Supplementary Information

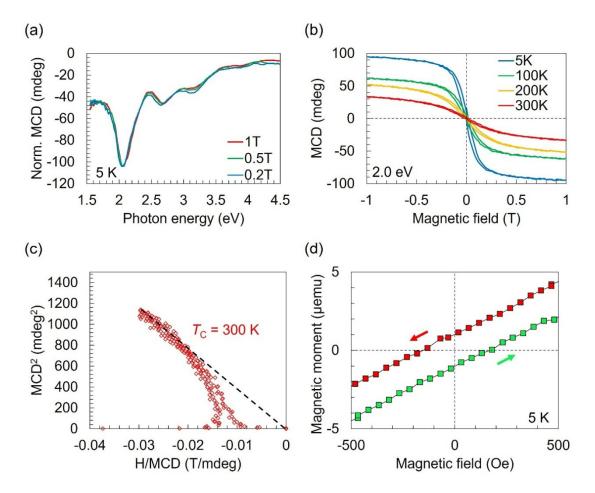
Giant odd-parity magnetoresistance from proximity-induced topological states

Tomoki Hotta¹, Le Duc Anh^{1,2*}, Takahiro Chiba^{3,4}, Yohei Kota⁵, and Masaaki Tanaka^{1,2,6*}

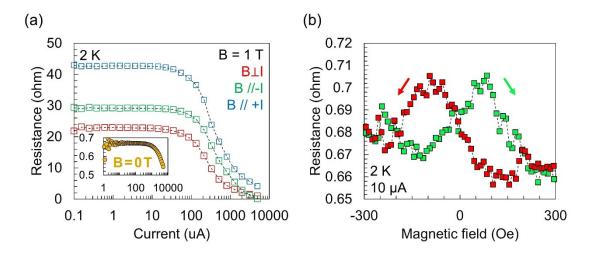
¹Department of Electrical Engineering and Information Systems, The University of Tokyo ²Center for Spintronics Research Network (CSRN), The University of Tokyo

⁴Department of Applied Physics, Graduate School of Engineering, Tohoku University

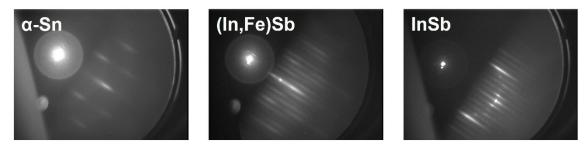
⁵National Institute of Technology, Fukushima College

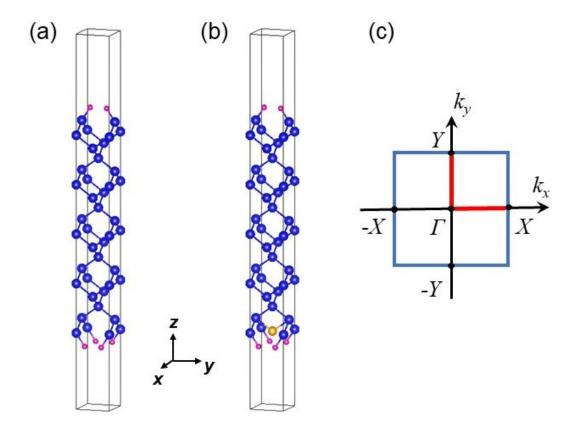

⁶Institute for Nano Quantum Information Electronics (NanoQuine)

Supplementary Table and Figures


Supplementary Table S1 Comparison of the OMR values, defined as $[R(B) - R(-B)] / [2 \times R(0 \text{ T})]$, reported so far.

Material	Maximum OMR (%)	<i>B</i> (T)	Reference
Eu ₂ Ir ₂ O ₇	0.4%	9	[S1]
SmCo ₅	0.05%	0.5	[S2]
InAs/(Ga,Fe)Sb	13.5%	10	[S3]
bilayer graphene/Cr2Ge2Te6	40%	14	[S4]
α-Sn/(In,Fe)Sb	1150%	1	This work


³ Department of Information Science and Technology, Graduate School of Science and Engineering, Yamagata University, Japan


Supplementary Fig. S1 | Magnetic properties of the (In,Fe)Sb layer. (a) Reflection magnetic circular dichroism (MCD) spectra measured at 5 K under various perpendicular magnetic fields. MCD intensities at 0.5 T and 0.2 T are normalized to the spectrum at 1 T. (b) MCD intensity – magnetic field (MCD - H) curves measured at various temperatures. The MCD intensity was at taken at 2.0 eV. (c) Arrott plot derived from the MCD - H curve at 300 K, used to estimate the Curie temperature. (d) Magnetization – magnetic field (M - H) curve measured by SQUID magnetometry at 5 K.

Supplementary Fig. S2 | Current and magnetic field dependences of the longitudinal resistance at 2 K. (a) Current dependence of the longitudinal resistance measured at 2 K. Red, green, and blue data points correspond to the measurements under a 1 T magnetic field applied perpendicular to the film plane $(B \perp I)$, oriented antiparallel (B//-I), and parallel (B//+I) to the current direction, respectively. The inset shows data (yellow points) taken under zero magnetic field. (b) Magnetic field dependence of the longitudinal resistance at 2 K under a perpendicular magnetic field. The peak positions $(\pm 100 \text{ Oe})$ correspond to the coercive field in the M-H curve of Fig. S1(d).

Supplementary Fig. S3 | RHEED pattern of each layer during the MBE growth along the [110] direction.

Supplementary Fig. S4 | Crystal structures used in slab calculations. (a) Slab geometry of α -Sn/vacuum. (b) Slab geometry of α -Sn/Fe along the [001] direction. Sn, Fe, and H atoms are represented by blue, yellow, and pink spheres, respectively. (c) Definition of the two-dimensional Brillouin zone in our calculation. Here, $X = (\pi/a^*, 0)$ and $Y = (0, \pi/a^*)$ are on the Brillouin zone boundary in the $k_z = 0$ plane. $a^* = a/\sqrt{2}$ is the in-plane lattice constant of the tetragonal unit cell of α -Sn in our calculations, where a is the lattice constant of the diamond-type unit cell of α -Sn.

Supplementary note 1

We characterized the magnetic properties of our heterostructure sample using magnetic circular dichroism (MCD) spectroscopy and superconducting quantum interference device (SQUID) magnetometry. Supplementary Fig. S1(a) presents the MCD spectra measured at 5 K under magnetic fields of 1 T, 0.5 T, and 0.2 T, applied perpendicular to the film plane. The spectra obtained at 0.5 T and 0.2 T are normalized to that at 1 T. All the normalized spectra are almost perfectly overlapped, featuring a negative peak at 2.0 eV (E_1) and a positive peak at 2.5 eV ($E_1 + \Delta_1$)—a spectral signature characteristic of the intrinsic ferromagnetism in (In,Fe)Sb ^{S5}. The magnetic field dependence of the MCD intensity (MCD-H curves), measured at a photon energy of 2.0 eV [Supplementary Fig. S1(b)], shows clear ferromagnetic hysteresis. From the Arrott plot analysis^{S6}, the Curie temperature (T_C) is estimated to be 300 K [Supplementary Fig. S1(c)]. SQUID magnetometry at 5 K [Supplementary Fig. S1(d)] reveals a coercive field of approximately 100 Oe, further confirming the ferromagnetic nature of the (In,Fe)Sb layer.

Supplementary note 2

Supplementary Figure S2(a) shows the current (I) dependence of the longitudinal resistance under a magnetic field of 1 T. For currents below 10 μ A, the resistance remains constant, indicating stable conduction behavior. However, when the current exceeds 10 μ A, the resistance decreases monotonically with increasing the current. This behavior is likely attributed to a change in the current distribution. At low current ($I < 10 \mu$ A), conduction predominantly occurs within the α -Sn layer due to its semi-metallic nature. It is worth noting that the (In,Fe)Sb layer is insulating at low temperatures because of carrier localization induced by Fe 3d states^{S5}. The observed resistance decrease at higher currents ($I > 10 \mu$ A) may be due to current leakage into the underlying InSb buffer layer, possibly penetrating through the nominally insulating (In,Fe)Sb.

All the transport measurements in this study were performed at $I = 10 \mu A$, ensuring that the current primarily flows through the α -Sn layer. Under this condition, we also observe clear hysteresis in the magnetoresistance at 2 K [Supplementary Fig. S2(b)], with peaks at ± 100 Oe corresponding to the coercive field of approximately 100 Oe [Supplementary Fig. S1(d)]. This hysteresis indicates that the α -Sn layer becomes magnetized via the adjacent ferromagnetic (In,Fe)Sb layer. Such a phenomenon, where the magnetic order of one material influences an adjacent layer through quantum mechanical coupling, is known as the magnetic proximity effect.

Supplementary note 3

Here, we comment on the validity of comparing the resistance and current in the context of our measurements and theoretical model. In the experiment, a constant direct current $I_{\rm DC}$ is applied, and the voltage change upon magnetic field reversal is detected as the OMR signal: $V_{\rm odd}^{\rm exp.}=R_{\rm odd}^{\rm exp.}\times I_{\rm DC}$. On the other hand, semiclassical transport theory—where the net current arises from a shift of a rigid Fermi surface—predicts a voltage signal proportional to the current density: $V_{\rm odd}^{\rm calc.}\propto j_{\rm odd}^{\rm calc.}$. Assuming that the experimentally observed voltage equals the theoretically calculated one, $V_{\rm odd}^{\rm exp.}=V_{\rm odd}^{\rm calc.}$, it follows that: $R_{\rm odd}^{\rm exp.}\propto j_{\rm odd}^{\rm calc.}$. This proportionality justifies the comparison between the experimentally measured OMR ratio and the theoretically calculated odd component of the current density.

Supplementary note 4

For both the α -Sn/vacuum and α -Sn/Fe slab geometries, we used the layered tetragonal unit cell based on the diamond-type crystal structure deposited along the [001] direction, as shown in Supplementary Fig. S4. The 18 ML slab geometry was adopted for the computation of the topological surface state (TSS) of strained α -Sn. Both edges of the slab were terminated with H atoms to remove dangling bonds. On the other hand, for the computation of a strained α -Sn/Fe system, it was adopted that the 18 ML slab geometry in which a single Fe atom is embedded as a dopant on the lowest Sn layer. For both of the slab geometries, the surfaces were separated by a vacuum layer with a thickness of 20 Å. To calculate the strain effect on the topological electronic states, we considered a biaxial in-plane compressive strain of $-0.76\%^{S7}$. Fixing the in-plane lattice constant, structural optimization of atomic position was performed.

Supplementary References

- [S1]. Fujita, T. C., Kozuka, Y., Uchida, M., Tsukazaki, A., Arima, T., and Kawasaki, M., "Odd parity magnetoresistance in pyrochlore iridate thin films with broken time-reversal symmetry", Sci. Rep. 5, 9711 (2015).
- [S2]. Wang, Y., Lee, P. A., Silevitch, D., Gomez, F., Cooper, S., Ren, Y., Yan, J.-Q., Mandrus, D., Rosenbaum, T. and Feng, Y., "Antisymmetric linear magnetoresistance and the planar Hall effect" Nature Commun. 11, 216 (2020).
- [S3]. Takiguchi, K., Anh, L. D., Chiba, T., Shiratani, H., Fukuzawa, R., Takahashi, T., and Tanaka, M., "Giant gate-controlled odd-parity magnetoresistance in one-dimensional channels with a magnetic proximity effect", Nature Commun. 13, 6538

(2022).

- [S4]. Sahani, D., Das, S., Watanabe, K., Taniguchi, T., Agarwal, A. and Bid, A., "Giant gate-controlled room temperature odd-parity magnetoresistance in magnetized bilayer graphene", Phys. Rev. Lett. **134**, 106301 (2025).
- [S5]. Tu, N. T., Hai, P. N., Anh, L. D. and Tanaka, M., "High-temperature ferromagnetism in new n-type Fe-doped ferromagnetic semiconductor (In,Fe)Sb", Appl. Phys. Express 11, 063005 (2018).
- [S6]. Arrott, A., "Criterion for Ferromagnetism from Observation of Magnetic Isotherms", Phys. Rev. **108**, 1394 (1957).
- [S7]. Anh, L. D., Takase, K., Chiba, T., Kota, Y., Takiguchi, K., and Tanaka, M., "Elemental Topological Dirac Semimetal α-Sn with High Quantum Mobility", Adv. Mater. **33**, 2104645 (2021).