Supplementary Figures

Immune phenotype in high- versus low-NRF2 high grade serous ovarian cancer and the impact on prognosis

Samera H. Hamad^{1,2,3*}, Chelsea Katz^{1#}, Helen Toma^{1#}, Kosuke Murakami^{4,5}, Nasrine Bendjilali⁶, Gord Zhu^{1,3}, Hadi Shojaei^{1,3}, Lanlan Fang^{7,8}, Samuel Leung^{7,8}, Martin Koebel⁹, Huseyin Karaduman¹⁰, Oliver Abinader¹¹, Ramkrishna Mitra¹¹, Lauren Krill^{1,2,3}, Christina Chu^{1,2,3}, David P. Warshal^{1,2,3}, Yemin Wang^{7,8}

¹Department of Surgery, Cooper University Health Care, Camden, New Jersey, United States.

²Department of Surgery, Cooper Medical School of Rowan University, Camden, New Jersey, United States.

³MD Anderson Cancer Center at Cooper, Camden, New Jersey, United States.

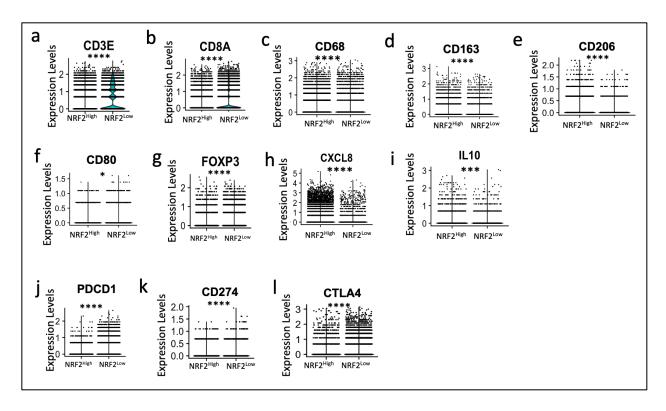
⁴Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan ⁵The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, United States.

⁶College of Science and Mathematics, Rowan University, Glassboro, New Jersey, United States.

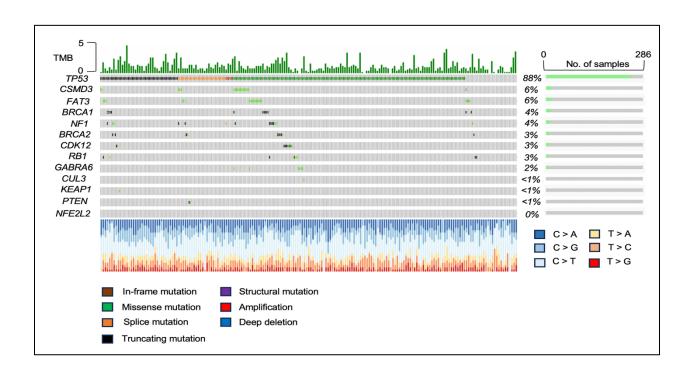
⁷Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada

⁸Ovarian Cancer Research Centre, Vancouver Coastal Health Research Institute, BC, Canada

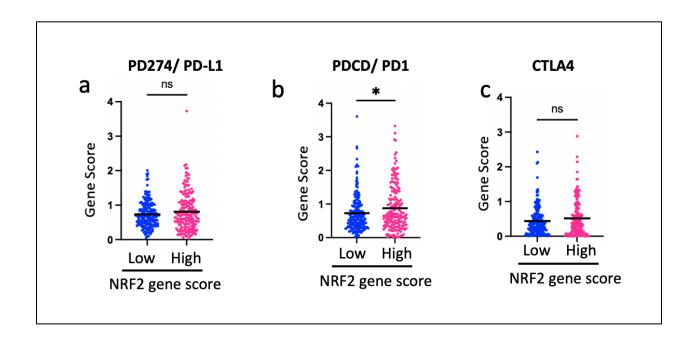
⁹Department of Pathology, University of Calgary, Calgary, AB, Canada

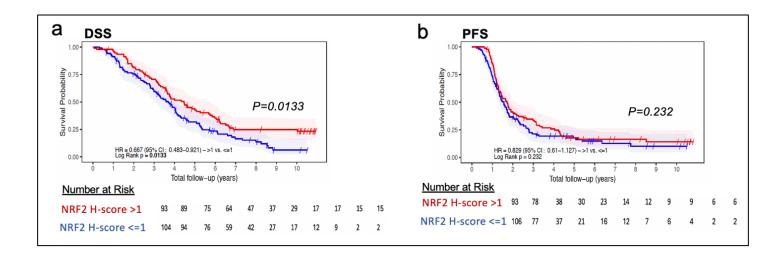

¹⁰North Carolina State University, Raleigh, North Carolina, United States.

¹¹Division of Biostatistics and Bioinformatics, Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States.


Equally contributed to this work

*To whom the correspondence should be addressed


Samera Hamad, PhD: Cooper Medical School of Rowan University, Camden, NJ 08103, United States. Email. hamad@rown.edu or samera3h@gmail.com, Ph. 608-217-3839


Supplementary Figure 1. Single cell RNA-seq data analysis of 7 human HGSOC tumor samples show different immune markers and checkpoints in high (n=4) versus low (n=3) NRF2 HGSOC. a-b Expression levels of T-cell markers (CD3E and CD8A), c-f Expression levels of macrophages markers (CD68, CD163, CD206, and CD80), h-i Expression levels of cytokines and chemokines, and j-l Expression levels of immune checkpoints in high versus low NRF2 samples, *P<0.05, ***P<0.001, ****P<0.0001.

Supplementary Figure 2. RNA-seq data analysis of HGSOC tumor samples from TCGA. Major mutations in n=365 HGSOC tumor samples among which mutations in the queried genes were observed in n=286 samples. KEAP1-NRF2 pathways shows no mutations in this set of samples.

Supplementary Figure 3. Higher expression of PD1 in high NRF2 HGSOC compared to NRF2 low tumors. a No changes in expression levels of PD-L1 in high versus low NRF2 HGSOC, b significantly higher expression levels in PD1 in high compared to low NRF2 HGSOC, with c no significant changes in expression levels of CTLA4 in high versus low NRF2 HGSOC.

Supplementary Figure 4. Survival of HGSOC patient samples with NRF2^{High} (H-score >1) and NRF2^{Low} (H-score <=1) HGSOC. **a** Significantly higher disease-specific survival (DSS) of patients with NRF2^{High} HGSOC compared to patients with NRF2^{Low} HGSOC, but **b** no significant change in progression-free survival (PFS) between patients with NRF2^{high} and those with NRF2^{Low} tumors.