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Supplementary Note 1. Loss Mechanism Analysis of the Antibonding and Bonding Modes
The damping rate y. (y») of the antibonding (bonding) mode is derived from the intrinsic loss and the

escape loss from waveguide ports for the a = 0° case, where there is no intermodal coupling:
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Here, 1/704 (1/705) represents the intrinsic loss of the antibonding (bonding) mode. 1/71, (1/715) and 1/724
(1/725) represent the escape loss of the antibonding (bonding) mode from waveguide ports 1 and 2
respectively. We remark that the intrinsic losses of the antibonding and bonding modes are equal (1/704
= 1/70») due to the mutual balance between material absorption loss and radiation loss, as shown in

Supplementary Fig. 1.
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Supplementary Fig. 1 | Intrinsic loss analysis of the antibonding and bonding mode for a = 0° case. a, Material

absorption loss from the metal (copper) and the substrate (F4B). b, Radiation loss emitted into free space.

Then, the multipeak fitting method in the manuscript is used to identify the aforementioned losses
from the full width at half maximum (FWHM) of the reflection and transmission spectra under
different simulation settings®°, as shown in Supplementary Fig. 2. The excitation via a single discrete
port is weak enough to ensure minimal impact on the eigenmodes, making it suitable for analyzing the

intrinsic losses of the antibonding mode and the bonding mode. The intrinsic decay rates of the



antibonding mode and the bonding mode feature 1/z0, = 1/705, as shown in Supplementary Fig. 2a. The
escape losses of the antibonding and bonding modes can be calculated in loss-free structure, assuming
that their radiation losses are negligible due to the strong field confinement in deep-subwavelength
resonance units'?. The escape losses of the antibonding and bonding modes also feature 1/71, = 1/z15,
as shown in Supplementary Fig. 2b. In such a reciprocal two-port system, the escape losses of the
mode to port 1 and port 2 can be considered identical, with the relationships 1/71, = 1/72, and 1/71, =
1/r25. Hence, the above results indicate that the two split resonances feature approximately equal

damping rates (y, = y5), as shown in Fig. 2e in the manuscript.
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Supplementary Fig. 2 | Loss fitting process using the multipeak fitting method. a, Intrinsic loss 1/70, (1/705) of the
antibonding (bonding) mode for a = 0° case. b, Escape loss 1/714 (1/715) of the antibonding (bonding) mode from the

waveguide port 1.

Meanwhile, the damping rates y+ (y-) of the mode + (—) can also be determined based on the loss
fitting process described above before reaching the EP state (o > 0°), where the intermodal coupling

is present. The fitted values are shown in Supplementary Table 1.



Supplementary Table 1 | Fitting parameters of the theoretical TCMT model.

a Kab = Kap" Kla Kip 14 Uz
0° 0 1.28 1.16 1.52 1.58
15° 5.51 1.50 1.43 1.90 2.00
30° 11i 1.98 2.03 2.80 2.80
39° 15i 2.41 2.46 5.00 5.00
45° 16i 2.28 2.60 6.00 6.80
55° 18i 2.28 2.51 9.00 10.40

Supplementary Note 2. Coupling Mechanism Between the Antibonding and Bonding Modes
The coupling mechanism is elucidated by analyzing the overlap integral of the wave functions'">'?. The
wave functions of the SLSP mode supported by the resonance unit on the left (right) is w2 (ywr). The

strong evanescent field coupling between two resonance units can be described by:
Kip g = IV/L*WRdV =Re(/,z)+iIm(Zz)

. (2)
Kpp € Lpy :IWR w, dV =Re(lz)—ilm(I;y)

where the real part of the overlap integral is much larger than the imaginary part (Re(Izr) > Im(/zr)
and manifests as the coherent coupling. The imaginary part of the coupling coefficient can usually be
ignored. Hence, the coupling coefficient features x.r = xrr = k, where « is a purely real number. The
linear combinations between the two wave functions manifest as the antibonding and bonding modes.
The wave functions of the antibonding mode (,) and the bonding mode (¥}) are given by:
¥, =Ci(y, +wy)
{5’@ =Gy, —vp)

where Ci (C>) represents the normalization coefficients. The plus sign signifies that the two wave

&)

functions are in phase, whereas the minus sign indicates that they are in reverse phase. The above wave

function satisfies the following normalization conditions of energy eigenstates:
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The third and fourth equations in equation (4) are expanded as:
Jlfav =[Icf .~ av =[G (Jlwif @V + [l av -2Re(1,)) =1
2 2 2 2 2 2 5)
[l av =[|C.[ |y, +wal av =|C)| (j|%| av + [yl dV+2Re(ILR)):1

The normalization coefficient C (C>) is determined from equation (5). For the a = 0° case, the coupling
coefficient xa» (kpa) 1s elucidated as the overlap integral of the wave functions between the antibonding
mode and the bonding mode:
K o [PV = CG [y, =y ), +ye)dV
=i2C,C, Im({,,)=0
K5 o [V, 0,4V = CC, [ (w, +y Ny, —yp)dV
=—i2C,C,Im(/,;)=0

(6)

Eq. (6) demonstrates the absence of the coupling for the o = 0° case, as Im(/.r) approaches zero.
When the rotation angle a # 0°, the asymmetric excitation can facilitate the generation of the
phase variation 4¢ in the wave functions of the two SLSP modes. Hence, the equation (3) is modified

to:

v =C e—iAgo _ eiA(p
{ a (v, wre™) 7

¥, =G, (e +yre™)
Here, i4¢ presents phase advance, while —id¢ represents phase delay relative to the situation where a

= 0°. Similarly, the overlap integral between the wave functions of the two SLSP modes is given by:

I~LR _ IWL*eidwwReiA¢dV — ei2A<ﬂ[LR (8)
jLR = IWRe_iA¢WLe_iA¢dV = e_i2A¢IRL

Notice that the integrals in equation (8) satisfy conjugate symmetry (/ = I « ), which derives from

the phase variation 4¢ induced by asymmetric excitation. Hence, the coupling coefficient x.s (kpa) 1S

modified to:



K, o [V, O, dV
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2 2 ~ ~
:CICZ(I|WL| dV—_[|‘/’R| dV+1LR_1RLj )
=iC,C, (2sin(24p)Re(l,z) +2cos(24¢) Im(1 )
= 2C,C,xsin(24¢)i

0 o [ 7,0, AV
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2 2 ~ ~

:CICZ(J'|I//L| dV—j|WR| dV+ILR_]RL) (10)

=-iC\C, (2 sin(24¢p)Re(1,,)+2cos(24¢p)Im(7,, ))

~ —2C,C,ksin(24¢)i
Equations (9) and (10) theoretically elucidate that the coupling coefficients x.» and x», are complex
conjugates of each other (ka = kpa ) and exhibit dissipative coupling characterized by purely imaginary
coupling. The phase variation 4¢p induced by asymmetric excitation can be utilized to adjust the

coupling strength between ¥, and ¥, following the relation |xus| &< A¢p < a.

Supplementary Note 3. Theoretical Model Based on Temporal Coupled-Mode Theory
The coupled SLSP system can be modeled using the temporal coupled-mode theory (TCMT) to
analyze the coupling between the antibonding and bonding modes. According to the TCMT, the

dynamic equations of the antibonding mode (@) and the bonding mode (b) are given by:

d
761: i(w, +iy,)a—rK b+i,s,
t (1)
db . .
% =i(w, +iy, ) b—rK,,a+K,s,

The microstrip line on the backside carries a sinusoidal incoming wave si+ towards the coupled SLSP
system. Port 2 remains without excitation. The coefficient x14 (x15) quantifies the degree of coupling
between the antibonding (bonding) mode and the excitation s1+. The coupling coefficient xu» (kpa)
quantifies the coupling strength between the antibonding and bonding modes. The TCMT equations

take the form:



. C()A . a)a + iya Z‘K(itb A KlaSl+ s A KlaSH
i =il ¢ ] + =iH + (12)
wB WKy w, +iy, )\ B KipSy, B KipSy.
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After substituting a = Ae"”, - 7e +iwAe™" (same for the bonding mode b and the sinusoidal
t t

incoming wave mode si+) and cz;—A: 0, c;_B: 0 in a steady state. Here, H represents the non-
t t

Hermitian Hamiltonian. Equation (12) is sorted into:

iAwa+ya Kab A _ KlaSlJr 13
Kpa idw, +y, \ B - KipSs (3

where Awa, = (v — w,) and 4wy = (w — wp). Then, solving Equation (13) yields the amplitudes 4 and B

in the following forms:

A _ iAwa + ya Kab B KlaSlJr (14)
B) Kpa idw, +7, KipSy,

According to the relationship of energy conservation, the incoming and outgoing ports satisfy the

following relationship:
S, =8, —k,A-x,B (15)

Hence, according to equations (14) and (15), the transmission coefficients can be presented in the form:

-1

A B idw, + K K

T:%:l—%zl_(lcla K.]b)( a ya ‘ ab ] [ IaJ (16)
1 Ky, idw, +7, K

+ 1+ a

The fitting results are shown in Fig. 3 in the manuscript. The fitting parameters of the theoretical

TCMT model are illustrated in Supplementary Table 1.

Supplementary Note 4. Limitation of Solving the Intrinsic Hamiltonian Equation

The limitations of solving the intrinsic Hamiltonian are elucidated below. As shown in equation (12),

the non-Hermitian Hamiltonian of the coupled-SLSP system can be obtained in the absence of external

(a)A):(a)afiya izcab. j[AJ:ﬂ[A] 17
wB ik,, ,+iy, \ B B

The Hamiltonian of the system can be decomposed into Hermitian and non-Hermitian terms:

excitation Si+:
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The eigenfrequencies w- in this non-Hermitian system follow:
W, =, +1y, i\/(Aa)+iAy)2 — KKy, (20)

Ay 1s approximately zero as demonstrated in Supplementary Note 1. Hence, the EP state can be
achieved as the square root term approaches zero, which can occur with different values of the coupling

coefficients, i.e., through various coupling mechanisms.
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Supplementary Fig. 3 | The eigenfrequencies and transmission spectra are calculated using the TCMT model for

three different combinations of x.» and xpa.



The TCMT equations are solved with different combinations of x.» and x»q, which can all lead to
a degenerate eigenfrequency in equation (20) but present different transmission curves as shown in
Supplementary Fig. 3. For the case ka» = ka» = m (m 1is a purely real number), the EP state occurs in
the eigenfrequencies derived from the Hamiltonian, while the transmission spectrum does not, as
shown in Supplementary Figs. 3a and d. The EP state occurs in the eigenfrequencies and the
transmission spectrum only when x.» = kp,” = mi, as shown in Supplementary Figs. 3b and e. Both the
eigenfrequencies and the transmission spectrum always exhibit a split resonance for the case xaw = kpq

= —mi, as shown in Supplementary Figs. 3¢ and f.

Supplementary Note 5. Self-Made Near-Field Mapping System for Verifying the Fabricated EP
Sensor

A self-made near-field mapping system is used to measure the |E-| fields for verifying the fabricated
EP state, as shown in Fig. 5a of the manuscript. The sensor’s input and output ports are equipped with
SMA connectors for exciting the EP state. The self-made near-field mapping system is composed of a
scanner loaded with a near-field probe, displacement control system, and vector network analyzer
(VNA). The input port of the vector network analyzer feeds energy into the EP sensor through the
coaxial cable and one SMA connector, while the other SMA connector is connected to a 50 Q matched
load. The near-field probe is a vertical electric monopole, which was made by exposing the center
conductor out of a coaxial cable. The near-field probe is positioned 4 mm away from the surface of the
Sensor.

Then, the |E.| fields of the fabricated EP state at resonance frequencies were measured using the
aforementioned self-made near-field mapping system. It can be observed that the electric field of one
of the resonators is completely suppressed, while the electric field is localized in the other resonator.
This is consistent with the simulated results shown in Fig. 5d of the manuscript and confirms that the

fabricated sample is located indeed at the EP state.
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