Supplementary:

Supplementary Table S1: A selected set of measured mass absorption coefficients (MAC) given at 550
nm and original provided wavelength. Conversion of MAC to 550 nm is performed assuming absorption
Angstrgm exponent to be 1. If no value is given for original wavelength the measurements is taken at

550 nm. Regions of measurements are given along with references for measurements.

Location MAC [m?g?] | MAC [m? g?] at Reference
(550) reported wavelength

Large set of data 75%1.2and Bond and Bergstrom (2006)

11m2gtat

550 nm for

fresh and aged

BC particles
Urban 6.8—8.7 Hitzenberger et al. (2006)
Mexico City 8.7-8.9 5.5-5.6 (870)* Doran et al. (2007)
Mexico 13.1 10.9 (660) Subramanian et al. (2010)
High altitude 8.6 7.5 (630) Cozic et al. (2008)
(winter) 12.7 11 (630)
High altitude
(summer)
Denver 9.7 10 (532)? Knox et al. (2009)
Different sites in 74-17.3 Between 6 and Ram and Sarin (2009)
India 14 (at 678 nm)
Urban (Barcelona) 10.7 9.2 (637) Reche et al. (2011)
Traffic (Bern) 11.9 10.3 (637)
Industrial (Huelva) 114 9.8 (637)
Urban (Paris) 13.8 8.6 (880) Laborde et al. (2013)
Shenzhen (China) 6.3 6.5+ 0.5 (532) Lan et al. (2013)
South Texas 7.8 8.1 (532) Levy et al. (2013)
Arctic 5.7 around 6 (522 nm) | Yttri et al. (2014)
Rural North China 12.3 10 (678 nm) Cui et al. (2016)
Aspvreten (SE) 9.8 8.51 (637) Zanatta et al. (2016)
Birkenes (NO 9.1 7.86 (637)
Finokalia (GR) 14.3 12.4 (637)
Harwell (GB) 15.6 13.5 (637)
Ispra (IT) 11.1 9.61 (637)
Melpitz (DE) 10.7 9.23 (637)
Montseny (ES) 10.3 8.92 (637)
Puy de Déme (FR) 20.0 17.3 (637)
Vavihill (SE) 7.5 6.47(637)
Fresno, Italy 7.4 7.9+ 15 (532) Presler-Jur et al. (2017)

. 13.3 8.3 (880) as an
Northwest China average of 7.4,5.7, | Zhang et al. (2019)
8.1and 12.1

Milan, Italy 9.9 10.2 (532) Forello et al. (2019)
China 11.4 11.8 (532) Ma et al. (2020)

1 See correction of the publication.
2 See value provided in Ma et al. (2020).




Supplementary text T1: Since the rapid adjustments are derived using kernel techniques it is
important to assess the uncertainties in the calculations. In particular, the residuals provide
information on the clouds rapid adjustments, where uncertainties are larger than for the other
contributors according to Smith et al. (2018). The residual between direct model output and
calculations using radiative kernels are shown in Figure S1 for model mean and individual
models, and for SW, LW and Net. Since SW and LW residuals are of opposite sign, the net
residuals are weakest, indicating that uncertainties are small in the rapid adjustment
calculations shown in Figure 1. Residuals are stronger in magnitude in absolute and relative
terms in BC STD compared to the BC VC experiment. The residuals are well within the model
range for the total rapid adjustment shown in Figure 1 in the main manuscript. Maximum
model range in the residual is 0.03 W m™2 for LW rapid adjustments. Residuals are possible to
qguantify for all four models for LW radiation using ERF, but for SW radiation this is available
only for the three models which performed double radiation calls.
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Figure S1: Global mean residuals between direct climate model results and radiative kernel
calculations of rapid adjustments, divided into longwave (LW), shortwave (SW) and Net
radiation from the two experiments STD (full bars) and VC (bars with lines). Individual models
are shown as black dots. Three models have double radiation calls allowing derivation of
residual for SW and Net. Residual between radiative kernel calculations and climate model
results of rapid adjustment is derived from LW ERF since LW IRF is either zero or derived by
double radiative calls.
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Figure S2: Like Figure 4 but showing the results from each of the four models. Atmospheric
vertical profiles of changes in temperature, cloud fraction, relative humidity, and specific
humidity for the two experiments BC STD and BC VC.
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Figure S3: Atmospheric vertical profile of black carbon, for the 2 black carbon experiments.
The standard vertical profile is shown in purple and vertical constrained in orange. Note the
strong reduction in BC concentration at higher altitudes in the troposphere in the

observationally constrained profiles. Some of the lines are overlayed in the concentration
driven models.

Supplementary text T2: We have provided results from the fully coupled climate models from year
51-100 but also gave an estimate for year 20 (mean of year 18-22). The rationale for looking at year 20
is that a zero layer model provides a good fit to the historical record (e.g. Gregory and Forster (2008);
Held et al. (2010)). In step change experiments the upper-layer has approximately come into
equilibrium at about year 20, while the deep-ocean can still be approximated as dT ~ 0 (in a two-layer
ocean model, representing the mixed-layer and deep-ocean). Hence at year 20 surface temperature
change is the zero-layer model. This is further described in Section 3 of Gregory et al. (2015).
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Figure S4: ERF for BC STD experiment for 9 PDRMIP models and models mean for emission driven and
concentration driven models. All models are scaled to the same emissions as for the concentration
driven models.
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Figure S5: Surface temperature change for the BC STD experiment for 9 PDRMIP models, and model
means for emission driven and concentration driven models. All models are scaled to the same
emissions as for the concentration driven models.



Emission-

ERF Normalized Né)l;r:’ ig?riepd

[wm?] | ERFIWmM-2 | g chang’e
[K]
CanESM2 [E] 154 NA 350 0.78
CESM-CAMS [E] 0.41 49 490 0.17
HadGEM2-ES [E] 291 153 490 151
MIROC-SPRINTARS [E] 0.65 81 330 0.11
GISS-E2-R 1.26 112 640 0.39
CESM-CAM4 0.78 59 430 0.35
HadGEM3 0.68 70 380 0.70
IPSL-CM5A 0.82 76 440 0.75
NorESM1 143 100 750 0.67
ECHAM-HAM 0.73 58 NA 0.24

Table S2: Global and annual mean effective radiative forcing (ERF), ERF normalized by absorption
aerosol optical depth (AAOD), ERF normalized by burden, and temperature change for BCSTD
experiment for 9 PDRMIP models (Stjern et al., 2017). The ECHAM-HAM results are performed for this
study. Results are provided for emission driven and concentration driven models. All models are scaled
to the same emissions as for the concentration driven models. Note that all results are for 10xBC and

there is no scaling by mass absorption coefficient.

CEDS Emissions v2021

BC standard BC vertical constrained

IRF 0.34 (0.02) 0.14 (0.02)
ERF 0.17 (0.06) 0.08 (0.05)
Rapid adjustments -0.16 (0.06) -0.06 (0.03)
Surface temperature change 0.07 (0.03) 0.03 (0.02)
CEDS Emissions v2016

IRF 0.47 (0.03) 0.20 (0.03)
ERF 0.24 (0.08) 0.11 (0.06)
Rapid adjustments -0.22 (0.08) -0.08 (0.05)
Surface temperature change 0.10 (0.04) 0.04 (0.03)

Table S3: Multi-model global and annual mean instantaneous radiative forcing (IRF), effective radiative
forcing (ERF), rapid adjustment, surface temperature for the BC standard and BC vertical constrained
experiments. Numbers in parentheses are one standard deviation from the four models in this study.

Results are shown for CEDS emission versions from 2021 and 2016 (applied in CMIP6).
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