt (Bo, B) — —oo as max{|Bol, ||B]|cc} = 0,
where we denote the infinite norm ||a||co := maxi<;<p |a;| for a € RP. Observe that the log-
likelihood term is bounded above by 0. Therefore, if ||3||cc — 00, then regardless of whether
|Bo| — oo or |Bo| < oo, the penalty term A3 ' 3 dominates, and we have l:;’alt(ﬂo,,@) — —o0.

Now suppose ||B]|cc 7 0o but max{|Bo|, ||3||cc } — o0, which implies that |3p| — oo while
|8lcc remains bounded. Because there is at least one y; = 1 and at least one y; = —1, there
exists at least one term in the log-likelihood of the form log ([(1 + exp{—y;(Bo + w;rﬁ)}}_1>
that diverges to —oo as |Bg| — oo (since :c;rﬁ remains bounded), while the others remain
bounded from above by 0. Therefore, li\L,alt (8o, B) — —oo in this case as well.

The conclusion of the above discussion is that for any A > 0, there exists a unique solution
(B\é\,altv ﬁ;‘lt) to the optimization problem in (D1). This concludes the proof of the first part of
the proposition. The rest of the proof is dedicated to show the second part of the proposition.

Since lé,alt (Bo,B) is strictly concave and two times continuously differentiable,

(B()\’alt,ﬁi‘lt) is a stationary point of l%,alt(ﬁo’ﬁ)’ ie.,

PUNEPP S WP
Valn a1t (80 a1t Balt)

. T
- Ui exp{ i (Bg are + ® Boe)}

- im L+ eXP{_yi(E{)\,alt +a] B} B
and
il:; a1t (B ate Baig) = En: & exp{iyi(ﬁé\’alt * mzﬁé\lt)}
960 ™ ’ = L+ eXp{_yi(ﬁ())\,alt + xz—’rﬂilt)}
-y {1 =1) - exp (5 + 21 B }=o0, (D2)
i=1 1+ exp ('Bé\,alt + mz‘T'@;\lt)

where, on the last line, I(A) denotes the indicator function taking the value 1 if A is true,
and 0 otherwise.

Using this result, we will next show that the search space in the optimization problem at
(D1) can be narrowed to a compact set (see (D5) below).

From the first equation, we deduce that

n
1Baelloe < AT (il - (D3)

i=1



Rearranging the equation for aiﬁolf{,alt (B\S\,alt’ ,@é‘lt) gives

T { exp (B0 e + 2 By }

y;=1 1_|—exp(60alt+:B 5alt)

-y 2 (3% 0, + s ‘P alﬁ) : (D4)
i1 L+ exp (B, + 2/ B,)
From the latter equation, we will derive in turns a lower bound and an upper bound for
B&alt' Starting with the upper bound, let ny = #{i : y; = 1} and n_; = #{i : y; = —1}.
Since we have assumed ni > 1, we have
Z { ©Xp ,BO alt T %4 :@alt) }
=1 1+ exp ﬁo alt T %5 'Balt)
>1- max exp (50 ate + 2 Bliy)
“yi=1 1+ exp (50 alt T%; Balt)

1
=1- e ] 20 T3\
i + exp{— (50,alt +z; B)}
1

~ )
1+ exp{ =5 oy, — 182 loo max1 <i<n il }

>1-

where ||al|1 := Z?:l la;| for a € RP. On the other hand, the term on the second line of (D4)

satisfies
Z exXp (Bé\,alt + w;ﬁi\lt)
iyim—1 1 T exp (B\(/)\,alt + wj,@élt)
n—1
1+ eXP{—B&aM — 118 loo max1 <i<p ifl1}
Consequently,

1

1-— = =
1+ exp{—=B3 a1y — 1B lloo maxi<i<n l|2ill1}

< Nl

= ~ ) bl
1+ exp{—537a1t - Hﬁ;\ltﬂoo maxi<i<n ll:ll1}

which implies that
Bo.are > —log(n—1) — [1Baiclloc max [l
A= a 1<i<n

n
2
> —log(n) = pllBaitllee Y llzilloo

i=1
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where, to obtain the last line, we used the fact that n_; < n, that for any a € RP, ||a|l; <

pllalloo, and that max) <i<y [[@ifloo < 37y [|@4loo-
Since from similar arguments we can show that B())\,alt

PMax|<i<n ||a:i|\oo||ﬁ2‘1t||oo, we conclude using (D3) that

n
22 ~1 2
1Bo.atel < log(n) + A7 p{ D llzilloo}”
i=1

<

log(n) +

To summarize, we have just shown that the solution (B\{)\’ah,éi‘lt) of (D1) lies in the

compact set O y = @27)\ X (9;)\)’), with

0% =1{BeR: (B <log(n) + A p{ > zillo}’}
=1

and

Opr={BER: B <A Jlzifloc}-
=1

Consequently, the search space R x R? in the optimization problem at (D1) can be restricted

to O x, and the optimization problem at (D1) is equivalent to

I (6o, B).

max
Bo€@? ,.BE(OL ;)

Now from the relationship

min az + (1 — a)log(l — ) + alog(a)
a€e(0,1)

=108 (17 =)
T8 \1 e )

since for any By € @%A and 3 € (@;7)\)17, we have
T = 2
B0+ B aj| <log(n) + A~ 'p{ Y l|zilloc }
i=1
n
AT e} a1

=1

n
<log(n) + 22" p{ 3 [willoc }
=1

n
- 2
<log(n) +2+ 227 p{ Y |willc}” == cnan

=1



where we used the fact that |ﬂT:vj| < plBlloollzjlloc < plIBlloo Yoieq l|2illoo, we conclude

that

A B ) A
ln,alt (BOa /6) = H@Hzn ya ln,alt (ﬁ07 B, a)

a€( z.A

n
i A
with I 1 (6o, B, @) = > {Oéiyi(BO +x; B)+ L(ai)} _ §5T5
=1
1 1
1+exp(cnzn) 1+exp(—cpzr)’

and @i)\ = [ (D6)

We recall L(a;) = (1 — ;) log(l — «;) + a;log(a;). Since the solution a(fp,3) of the

optimization problem ming ¢ (g2 R lf‘wlt (Bo, B, o) satisfies

ai(/BO,,B) _ exp(_yi(ﬁo + w;rﬁ))

= foralli e {1,...,n},
1+ exp(—yi(Bo + =] B))

and as the optimal (B\())\,alt’ ,@;\M) are such that

0**55 exp(—yi(Boan + = Ba)
T e (—yi(B .+ BN)
i=1 PU=Yi(Pg ag i Palt

n
2 A
= viei(Bo.are: Bate) »

i=1

(see (D2)), then, the search space (@iﬁ)\)" can be further narrowed to

03\ = (02 )" N{a: Y ajy; =0}. (D7)
i=1

Since for any « € @;)\ the function lﬁ,alt (Bo, B, o) satisfies
A A
ln,alt (507 B,a) = ln,alt(ﬁv Ol)
- T AT
= {awal B+ L)} - 5878,
i=1
the optimization problem in (D5) can be expressed as

B (B, B) = max (mmmww@ﬂ. (D8)

max 1
Bo€OY, L.BE(OL )P Be(©L )P \aeco? |
Now for any fixed 3 the function o — l’i\L,alt (B, ) is convex, and for any fixed a the function

B~ lﬁ alt (B, @) is concave. Since @i » and @i ) are compact convex sets, we can apply Sion’s
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minimax theorem [3] and swap the max and the min in the above equation and conclude that

o (o Bao) = oy (e, )
S

HG(@;,A)P 016(9;A ae@ivk (@;’.’)\)p

The inner problem can be solved exactly, by equating to 0 the gradient of lz,alt (B, ) with

respect to 3. The solution B(a) of this equation is given by the following equation:
n
-1
Ble) =AY ayii .
i=1

Plugging the expression of B(«) into the definition of l;\b,alt (B, ) yields I} .. (B(a),a) =

n,alt

J, ;\lt (o), and therefore

max < min lf‘%alt(ﬁ,a)): min (J;\lt(a))

Be(OL )P \aco? | ace? |
n
. A
= min Jal (a)> s.t. yio; = 0.
ae(@iyx)" ( alt ; (i’

To obtain the last line, we used the definition of @‘;))\ in (D7).

The optimization problem on the last line is strongly convex with a linear equality
constraint. It therefore has a unique solution provided the feasible set {a € (@i, N
> 1 @iy; = 0} is non empty. This is the case, since, as we have assumed n; > 1andn_q > 1
with n > 2, the point af = (a{, . .,aﬁz)—r with a{ =1/(2n_1)ify; = —1 and azf =1/(2n1)
if y; = 1 is feasible. To see why this is the case, recalling the definition of G)i)\ in (D6), it

suffices to note that the inequality 1/(1 4 exp{z}) < exp(—z) implies that

1

-1
Tmax(n_yny) = 21 2 expl{=log(n) —log(2)}

1
~ 32 T opllogm) 21

> exp{—log(n)
v
T 1+ eXp(cn,m,)\) ’
and the inequality 1/2 < (1 + exp{—2})~! implies that

1

. 1 < 1
2min(n_1,n1)

1
2= 1+exp(—2) ~ 1+exp(—crazn)

10



Combining these relationships shows that oc{ € @i»\ for all 1 < i < n. The proof of the

proposition follows from the fact that, since the solution to the optimization problem

n
min <Ji‘1t(a)> s.t.Zyiai =0
=1

ag(ez )"
is reached at a stationary point that cancels the Lagrangian, it can be equivalently expressed

as

n
. A
min J (a s.t. ioa; = 0.
aE(O,l)"( dlt( )) ;yl i

Finally, the expression Bé\,alt = % > (yi log{(af"alt)fl -1} = w?ﬁg‘lt) can directly be
retrieved using the following:

_ 1 _
az/‘\,alt = = forallie {1,...,n}.

1+ exp(y; (83 1 + 2] BRy,))

Appendix E Alternative reverse-engineering

procedure

An alternative procedure can be employed to construct the diagonal
matrix V* at the CC when executing VERTIGO-CI, which enables
the CC to follow the steps outlined in the main text and subsequently
reverse-engineer the feature data of all individuals. Recall the definition
of the diagonal matrix V*, with its entries specified in Equation (12).
Also, recall the expression of V,J*(a) (Equation (10)), that &’ sat-
isfies Vo JM@Y) = 0, that B*® = A"15" @ryz™ and that 3} =

-1 nooA)\
A Zi=104iyi-

11
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Using these expression, we derive that the jth component of V,J*(cx)

satisfies

0= [VaJ (@)

K a
— (k) J
_Zej (o )+10g<1 &\A)

k=1 J

N

K

(k) T ANk oA a;
— Z ) T8 4y B0 + log 1_%%

~SA

A\
_ (k T (k ;
S zyy e ;&yzyﬂrlog(l .

=y;(x] B+ B)) + log (1 —

By isolating a7}, we obtain that

)

J

(8}
/\A .
a;

= [1+exp{y;(=] B+ B}

Since 1 — a7} = [1+exp{—y;(z ]TB’\ + B} and as y; € {—1,1}, we

deduce from the latter equation that

(1 — 0/\)
= [1+ exp{(=] B* + B))}]
=V

1+ exp{— (] B+ B}

12



Since aj. is computed at the CC, the latter can determine each diagonal

entry V;’]\ for all j € 1,...,n and proceed, as outlined in the main text,
to reverse-engineer the individual feature data. Notably, this approach
allows the CC to reconstruct the matrix V* without requiring access to

the response vector y.
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