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Supplementary Note 1. Loss Mechanism Analysis of the Antibonding and Bonding Modes 

The damping rate γa (γb) of the antibonding (bonding) mode is derived from the intrinsic loss and the 

escape loss from waveguide ports for the α = 0° case, where there is no intermodal coupling: 
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Here, 1/τ0a (1/τ0b) represents the intrinsic loss of the antibonding (bonding) mode. 1/τ1a (1/τ1b) and 1/τ2a 

(1/τ2b) represent the escape loss of the antibonding (bonding) mode from waveguide ports 1 and 2 

respectively. We remark that the intrinsic losses of the antibonding and bonding modes are equal (1/τ0a 

= 1/τ0b) due to the mutual balance between material absorption loss and radiation loss, as shown in 

Supplementary Fig. 1. 

 
Supplementary Fig. 1 | Intrinsic loss analysis of the antibonding and bonding mode for α = 0° case. a, Material 

absorption loss from the metal (copper) and the substrate (F4B). b, Radiation loss emitted into free space.  

 

Then, the multipeak fitting method in the manuscript is used to identify the aforementioned losses 

from the full width at half maximum (FWHM) of the reflection and transmission spectra under 

different simulation settings8,9, as shown in Supplementary Fig. 2. The excitation via a single discrete 

port is weak enough to ensure minimal impact on the eigenmodes, making it suitable for analyzing the 

intrinsic losses of the antibonding mode and the bonding mode. The intrinsic decay rates of the 



antibonding mode and the bonding mode feature 1/τ0a = 1/τ0b, as shown in Supplementary Fig. 2a. The 

escape losses of the antibonding and bonding modes can be calculated in loss-free structure, assuming 

that their radiation losses are negligible due to the strong field confinement in deep-subwavelength 

resonance units10. The escape losses of the antibonding and bonding modes also feature 1/τ1a = 1/τ1b, 

as shown in Supplementary Fig. 2b. In such a reciprocal two-port system, the escape losses of the 

mode to port 1 and port 2 can be considered identical, with the relationships 1/τ1a = 1/τ2a and 1/τ1b = 

1/τ2b. Hence, the above results indicate that the two split resonances feature approximately equal 

damping rates (γa = γb), as shown in Fig. 2e in the manuscript. 

 
Supplementary Fig. 2 | Loss fitting process using the multipeak fitting method. a, Intrinsic loss 1/τ0a (1/τ0b) of the 

antibonding (bonding) mode for α = 0° case. b, Escape loss 1/τ1a (1/τ1b) of the antibonding (bonding) mode from the 

waveguide port 1. 

 

Meanwhile, the damping rates γ+ (γ−) of the mode + (−) can also be determined based on the loss 

fitting process described above before reaching the EP state (α > 0°), where the intermodal coupling 

is present. The fitted values are shown in Supplementary Table 1.  
  



Supplementary Table 1 | Fitting parameters of the theoretical TCMT model. 

α κab = κab* κ1a κ1b 1/τ1a 1/τ1b 

0° 0 1.28 1.16 1.52 1.58 

15° 5.5i 1.50 1.43 1.90 2.00 

30° 11i 1.98 2.03 2.80 2.80 

39° 15i 2.41 2.46 5.00 5.00 

45° 16i 2.28 2.60 6.00 6.80 

55° 18i 2.28 2.51 9.00 10.40 

 
 
 
 
Supplementary Note 2. Coupling Mechanism Between the Antibonding and Bonding Modes 

The coupling mechanism is elucidated by analyzing the overlap integral of the wave functions11,12. The 

wave functions of the SLSP mode supported by the resonance unit on the left (right) is ψL (ψR). The 

strong evanescent field coupling between two resonance units can be described by: 

 
*

*

Re( ) Im( )

Re( ) Im( )






   

   




LR LR L R LR LR

RL RL R L LR LR

κ I ψ ψ dV I i I

κ I ψ ψ dV I i I
  (2) 

where the real part of the overlap integral is much larger than the imaginary part (Re(ILR) ≫ Im(ILR) 

and manifests as the coherent coupling. The imaginary part of the coupling coefficient can usually be 

ignored. Hence, the coupling coefficient features κLR = κLR = κ, where κ is a purely real number. The 

linear combinations between the two wave functions manifest as the antibonding and bonding modes. 

The wave functions of the antibonding mode (Ψa) and the bonding mode (Ψb) are given by: 
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where C1 (C2) represents the normalization coefficients. The plus sign signifies that the two wave 

functions are in phase, whereas the minus sign indicates that they are in reverse phase. The above wave 

function satisfies the following normalization conditions of energy eigenstates: 
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The third and fourth equations in equation (4) are expanded as: 
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The normalization coefficient C1 (C2) is determined from equation (5). For the α = 0° case, the coupling 

coefficient κab (κba) is elucidated as the overlap integral of the wave functions between the antibonding 

mode and the bonding mode: 
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Eq. (6) demonstrates the absence of the coupling for the α = 0° case, as Im(ILR) approaches zero.  

When the rotation angle α ≠ 0°, the asymmetric excitation can facilitate the generation of the 

phase variation Δφ in the wave functions of the two SLSP modes. Hence, the equation (3) is modified 

to: 
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Here, iΔφ presents phase advance, while −iΔφ represents phase delay relative to the situation where α 

= 0°. Similarly, the overlap integral between the wave functions of the two SLSP modes is given by: 
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Notice that the integrals in equation (8) satisfy conjugate symmetry ( *
LR RLI I  ), which derives from 

the phase variation Δφ induced by asymmetric excitation. Hence, the coupling coefficient κab (κba) is 

modified to: 
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Equations (9) and (10) theoretically elucidate that the coupling coefficients κab and κba are complex 

conjugates of each other (κab = κba*) and exhibit dissipative coupling characterized by purely imaginary 

coupling. The phase variation Δφ induced by asymmetric excitation can be utilized to adjust the 

coupling strength between Ψa and Ψb, following the relation |κab| ∝ Δ ∝ α. 

 

 

Supplementary Note 3. Theoretical Model Based on Temporal Coupled-Mode Theory 

The coupled SLSP system can be modeled using the temporal coupled-mode theory (TCMT) to 

analyze the coupling between the antibonding and bonding modes. According to the TCMT, the 

dynamic equations of the antibonding mode (a) and the bonding mode (b) are given by: 
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The microstrip line on the backside carries a sinusoidal incoming wave s1+ towards the coupled SLSP 

system. Port 2 remains without excitation. The coefficient κ1a (κ1b) quantifies the degree of coupling 

between the antibonding (bonding) mode and the excitation s1+. The coupling coefficient κab (κba) 

quantifies the coupling strength between the antibonding and bonding modes. The TCMT equations 

take the form: 
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After substituting  iωta Ae ,  iωt iωtda dA e iωAe
dt dt

(same for the bonding mode b and the sinusoidal 

incoming wave mode s1+) and 0dA
dt

 , 0dB
dt

  in a steady state. Here, Ĥ  represents the non-

Hermitian Hamiltonian. Equation (12) is sorted into: 
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where Δωa = (ω − ωa) and Δωb = (ω – ωb). Then, solving Equation (13) yields the amplitudes A and B 

in the following forms: 
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According to the relationship of energy conservation, the incoming and outgoing ports satisfy the 

following relationship: 
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Hence, according to equations (14) and (15), the transmission coefficients can be presented in the form: 
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The fitting results are shown in Fig. 3 in the manuscript. The fitting parameters of the theoretical 

TCMT model are illustrated in Supplementary Table 1. 
 
 
Supplementary Note 4. Limitation of Solving the Intrinsic Hamiltonian Equation 
The limitations of solving the intrinsic Hamiltonian are elucidated below. As shown in equation (12), 

the non-Hermitian Hamiltonian of the coupled-SLSP system can be obtained in the absence of external 

excitation S1+: 

 ˆa a ab

aba b

ω iγ iκωA A A
H

iκ ω iγωB B B
      
      

      


 


  (17) 

The Hamiltonian of the system can be decomposed into Hermitian and non-Hermitian terms: 
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in which 
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The eigenfrequencies ω± in this non-Hermitian system follow: 

 2
0 0 ( ) ab baω ω iγ Δω iΔγ κ κ       (20) 

Δγ is approximately zero as demonstrated in Supplementary Note Ⅰ. Hence, the EP state can be 

achieved as the square root term approaches zero, which can occur with different values of the coupling 

coefficients, i.e., through various coupling mechanisms. 

 
Supplementary Fig. 3 | The eigenfrequencies and transmission spectra are calculated using the TCMT model for 

three different combinations of κab and κba. 

 



The TCMT equations are solved with different combinations of κab and κba, which can all lead to 

a degenerate eigenfrequency in equation (20) but present different transmission curves as shown in 

Supplementary Fig. 3. For the case κab = κab = m (m is a purely real number), the EP state occurs in 

the eigenfrequencies derived from the Hamiltonian, while the transmission spectrum does not, as 

shown in Supplementary Figs. 3a and d. The EP state occurs in the eigenfrequencies and the 

transmission spectrum only when κab = κba* = mi, as shown in Supplementary Figs. 3b and e. Both the 

eigenfrequencies and the transmission spectrum always exhibit a split resonance for the case κab = κba 

= −mi, as shown in Supplementary Figs. 3c and f. 

 

 

Supplementary Note 5. Self-Made Near-Field Mapping System for Verifying the Fabricated EP 

Sensor  

A self-made near-field mapping system is used to measure the |Ez| fields for verifying the fabricated 

EP state, as shown in Fig. 5a of the manuscript. The sensor’s input and output ports are equipped with 

SMA connectors for exciting the EP state. The self-made near-field mapping system is composed of a 

scanner loaded with a near-field probe, displacement control system, and vector network analyzer 

(VNA). The input port of the vector network analyzer feeds energy into the EP sensor through the 

coaxial cable and one SMA connector, while the other SMA connector is connected to a 50 Ω matched 

load. The near-field probe is a vertical electric monopole, which was made by exposing the center 

conductor out of a coaxial cable. The near-field probe is positioned 4 mm away from the surface of the 

sensor. 

Then, the |Ez| fields of the fabricated EP state at resonance frequencies were measured using the 

aforementioned self-made near-field mapping system. It can be observed that the electric field of one 

of the resonators is completely suppressed, while the electric field is localized in the other resonator. 

This is consistent with the simulated results shown in Fig. 5d of the manuscript and confirms that the 

fabricated sample is located indeed at the EP state. 
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