

# Is ibogaine treatment durable? 12-month follow-up of magnesium–ibogaine therapy (MISTIC) in Special Operations Veterans with traumatic brain injuries

**Camarin Rolle**

[crolle@stanford.edu](mailto:crolle@stanford.edu)

Stanford University

**Nolan Williams**

Stanford <https://orcid.org/0000-0003-4368-3203>

**Afik Faerman**

**Jennifer Lissemore**

<https://orcid.org/0000-0003-0192-1453>

**Andrew Geoly**

Stanford University <https://orcid.org/0000-0002-3483-026X>

**Kirsten Cherian**

Stanford University <https://orcid.org/0000-0002-6058-0081>

**Malvika Sridhar**

Stanford University, Brain Stimulation Lab <https://orcid.org/0009-0005-0750-4329>

**Bora Kim**

**John Coetzee**

**Lauren Anker**

**Ahmed Shamma**

**Nimrod Jackob Keynan**

Tel-Aviv University & Tel-Aviv Sourasky Medical Center

**Randi Brown**

<https://orcid.org/0000-0002-5708-0078>

**Angela Phillips**

**Ashley Jester**

<https://orcid.org/0000-0003-1523-913X>

**Nicholas Bassano**

**Flint Espil**

**Ian Kratter**

Stanford University <https://orcid.org/0000-0001-9122-4525>

## Article

### Keywords:

**Posted Date:** December 17th, 2025

**DOI:** <https://doi.org/10.21203/rs.3.rs-6909189/v1>

**License:**  This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

**Additional Declarations: Yes** N.R. Williams is a named inventor on Stanford-owned intellectual property relating to magnesium-ibogaine; he has served on scientific advisory boards for Otsuka, NeuraWell, Magnus Medical, Soneira, and Nooma as a paid advisor, and he has equity/stock options in NeuraWell, Soneira, and Nooma. I.H. Kratter is a named inventor on Stanford-owned intellectual property relating to magnesium-ibogaine; he currently receives a salary from Soneira and consulting fees from Neuralink and Salma Health, and he has equity/stock options in Soneira and Salma Health. A.D. Geoly and J.P. Coetzee are named inventors on Stanford-owned intellectual property relating to magnesium-ibogaine. The remaining authors declare no competing interests.

---

1      **Is ibogaine treatment durable? 12-month follow-up of magnesium–ibogaine therapy**  
2      **(MISTIC) in Special Operations Veterans with traumatic brain injuries**

3  
4  
5      Afik Faerman, PhD\*<sup>1</sup>, Jennifer I. Lissemore, PhD\*<sup>1</sup>, Andrew D. Geoly, MS<sup>1</sup>, Kirsten N.  
6      Cherian, PhD<sup>1</sup>, Malvika Sridhar, MS<sup>1</sup>, Bora Kim, MD<sup>1</sup>, John P. Coetzee, PhD<sup>1,2</sup>, Lauren  
7      Anker, PhD<sup>1</sup>, Ahmed Shamma, BS<sup>1</sup>, Jackob N. Keynan, PhD<sup>1</sup>, Randi E. Brown, PhD<sup>1</sup>, Angela  
8      Phillips, PhD<sup>1</sup>, Ashley Jester, PhD<sup>3</sup>, Nicholas J. Bassano, BS<sup>1</sup>, Jennifer Keller, PhD<sup>1</sup>, Flint M.  
9      Espil, PhD<sup>1</sup>, Ian H. Kratter, MD PhD<sup>1</sup>, Camarin E. Rolle, PhD\*\*<sup>1</sup>, Nolan R. Williams, MD\*\*†<sup>1</sup>

10  
11     1 Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center,  
12     Stanford, CA, 94305, USA

13     2 WOMEN CoE, Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA,  
14     USA

15     3 Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA

16  
17     \*Co-first

18     \*\* Co-senior

19     † Dr. Nolan Williams passed away prior to the submission of this manuscript. All other authors  
20     affirm that Dr. Nolan Williams made significant contributions to the conception, design, and  
21     interpretation of the work and that this submission is consistent with his intentions. This work is  
22     dedicated to his memory.

23  
24     25 Corresponding Author:

26     Camarin E. Rolle, PhD

27     Scientific Director, Brain Stimulation Lab

28     Clinical Assistant Professor, Department of Psychiatry and Behavioral Sciences, Stanford  
29     University

30     401 Quarry Rd.

31     Stanford, CA 94304

32     Email: [crolle@stanford.edu](mailto:crolle@stanford.edu)

33 **ABSTRACT**

34

35 Traumatic brain injury (TBI) can result in chronic functional disability and is associated with  
36 persistent psychiatric symptoms, including posttraumatic stress disorder (PTSD), depression, and  
37 anxiety. Ibogaine, an oneirogenic alkaloid with unique pharmacological properties, has shown  
38 initial promise as a potential treatment for TBI-related sequelae. We previously observed large  
39 improvements in functional and psychiatric outcomes up to one month after a single treatment  
40 with magnesium-ibogaine in male U.S. Special Operations Veterans with a history of TBI.  
41 However, further evidence on the durability of these effects is needed. In this prospective long-  
42 term follow-up study, we evaluated the persistence of these clinical improvements over the  
43 subsequent year. Participants underwent comprehensive baseline and post-treatment  
44 assessments, with follow-up evaluations conducted at 3, 6, 9, and 12 months. Of 30 participants  
45 treated with magnesium-ibogaine, 25 completed the 12-month follow-up assessments. Outcome  
46 measures included a self-report measure of functional disability and clinician-administered  
47 assessments of psychiatric symptoms. Results demonstrated robust and sustained reductions in  
48 disability, PTSD, depression, and anxiety symptoms through 12 months post-treatment, with large  
49 effect sizes (Cohen's  $d \geq 2.18$  at 12 months). Survival analyses estimated the probability of  
50 sustained remission at 12 months as 84% for PTSD, 66% for depression, and 61% for anxiety.  
51 These findings suggest that ibogaine treatment may lead to durable, clinically meaningful  
52 improvements in TBI-related symptoms. Further investigation through randomized controlled  
53 trials is warranted to validate these promising preliminary results.

54

55        Traumatic brain injury (TBI) is a significant and growing health problem that can be  
56 associated with lasting emotional, behavioral, and cognitive deficits with large public health costs  
57 (1–3) and is among the greatest contributors of all trauma-related injuries to death and disability  
58 globally (4). A substantial proportion of individuals who suffer a mild or moderate TBI develop a  
59 constellation of symptoms that can last for months or years, with long-term impacts on functioning  
60 across many domains of life, including work, relationships, cognition, emotion, and overall quality  
61 of life (5). Despite ongoing clinical management of chronic symptoms (2), psychiatric and  
62 functional limitations may persist (3), highlighting the need for new treatments.

63        Psychedelic medicine is transforming our understanding of rapid-acting treatment options  
64 in psychiatry, although investigations into the long-term outcomes of psychedelic treatments are  
65 needed (6–8). Ibogaine in particular is an oneirogenic alkaloid that shows promise as a rapid-  
66 acting treatment, and preliminary studies have shed light on the potential durability of its  
67 therapeutic effects. For example, patients with opioid use disorder reported reductions in  
68 problematic drug use one year after ibogaine treatment (9,10), with secondary findings of  
69 sustained reductions in self-reported depression (10). Similarly, a clinical chart review study in  
70 veterans found reductions in self-reported PTSD, depression, and anxiety symptoms for up to six  
71 months after ibogaine treatment paired with 5-MeO-DMT (11).

72        Recently, Cherian et al. (12) found that a single treatment with MISTIC (Magnesium-  
73 Ibogaine: the Stanford Traumatic Injury to the CNS) led to significant improvements in disability  
74 severity, as well as clinician-rated measures of post-traumatic stress disorder (PTSD),  
75 depression, and anxiety symptoms in Special Operations Veterans (SOVs) with a history of TBI,  
76 with benefits sustained at 1-month follow-up. Additionally, there was no evidence of negative  
77 effects of MISTIC on cognitive functions. Whether these therapeutic benefits endure beyond the  
78 first month, however, remains unknown. In the current prospective long-term follow-up study,  
79 participants from Cherian et al. (12) were reassessed by clinicians at approximately 3, 6, 9, and  
80 12 months posttreatment to evaluate the durability of MISTIC effects.

81  
82 **Methods**  
83 **Participants.** Thirty male SOVs underwent baseline and posttreatment assessments. Inclusion  
84 criteria were age between 18 and 70 years, history of combat or blast exposure, history of TBI  
85 (based on Department of Defense TBI classification (13)), no contraindication to magnetic  
86 resonance imaging (MRI), ability to travel to Stanford, and ability to provide written informed  
87 consent. Exclusion criteria included a history of neurological disorders (except TBI), psychotic  
88 symptoms or disorders, risk for suicidal behavior, cardiovascular problems, liver or kidney  
89 problems, pregnancy, clinical abnormalities on screening physical exam that could impact safety  
90 or study integrity, and participation in a recent/ongoing relevant study. See Cherian et al. (12) for  
91 CONSORT and further details. All participants provided written informed consent, and research  
92 procedures were approved by the Stanford University Institutional Review Board.

93        At baseline, 15 participants met the criteria for major depressive disorder, 14 for anxiety  
94 disorder, and 23 for posttraumatic stress disorder. Nineteen participants reported prior use of  
95 psychedelic drugs; however, the nature of use differed notably, from a single use in younger ages  
96 to periods of regular use. Additionally, 21 participants had received formal mental health treatment  
97 before the ibogaine trial, and 19 participants reported a history of treatment with psychotropic  
98 medication in particular. The average ( $\pm$  standard deviation) number of prior TBIs reported was

99 38.6 ± 52.4. TBIs were mostly mild (n=28), with two participants reporting a history of moderate  
100 (n=1) or moderately severe TBI (n=1). Participants enrolled in the study an average of 7.7 ± 4.8  
101 years after military discharge and 15.2 ± 5.9 years after their most severe TBI (range: 8 - 28  
102 years).

103  
104 **Treatment.** Participants independently elected to undergo ibogaine treatment at Ambio Life  
105 Sciences in Mexico, facilitated by Veterans Exploring Treatment Solutions (VETS), Inc., a  
106 nonprofit organization. VETS, Inc. informed potential participants about the study and referred  
107 interested individuals to the Stanford research team. All psychiatric and neuroimaging  
108 assessments, both pre- and post-treatment, were conducted by the Stanford team - either in-  
109 person at Stanford University or virtually. All aspects of ibogaine treatment took place at Ambio  
110 Life Sciences, as ibogaine use is restricted in the United States. VETS, Inc. funded treatment,  
111 travel, and accommodation expenses.

112 As part of Ambio's internal application process, medical screenings were conducted to  
113 rule out contraindicated medical conditions and avoid drug-drug interactions. To mitigate risks of  
114 Q-T interval prolongation (12,14), magnesium sulfate (1g) was administered intravenously while  
115 participants were in a fasting state 1-2 hours before ibogaine dosing. Ibogaine was administered  
116 orally, starting with an initial test dose of 2-3 mg/kg. Depending on response, treatment doses of  
117 up to a total of <14 mg/kg of oral ibogaine were administered in 3 or 4 doses across a 2-hour  
118 period beginning approximately 40 minutes after the initial test dose. An additional dose of  
119 magnesium sulfate was delivered intravenously approximately 12 hours after ibogaine dosing.  
120 One participant received an additional 4mg/kg dose of ibogaine 12 hours after the first ibogaine  
121 dose due to insufficient treatment effects. Participants were monitored for 72 hours after dosing,  
122 as the effects of ibogaine can last 24-72 hours (15). For further information and a detailed  
123 description of the full MISTIC protocol, see Cherian et al. (12).

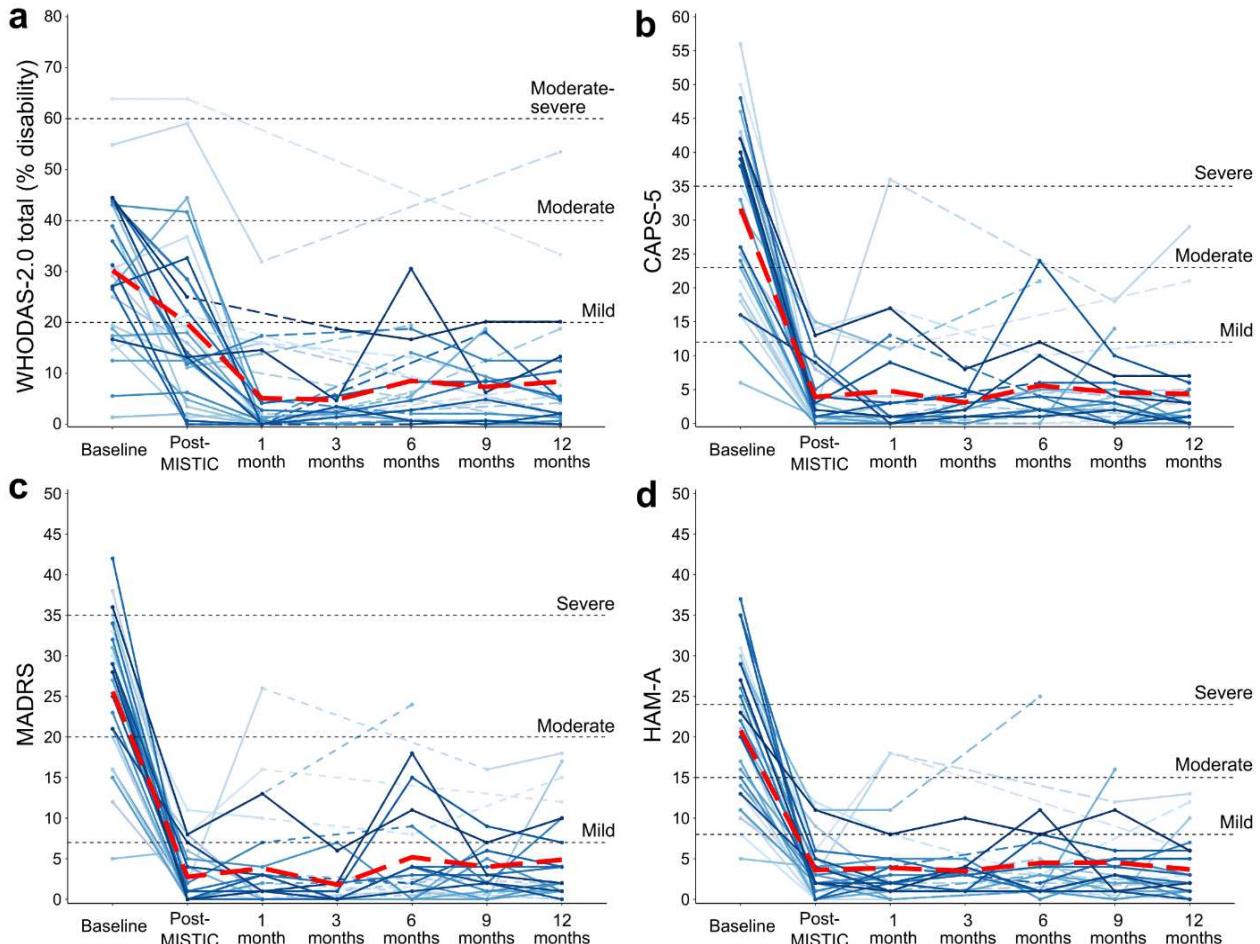
124 As part of Ambio's program, ibogaine is typically followed a few days later by 5-MeO-DMT,  
125 but participants in the current study refrained from using 5-MeO-DMT until after the 1-month  
126 measures had been collected. Also as part of Ambio's program, participants were partnered with  
127 a coach for intention setting, practicing navigation techniques for the psychedelic experience,  
128 managing expectations, exploring relationship dynamics, implementing supportive change in the  
129 home, and physical preparation. Additionally, participants received a workbook recommended to  
130 use before and after the retreat. After treatment, coaches assist with processing emotions, helping  
131 to define meaning, and integrating insights from the treatment experience into participants'  
132 everyday lives. Coaching does not involve diagnosing, delving into past traumas, or medication-  
133 based approaches to healing. Both coaching and workbook use were voluntary and varied  
134 substantially across participants (mean preparation hours = 2.7 ± 0.8, range: 1-4.3; mean  
135 integration hours = 4.1 ± 3.0, range: 0-13.5).

136  
137 **Structured Assessments.** The initial in-person assessments were performed at baseline (2-3  
138 days pre-MISTIC), immediately (4-5 days) post-MISTIC, and 1-month post-MISTIC. Follow-up  
139 assessments were performed approximately 3-, 6-, 9-, and 12-months post-MISTIC via  
140 teleconferencing. Self-report and clinician-administered measurements included the World Health  
141 Organization Disability Assessment Schedule, 2<sup>nd</sup> Edition (WHODAS-2.0 (16); functional  
142 disability), Clinician-Administered PTSD Scale for DSM-5 (CAPS-5 (17); posttraumatic stress

143 symptom severity), Montgomery-Åsberg Depression Rating Scale (MADRS (18); depression  
144 symptom severity), and Hamilton Anxiety Rating Scale (HAM-A (19); anxiety symptom severity).  
145 TBI severity was assessed using the Ohio State University Screening for TBI exposure (20), and  
146 the lifetime incidence of TBIs was assessed using the Boston Assessment of Traumatic Brain  
147 Injury-Lifetime (BAT-L) (13). For further details about the measures used, see Cherian et al. (12).  
148

149 **Data Analysis.** Analysis followed the approach used by Cherian et al. (12); Linear mixed-effects  
150 models were performed for each outcome measure (WHODAS, CAPS-5, MADRS, and HAM-A),  
151 with outcome measure scores as the dependent variable and time point (baseline, immediate  
152 post-MISTIC, 1-, 3-, 6-, 9-, and 12-months post-MISTIC) as a categorical independent variable,  
153 with a fixed slope and random intercept, and age, Combat Exposure Scale, and total number of  
154 reported TBIs included as fixed effects. Contrasts between baseline and 12-month follow-up  
155 (primary outcome, registered at osf.io: <https://osf.io/uxjsp/>) and each additional post-MISTIC  
156 follow-up (secondary outcomes) were performed using the MATLAB hypothesis test on fixed-  
157 effect coefficients of LME models. False discovery rate (FDR) correction was applied for multiple  
158 comparisons. A secondary Kaplan-Meier survival analysis was performed to assess the time to  
159 relapse across PTSD, depression, and anxiety diagnoses for participants meeting MINI diagnostic  
160 criteria at baseline, who also met remission criteria immediately post-MISTIC. Relapse was  
161 defined as the first recorded departure from remission criteria for a respective diagnosis (12), and  
162 cases that were lost to follow-up or never experienced a relapse were censored at their last  
163 recorded observation. See Supplement for further details and analyses of associations between  
164 baseline characteristics and long-term outcomes. All descriptive statistics are shown as mean  $\pm$   
165 standard deviation, unless noted otherwise.  
166

## 167 **Results**


168 Of the 30 participants treated with MISTIC, 27 completed at least one long-term follow-up  
169 assessment (age =  $44.8 \pm 7.1$  years). At the 12-month post-MISTIC follow-up (primary outcome),  
170 25 of the 30 participants completed self-report and clinician-administered assessments. Of them,  
171 23 used at least one psychedelic substance (either via microdosing, full dose, or both) between  
172 the 1-month and 12-month follow-ups (Table S1). This included 19 participants who reported 5-  
173 MeO-DMT use after the 1-month visit, 18 of them in the context of a retreat. In addition, 12  
174 participants engaged in some form of therapy or counselling during the 12-month follow-up period,  
175 while only 3 participants reported any psychotropic medication use (Table S1).

176 Functional disability, PTSD, depression, and anxiety scores were all significantly lower 12  
177 months post-MISTIC compared to pre-MISTIC (all  $p_{FDR} < 0.001$ ) with large effect sizes (all Cohen's  
178  $d > 2.17$ ). Post-MISTIC scores were also significantly lower than pre-MISTIC scores at 3-, 6-, and  
179 9-month follow-ups (all  $p_{FDR} < 0.001$ ) with large effect sizes (all Cohen's  $d > 1.81$ ). See Figure 1 for  
180 individual score trajectories and Table 1 for linear mixed-effects model results.

181 Long-term outcomes were similar in participants who did and did not pursue additional  
182 interventions during the follow-up period (including structured mental health treatment,  
183 psychotropic medication, 5-MeO-DMT, psilocybin, ibogaine, or ayahuasca; Table S1). Significant  
184 long-term outcomes were also observed in sensitivity analyses, including only participants who  
185 met diagnostic criteria for PTSD, depression, or anxiety disorder at baseline (Table S2).  
186 Additionally, sensitivity analyses confirmed that the results were not driven by participants with

187 moderate to moderately severe TBI: when analyses were restricted to participants with a history  
188 of mild TBI, all effects remained significant (all Cohen's  $d > 1.7$ ; Table S3).

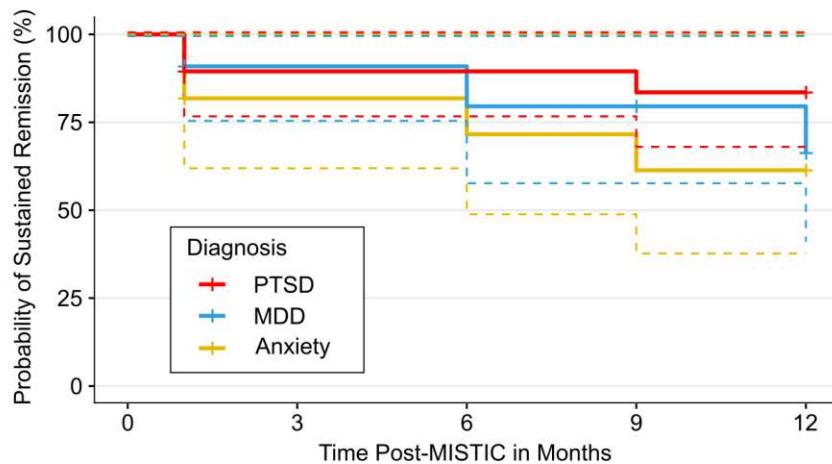
189  
190



191  
192

193 **Figure 1.** Individual score trajectories for (a) WHODAS-2.0 (percentage disability), (b) CAPS-5  
194 (posttraumatic stress), (c) MADRS (depression), and (d) HAM-A (anxiety). Clinical interpretation  
195 thresholds were added for each measure. Dashed blue lines reflect missing data at some time  
196 points in between follow-up assessments. The dashed red line represents the mean score at each  
197 time point. Abbreviations: CAPS-5 = Clinician-Administered PTSD Scale for DSM-5; HAM-A = Hamilton Anxiety  
198 Rating Scale; MADRS = Montgomery-Åsberg Depression Rating Scale; WHODAS-2.0 = WHO Disability Assessment  
199 Schedule, 2<sup>nd</sup> Edition.

200  
201  
202  
203  
204  
205  
206


207 **Table 1.** Linear mixed-effects model results showing long-term improvements in functional  
 208 disability, PTSD, depression, and anxiety after a single treatment with Magnesium-Ibogaine: the  
 209 Stanford Traumatic Injury to the CNS (MISTIC).

|                       |           | <b>WHODAS-2.0</b> | <b>CAPS-5</b> | <b>MADRS</b> | <b>HAM-A</b> |
|-----------------------|-----------|-------------------|---------------|--------------|--------------|
| <b>Baseline</b>       | N         | 30                | 30            | 30           | 30           |
|                       | M (SD)    | 30.2 (14.7)       | 31.7 (12.5)   | 25.6 (8.7)   | 20.8 (8.5)   |
| <b>Immediate-Post</b> | N         | 30                | 30            | 30           | 30           |
|                       | M (SD)    | 19.9 (16.3)       | 3.9 (4.8)     | 2.8 (3.3)    | 3.6 (3.4)    |
|                       | F         | 29.19             | 319.97        | 358.30       | 230.62       |
|                       | $p_{FDR}$ | <.001             | <.001         | <.001        | <.001        |
|                       | d         | 0.74              | 2.30          | 2.65         | 2.06         |
| <b>1 Month</b>        | N         | 26                | 30            | 30           | 30           |
|                       | M (SD)    | 5.1 (8.1)         | 4.8 (7.9)     | 3.8 (6.0)    | 3.9 (4.6)    |
|                       | F         | 123.02            | 297.67        | 328.97       | 230.62       |
|                       | $p_{FDR}$ | <.001             | <.001         | <.001        | <.001        |
|                       | d         | 2.20              | 2.54          | 2.80         | 2.13         |
| <b>3 Months</b>       | N         | 8                 | 10            | 10           | 10           |
|                       | M (SD)    | 4.8 (5.9)         | 3.1 (2.4)     | 1.8 (2.6)    | 3.5 (2.7)    |
|                       | F         | 55.54             | 173.46        | 201.51       | 121.40       |
|                       | $p_{FDR}$ | <.001             | <.001         | <.001        | <.001        |
|                       | d         | 2.26              | 3.46          | 4.45         | 2.58         |
| <b>6 Months</b>       | N         | 17                | 21            | 21           | 21           |
|                       | M (SD)    | 8.5 (8.8)         | 5.6 (6.5)     | 5.2 (6.7)    | 4.5 (5.5)    |
|                       | F         | 69.97             | 221.28        | 229.74       | 166.54       |
|                       | $p_{FDR}$ | <.001             | <.001         | <.001        | <.001        |
|                       | d         | 2.05              | 2.17          | 2.83         | 2.10         |
| <b>9 Months</b>       | N         | 15                | 17            | 17           | 17           |
|                       | M (SD)    | 7.3 (7.2)         | 4.6 (5.2)     | 4 (4.1)      | 4.5 (4.5)    |
|                       | F         | 69.49             | 234.91        | 250.64       | 160.88       |
|                       | $p_{FDR}$ | <.001             | <.001         | <.001        | <.001        |
|                       | d         | 1.81              | 2.94          | 4.08         | 2.06         |
| <b>12 Months</b>      | N         | 25                | 25            | 25           | 25           |
|                       | M (SD)    | 8.4 (12.3)        | 4.4 (6.9)     | 4.9 (5.5)    | 3.7 (3.6)    |
|                       | F         | 90.68             | 284.83        | 265.90       | 203.34       |
|                       | $p_{FDR}$ | <.001             | <.001         | <.001        | <.001        |
|                       | d         | 2.27              | 2.72          | 3.35         | 2.18         |

210  
 211 Results are presented as raw mean (M) and standard deviation (SD). Degrees of freedom: (1, 129) for  
 212 WHODAS; (1, 139) for CAPS-5, MADRS, and HAM-A. Cohen's d reflects the effect size for the contrast  
 213 between each post-treatment time point and baseline.

214 *Abbreviations:* CAPS-5 = Clinician Administered PTSD Scale for DSM-5; HAM-A = Hamilton Anxiety  
 215 Rating Scale; MADRS = Montgomery–Åsberg Depression Rating Scale; WHODAS-2.0 = World Health  
 216 Organization Disability Assessment Schedule, 2<sup>nd</sup> Edition  
 217

218 Secondary Kaplan-Meier survival analyses were completed for participants who achieved  
 219 remission from PTSD (N=19 of 23), depression (N=11 of 15), or anxiety (N=11 of 14) immediately  
 220 post-MISTIC (Figure 2, Table S4). Mean times to relapse were 10.7 (SE=0.8), 10.3 (SE=1.1), and  
 221 9.1 (SE=1.3) months for PTSD, depression, and anxiety, respectively, with no significant  
 222 differences in time to relapse by diagnosis ( $\chi^2= 1.7$ , df= 2,  $p= 0.43$ ). KM-estimated probabilities of  
 223 maintained remission 12 months following acute remission to MISTIC were 84%, 66%, and 61%,  
 224 for PTSD, depression, and anxiety, respectively. See Supplement for Kaplan-Meier estimates of  
 225 the duration of response for PTSD, depression, and anxiety.



Number at Risk

|         |    |    |    |    |    |
|---------|----|----|----|----|----|
| PTSD    | 19 | 15 | 15 | 15 | 14 |
| MDD     | 11 | 8  | 8  | 7  | 6  |
| Anxiety | 11 | 8  | 8  | 7  | 6  |

Cumulative Number Censored

|         |   |   |   |   |    |
|---------|---|---|---|---|----|
| PTSD    | 0 | 2 | 2 | 2 | 16 |
| MDD     | 0 | 2 | 2 | 3 | 8  |
| Anxiety | 0 | 1 | 1 | 1 | 7  |

226

227 **Figure 2. Kaplan-Meier curves of the duration of remission for post-traumatic stress**  
 228 **disorder (PTSD; red), major depressive disorder (MDD; blue), and anxiety (yellow)**  
 229 **diagnoses as a function of time (months) following MISTIC.** Solid lines represent the overall  
 230 survival estimate, hatched marks indicate censored participants, and dashed lines represent 95%  
 231 confidence intervals. Number at risk and cumulative number censored tables provide  
 232 accompanying information. Remission criteria for PTSD: CAPS-5 <12, MDD: MADRS <8, anxiety:  
 233 HAM-A <8, and a loss of diagnosis.

234

235

## 236 Discussion

237 This prospective, long-term follow-up study found clinically meaningful reductions in  
 238 disability, PTSD, depression, and anxiety symptom severity that persisted 12 months after a  
 239 single session of MISTIC. Throughout the 12 months, of those who achieved remission  
 240 immediately after MISTIC treatment, we observed a probability of sustained remission of over  
 241 80% for PTSD and over 60% for depression and anxiety. As this study was an open-label

242 observational study with a modest sample size, larger randomized controlled trials are needed to  
243 replicate these effects.

244 Considering that participants continued to suffer from substantial psychiatric and cognitive  
245 symptoms years after sustaining their TBIs, the durability of the clinical effects observed here is  
246 encouraging. Although we did not control for participants' specific engagement in activities and  
247 treatments or significant life events between the 1-month and 12-month follow-ups, we included  
248 participant-specific random intercepts in our models, which accounted to some extent for  
249 individual variability. Exploratory subgroup analyses further suggested that long-term symptom  
250 improvements after ibogaine treatment were evident regardless of whether participants pursued  
251 additional interventions (Table S1). Nevertheless, in addition to ibogaine, a variety of factors likely  
252 contributed to the durability of improvements in disability, posttraumatic stress, depression, and  
253 anxiety. Among such factors, participants sought treatment through psychotherapy or psychiatric  
254 medication, attended self-help seminars and workshops, used other psychedelics, and  
255 experienced significant life events. Future studies are needed to identify specific factors that may  
256 interact with MISTIC durability.

257 Of note, most participants endorsed some psychedelic use between 1 and 12 months after  
258 the initial retreat (Table S1). While naturalistic psychedelic use for some substances (e.g., LSD)  
259 may be associated with increased odds of substance abuse, findings are inconsistent (21), other  
260 substances may be associated with lower odds (e.g., peyote) (22), and psychedelic drugs are of  
261 the lowest likelihood of dependence or abuse (23). Nevertheless, clinical trials or treatment-  
262 focused retreat settings are not equivalent to naturalistic or recreational use, and further evidence  
263 is needed to evaluate the specific risks for such settings.

264 Given the open-label design of this initial study, expectancy effects may have contributed  
265 to the observed clinical outcomes. However, we previously found that symptom improvements  
266 were accompanied by improvements in objective neuropsychological test scores that are less  
267 sensitive to placebo effects (12,24). Additionally, placebo responses tend to be less durable than  
268 true drug responses (25,26). In prior work, we also observed neural correlates of ibogaine-related  
269 symptom improvements that differed from those associated with placebo responses (27). As  
270 such, it is unlikely that the large, persisting symptom improvements observed in this study are  
271 caused by expectancy effects alone.

272 Growing evidence indicates that psychedelic and psychedelic-assisted treatments may be  
273 effective for a variety of psychiatric conditions (28). Existing evidence suggests that psychedelic  
274 and psychedelic-assisted treatment effects may also persist long-term, but only a few studies  
275 have prospectively explored long-term outcomes beyond 6 months (29–31). It is imperative for  
276 the field to investigate the long-term durability of such treatments. Although regulatory restrictions  
277 for ibogaine currently limit access and impose a high travel and financial burden, the present  
278 findings suggest that ibogaine treatment may confer lasting therapeutic benefits for veterans with  
279 TBI.

280  
281  
282  
283  
284  
285

286 **Data availability.** Owing to the sensitivity of psychiatric patient data, our IRB requires  
287 individualized review before data sharing. We have produced anonymized data related to the  
288 present findings for sharing with all scientists with research and data safeguarding plans that  
289 comport with Stanford University guidelines. Please contact C. Rolle at [crolle@stanford.edu](mailto:crolle@stanford.edu) with  
290 data-sharing requests.

291  
292 **Acknowledgements.** This work was made possible by the generous donations of Steve and  
293 Genevieve Jurvetson, the Effie and Wofford Cain Foundation, Eugene Jhong, the Saisei  
294 Foundation, Laura Keller, and by support from and collaboration with Veterans Exploring  
295 Treatment Solutions (VETS), Inc., a non-profit organization committed to advancing healthcare  
296 options for veterans. This work was also supported by a Canadian Institutes of Health Research  
297 Fellowship to J.I.L. (176536). The funders played no role in study design, execution, data analysis,  
298 or preparation of the manuscript.

299  
300 **Conflicts of interest.** N.R. Williams is a named inventor on Stanford-owned intellectual property  
301 relating to magnesium-ibogaine; he has served on scientific advisory boards for Otsuka,  
302 NeuraWell, Magnus Medical, Soneira, and Nooma as a paid advisor, and he has equity/stock  
303 options in NeuraWell, Soneira, and Nooma. I.H. Kratter is a named inventor on Stanford-owned  
304 intellectual property relating to magnesium-ibogaine; he currently receives a salary from Soneira  
305 and consulting fees from Neuralink and Salma Health, and he has equity/stock options in Soneira  
306 and Salma Health. A.D. Geoly and J.P. Coetzee are named inventors on Stanford-owned  
307 intellectual property relating to magnesium-ibogaine. The remaining authors declare no  
308 competing interests.

309  
310 **References.**

311  
312 1. Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, et al. Estimating the  
313 global incidence of traumatic brain injury. *Journal of Neurosurgery*. 2019 Apr;130(4):1080–  
314 97.

315 2. Levin HS, Diaz-Arrastia RR. Diagnosis, prognosis, and clinical management of mild traumatic  
316 brain injury. *The Lancet Neurology*. 2015 May;14(5):506–17.

317 3. Howlett JR, Nelson LD, Stein MB. Mental Health Consequences of Traumatic Brain Injury.  
318 *Biological Psychiatry*. 2022 Mar;91(5):413–20.

319 4. Rubiano AM, Carney N, Chesnut R, Puyana JC. Global neurotrauma research challenges  
320 and opportunities. *Nature*. 2015 Nov;527(7578):S193–7.

321 5. Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and  
322 Rehabilitation [Internet]. Atlanta, GA: . National Center for Injury Prevention and Control;  
323 Division of Unintentional Injury Prevention; 2015. (Centers for Disease Control and  
324 Prevention). Available from:  
325 [https://www.cdc.gov/traumaticbraininjury/pdf/tbi\\_report\\_to\\_congress\\_epi\\_and\\_rehab-a.pdf](https://www.cdc.gov/traumaticbraininjury/pdf/tbi_report_to_congress_epi_and_rehab-a.pdf)

326 6. Allen J, Dames SS, Foldi CJ, Shultz SR. Psychedelics for acquired brain injury: a review of  
327 molecular mechanisms and therapeutic potential. *Mol Psychiatry*. 2024 Mar;29(3):671–85.

328 7. Brody DL, Siddiqi SH. An ancient psychedelic for traumatic brain injury. *Nat Med.* 2024  
329 Feb;30(2):342–3.

330 8. Volkow ND, Gordon JA, Wargo EM. Psychedelics as Therapeutics—Potential and  
331 Challenges. *JAMA Psychiatry.* 2023 Oct 1;80(10):979.

332 9. Davis AK, Barsuglia JP, Windham-Herman AM, Lynch M, Polanco M. Subjective  
333 effectiveness of ibogaine treatment for problematic opioid consumption: Short- and long-  
334 term outcomes and current psychological functioning. *Journal of Psychedelic Studies.* 2017  
335 Nov;1(2):65–73.

336 10. Noller GE, Frampton CM, Yazar-Klosinski B. Ibogaine treatment outcomes for opioid  
337 dependence from a twelve-month follow-up observational study. *The American Journal of  
338 Drug and Alcohol Abuse.* 2018 Jan 2;44(1):37–46.

339 11. Davis AK, Xin Y, Sepeda N, Averill LA. Open-label study of consecutive ibogaine and 5-  
340 MeO-DMT assisted-therapy for trauma-exposed male Special Operations Forces Veterans:  
341 prospective data from a clinical program in Mexico. *The American Journal of Drug and  
342 Alcohol Abuse.* 2023 Sept 3;49(5):587–96.

343 12. Cherian KN, Keynan JN, Anker L, Faerman A, Brown RE, Shamma A, et al. Magnesium–  
344 ibogaine therapy in veterans with traumatic brain injuries. *Nat Med [Internet].* 2024 Jan 5  
345 [cited 2024 Jan 11]; Available from: <https://www.nature.com/articles/s41591-023-02705-w>

346 13. Fortier CB, Amick MM, Grande L, McGlynn S, Kenna A, Morra L, et al. The Boston  
347 Assessment of Traumatic Brain Injury–Lifetime (BAT-L) semistructured interview: evidence  
348 of research utility and validity. *The Journal of head trauma rehabilitation.* 2014;29(1):89.

349 14. Ona G, Rocha JM, Bouso JC, Hallak JEC, Borràs T, Colomina MT, et al. The adverse  
350 events of ibogaine in humans: an updated systematic review of the literature (2015–2020).  
351 *Psychopharmacology (Berl).* 2022 June;239(6):1977–87.

352 15. Alper KR. Ibogaine: a review. In *The Alkaloids: Chemistry and Biology* Vol 56, 1–38  
353 (Academic Press, 2001); [https://doi.org/10.1016/S0099-9598\(01\)56005-8](https://doi.org/10.1016/S0099-9598(01)56005-8)

354 16. Ustun, T. B., Kostanjesek, N., Chatterji, S., Rehm, J. & World Health Organization.  
355 Measuring Health and Disability: manual for WHO Disability Assessment Schedule  
356 (WHODAS-2.0) [Internet]. WHO; Available from: [apps.who.int/iris/handle/10665/43974](https://apps.who.int/iris/handle/10665/43974)

357 17. Weathers FW, Bovin MJ, Lee DJ, Sloan DM, Schnurr PP, Kaloupek DG, et al. The Clinician-  
358 Administered PTSD Scale for DSM-5 (CAPS-5): Development and initial psychometric  
359 evaluation in military veterans. *Psychological Assessment.* 2018;30:383–95.

360 18. Montgomery SA, Åsberg M. A New Depression Scale Designed to be Sensitive to Change.  
361 *The British Journal of Psychiatry.* 1979 Apr;134(4):382–9.

362 19. Shear MK, Vander Bilt J, Rucci P, Endicott J, Lydiard B, Otto MW, et al. Reliability and  
363 validity of a structured interview guide for the Hamilton Anxiety Rating Scale (SIGH-A).  
364 *Depress Anxiety.* 2001;13(4):166–78.

365 20. Corrigan JD, Bogner J. Initial reliability and validity of the Ohio State University TBI  
366 identification method. *The Journal of head trauma rehabilitation*. 2007;22(6):318–29.

367 21. Glynn NG, Aday JS, Kruger D, Boehnke KF, Lake S, Lucas P. Psychedelic substitution:  
368 altered substance use patterns following psychedelic use in a global survey. *Front  
369 Psychiatry*. 2024 Feb 22;15:1349565.

370 22. Rabinowitz J, Lev-Ran S, Gross R. The association between naturalistic use of  
371 psychedelics and co-occurring substance use disorders. *Front Psychiatry*. 2023 Jan  
372 10;13:1066369.

373 23. Schlag AK, Aday J, Salam I, Neill JC, Nutt DJ. Adverse effects of psychedelics: From  
374 anecdotes and misinformation to systematic science. *J Psychopharmacol*. 2022  
375 Mar;36(3):258–72.

376 24. Calamia M, Markon K, Tranel D. Scoring Higher the Second Time Around: Meta-Analyses of  
377 Practice Effects in Neuropsychological Assessment. *The Clinical Neuropsychologist*. 2012  
378 May;26(4):543–70.

379 25. Stewart JW, Quitkin FM, McGrath PJ, Amsterdam J, Fava M, Fawcett J, et al. Use of  
380 Pattern Analysis to Predict Differential Relapse of Remitted Patients With Major Depression  
381 During 1 Year of Treatment With Fluoxetine or Placebo. *Arch Gen Psychiatry* [Internet].  
382 1998 Apr 1 [cited 2025 Nov 25];55(4). Available from:  
383 <http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archpsyc.55.4.334>

384 26. Quitkin FM. Identification of True Drug Response to Antidepressants: Use of Pattern  
385 Analysis. *Arch Gen Psychiatry*. 1984 Aug 1;41(8):782.

386 27. Lissemore JI, Chaiken A, Cherian KN, Buchanan D, Espil F, Keynan JN, et al. Magnesium–  
387 ibogaine therapy effects on cortical oscillations and neural complexity in veterans with  
388 traumatic brain injury. *Nat Mental Health*. 2025 July 24;3(8):918–31.

389 28. Yao Y, Guo D, Lu TS, Liu FL, Huang SH, Diao MQ, et al. Efficacy and safety of  
390 psychedelics for the treatment of mental disorders: A systematic review and meta-analysis.  
391 *Psychiatry Research*. 2024 May;335:115886.

392 29. Solaja I, Haldane K, Mason N, Weiss B, Xu X, Xu M, et al. Who are you after psychedelics?  
393 A systematic review and a meta-analysis of the magnitude of long-term effects of  
394 serotonergic psychedelics on cognition/creativity, emotional processing and personality.  
395 *Neuroscience & Biobehavioral Reviews*. 2024 Mar;158:105570.

396 30. Aday JS, Mitzkowitz CM, Bloesch EK, Davoli CC, Davis AK. Long-term effects of  
397 psychedelic drugs: A systematic review. *Neuroscience & Biobehavioral Reviews*. 2020  
398 June;113:179–89.

399 31. Luoma JB, Chwyl C, Bathje GJ, Davis AK, Lancelotta R. A Meta-Analysis of Placebo-  
400 Controlled Trials of Psychedelic-Assisted Therapy. *J Psychoactive Drugs*. 2020;52(4):289–  
401 99.

402

## Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [Supplement.pdf](#)