Title
	Supporting Information

	Identification and Classification of Bronze Surface Diseases Based on Improved YOLOv5

	[bookmark: _Hlk200903553]Han Wua, #,Wei Zhoua,, Yang Leib, *, Jing Yangb, #, Lijun Pangb, Xuegang Liuc, Shan Dingc, Yuqiu Chend, *

	a Jingmen Museum, 28 Jingshan Avenue, Duodao District, Jingmen 448001, China
b School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
c Jingzhou Conservation Center, 108 Jingbei Road, Jingzhou 434020, China
d Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States

	

	

	

	

	

	

	*Corresponding author. E-mail address: leiyang@wust.edu.cn (Yang Lei); yuqch@udel.edu (Yuqiu Chen)

Table of Contents
	Table of Contents

	Table S1. The label information corresponding to the training set images

	Table S2. The label information corresponding to the validation set images

	Table S3. YOLOv5 code from PyCharm2021.3.1

	Table S4. yolov5s-GCB code from PyCharm2021.3.1

	Table S5. yolov5s_EfficientNetV2_CA code from PyCharm2021.3.1

	Table S6. yolov5s_EfficientNetV2 code from PyCharm2021.3.1

	Table S7. common.py code for adding network structure by PyCharm2021.3.1

	Table S8. yolo.py code for adding network structure by PyCharm2021.3.1

	Fig. S1. Original pictures of bronze wares

	Fig. S2. Training set disease map

	Fig. S3. Val set disease maps

Table S1. The label information corresponding to the training set images
	Picture
	x
	y
	w
	h

	cracking(105).txt
	0.5025
	0.3025
	0.9950
	0.2850

	cracking(106).txt
	0.4450
	0.5350
	0.8800
	0.4100

	cracking(108).txt
	0.5025
	0.4150
	0.9950
	0.2900

	cracking(11).txt
	0.5025
	0.5775
	0.9950
	0.4950

	cracking(111).txt
	0.6125
	0.5025
	0.3850
	0.9950

	cracking(12).txt
	0.4075
	0.5025
	0.5050
	0.9950

	cracking(120).txt
	0.5025
	0.4350
	0.9950
	0.1800

	cracking(122).txt
	0.5025
	0.5800
	0.9950
	0.5500

	cracking(123).txt
	0.5025
	0.5875
	0.9950
	0.7950

	cracking(124).txt
	0.4150
	0.5000
	0.4700
	0.9900

	cracking(126).txt
	0.4575
	0.5025
	0.2650
	0.9950

	cracking(13).txt
	0.5025
	0.4125
	0.9950
	0.5050

	cracking(134).txt
	0.4850
	0.5525
	0.9100
	0.4050

	cracking(138).txt
	0.4650
	0.4875
	0.3400
	0.9350

	cracking(142).txt
	0.5000
	0.4025
	0.9900
	0.5350

	cracking(16).txt
	0.5025
	0.5975
	0.9950
	0.5950

	cracking(160).txt
	0.5025
	0.5200
	0.9950
	0.2800

	cracking(161).txt
	0.5025
	0.4900
	0.9950
	0.4300

	cracking(163).txt
	0.5475
	0.5300
	0.8350
	0.9200

	cracking(165).txt
	0.5025
	0.4875
	0.9950
	0.6950

	cracking(166).txt
	0.4850
	0.5025
	0.2400
	0.9950

	cracking(167).txt
	0.4875
	0.5025
	0.6250
	0.9950

	cracking(168).txt
	0.4900
	0.4850
	0.9700
	0.7000

	cracking(170).txt
	0.5475
	0.4675
	0.2750
	0.9250

	cracking(171).txt
	0.6050
	0.4250
	0.6100
	0.8400

	cracking(172).txt
	0.5600
	0.4750
	0.8700
	0.5100

	cracking(173).txt
	0.5400
	0.5625
	0.9200
	0.2950

	cracking(174).txt
	0.5875
	0.6025
	0.8250
	0.7350

	cracking(175).txt
	0.4725
	0.5375
	0.2650
	0.9250

	cracking(176).txt
	0.4425
	0.5350
	0.8750
	0.5300

	cracking(177).txt
	0.4500
	0.4425
	0.8900
	0.4450

	cracking(18).txt
	0.4975
	0.7400
	0.9850
	0.4200

	cracking(181).txt
	0.4100
	0.7075
	0.2700
	0.5850

	cracking(181).txt
	0.6000
	0.2250
	0.3000
	0.4300

	cracking(182).txt
	0.5050
	0.4850
	0.9900
	0.3300

	cracking(183).txt
	0.4775
	0.5475
	0.9450
	0.8450

	cracking(184).txt
	0.4675
	0.5025
	0.5250
	0.9950

	cracking(185).txt
	0.5000
	0.4250
	0.9900
	0.7000

	cracking(186).txt
	0.5025
	0.4700
	0.9950
	0.5400

	cracking(187).txt
	0.5950
	0.4850
	0.8100
	0.9600

	cracking(188).txt
	0.5150
	0.5025
	0.5800
	0.9950

	cracking(189).txt
	0.5025
	0.5625
	0.9950
	0.5550

	cracking(19).txt
	0.6100
	0.4500
	0.7800
	0.8900

	cracking(190).txt
	0.5025
	0.5625
	0.9950
	0.6550

	cracking(191).txt
	0.5025
	0.5325
	0.9950
	0.3050

	cracking(192).txt
	0.4650
	0.5100
	0.7700
	0.9800

	cracking(193).txt
	0.3925
	0.5050
	0.5750
	0.9900

	cracking(194).txt
	0.4150
	0.3450
	0.8200
	0.6800

	cracking(195).txt
	0.6350
	0.6600
	0.7300
	0.2900

	cracking(196).txt
	0.4925
	0.7125
	0.3250
	0.5750

	cracking(197).txt
	0.2875
	0.6300
	0.5650
	0.7400

	cracking(198).txt
	0.3700
	0.2475
	0.7300
	0.4850

	cracking(2).txt
	0.6850
	0.5050
	0.5200
	0.9900

	cracking(204).txt
	0.5775
	0.4100
	0.7150
	0.7900

	cracking(205).txt
	0.4775
	0.5025
	0.7050
	0.9950

	cracking(206).txt
	0.5525
	0.5025
	0.3750
	0.9950

	cracking(207).txt
	0.3425
	0.5575
	0.6750
	0.8350

	cracking(208).txt
	0.4925
	0.5025
	0.4750
	0.9950

	cracking(209).txt
	0.5550
	0.5025
	0.2300
	0.9950

	cracking(21).txt
	0.3850
	0.5025
	0.7600
	0.8750

	cracking(210).txt
	0.4650
	0.3100
	0.9200
	0.4600

	cracking(211).txt
	0.5025
	0.5500
	0.9950
	0.2600

	cracking(212).txt
	0.4925
	0.5025
	0.2250
	0.9950

	cracking(213).txt
	0.5025
	0.3450
	0.9950
	0.3100

	cracking(214).txt
	0.5025
	0.3875
	0.9950
	0.3350

	cracking(215).txt
	0.4925
	0.3425
	0.9650
	0.6750

	cracking(216).txt
	0.5025
	0.3425
	0.9950
	0.3850

	cracking(217).txt
	0.2475
	0.5025
	0.4850
	0.9950

	cracking(218).txt
	0.4100
	0.6250
	0.7400
	0.7500

	cracking(23).txt
	0.3925
	0.8025
	0.7750
	0.3950

	cracking(24).txt
	0.5025
	0.2375
	0.9950
	0.4650

	cracking(27).txt
	0.3150
	0.5025
	0.2100
	0.9950

	cracking(28).txt
	0.6150
	0.5900
	0.7500
	0.8200

	cracking(3).txt
	0.4950
	0.6825
	0.9800
	0.4950

	cracking(30).txt
	0.2375
	0.5300
	0.2150
	0.9400

	cracking(31).txt
	0.4375
	0.2900
	0.8250
	0.5600

	cracking(32).txt
	0.4075
	0.3675
	0.8050
	0.7250

	cracking(36).txt
	0.3150
	0.3950
	0.6200
	0.7800

	cracking(37).txt
	0.3750
	0.3625
	0.7400
	0.1750

	cracking(37).txt
	0.8600
	0.1875
	0.2700
	0.3150

	cracking(39).txt
	0.2050
	0.3500
	0.4000
	0.6900

	cracking(4).txt
	0.5025
	0.3075
	0.9950
	0.4850

	cracking(42).txt
	0.5325
	0.5025
	0.2350
	0.9950

	cracking(43).txt
	0.3700
	0.5025
	0.3400
	0.9950

	cracking(52).txt
	0.6100
	0.5850
	0.1500
	0.8300

	cracking(54).txt
	0.5225
	0.5025
	0.1950
	0.9950

	cracking(55).txt
	0.1175
	0.7000
	0.0750
	0.5700

	cracking(55).txt
	0.4125
	0.5000
	0.4750
	0.9900

	cracking(57).txt
	0.7950
	0.5025
	0.1900
	0.9950

	cracking(57).txt
	0.1825
	0.8850
	0.1350
	0.2300

	cracking(58).txt
	0.5750
	0.6225
	0.2000
	0.7450

	cracking(59).txt
	0.7575
	0.3150
	0.1450
	0.5700

	cracking(60).txt
	0.3325
	0.5250
	0.6550
	0.9500

	cracking(61).txt
	0.6975
	0.5025
	0.1150
	0.9950

	cracking(61).txt
	0.5250
	0.7375
	0.2500
	0.5250

	cracking(62).txt
	0.1425
	0.8450
	0.1050
	0.3100

	cracking(62).txt
	0.4075
	0.5025
	0.3150
	0.9950

	cracking(63).txt
	0.5775
	0.5025
	0.1650
	0.9950

	cracking(63).txt
	0.7550
	0.2625
	0.2800
	0.5150

	cracking(64).txt
	0.8225
	0.5025
	0.3350
	0.9950

	cracking(64).txt
	0.6025
	0.4200
	0.2750
	0.4300

	cracking(66).txt
	0.5025
	0.4575
	0.9950
	0.5350

	cracking(67).txt
	0.4475
	0.4900
	0.8850
	0.9700

	cracking(68).txt
	0.2150
	0.4775
	0.4200
	0.9450

	cracking(69).txt
	0.4025
	0.5025
	0.3350
	0.9950

	cracking(70).txt
	0.4275
	0.7050
	0.0850
	0.5900

	cracking(70).txt
	0.5800
	0.3575
	0.2600
	0.7050

	cracking(71).txt
	0.3275
	0.5025
	0.2250
	0.9950

	cracking(72).txt
	0.4375
	0.5025
	0.1950
	0.9950

	cracking(72).txt
	0.7300
	0.5025
	0.5400
	0.9950

	cracking(74).txt
	0.3250
	0.6350
	0.3900
	0.7100

	cracking(74).txt
	0.7375
	0.2725
	0.4950
	0.5250

	cracking(76).txt
	0.5025
	0.6075
	0.9950
	0.6550

	cracking(77).txt
	0.6050
	0.5050
	0.3700
	0.8500

	cracking(79).txt
	0.2650
	0.5025
	0.2700
	0.9950

	cracking(82).txt
	0.0950
	0.5375
	0.1500
	0.9250

	cracking(82).txt
	0.3475
	0.4125
	0.4650
	0.8150

	cracking(83).txt
	0.6100
	0.5025
	0.1700
	0.9950

	cracking(84).txt
	0.8400
	0.5025
	0.3200
	0.9950

	cracking(86).txt
	0.3925
	0.5825
	0.5050
	0.8350

	cracking(86).txt
	0.7800
	0.4200
	0.4400
	0.3100

	cracking(87).txt
	0.3200
	0.6800
	0.3600
	0.6400

	cracking(87).txt
	0.3450
	0.3600
	0.1500
	0.7100

	cracking(92).txt
	0.5025
	0.4350
	0.9950
	0.2600

	holes (1).txt
	0.5600
	0.3200
	0.1600
	0.1600

	holes (1).txt
	0.9350
	0.5300
	0.1000
	0.1100

	holes (100).txt
	0.2875
	0.2425
	0.1650
	0.1250

	holes (100).txt
	0.5375
	0.5750
	0.1050
	0.1100

	holes (100).txt
	0.0800
	0.0725
	0.0700
	0.0650

	holes (103).txt
	0.6150
	0.2775
	0.2400
	0.1750

	holes (106).txt
	0.0550
	0.2200
	0.1000
	0.0900

	holes (106).txt
	0.3100
	0.3775
	0.1100
	0.1150

	holes (106).txt
	0.5125
	0.8725
	0.1750
	0.1550

	holes (106).txt
	0.6300
	0.3725
	0.0900
	0.0750

	holes (106).txt
	0.3200
	0.1750
	0.0500
	0.0600

	holes (106).txt
	0.3625
	0.2575
	0.1150
	0.0650

	holes (106).txt
	0.4900
	0.2700
	0.0900
	0.0700

	holes (107).txt
	0.6875
	0.5600
	0.2250
	0.2100

	holes (108).txt
	0.5825
	0.1125
	0.1650
	0.1250

	holes (108).txt
	0.8450
	0.4725
	0.1600
	0.1550

	holes (109).txt
	0.2000
	0.2025
	0.2400
	0.1850

	holes (109).txt
	0.4825
	0.2775
	0.1350
	0.1450

	holes (109).txt
	0.4825
	0.1450
	0.0850
	0.0900

	holes (109).txt
	0.5950
	0.1725
	0.0700
	0.1050

	holes (109).txt
	0.7700
	0.2200
	0.0600
	0.1000

	holes (109).txt
	0.7325
	0.6800
	0.1350
	0.0900

	holes (11).txt
	0.8375
	0.6150
	0.1550
	0.2200

	holes (11).txt
	0.5775
	0.6925
	0.0550
	0.1150

	holes (11).txt
	0.4900
	0.8250
	0.1000
	0.1200

	holes (11).txt
	0.5325
	0.9475
	0.1150
	0.1050

	holes (111).txt
	0.6600
	0.5175
	0.1700
	0.1950

	holes (111).txt
	0.3550
	0.1475
	0.1100
	0.1250

	holes (111).txt
	0.2225
	0.2200
	0.0850
	0.0700

	holes (111).txt
	0.1425
	0.3075
	0.0950
	0.1050

	holes (111).txt
	0.2100
	0.3800
	0.1500
	0.1000

	holes (112).txt
	0.6750
	0.5625
	0.1400
	0.0950

	holes (112).txt
	0.1900
	0.6900
	0.0800
	0.1100

	holes (113).txt
	0.7625
	0.5000
	0.1350
	0.1500

	holes (113).txt
	0.4575
	0.7150
	0.0850
	0.1400

	holes (113).txt
	0.3850
	0.9575
	0.1600
	0.0850

	holes (114).txt
	0.3175
	0.5750
	0.1750
	0.1100

	holes (114).txt
	0.1425
	0.2900
	0.1550
	0.0900

	holes (115).txt
	0.6725
	0.1900
	0.1650
	0.1200

	holes (115).txt
	0.3125
	0.6150
	0.1650
	0.1900

	holes (117).txt
	0.4600
	0.4000
	0.2200
	0.2300

	holes (118).txt
	0.8400
	0.3350
	0.1200
	0.1900

	holes (12).txt
	0.8525
	0.5175
	0.2050
	0.2150

	holes (12).txt
	0.6425
	0.6650
	0.0850
	0.1400

	holes (12).txt
	0.7525
	0.7050
	0.0850
	0.1400

	holes (12).txt
	0.5925
	0.8075
	0.1150
	0.1250

	holes (12).txt
	0.6375
	0.9325
	0.1050
	0.0850

	holes (12).txt
	0.9250
	0.8925
	0.0800
	0.1250

	holes (12).txt
	0.8375
	0.9550
	0.0650
	0.0900

	holes (120).txt
	0.6125
	0.4275
	0.1750
	0.1150

	holes (121).txt
	0.6200
	0.4425
	0.2200
	0.1550

	holes (123).txt
	0.3975
	0.2150
	0.1850
	0.2200

	holes (125).txt
	0.3550
	0.7425
	0.2800
	0.2050

	holes (126).txt
	0.8775
	0.4775
	0.1550
	0.2450

	holes (127).txt
	0.3725
	0.6650
	0.1750
	0.2100

	holes (129).txt
	0.7625
	0.5500
	0.1150
	0.2100

	holes (129).txt
	0.5500
	0.2925
	0.1300
	0.1650

	holes (13).txt
	0.8575
	0.4350
	0.2150
	0.1600

	holes (13).txt
	0.6900
	0.6250
	0.1900
	0.1500

	holes (13).txt
	0.6675
	0.7725
	0.1350
	0.1050

	holes (13).txt
	0.7500
	0.8825
	0.1100
	0.0950

	holes (13).txt
	0.9375
	0.8850
	0.1050
	0.0900

	holes (131).txt
	0.3800
	0.4925
	0.1300
	0.1450

	holes (132).txt
	0.8975
	0.4225
	0.2050
	0.1450

	holes (134).txt
	0.8875
	0.4500
	0.2250
	0.1900

	holes (135).txt
	0.7900
	0.1925
	0.1000
	0.1050

	holes (136).txt
	0.5675
	0.5100
	0.1750
	0.1400

	holes (137).txt
	0.4925
	0.3100
	0.2350
	0.2200

	holes (139).txt
	0.7875
	0.5100
	0.1950
	0.1900

	holes (14).txt
	0.7775
	0.3475
	0.1450
	0.2250

	holes (14).txt
	0.7100
	0.5750
	0.1300
	0.1500

	holes (14).txt
	0.7250
	0.7200
	0.1200
	0.1400

	holes (14).txt
	0.8575
	0.7925
	0.1150
	0.1450

	holes (14).txt
	0.8475
	0.5600
	0.0950
	0.1400

	holes (140).txt
	0.2700
	0.3950
	0.2200
	0.1700

	holes (143).txt
	0.2350
	0.3350
	0.2000
	0.1500

	holes (144).txt
	0.3625
	0.1975
	0.2150
	0.1750

	holes (145).txt
	0.4725
	0.3700
	0.2150
	0.1700

	holes (146).txt
	0.4100
	0.3250
	0.2000
	0.1800

	holes (147).txt
	0.5925
	0.3625
	0.1550
	0.1450

	holes (148).txt
	0.6050
	0.3550
	0.1200
	0.1600

	holes (15).txt
	0.7525
	0.2650
	0.1850
	0.1800

	holes (15).txt
	0.7000
	0.5200
	0.1000
	0.1300

	holes (15).txt
	0.7875
	0.6525
	0.1050
	0.1450

	holes (15).txt
	0.9275
	0.7100
	0.1250
	0.1500

	holes (150).txt
	0.3250
	0.4175
	0.1200
	0.1350

	holes (151).txt
	0.1825
	0.7300
	0.1950
	0.1900

	holes (152).txt
	0.5000
	0.4225
	0.1400
	0.1350

	holes (153).txt
	0.4100
	0.4025
	0.1200
	0.1150

	holes (156).txt
	0.4625
	0.6850
	0.1250
	0.1400

	holes (158).txt
	0.5650
	0.3300
	0.1900
	0.1300

	holes (160).txt
	0.3450
	0.2525
	0.2400
	0.2750

	holes (161).txt
	0.8475
	0.4825
	0.1950
	0.1850

	holes (162).txt
	0.6450
	0.5250
	0.1700
	0.1500

	holes (163).txt
	0.5425
	0.5575
	0.2550
	0.2450

	holes (163).txt
	0.1625
	0.9300
	0.1850
	0.1400

	holes (168).txt
	0.7025
	0.5650
	0.1450
	0.2300

	holes (169).txt
	0.1625
	0.3550
	0.1950
	0.1600

	holes (17).txt
	0.6025
	0.2025
	0.1450
	0.1550

	holes (17).txt
	0.9550
	0.4650
	0.0800
	0.1200

	holes (17).txt
	0.6525
	0.4250
	0.0950
	0.1100

	holes (17).txt
	0.8175
	0.4900
	0.0650
	0.1200

	holes (17).txt
	0.7550
	0.3400
	0.0700
	0.1200

	holes (17).txt
	0.9725
	0.1975
	0.0550
	0.0750

	holes (171).txt
	0.5700
	0.2150
	0.1900
	0.1800

	holes (172).txt
	0.6975
	0.2875
	0.1950
	0.1550

	holes (173).txt
	0.6525
	0.3825
	0.1250
	0.1050

	holes (174).txt
	0.3575
	0.3400
	0.1950
	0.1800

	holes (175).txt
	0.3875
	0.5175
	0.2150
	0.2850

	holes (176).txt
	0.5725
	0.2875
	0.2650
	0.2350

	holes (177).txt
	0.6275
	0.2375
	0.2550
	0.1950

	holes (178).txt
	0.6350
	0.3425
	0.1100
	0.1450

	holes (18).txt
	0.6700
	0.6300
	0.2800
	0.3200

	holes (184).txt
	0.4700
	0.3475
	0.2000
	0.1950

	holes (186).txt
	0.5350
	0.5050
	0.1300
	0.1100

	holes (189).txt
	0.5250
	0.4900
	0.2400
	0.2000

	holes (19).txt
	0.6025
	0.6975
	0.2950
	0.2850

	holes (190).txt
	0.3500
	0.2650
	0.2000
	0.1300

	holes (193).txt
	0.4650
	0.3875
	0.1700
	0.1550

	holes (193).txt
	0.6900
	0.3375
	0.1900
	0.1150

	holes (194).txt
	0.3325
	0.6650
	0.1350
	0.1600

	holes (194).txt
	0.2225
	0.5925
	0.1450
	0.1250

	holes (195).txt
	0.2450
	0.1975
	0.1500
	0.1350

	holes (195).txt
	0.3725
	0.1050
	0.1650
	0.1300

	holes (196).txt
	0.2575
	0.2075
	0.1850
	0.1650

	holes (196).txt
	0.3050
	0.4150
	0.1800
	0.1400

	holes (197).txt
	0.4975
	0.7100
	0.1250
	0.1500

	holes (197).txt
	0.7025
	0.8200
	0.2150
	0.2100

	holes (198).txt
	0.3650
	0.3000
	0.1200
	0.1300

	holes (199).txt
	0.5375
	0.3450
	0.1050
	0.0900

	holes (199).txt
	0.5850
	0.4725
	0.0800
	0.0950

	holes (199).txt
	0.2375
	0.2775
	0.0950
	0.0850

	holes (199).txt
	0.3000
	0.5500
	0.1000
	0.1400

	holes (20).txt
	0.4450
	0.7000
	0.3400
	0.2700

	holes (200).txt
	0.2225
	0.3350
	0.1150
	0.1400

	holes (200).txt
	0.1825
	0.2025
	0.1050
	0.1050

	holes (201).txt
	0.2350
	0.2950
	0.1700
	0.2000

	holes (201).txt
	0.3875
	0.2675
	0.1750
	0.1150

	holes (201).txt
	0.1125
	0.2900
	0.1150
	0.1100

	holes (201).txt
	0.6625
	0.5925
	0.1150
	0.1150

	holes (202).txt
	0.5525
	0.5425
	0.0950
	0.1150

	holes (203).txt
	0.3600
	0.5300
	0.2100
	0.1600

	holes (203).txt
	0.3125
	0.2825
	0.1850
	0.2550

	holes (204).txt
	0.5400
	0.3250
	0.2300
	0.2200

	holes (204).txt
	0.2575
	0.4125
	0.2550
	0.2350

	holes (205).txt
	0.8125
	0.4975
	0.2150
	0.2050

	holes (206).txt
	0.4250
	0.4125
	0.1600
	0.1950

	holes (207).txt
	0.1350
	0.1150
	0.1500
	0.2000

	holes (207).txt
	0.5300
	0.6400
	0.1500
	0.1300

	holes (208).txt
	0.6100
	0.4475
	0.2300
	0.2650

	holes (209).txt
	0.2950
	0.4650
	0.2000
	0.1900

	holes (209).txt
	0.5375
	0.2875
	0.1250
	0.1250

	holes (209).txt
	0.6450
	0.2850
	0.1000
	0.1000

	holes (209).txt
	0.6650
	0.7550
	0.1200
	0.1900

	holes (21).txt
	0.6375
	0.3675
	0.2650
	0.2650

	holes (210).txt
	0.2325
	0.2550
	0.1150
	0.1200

	holes (211).txt
	0.4350
	0.6125
	0.2200
	0.2250

	holes (211).txt
	0.2825
	0.5775
	0.1250
	0.1050

	holes (212).txt
	0.3900
	0.3825
	0.1800
	0.1450

	holes (214).txt
	0.2900
	0.4800
	0.2200
	0.1700

	holes (216).txt
	0.2950
	0.0850
	0.1900
	0.1600

	holes (216).txt
	0.6500
	0.2625
	0.0900
	0.1450

	holes (216).txt
	0.8850
	0.8575
	0.1400
	0.1150

	holes (216).txt
	0.7125
	0.1175
	0.0850
	0.0850

	holes (216).txt
	0.8175
	0.1575
	0.0750
	0.0850

	holes (218).txt
	0.2250
	0.4825
	0.2000
	0.1650

	holes (218).txt
	0.4875
	0.3275
	0.1750
	0.0950

	holes (218).txt
	0.6675
	0.1325
	0.0850
	0.1350

	holes (218).txt
	0.5750
	0.3400
	0.0800
	0.0600

	holes (218).txt
	0.6000
	0.7850
	0.1600
	0.1500

	holes (218).txt
	0.8975
	0.9225
	0.0850
	0.0650

	holes (218).txt
	0.9500
	0.7875
	0.0900
	0.0950

	holes (219).txt
	0.5500
	0.4200
	0.1500
	0.1900

	holes (219).txt
	0.9175
	0.4500
	0.1550
	0.1400

	holes (219).txt
	0.2475
	0.7350
	0.0750
	0.0800

	holes (22).txt
	0.6925
	0.6775
	0.2850
	0.2950

	holes (22).txt
	0.2250
	0.9050
	0.1000
	0.1300

	holes (22).txt
	0.2500
	0.7800
	0.0700
	0.0700

	holes (22).txt
	0.4225
	0.9450
	0.0650
	0.0800

	holes (22).txt
	0.3225
	0.8950
	0.1150
	0.0900

	holes (220).txt
	0.7375
	0.5525
	0.2650
	0.2150

	holes (221).txt
	0.2400
	0.6200
	0.2300
	0.1700

	holes (223).txt
	0.1375
	0.2400
	0.1350
	0.1500

	holes (224).txt
	0.7650
	0.3975
	0.1800
	0.2250

	holes (226).txt
	0.4675
	0.4725
	0.1750
	0.2350

	holes (228).txt
	0.3825
	0.2450
	0.1950
	0.2600

	holes (228).txt
	0.9150
	0.5150
	0.1300
	0.1400

	holes (228).txt
	0.9625
	0.3150
	0.0750
	0.1000

	holes (229).txt
	0.3100
	0.5450
	0.1600
	0.1500

	holes (229).txt
	0.2150
	0.5550
	0.0900
	0.1200

	holes (229).txt
	0.7650
	0.3200
	0.1300
	0.1000

	holes (229).txt
	0.9150
	0.3225
	0.1200
	0.0850

	holes (229).txt
	0.9350
	0.9550
	0.1100
	0.0900

	holes (23).txt
	0.6100
	0.4625
	0.2100
	0.2350

	holes (230).txt
	0.4700
	0.3200
	0.1800
	0.1800

	holes (231).txt
	0.4400
	0.3150
	0.1900
	0.1400

	holes (231).txt
	0.8175
	0.5550
	0.1050
	0.1200

	holes (231).txt
	0.8800
	0.3850
	0.1100
	0.1000

	holes (232).txt
	0.3300
	0.4400
	0.2600
	0.2100

	holes (234).txt
	0.5525
	0.5950
	0.2250
	0.2400

	holes (234).txt
	0.4825
	0.7150
	0.1150
	0.0800

	holes (235).txt
	0.3475
	0.3675
	0.2850
	0.1850

	holes (235).txt
	0.8025
	0.6450
	0.1450
	0.1800

	holes (235).txt
	0.8700
	0.4475
	0.1600
	0.1050

	holes (235).txt
	0.4775
	0.6250
	0.1450
	0.1300

	holes (237).txt
	0.4400
	0.2700
	0.2400
	0.2000

	holes (238).txt
	0.6225
	0.3975
	0.2250
	0.3050

	holes (239).txt
	0.4600
	0.8150
	0.1900
	0.2500

	holes (239).txt
	0.6150
	0.7600
	0.1700
	0.2200

	holes (24).txt
	0.5725
	0.4050
	0.1350
	0.2700

	holes (240).txt
	0.3800
	0.3975
	0.1800
	0.1750

	holes (240).txt
	0.9275
	0.4425
	0.1450
	0.1550

	holes (241).txt
	0.4300
	0.2625
	0.2200
	0.2050

	holes (241).txt
	0.9200
	0.5750
	0.1600
	0.1900

	holes (242).txt
	0.2550
	0.5025
	0.1900
	0.2050

	holes (243).txt
	0.3875
	0.7150
	0.1650
	0.1700

	holes (244).txt
	0.4200
	0.4700
	0.2600
	0.2600

	holes (244).txt
	0.2175
	0.4275
	0.1950
	0.2050

	holes (245).txt
	0.4225
	0.3175
	0.2650
	0.2550

	holes (245).txt
	0.9275
	0.6725
	0.1450
	0.1850

	holes (246).txt
	0.5075
	0.3475
	0.2950
	0.2450

	holes (247).txt
	0.8000
	0.6900
	0.3600
	0.3400

	holes (248).txt
	0.4525
	0.4975
	0.3750
	0.3050

	holes (249).txt
	0.6525
	0.4725
	0.3150
	0.2250

	holes (25).txt
	0.5900
	0.4225
	0.1700
	0.2750

	holes (250).txt
	0.6625
	0.4525
	0.2350
	0.2050

	holes (251).txt
	0.5100
	0.4275
	0.2000
	0.2550

	holes (252).txt
	0.4925
	0.5550
	0.3150
	0.3300

	holes (255).txt
	0.4875
	0.5025
	0.3050
	0.4450

	holes (256).txt
	0.3550
	0.4375
	0.2400
	0.2550

	holes (257).txt
	0.4875
	0.3475
	0.4850
	0.3550

	holes (258).txt
	0.7375
	0.4500
	0.3750
	0.3100

	holes (259).txt
	0.5750
	0.6500
	0.3100
	0.2700

	holes (26).txt
	0.5600
	0.3850
	0.2200
	0.2600

	holes (26).txt
	0.0975
	0.2800
	0.1850
	0.1800

	holes (26).txt
	0.3600
	0.1300
	0.1500
	0.1400

	holes (260).txt
	0.3575
	0.2850
	0.2350
	0.2200

	holes (260).txt
	0.7900
	0.5475
	0.1800
	0.1950

	holes (260).txt
	0.8875
	0.3350
	0.1450
	0.1500

	holes (261).txt
	0.4700
	0.3475
	0.3700
	0.2850

	holes (263).txt
	0.5775
	0.4050
	0.3250
	0.2700

	holes (265).txt
	0.8200
	0.3950
	0.2200
	0.2400

	holes (266).txt
	0.3850
	0.4900
	0.2600
	0.2100

	holes (267).txt
	0.6075
	0.6250
	0.2650
	0.2500

	holes (268).txt
	0.5275
	0.3950
	0.2250
	0.2600

	holes (269).txt
	0.8425
	0.4175
	0.2350
	0.1850

	holes (27).txt
	0.5700
	0.4875
	0.3100
	0.3450

	holes (270).txt
	0.8775
	0.3400
	0.1950
	0.1700

	holes (271).txt
	0.3125
	0.1775
	0.1650
	0.1750

	holes (271).txt
	0.6350
	0.5800
	0.1700
	0.2000

	holes (272).txt
	0.1750
	0.4525
	0.2900
	0.1950

	holes (272).txt
	0.7175
	0.6025
	0.2250
	0.1550

	holes (273).txt
	0.2150
	0.6625
	0.2000
	0.1650

	holes (273).txt
	0.7425
	0.4775
	0.1450
	0.1550

	holes (274).txt
	0.7250
	0.3600
	0.2200
	0.1900

	holes (274).txt
	0.2525
	0.7750
	0.1650
	0.1700

	holes (275).txt
	0.5825
	0.2850
	0.1750
	0.1600

	holes (275).txt
	0.4275
	0.8575
	0.0950
	0.2050

	holes (277).txt
	0.3575
	0.5525
	0.2250
	0.1850

	holes (278).txt
	0.3700
	0.6850
	0.2100
	0.1700

	holes (279).txt
	0.3075
	0.4650
	0.2150
	0.2100

	holes (279).txt
	0.6000
	0.4750
	0.2100
	0.1800

	holes (28).txt
	0.6100
	0.6000
	0.1900
	0.1500

	holes (28).txt
	0.9225
	0.7050
	0.0950
	0.1600

	holes (28).txt
	0.9550
	0.5650
	0.0900
	0.1000

	holes (28).txt
	0.1650
	0.3825
	0.1500
	0.1050

	holes (28).txt
	0.3950
	0.1950
	0.1200
	0.0900

	holes (28).txt
	0.5325
	0.1675
	0.1250
	0.0750

	holes (280).txt
	0.4800
	0.5600
	0.2700
	0.2200

	holes (281).txt
	0.2625
	0.2000
	0.1950
	0.1900

	holes (282).txt
	0.6875
	0.4500
	0.2150
	0.2200

	holes (284).txt
	0.8150
	0.2550
	0.2300
	0.2100

	holes (284).txt
	0.3950
	0.8500
	0.2100
	0.3000

	holes (285).txt
	0.5725
	0.4650
	0.3550
	0.2400

	holes (286).txt
	0.4950
	0.5000
	0.2600
	0.2600

	holes (287).txt
	0.2775
	0.3800
	0.2050
	0.1800

	holes (288).txt
	0.1275
	0.1675
	0.2450
	0.1950

	holes (288).txt
	0.6075
	0.7900
	0.1550
	0.1700

	holes (289).txt
	0.5300
	0.1400
	0.1600
	0.1500

	holes (29).txt
	0.3025
	0.4075
	0.1350
	0.1650

	holes (290).txt
	0.8800
	0.4050
	0.2100
	0.2200

	holes (291).txt
	0.7375
	0.4125
	0.2450
	0.2250

	holes (292).txt
	0.5725
	0.4250
	0.2250
	0.1500

	holes (293).txt
	0.3700
	0.3700
	0.1500
	0.1600

	holes (294).txt
	0.6600
	0.3825
	0.1900
	0.2050

	holes (295).txt
	0.4975
	0.2800
	0.1950
	0.2000

	holes (296).txt
	0.8125
	0.3575
	0.1350
	0.1650

	holes (297).txt
	0.4550
	0.0925
	0.1800
	0.1350

	holes (297).txt
	0.6625
	0.8675
	0.1550
	0.1550

	holes (299).txt
	0.8150
	0.2675
	0.2100
	0.2450

	holes (3).txt
	0.4700
	0.0550
	0.1300
	0.1000

	holes (3).txt
	0.2150
	0.4000
	0.1500
	0.1500

	holes (30).txt
	0.6375
	0.3525
	0.1250
	0.1450

	holes (31).txt
	0.2800
	0.3225
	0.1500
	0.1050

	holes (31).txt
	0.1800
	0.3025
	0.0400
	0.0650

	holes (31).txt
	0.0450
	0.2700
	0.0700
	0.0600

	holes (31).txt
	0.6075
	0.1450
	0.0650
	0.0800

	holes (31).txt
	0.7400
	0.1500
	0.0900
	0.0500

	holes (31).txt
	0.7450
	0.7025
	0.1500
	0.1750

	holes (32).txt
	0.3350
	0.3925
	0.1500
	0.1350

	holes (32).txt
	0.4975
	0.2725
	0.1150
	0.1150

	holes (32).txt
	0.8575
	0.3875
	0.1250
	0.1350

	holes (32).txt
	0.9775
	0.4200
	0.0450
	0.2000

	holes (32).txt
	0.6025
	0.4175
	0.1350
	0.1050

	holes (32).txt
	0.8800
	0.1875
	0.0800
	0.1150

	holes (33).txt
	0.4275
	0.5975
	0.1950
	0.2250

	holes (33).txt
	0.1425
	0.0400
	0.1650
	0.0700

	holes (33).txt
	0.5400
	0.0375
	0.0700
	0.0650

	holes (35).txt
	0.2625
	0.1600
	0.1350
	0.1000

	holes (35).txt
	0.6325
	0.6525
	0.1250
	0.1550

	holes (35).txt
	0.7450
	0.2750
	0.1100
	0.0800

	holes (35).txt
	0.4775
	0.2800
	0.0950
	0.0900

	holes (35).txt
	0.5100
	0.1800
	0.0700
	0.0500

	holes (35).txt
	0.5950
	0.1975
	0.0400
	0.0550

	holes (35).txt
	0.3550
	0.3100
	0.1200
	0.1100

	holes (37).txt
	0.3475
	0.5425
	0.1650
	0.1150

	holes (37).txt
	0.9125
	0.6450
	0.0950
	0.1400

	holes (37).txt
	0.0475
	0.5575
	0.0850
	0.0650

	holes (38).txt
	0.9175
	0.3900
	0.1450
	0.1500

	holes (38).txt
	0.3650
	0.6250
	0.1700
	0.1100

	holes (38).txt
	0.5325
	0.4275
	0.0650
	0.0850

	holes (38).txt
	0.1350
	0.7875
	0.0500
	0.0850

	holes (39).txt
	0.7300
	0.1825
	0.0800
	0.0750

	holes (39).txt
	0.4675
	0.6725
	0.0650
	0.1050

	holes (39).txt
	0.4400
	0.9375
	0.1400
	0.1050

	holes (4).txt
	0.2375
	0.4775
	0.2350
	0.1650

	holes (4).txt
	0.3975
	0.0650
	0.1750
	0.1000

	holes (40).txt
	0.5575
	0.3775
	0.1050
	0.1250

	holes (40).txt
	0.8475
	0.1675
	0.0750
	0.0750

	holes (41).txt
	0.6675
	0.4675
	0.1450
	0.1750

	holes (42).txt
	0.3425
	0.4025
	0.1250
	0.1150

	holes (43).txt
	0.2250
	0.7075
	0.1700
	0.1750

	holes (44).txt
	0.6300
	0.3800
	0.2300
	0.1800

	holes (45).txt
	0.4725
	0.2775
	0.2150
	0.1750

	holes (47).txt
	0.5550
	0.4300
	0.1900
	0.1700

	holes (48).txt
	0.7175
	0.5700
	0.2450
	0.2300

	holes (49).txt
	0.6100
	0.3925
	0.2100
	0.2250

	holes (5).txt
	0.1650
	0.5675
	0.2200
	0.1750

	holes (5).txt
	0.2575
	0.1200
	0.1950
	0.1200

	holes (5).txt
	0.0900
	0.1100
	0.0800
	0.0700

	holes (5).txt
	0.3350
	0.3725
	0.1500
	0.1050

	holes (50).txt
	0.6725
	0.1875
	0.1450
	0.0950

	holes (51).txt
	0.5025
	0.3625
	0.0950
	0.0650

	holes (52).txt
	0.7025
	0.5250
	0.1850
	0.2500

	holes (54).txt
	0.8400
	0.5050
	0.1200
	0.1900

	holes (56).txt
	0.7350
	0.5100
	0.2200
	0.1700

	holes (57).txt
	0.3050
	0.4125
	0.1900
	0.1750

	holes (58).txt
	0.5075
	0.4850
	0.1850
	0.1600

	holes (6).txt
	0.1200
	0.2625
	0.1500
	0.1650

	holes (6).txt
	0.2250
	0.7025
	0.1700
	0.1650

	holes (6).txt
	0.3300
	0.4525
	0.1200
	0.1450

	holes (6).txt
	0.2350
	0.3050
	0.0700
	0.1200

	holes (60).txt
	0.2500
	0.5900
	0.1700
	0.2400

	holes (60).txt
	0.4050
	0.8550
	0.0900
	0.1100

	holes (60).txt
	0.6750
	0.7150
	0.1100
	0.1700

	holes (60).txt
	0.8525
	0.7725
	0.0950
	0.1350

	holes (61).txt
	0.3475
	0.2450
	0.1550
	0.1900

	holes (62).txt
	0.3325
	0.2825
	0.1650
	0.1550

	holes (63).txt
	0.3425
	0.4475
	0.0850
	0.1150

	holes (63).txt
	0.5175
	0.2675
	0.1850
	0.2250

	holes (64).txt
	0.5275
	0.2550
	0.1550
	0.1300

	holes (65).txt
	0.5650
	0.6475
	0.1600
	0.1950

	holes (66).txt
	0.4475
	0.5150
	0.1950
	0.1500

	holes (67).txt
	0.3650
	0.3750
	0.1700
	0.1800

	holes (68).txt
	0.8100
	0.5850
	0.2100
	0.2200

	holes (68).txt
	0.4525
	0.9025
	0.1650
	0.1750

	holes (70).txt
	0.2425
	0.5025
	0.1850
	0.1650

	holes (70).txt
	0.6700
	0.5750
	0.1500
	0.1600

	holes (70).txt
	0.7000
	0.7450
	0.1600
	0.1100

	holes (70).txt
	0.3400
	0.8250
	0.0900
	0.0900

	holes (71).txt
	0.2925
	0.6850
	0.1650
	0.1200

	holes (71).txt
	0.7175
	0.6500
	0.1250
	0.1300

	holes (71).txt
	0.8400
	0.9450
	0.1100
	0.1100

	holes (71).txt
	0.5925
	0.6550
	0.0950
	0.0600

	holes (72).txt
	0.3525
	0.3225
	0.2150
	0.1350

	holes (72).txt
	0.5375
	0.2125
	0.1250
	0.1350

	holes (73).txt
	0.2825
	0.5400
	0.1450
	0.1100

	holes (73).txt
	0.5525
	0.5950
	0.1050
	0.1000

	holes (73).txt
	0.6025
	0.7000
	0.1750
	0.1100

	holes (73).txt
	0.3450
	0.7500
	0.0900
	0.1000

	holes (74).txt
	0.1850
	0.4625
	0.1200
	0.1050

	holes (74).txt
	0.5025
	0.4650
	0.1550
	0.0900

	holes (74).txt
	0.7525
	0.5075
	0.1150
	0.0950

	holes (74).txt
	0.8100
	0.6150
	0.1100
	0.1000

	holes (74).txt
	0.5875
	0.6650
	0.1250
	0.1000

	holes (75).txt
	0.4800
	0.8750
	0.1100
	0.0800

	holes (75).txt
	0.3875
	0.8350
	0.1150
	0.0700

	holes (75).txt
	0.2350
	0.8925
	0.1200
	0.1250

	holes (77).txt
	0.3025
	0.3350
	0.1450
	0.0900

	holes (77).txt
	0.2125
	0.3075
	0.1050
	0.0950

	holes (77).txt
	0.6575
	0.4150
	0.1550
	0.1200

	holes (77).txt
	0.6925
	0.5675
	0.1450
	0.1250

	holes (77).txt
	0.3825
	0.6750
	0.1550
	0.1700

	holes (78).txt
	0.3950
	0.3150
	0.1500
	0.1100

	holes (78).txt
	0.5700
	0.3025
	0.1700
	0.1550

	holes (79).txt
	0.3550
	0.2525
	0.1100
	0.1450

	holes (79).txt
	0.0750
	0.2025
	0.0500
	0.1050

	holes (8).txt
	0.0725
	0.6575
	0.0950
	0.1250

	holes (8).txt
	0.2225
	0.6125
	0.1450
	0.1550

	holes (8).txt
	0.3375
	0.6350
	0.1250
	0.1200

	holes (8).txt
	0.0300
	0.8200
	0.0500
	0.0700

	holes (8).txt
	0.4975
	0.8200
	0.1550
	0.1300

	holes (80).txt
	0.4150
	0.3125
	0.1600
	0.1250

	holes (82).txt
	0.4425
	0.3775
	0.1950
	0.1850

	holes (83).txt
	0.3200
	0.3625
	0.2400
	0.1250

	holes (84).txt
	0.2675
	0.2425
	0.1650
	0.1650

	holes (85).txt
	0.4300
	0.5200
	0.2200
	0.2400

	holes (86).txt
	0.4825
	0.6550
	0.2050
	0.2200

	holes (86).txt
	0.6925
	0.3525
	0.1750
	0.1750

	holes (86).txt
	0.0775
	0.1625
	0.1450
	0.1050

	holes (87).txt
	0.1550
	0.3550
	0.1100
	0.1800

	holes (87).txt
	0.5125
	0.8075
	0.1850
	0.1950

	holes (88).txt
	0.2450
	0.2725
	0.2300
	0.1850

	holes (88).txt
	0.6275
	0.1375
	0.2250
	0.1750

	holes (88).txt
	0.7125
	0.6275
	0.2150
	0.2150

	holes (89).txt
	0.5250
	0.7475
	0.2000
	0.2250

	holes (9).txt
	0.6025
	0.8200
	0.1650
	0.1400

	holes (9).txt
	0.1525
	0.8175
	0.1150
	0.1350

	holes (9).txt
	0.2550
	0.6900
	0.0900
	0.1400

	holes (9).txt
	0.4325
	0.7075
	0.0950
	0.1450

	holes (9).txt
	0.1725
	0.9625
	0.1050
	0.0750

	holes (90).txt
	0.5350
	0.4725
	0.2900
	0.1950

	holes (91).txt
	0.4550
	0.3650
	0.2200
	0.2200

	holes (91).txt
	0.8975
	0.6475
	0.2050
	0.2150

	holes (91).txt
	0.9625
	0.4225
	0.0750
	0.1450

	holes (91).txt
	0.6375
	0.6550
	0.2950
	0.1600

	holes (92).txt
	0.2250
	0.2225
	0.1400
	0.2350

	holes (92).txt
	0.6000
	0.6775
	0.2400
	0.1750

	holes (92).txt
	0.6750
	0.3150
	0.1300
	0.0700

	holes (92).txt
	0.4300
	0.3300
	0.0800
	0.1100

	holes (92).txt
	0.4625
	0.2100
	0.0850
	0.0600

	holes (93).txt
	0.5100
	0.4400
	0.2200
	0.2200

	holes (94).txt
	0.8175
	0.6175
	0.2450
	0.2150

	holes (95).txt
	0.2475
	0.3850
	0.2150
	0.1800

	holes (96).txt
	0.4825
	0.2825
	0.1850
	0.2050

	holes (96).txt
	0.8900
	0.4975
	0.1400
	0.1650

	holes (96).txt
	0.9675
	0.3250
	0.0650
	0.1600

	holes (96).txt
	0.6225
	0.4825
	0.1050
	0.1150

	holes (97).txt
	0.5500
	0.5125
	0.1300
	0.1450

	holes (98).txt
	0.5025
	0.5150
	0.2850
	0.1900

	holes (99).txt
	0.1175
	0.1650
	0.1750
	0.0700

	holes (99).txt
	0.5225
	0.4675
	0.1950
	0.1350

	holes (99).txt
	0.3800
	0.0350
	0.1300
	0.0600

	holes (99).txt
	0.4850
	0.0350
	0.0500
	0.0600

	holes (99).txt
	0.8750
	0.5075
	0.0900
	0.0950

	holes (99).txt
	0.7875
	0.6550
	0.2150
	0.0700

	incomplete(10).txt
	0.6425
	0.5700
	0.3050
	0.1900

	incomplete(100).txt
	0.5025
	0.4825
	0.3950
	0.2550

	incomplete(101).txt
	0.4900
	0.4800
	0.2900
	0.3000

	incomplete(103).txt
	0.5375
	0.5075
	0.2150
	0.2950

	incomplete(104).txt
	0.5425
	0.5075
	0.1850
	0.3150

	incomplete(105).txt
	0.5225
	0.4875
	0.1250
	0.3050

	incomplete(106).txt
	0.5200
	0.5025
	0.1800
	0.3150

	incomplete(107).txt
	0.5150
	0.4975
	0.2100
	0.2650

	incomplete(108).txt
	0.5100
	0.5075
	0.2200
	0.2850

	incomplete(11).txt
	0.6375
	0.6000
	0.3050
	0.1500

	incomplete(110).txt
	0.5300
	0.5150
	0.2600
	0.2100

	incomplete(111).txt
	0.5425
	0.5275
	0.3450
	0.2450

	incomplete(114).txt
	0.5075
	0.4975
	0.2350
	0.2550

	incomplete(115).txt
	0.5325
	0.5225
	0.2650
	0.3350

	incomplete(116).txt
	0.4550
	0.5025
	0.2200
	0.4250

	incomplete(117).txt
	0.4625
	0.4800
	0.1850
	0.4700

	incomplete(118).txt
	0.4650
	0.5075
	0.1900
	0.5250

	incomplete(12).txt
	0.5800
	0.6075
	0.3200
	0.1550

	incomplete(123).txt
	0.5050
	0.4475
	0.6100
	0.2950

	incomplete(124).txt
	0.5675
	0.4600
	0.5750
	0.3300

	incomplete(125).txt
	0.5650
	0.4450
	0.5700
	0.3700

	incomplete(126).txt
	0.6125
	0.4750
	0.4450
	0.4900

	incomplete(127).txt
	0.5900
	0.4900
	0.3000
	0.5000

	incomplete(128).txt
	0.6075
	0.4950
	0.2150
	0.6000

	incomplete(129).txt
	0.5650
	0.5475
	0.2000
	0.5250

	incomplete(13).txt
	0.5725
	0.6300
	0.2550
	0.1700

	incomplete(130).txt
	0.5700
	0.5375
	0.2200
	0.5550

	incomplete(132).txt
	0.6000
	0.5425
	0.4200
	0.2350

	incomplete(133).txt
	0.5150
	0.5675
	0.5200
	0.2050

	incomplete(134).txt
	0.5300
	0.5525
	0.6700
	0.1750

	incomplete(135).txt
	0.4625
	0.5400
	0.5550
	0.2800

	incomplete(136).txt
	0.4950
	0.5425
	0.3700
	0.4950

	incomplete(137).txt
	0.6325
	0.3425
	0.1650
	0.2950

	incomplete(137).txt
	0.6875
	0.6575
	0.1550
	0.1750

	incomplete(138).txt
	0.6350
	0.3825
	0.0900
	0.2650

	incomplete(138).txt
	0.6400
	0.6875
	0.1200
	0.1550

	incomplete(139).txt
	0.6675
	0.4350
	0.1150
	0.2400

	incomplete(139).txt
	0.6025
	0.7025
	0.1450
	0.1350

	incomplete(14).txt
	0.5575
	0.6500
	0.2450
	0.2400

	incomplete(140).txt
	0.6925
	0.4625
	0.1750
	0.2150

	incomplete(140).txt
	0.5475
	0.7075
	0.1850
	0.1450

	incomplete(141).txt
	0.6975
	0.5200
	0.2250
	0.1700

	incomplete(141).txt
	0.4725
	0.7175
	0.1350
	0.1250

	incomplete(142).txt
	0.6950
	0.5625
	0.2000
	0.1350

	incomplete(142).txt
	0.4050
	0.6900
	0.1400
	0.0800

	incomplete(143).txt
	0.6700
	0.6125
	0.2800
	0.1250

	incomplete(143).txt
	0.3450
	0.6450
	0.1300
	0.1000

	incomplete(144).txt
	0.5875
	0.6675
	0.2450
	0.1650

	incomplete(144).txt
	0.2925
	0.5900
	0.1950
	0.1200

	incomplete(145).txt
	0.2725
	0.4925
	0.1250
	0.1350

	incomplete(145).txt
	0.4975
	0.6925
	0.1650
	0.2050

	incomplete(146).txt
	0.6450
	0.4900
	0.1900
	0.2100

	incomplete(147).txt
	0.6400
	0.4975
	0.1400
	0.1950

	incomplete(149).txt
	0.5625
	0.3575
	0.1950
	0.1350

	incomplete(151).txt
	0.5200
	0.3500
	0.1400
	0.2000

	incomplete(154).txt
	0.3925
	0.5800
	0.3250
	0.1900

	incomplete(156).txt
	0.4050
	0.5800
	0.2300
	0.1700

	incomplete(158).txt
	0.3650
	0.5500
	0.2200
	0.2300

	incomplete(16).txt
	0.4700
	0.6300
	0.2100
	0.2700

	incomplete(160).txt
	0.3900
	0.4125
	0.1000
	0.2050

	incomplete(161).txt
	0.7975
	0.3625
	0.4050
	0.2750

	incomplete(163).txt
	0.6825
	0.1700
	0.3350
	0.3100

	incomplete(164).txt
	0.3950
	0.2150
	0.2600
	0.3600

	incomplete(166).txt
	0.7900
	0.4125
	0.4200
	0.3150

	incomplete(167).txt
	0.7550
	0.4875
	0.4500
	0.4150

	incomplete(168).txt
	0.7700
	0.7425
	0.2200
	0.4050

	incomplete(169).txt
	0.5975
	0.6800
	0.2350
	0.4200

	incomplete(170).txt
	0.5675
	0.5025
	0.5650
	0.8950

	incomplete(171).txt
	0.5250
	0.3350
	0.8300
	0.6300

	incomplete(172).txt
	0.4600
	0.3275
	0.8400
	0.4950

	incomplete(173).txt
	0.4325
	0.3500
	0.8150
	0.4400

	incomplete(175).txt
	0.4050
	0.5825
	0.6500
	0.8350

	incomplete(177).txt
	0.5175
	0.6675
	0.7950
	0.5750

	incomplete(178).txt
	0.5025
	0.6675
	0.8150
	0.5650

	incomplete(180).txt
	0.5350
	0.7775
	0.5600
	0.4450

	incomplete(180).txt
	0.6050
	0.1100
	0.5900
	0.2000

	incomplete(181).txt
	0.1600
	0.3125
	0.2700
	0.5750

	incomplete(181).txt
	0.7975
	0.5800
	0.4050
	0.3000

	incomplete(182).txt
	0.5600
	0.7150
	0.3200
	0.2400

	incomplete(183).txt
	0.7050
	0.7875
	0.2100
	0.2950

	incomplete(184).txt
	0.8450
	0.5825
	0.2200
	0.3850

	incomplete(185).txt
	0.8200
	0.4150
	0.2500
	0.3200

	incomplete(186).txt
	0.7225
	0.2425
	0.3550
	0.2150

	incomplete(187).txt
	0.5875
	0.1900
	0.3650
	0.1800

	incomplete(188).txt
	0.5525
	0.1650
	0.3450
	0.1700

	incomplete(189).txt
	0.2875
	0.2550
	0.2150
	0.2200

	incomplete(19).txt
	0.3750
	0.5625
	0.1400
	0.3550

	incomplete(190).txt
	0.1750
	0.4050
	0.1800
	0.2900

	incomplete(191).txt
	0.1850
	0.6275
	0.2600
	0.3050

	incomplete(192).txt
	0.3125
	0.7675
	0.3150
	0.2050

	incomplete(193).txt
	0.5875
	0.8050
	0.2550
	0.2800

	incomplete(194).txt
	0.8350
	0.6950
	0.2300
	0.4200

	incomplete(196).txt
	0.6475
	0.4600
	0.4050
	0.8200

	incomplete(197).txt
	0.4600
	0.8225
	0.2600
	0.1450

	incomplete(198).txt
	0.8000
	0.8675
	0.1900
	0.1950

	incomplete(199).txt
	0.4750
	0.6875
	0.5600
	0.2250

	incomplete(2).txt
	0.5125
	0.3650
	0.2750
	0.2600

	incomplete(20).txt
	0.3900
	0.4900
	0.2300
	0.2200

	incomplete(201).txt
	0.9025
	0.5275
	0.1950
	0.1250

	incomplete(201).txt
	0.7350
	0.7125
	0.1200
	0.1150

	incomplete(201).txt
	0.5450
	0.8800
	0.1400
	0.1500

	incomplete(202).txt
	0.8800
	0.3400
	0.1300
	0.1500

	incomplete(202).txt
	0.7875
	0.6075
	0.0950
	0.1950

	incomplete(202).txt
	0.6975
	0.8350
	0.0950
	0.2500

	incomplete(203).txt
	0.8025
	0.4775
	0.0750
	0.7550

	incomplete(204).txt
	0.7025
	0.1275
	0.1250
	0.1750

	incomplete(204).txt
	0.7975
	0.3900
	0.1050
	0.1900

	incomplete(204).txt
	0.8525
	0.6200
	0.1150
	0.2300

	incomplete(205).txt
	0.3475
	0.1075
	0.1550
	0.1350

	incomplete(205).txt
	0.7250
	0.2550
	0.4000
	0.2400

	incomplete(206).txt
	0.0975
	0.4075
	0.1550
	0.1050

	incomplete(206).txt
	0.3050
	0.2500
	0.1500
	0.0900

	incomplete(206).txt
	0.5100
	0.1400
	0.2300
	0.1200

	incomplete(207).txt
	0.7925
	0.2300
	0.2850
	0.1500

	incomplete(207).txt
	0.4900
	0.3750
	0.2000
	0.1100

	incomplete(207).txt
	0.1425
	0.6125
	0.2050
	0.1650

	incomplete(209).txt
	0.3800
	0.4900
	0.1300
	0.2600

	incomplete(209).txt
	0.4675
	0.8625
	0.1850
	0.2550

	incomplete(21).txt
	0.3675
	0.4625
	0.2750
	0.2450

	incomplete(210).txt
	0.2825
	0.5375
	0.4950
	0.2650

	incomplete(210).txt
	0.8375
	0.7300
	0.2750
	0.2300

	incomplete(211).txt
	0.5150
	0.3275
	0.9400
	0.5050

	incomplete(212).txt
	0.3350
	0.4525
	0.4900
	0.8750

	incomplete(213).txt
	0.3525
	0.5050
	0.6050
	0.9600

	incomplete(214).txt
	0.4125
	0.6175
	0.7850
	0.7350

	incomplete(215).txt
	0.5450
	0.6750
	0.9100
	0.4600

	incomplete(216).txt
	0.6300
	0.6150
	0.6000
	0.6800

	incomplete(217).txt
	0.4050
	0.5025
	0.8000
	0.9950

	incomplete(218).txt
	0.4400
	0.5200
	0.8500
	0.9600

	incomplete(219).txt
	0.5750
	0.4475
	0.7700
	0.3350

	incomplete(22).txt
	0.3600
	0.4425
	0.3000
	0.2050

	incomplete(220).txt
	0.4875
	0.4125
	0.4750
	0.6950

	incomplete(222).txt
	0.3825
	0.5125
	0.7350
	0.5050

	incomplete(223).txt
	0.4125
	0.5550
	0.7250
	0.3700

	incomplete(224).txt
	0.5050
	0.6075
	0.4700
	0.6850

	incomplete(226).txt
	0.5650
	0.5800
	0.4700
	0.7300

	incomplete(227).txt
	0.5525
	0.5850
	0.3450
	0.7800

	incomplete(23).txt
	0.3775
	0.4025
	0.3250
	0.2050

	incomplete(231).txt
	0.4975
	0.5400
	0.8550
	0.8800

	incomplete(234).txt
	0.5675
	0.1600
	0.3750
	0.3100

	incomplete(234).txt
	0.4375
	0.6450
	0.3050
	0.6300

	incomplete(235).txt
	0.3150
	0.1900
	0.5200
	0.3600

	incomplete(235).txt
	0.5425
	0.6825
	0.3650
	0.6350

	incomplete(236).txt
	0.3450
	0.2000
	0.3700
	0.3400

	incomplete(236).txt
	0.6550
	0.6375
	0.4600
	0.7250

	incomplete(237).txt
	0.4400
	0.4350
	0.8700
	0.5500

	incomplete(238).txt
	0.3800
	0.5550
	0.6000
	0.8600

	incomplete(239).txt
	0.4200
	0.5550
	0.5800
	0.8900

	incomplete(240).txt
	0.4850
	0.4650
	0.4900
	0.7600

	incomplete(241).txt
	0.4350
	0.4975
	0.6700
	0.6750

	incomplete(242).txt
	0.3875
	0.5125
	0.7350
	0.5650

	incomplete(243).txt
	0.4200
	0.5300
	0.7000
	0.5100

	incomplete(244).txt
	0.4525
	0.5100
	0.6550
	0.6500

	incomplete(245).txt
	0.4800
	0.5325
	0.6200
	0.6750

	incomplete(247).txt
	0.3775
	0.4175
	0.2650
	0.1750

	incomplete(248).txt
	0.3075
	0.4875
	0.1650
	0.2150

	incomplete(249).txt
	0.3375
	0.5450
	0.1450
	0.2100

	incomplete(25).txt
	0.5600
	0.4825
	0.3800
	0.1950

	incomplete(250).txt
	0.3650
	0.5800
	0.1900
	0.2000

	incomplete(252).txt
	0.4075
	0.6425
	0.2150
	0.1850

	incomplete(254).txt
	0.4800
	0.6200
	0.2700
	0.1500

	incomplete(255).txt
	0.5300
	0.6350
	0.2500
	0.1400

	incomplete(256).txt
	0.5475
	0.6300
	0.2150
	0.1500

	incomplete(257).txt
	0.5875
	0.6025
	0.2450
	0.2450

	incomplete(258).txt
	0.6325
	0.5900
	0.2050
	0.2700

	incomplete(259).txt
	0.6200
	0.5275
	0.1600
	0.2950

	incomplete(26).txt
	0.5800
	0.5025
	0.3600
	0.1450

	incomplete(260).txt
	0.6425
	0.4900
	0.1750
	0.2600

	incomplete(261).txt
	0.6625
	0.4725
	0.2550
	0.2750

	incomplete(262).txt
	0.5000
	0.3200
	0.2000
	0.2000

	incomplete(263).txt
	0.5750
	0.5350
	0.5100
	0.5500

	incomplete(264).txt
	0.5675
	0.5100
	0.5350
	0.4400

	incomplete(265).txt
	0.5675
	0.4950
	0.4650
	0.3900

	incomplete(266).txt
	0.2775
	0.5025
	0.2150
	0.2450

	incomplete(267).txt
	0.5275
	0.6550
	0.6850
	0.6400

	incomplete(268).txt
	0.4250
	0.6350
	0.6500
	0.6500

	incomplete(27).txt
	0.5475
	0.4950
	0.3050
	0.1800

	incomplete(270).txt
	0.3900
	0.4325
	0.6100
	0.7250

	incomplete(271).txt
	0.4975
	0.3750
	0.5250
	0.7400

	incomplete(272).txt
	0.5250
	0.3700
	0.5700
	0.6500

	incomplete(273).txt
	0.5525
	0.3575
	0.6750
	0.5550

	incomplete(274).txt
	0.6400
	0.4550
	0.7100
	0.4800

	incomplete(275).txt
	0.6225
	0.5250
	0.7050
	0.5200

	incomplete(276).txt
	0.3425
	0.6975
	0.3050
	0.3650

	incomplete(277).txt
	0.2450
	0.5200
	0.2400
	0.3500

	incomplete(278).txt
	0.3025
	0.3750
	0.2450
	0.2700

	incomplete(279).txt
	0.3175
	0.3325
	0.4150
	0.5450

	incomplete(279).txt
	0.5325
	0.8375
	0.2150
	0.2250

	incomplete(28).txt
	0.5625
	0.5050
	0.3050
	0.2200

	incomplete(281).txt
	0.4700
	0.4800
	0.3100
	0.3100

	incomplete(282).txt
	0.5275
	0.4775
	0.1650
	0.3350

	incomplete(283).txt
	0.4400
	0.3400
	0.3400
	0.2300

	incomplete(284).txt
	0.5900
	0.4075
	0.5900
	0.4050

	incomplete(285).txt
	0.5275
	0.4450
	0.8150
	0.2700

	incomplete(286).txt
	0.5075
	0.4850
	0.6050
	0.4900

	incomplete(287).txt
	0.7475
	0.4450
	0.3750
	0.2500

	incomplete(288).txt
	0.7275
	0.4100
	0.4550
	0.3100

	incomplete(289).txt
	0.7150
	0.4900
	0.4300
	0.3300

	incomplete(290).txt
	0.5025
	0.4375
	0.9950
	0.2550

	incomplete(291).txt
	0.9100
	0.2225
	0.1800
	0.2450

	incomplete(291).txt
	0.7425
	0.3125
	0.1650
	0.2350

	incomplete(291).txt
	0.5825
	0.4025
	0.1550
	0.2350

	incomplete(291).txt
	0.4300
	0.4700
	0.1500
	0.2200

	incomplete(291).txt
	0.2900
	0.5325
	0.1200
	0.2250

	incomplete(291).txt
	0.1275
	0.6250
	0.2350
	0.2100

	incomplete(292).txt
	0.4300
	0.5050
	0.2200
	0.9900

	incomplete(293).txt
	0.2000
	0.2475
	0.3900
	0.4850

	incomplete(293).txt
	0.5650
	0.5600
	0.4000
	0.4500

	incomplete(293).txt
	0.8375
	0.8325
	0.2450
	0.3350

	incomplete(294).txt
	0.5025
	0.5275
	0.9950
	0.3450

	incomplete(295).txt
	0.4225
	0.3375
	0.4650
	0.5350

	incomplete(295).txt
	0.8350
	0.6375
	0.2200
	0.3350

	incomplete(297).txt
	0.7925
	0.6075
	0.3250
	0.4050

	incomplete(299).txt
	0.6725
	0.6725
	0.2450
	0.2950

	incomplete(3).txt
	0.5400
	0.3600
	0.2500
	0.3000

	incomplete(30).txt
	0.5400
	0.5175
	0.1900
	0.1950

	incomplete(31).txt
	0.5325
	0.5275
	0.2050
	0.2450

	incomplete(33).txt
	0.5200
	0.5425
	0.0900
	0.2550

	incomplete(35).txt
	0.4925
	0.5450
	0.2350
	0.2000

	incomplete(37).txt
	0.4700
	0.5250
	0.3000
	0.1600

	incomplete(38).txt
	0.4625
	0.5150
	0.2650
	0.1500

	incomplete(39).txt
	0.4575
	0.4800
	0.2350
	0.1900

	incomplete(40).txt
	0.4525
	0.4550
	0.1750
	0.2000

	incomplete(41).txt
	0.4825
	0.4775
	0.2250
	0.2450

	incomplete(42).txt
	0.4825
	0.4325
	0.1550
	0.2850

	incomplete(43).txt
	0.5200
	0.4350
	0.1400
	0.2500

	incomplete(44).txt
	0.5200
	0.4350
	0.1500
	0.2400

	incomplete(45).txt
	0.5375
	0.4500
	0.2150
	0.1600

	incomplete(46).txt
	0.5450
	0.4550
	0.2400
	0.1400

	incomplete(47).txt
	0.5500
	0.4875
	0.3100
	0.2150

	incomplete(48).txt
	0.5600
	0.5125
	0.2600
	0.2250

	incomplete(49).txt
	0.5025
	0.4775
	0.1850
	0.2250

	incomplete(51).txt
	0.6600
	0.6500
	0.3200
	0.5200

	incomplete(54).txt
	0.4425
	0.6700
	0.4650
	0.3300

	incomplete(55).txt
	0.4000
	0.6200
	0.5600
	0.2600

	incomplete(58).txt
	0.3300
	0.5825
	0.4700
	0.2250

	incomplete(6).txt
	0.6250
	0.4100
	0.2100
	0.3800

	incomplete(62).txt
	0.3600
	0.3775
	0.2900
	0.4650

	incomplete(64).txt
	0.4850
	0.2800
	0.2100
	0.4500

	incomplete(66).txt
	0.6200
	0.3200
	0.4900
	0.2200

	incomplete(67).txt
	0.7125
	0.4300
	0.5450
	0.2600

	incomplete(68).txt
	0.7300
	0.5150
	0.4600
	0.3500

	incomplete(7).txt
	0.6725
	0.4650
	0.1650
	0.3100

	incomplete(71).txt
	0.5200
	0.4825
	0.9500
	0.7650

	incomplete(72).txt
	0.5275
	0.4950
	0.9450
	0.8900

	incomplete(73).txt
	0.5700
	0.4800
	0.8600
	0.8400

	incomplete(74).txt
	0.5850
	0.5300
	0.8200
	0.9100

	incomplete(75).txt
	0.6025
	0.5150
	0.7450
	0.9500

	incomplete(76).txt
	0.6050
	0.5025
	0.7900
	0.9450

	incomplete(77).txt
	0.6125
	0.5025
	0.7550
	0.9950

	incomplete(79).txt
	0.5550
	0.5050
	0.6900
	0.9100

	incomplete(8).txt
	0.6750
	0.5175
	0.2300
	0.2050

	incomplete(80).txt
	0.4975
	0.5575
	0.9250
	0.7750

	incomplete(81).txt
	0.5000
	0.5525
	0.9800
	0.8250

	incomplete(83).txt
	0.4925
	0.5000
	0.9450
	0.9400

	incomplete(85).txt
	0.4225
	0.5125
	0.8350
	0.9650

	incomplete(86).txt
	0.4375
	0.5025
	0.8150
	0.9750

	incomplete(88).txt
	0.4975
	0.4825
	0.7950
	0.9450

	incomplete(89).txt
	0.4800
	0.4700
	0.8200
	0.9300

	incomplete(9).txt
	0.6275
	0.5575
	0.3150
	0.1750

	incomplete(90).txt
	0.4975
	0.4225
	0.9850
	0.8050

	incomplete(92).txt
	0.5050
	0.4500
	0.9900
	0.7500

	incomplete(93).txt
	0.4900
	0.4925
	0.2400
	0.3350

	incomplete(94).txt
	0.5125
	0.4775
	0.1550
	0.2950

	incomplete(95).txt
	0.4775
	0.4850
	0.2450
	0.3100

	incomplete(96).txt
	0.4750
	0.4825
	0.2300
	0.2550

	incomplete(97).txt
	0.5125
	0.5275
	0.3150
	0.2050

	incomplete(98).txt
	0.5075
	0.5050
	0.3150
	0.2200

	incomplete(99).txt
	0.5125
	0.4700
	0.3050
	0.2200

	mineralization (1).txt
	0.5500
	0.5075
	0.9000
	0.8150

	mineralization (1).txt
	0.5850
	0.4450
	0.8100
	0.7800

	mineralization (100).txt
	0.5025
	0.4975
	0.9850
	0.9850

	mineralization (103).txt
	0.4950
	0.4700
	0.9600
	0.9200

	mineralization (104).txt
	0.5175
	0.4950
	0.9650
	0.9800

	mineralization (105).txt
	0.5050
	0.5050
	0.9800
	0.9900

	mineralization (106).txt
	0.4975
	0.4825
	0.9850
	0.9550

	mineralization (108).txt
	0.7575
	0.3625
	0.4850
	0.7150

	mineralization (109).txt
	0.5075
	0.5050
	0.9850
	0.9900

	mineralization (110).txt
	0.5075
	0.5050
	0.9850
	0.9900

	mineralization (111).txt
	0.5050
	0.5100
	0.9900
	0.9800

	mineralization (112).txt
	0.5025
	0.5025
	0.9950
	0.9950

	mineralization (113).txt
	0.5025
	0.4825
	0.9950
	0.9550

	mineralization (115).txt
	0.4925
	0.4875
	0.9550
	0.9350

	mineralization (116).txt
	0.5025
	0.5050
	0.9750
	0.9900

	mineralization (117).txt
	0.5050
	0.5000
	0.9900
	0.9900

	mineralization (118).txt
	0.4925
	0.5000
	0.9650
	0.9800

	mineralization (121).txt
	0.4975
	0.5050
	0.9750
	0.9900

	mineralization (122).txt
	0.4900
	0.5050
	0.9600
	0.9900

	mineralization (123).txt
	0.5025
	0.5050
	0.9750
	0.9900

	mineralization (126).txt
	0.5050
	0.4975
	0.9900
	0.9850

	mineralization (127).txt
	0.5050
	0.5050
	0.9900
	0.9800

	mineralization (128).txt
	0.5050
	0.5075
	0.9900
	0.9850

	mineralization (129).txt
	0.5025
	0.5050
	0.9750
	0.9900

	mineralization (13).txt
	0.5150
	0.4950
	0.8800
	0.9600

	mineralization (130).txt
	0.5125
	0.5075
	0.9750
	0.9850

	mineralization (131).txt
	0.5050
	0.5050
	0.9900
	0.9800

	mineralization (132).txt
	0.5050
	0.4975
	0.9800
	0.9750

	mineralization (133).txt
	0.5050
	0.5025
	0.9900
	0.9950

	mineralization (134).txt
	0.4875
	0.5025
	0.9550
	0.9950

	mineralization (135).txt
	0.5025
	0.5075
	0.9950
	0.9850

	mineralization (136).txt
	0.5025
	0.5025
	0.9950
	0.9950

	mineralization (137).txt
	0.4925
	0.5050
	0.9550
	0.9900

	mineralization (138).txt
	0.5125
	0.4950
	0.9750
	0.9800

	mineralization (139).txt
	0.5050
	0.5000
	0.9900
	0.9800

	mineralization (14).txt
	0.4750
	0.5750
	0.7900
	0.8500

	mineralization (140).txt
	0.5050
	0.5050
	0.9900
	0.9900

	mineralization (141).txt
	0.4800
	0.5025
	0.9500
	0.9950

	mineralization (142).txt
	0.5100
	0.5025
	0.9800
	0.9950

	mineralization (144).txt
	0.5075
	0.5050
	0.9750
	0.9900

	mineralization (145).txt
	0.5025
	0.4850
	0.9750
	0.9500

	mineralization (146).txt
	0.4925
	0.5025
	0.9550
	0.9950

	mineralization (147).txt
	0.5100
	0.5100
	0.9800
	0.9800

	mineralization (148).txt
	0.5000
	0.5000
	0.9700
	0.9700

	mineralization (15).txt
	0.4825
	0.5125
	0.9350
	0.9150

	mineralization (151).txt
	0.5050
	0.5075
	0.9700
	0.9850

	mineralization (152).txt
	0.5100
	0.5025
	0.9800
	0.9950

	mineralization (153).txt
	0.5075
	0.5125
	0.9850
	0.9750

	mineralization (154).txt
	0.4925
	0.5050
	0.9350
	0.9900

	mineralization (155).txt
	0.5050
	0.5075
	0.9900
	0.9850

	mineralization (156).txt
	0.5050
	0.5100
	0.9900
	0.9800

	mineralization (157).txt
	0.5100
	0.5075
	0.9800
	0.9850

	mineralization (158).txt
	0.4925
	0.5075
	0.9650
	0.9850

	mineralization (159).txt
	0.4900
	0.4800
	0.9400
	0.9400

	mineralization (16).txt
	0.4950
	0.5225
	0.8800
	0.9050

	mineralization (160).txt
	0.5000
	0.5100
	0.9400
	0.9800

	mineralization (161).txt
	0.5050
	0.4925
	0.9900
	0.9550

	mineralization (162).txt
	0.5075
	0.5100
	0.9850
	0.9800

	mineralization (163).txt
	0.5125
	0.5025
	0.9750
	0.9950

	mineralization (164).txt
	0.5075
	0.5100
	0.9850
	0.9800

	mineralization (165).txt
	0.5200
	0.5100
	0.9600
	0.9800

	mineralization (166).txt
	0.5125
	0.4925
	0.9450
	0.9450

	mineralization (168).txt
	0.5050
	0.5025
	0.9900
	0.9950

	mineralization (169).txt
	0.5175
	0.5000
	0.9350
	0.9500

	mineralization (17).txt
	0.4850
	0.5375
	0.8600
	0.8850

	mineralization (170).txt
	0.5000
	0.5025
	0.9600
	0.9650

	mineralization (171).txt
	0.4975
	0.4950
	0.8850
	0.9400

	mineralization (173).txt
	0.5075
	0.4575
	0.9650
	0.9050

	mineralization (175).txt
	0.5050
	0.4875
	0.9800
	0.9550

	mineralization (176).txt
	0.4950
	0.4900
	0.9600
	0.9500

	mineralization (178).txt
	0.4975
	0.5025
	0.9650
	0.9750

	mineralization (180).txt
	0.5025
	0.4825
	0.9650
	0.9450

	mineralization (181).txt
	0.4900
	0.5075
	0.9600
	0.9850

	mineralization (182).txt
	0.4900
	0.4850
	0.9300
	0.9400

	mineralization (183).txt
	0.4975
	0.4875
	0.9650
	0.9650

	mineralization (184).txt
	0.5125
	0.4950
	0.9750
	0.9600

	mineralization (186).txt
	0.4950
	0.4975
	0.9500
	0.9750

	mineralization (187).txt
	0.4975
	0.5000
	0.9450
	0.9800

	mineralization (188).txt
	0.5025
	0.5025
	0.9950
	0.9950

	mineralization (189).txt
	0.4975
	0.5000
	0.9650
	0.9600

	mineralization (19).txt
	0.5150
	0.4925
	0.9700
	0.8850

	mineralization (190).txt
	0.5100
	0.4975
	0.9800
	0.9650

	mineralization (191).txt
	0.5025
	0.5050
	0.9650
	0.9900

	mineralization (193).txt
	0.5125
	0.5025
	0.9750
	0.9650

	mineralization (194).txt
	0.5100
	0.5050
	0.9700
	0.9900

	mineralization (195).txt
	0.4900
	0.5050
	0.9600
	0.9800

	mineralization (196).txt
	0.4850
	0.5025
	0.9600
	0.9950

	mineralization (197).txt
	0.5100
	0.5050
	0.9800
	0.9900

	mineralization (198).txt
	0.5000
	0.5025
	0.9800
	0.9950

	mineralization (199).txt
	0.5050
	0.5025
	0.9900
	0.9950

	mineralization (2).txt
	0.6900
	0.5425
	0.5500
	0.6850

	mineralization (20).txt
	0.5025
	0.5075
	0.8950
	0.9350

	mineralization (201).txt
	0.5025
	0.5025
	0.9950
	0.9750

	mineralization (202).txt
	0.5000
	0.5050
	0.9400
	0.9900

	mineralization (203).txt
	0.5125
	0.5050
	0.9750
	0.9800

	mineralization (204).txt
	0.5125
	0.4975
	0.9750
	0.9750

	mineralization (205).txt
	0.5075
	0.4950
	0.9850
	0.9800

	mineralization (207).txt
	0.5000
	0.5050
	0.9300
	0.9800

	mineralization (208).txt
	0.4975
	0.4975
	0.9350
	0.9850

	mineralization (21).txt
	0.5025
	0.5175
	0.9150
	0.9150

	mineralization (211).txt
	0.5025
	0.5075
	0.9650
	0.9850

	mineralization (212).txt
	0.5225
	0.5025
	0.9550
	0.9950

	mineralization (213).txt
	0.5050
	0.5075
	0.9900
	0.9850

	mineralization (214).txt
	0.5150
	0.5050
	0.9700
	0.9900

	mineralization (215).txt
	0.5125
	0.5025
	0.9750
	0.9950

	mineralization (217).txt
	0.5050
	0.5050
	0.9900
	0.9900

	mineralization (218).txt
	0.5000
	0.5025
	0.9600
	0.9950

	mineralization (219).txt
	0.5025
	0.5050
	0.9850
	0.9900

	mineralization (22).txt
	0.5050
	0.4900
	0.9300
	0.9100

	mineralization (221).txt
	0.4975
	0.5025
	0.9450
	0.9950

	mineralization (222).txt
	0.5025
	0.5025
	0.9950
	0.9950

	mineralization (223).txt
	0.5100
	0.4825
	0.9800
	0.9550

	mineralization (224).txt
	0.5200
	0.5100
	0.9600
	0.9800

	mineralization (225).txt
	0.4600
	0.5050
	0.8300
	0.9900

	mineralization (226).txt
	0.4650
	0.5125
	0.8400
	0.9750

	mineralization (227).txt
	0.5025
	0.5075
	0.9950
	0.9850

	mineralization (228).txt
	0.5200
	0.5100
	0.9600
	0.9800

	mineralization (229).txt
	0.5200
	0.5100
	0.9600
	0.9800

	mineralization (230).txt
	0.5025
	0.5075
	0.9950
	0.9850

	mineralization (231).txt
	0.5075
	0.5025
	0.9850
	0.9950

	mineralization (232).txt
	0.4975
	0.4950
	0.9750
	0.9600

	mineralization (233).txt
	0.5050
	0.5075
	0.9300
	0.9850

	mineralization (234).txt
	0.4875
	0.5050
	0.9250
	0.9900

	mineralization (235).txt
	0.4950
	0.5050
	0.9700
	0.9900

	mineralization (237).txt
	0.5075
	0.5075
	0.9850
	0.9850

	mineralization (238).txt
	0.4950
	0.5025
	0.9500
	0.9950

	mineralization (239).txt
	0.5125
	0.5075
	0.9750
	0.9850

	mineralization (24).txt
	0.4975
	0.5125
	0.9150
	0.9350

	mineralization (241).txt
	0.5025
	0.5050
	0.9950
	0.9900

	mineralization (242).txt
	0.5050
	0.5100
	0.9900
	0.9800

	mineralization (243).txt
	0.5050
	0.5100
	0.9900
	0.9800

	mineralization (244).txt
	0.5125
	0.5050
	0.9750
	0.9700

	mineralization (245).txt
	0.5050
	0.5025
	0.9800
	0.9950

	mineralization (246).txt
	0.5025
	0.5025
	0.9750
	0.9950

	mineralization (249).txt
	0.5100
	0.4475
	0.9800
	0.8650

	mineralization (25).txt
	0.4625
	0.4825
	0.9050
	0.9050

	mineralization (251).txt
	0.4925
	0.5075
	0.9650
	0.9850

	mineralization (252).txt
	0.5050
	0.4950
	0.9400
	0.9500

	mineralization (253).txt
	0.5075
	0.5025
	0.9650
	0.9550

	mineralization (254).txt
	0.5025
	0.5100
	0.9950
	0.9800

	mineralization (255).txt
	0.5050
	0.5125
	0.9900
	0.9750

	mineralization (256).txt
	0.4850
	0.5100
	0.9400
	0.9800

	mineralization (257).txt
	0.5150
	0.5100
	0.9700
	0.9800

	mineralization (258).txt
	0.5100
	0.5050
	0.9800
	0.9900

	mineralization (259).txt
	0.5050
	0.5025
	0.9900
	0.9950

	mineralization (26).txt
	0.5100
	0.4850
	0.9300
	0.9000

	mineralization (261).txt
	0.5225
	0.5100
	0.9550
	0.9800

	mineralization (262).txt
	0.4950
	0.5175
	0.9300
	0.9650

	mineralization (264).txt
	0.5075
	0.5050
	0.9850
	0.9900

	mineralization (265).txt
	0.5025
	0.5075
	0.9950
	0.9850

	mineralization (267).txt
	0.5000
	0.5100
	0.9800
	0.9800

	mineralization (268).txt
	0.5050
	0.5100
	0.9600
	0.9800

	mineralization (269).txt
	0.5100
	0.4975
	0.9800
	0.9550

	mineralization (27).txt
	0.5200
	0.4550
	0.9400
	0.8100

	mineralization (270).txt
	0.5150
	0.5025
	0.9700
	0.9550

	mineralization (271).txt
	0.5125
	0.5075
	0.9750
	0.9750

	mineralization (272).txt
	0.5100
	0.5050
	0.9800
	0.9900

	mineralization (273).txt
	0.5025
	0.5100
	0.9950
	0.9800

	mineralization (274).txt
	0.5025
	0.5050
	0.9950
	0.9900

	mineralization (278).txt
	0.5050
	0.5075
	0.9900
	0.9750

	mineralization (279).txt
	0.5125
	0.4675
	0.9750
	0.9150

	mineralization (28).txt
	0.5225
	0.3575
	0.9550
	0.6150

	mineralization (281).txt
	0.5050
	0.4600
	0.9900
	0.9100

	mineralization (282).txt
	0.4950
	0.4875
	0.9600
	0.9550

	mineralization (283).txt
	0.5100
	0.5075
	0.9800
	0.9850

	mineralization (285).txt
	0.4950
	0.5100
	0.9500
	0.9800

	mineralization (286).txt
	0.5125
	0.4975
	0.9750
	0.9750

	mineralization (287).txt
	0.5125
	0.5075
	0.9650
	0.9850

	mineralization (288).txt
	0.5125
	0.5075
	0.9750
	0.9850

	mineralization (289).txt
	0.5050
	0.5050
	0.9900
	0.9800

	mineralization (29).txt
	0.5250
	0.4925
	0.9500
	0.9150

	mineralization (290).txt
	0.5075
	0.5050
	0.9850
	0.9900

	mineralization (292).txt
	0.5100
	0.5100
	0.9800
	0.9800

	mineralization (293).txt
	0.5100
	0.5100
	0.9800
	0.9800

	mineralization (294).txt
	0.5200
	0.5100
	0.9600
	0.9800

	mineralization (295).txt
	0.5125
	0.5100
	0.9750
	0.9800

	mineralization (297).txt
	0.4950
	0.5050
	0.9500
	0.9800

	mineralization (297).txt
	0.6875
	0.5525
	0.6250
	0.8950

	mineralization (298).txt
	0.5050
	0.4725
	0.9000
	0.8550

	mineralization (299).txt
	0.4900
	0.4975
	0.9100
	0.9350

	mineralization (3).txt
	0.5500
	0.2975
	0.9000
	0.5250

	mineralization (30).txt
	0.5100
	0.4800
	0.9800
	0.8700

	mineralization (300).txt
	0.5025
	0.5125
	0.9450
	0.9750

	mineralization (31).txt
	0.5150
	0.4575
	0.9500
	0.8450

	mineralization (32).txt
	0.5100
	0.5250
	0.9100
	0.9400

	mineralization (33).txt
	0.4900
	0.4925
	0.9000
	0.9050

	mineralization (34).txt
	0.4725
	0.5000
	0.8850
	0.9200

	mineralization (37).txt
	0.4900
	0.5100
	0.8400
	0.9400

	mineralization (38).txt
	0.4525
	0.5000
	0.7950
	0.9000

	mineralization (40).txt
	0.5475
	0.4775
	0.9050
	0.8950

	mineralization (43).txt
	0.5375
	0.5250
	0.9150
	0.9500

	mineralization (45).txt
	0.5025
	0.4550
	0.9750
	0.8800

	mineralization (46).txt
	0.5325
	0.4975
	0.9350
	0.9150

	mineralization (47).txt
	0.5250
	0.5125
	0.9500
	0.9350

	mineralization (48).txt
	0.5325
	0.5200
	0.9350
	0.9600

	mineralization (49).txt
	0.5275
	0.5250
	0.9450
	0.9500

	mineralization (5).txt
	0.5525
	0.5075
	0.7750
	0.8850

	mineralization (50).txt
	0.4975
	0.4850
	0.8550
	0.8800

	mineralization (51).txt
	0.5250
	0.4825
	0.9500
	0.8850

	mineralization (53).txt
	0.4900
	0.5025
	0.8900
	0.9950

	mineralization (54).txt
	0.4750
	0.4750
	0.9400
	0.9100

	mineralization (55).txt
	0.5050
	0.5050
	0.9900
	0.9900

	mineralization (56).txt
	0.4975
	0.4800
	0.8950
	0.9200

	mineralization (57).txt
	0.5175
	0.5000
	0.9550
	0.9900

	mineralization (58).txt
	0.4775
	0.5100
	0.8950
	0.9800

	mineralization (59).txt
	0.5075
	0.5025
	0.9850
	0.9750

	mineralization (6).txt
	0.5125
	0.3925
	0.9550
	0.6050

	mineralization (60).txt
	0.5025
	0.4925
	0.9950
	0.9350

	mineralization (61).txt
	0.5200
	0.5050
	0.9600
	0.9800

	mineralization (62).txt
	0.5175
	0.5025
	0.9650
	0.9950

	mineralization (63).txt
	0.5025
	0.4775
	0.9250
	0.9150

	mineralization (65).txt
	0.5700
	0.2125
	0.6200
	0.3950

	mineralization (65).txt
	0.2375
	0.8250
	0.2550
	0.2700

	mineralization (65).txt
	0.8075
	0.7100
	0.3850
	0.5100

	mineralization (66).txt
	0.5575
	0.6225
	0.8850
	0.7150

	mineralization (66).txt
	0.6900
	0.1275
	0.6200
	0.2450

	mineralization (67).txt
	0.5050
	0.4575
	0.8000
	0.5250

	mineralization (68).txt
	0.5075
	0.3950
	0.8250
	0.5400

	mineralization (69).txt
	0.6075
	0.2350
	0.6250
	0.4000

	mineralization (69).txt
	0.1550
	0.8100
	0.2900
	0.2800

	mineralization (69).txt
	0.8575
	0.8925
	0.2850
	0.2150

	mineralization (7).txt
	0.4950
	0.4900
	0.8800
	0.9000

	mineralization (70).txt
	0.5700
	0.5825
	0.6200
	0.5850

	mineralization (71).txt
	0.3475
	0.4975
	0.4250
	0.3650

	mineralization (71).txt
	0.6275
	0.2175
	0.6150
	0.2750

	mineralization (71).txt
	0.8875
	0.5900
	0.2250
	0.4100

	mineralization (71).txt
	0.0975
	0.7850
	0.1750
	0.2100

	mineralization (71).txt
	0.1800
	0.1850
	0.3000
	0.3600

	mineralization (72).txt
	0.2525
	0.3175
	0.4850
	0.3450

	mineralization (72).txt
	0.8050
	0.8050
	0.3900
	0.3100

	mineralization (72).txt
	0.1300
	0.7675
	0.2500
	0.4550

	mineralization (73).txt
	0.3800
	0.3950
	0.5000
	0.5100

	mineralization (73).txt
	0.8575
	0.2950
	0.2850
	0.1900

	mineralization (73).txt
	0.5250
	0.0625
	0.1900
	0.1050

	mineralization (74).txt
	0.1350
	0.3525
	0.2600
	0.2450

	mineralization (74).txt
	0.1675
	0.6900
	0.3150
	0.2900

	mineralization (74).txt
	0.6925
	0.6350
	0.4050
	0.4100

	mineralization (74).txt
	0.8925
	0.3200
	0.1250
	0.1300

	mineralization (75).txt
	0.1625
	0.1950
	0.3150
	0.3100

	mineralization (75).txt
	0.8325
	0.3500
	0.3350
	0.2600

	mineralization (75).txt
	0.6825
	0.0850
	0.5050
	0.1600

	mineralization (75).txt
	0.4450
	0.8450
	0.5200
	0.3100

	mineralization (76).txt
	0.1150
	0.1775
	0.2000
	0.1850

	mineralization (76).txt
	0.1600
	0.3975
	0.2400
	0.1550

	mineralization (76).txt
	0.5225
	0.3625
	0.2850
	0.2550

	mineralization (76).txt
	0.4325
	0.7900
	0.1050
	0.1300

	mineralization (76).txt
	0.8175
	0.8750
	0.1950
	0.2500

	mineralization (76).txt
	0.8200
	0.6000
	0.2800
	0.1600

	mineralization (76).txt
	0.9325
	0.0550
	0.1350
	0.1000

	mineralization (76).txt
	0.6575
	0.1625
	0.1450
	0.1250

	mineralization (76).txt
	0.9350
	0.2700
	0.1300
	0.1600

	mineralization (77).txt
	0.1450
	0.3025
	0.2600
	0.2150

	mineralization (77).txt
	0.2050
	0.5575
	0.2600
	0.1750

	mineralization (77).txt
	0.6225
	0.5450
	0.3250
	0.3000

	mineralization (77).txt
	0.8300
	0.3175
	0.1900
	0.1450

	mineralization (77).txt
	0.9325
	0.7750
	0.1250
	0.3100

	mineralization (78).txt
	0.5800
	0.3775
	0.7500
	0.6950

	mineralization (79).txt
	0.5800
	0.4925
	0.7500
	0.9750

	mineralization (8).txt
	0.5075
	0.4175
	0.9250
	0.8150

	mineralization (80).txt
	0.5075
	0.5050
	0.9550
	0.9700

	mineralization (81).txt
	0.4975
	0.5075
	0.9650
	0.9850

	mineralization (82).txt
	0.5025
	0.5025
	0.9850
	0.9750

	mineralization (83).txt
	0.4950
	0.4750
	0.9800
	0.9400

	mineralization (84).txt
	0.4950
	0.4975
	0.9700
	0.9750

	mineralization (85).txt
	0.5050
	0.5075
	0.9900
	0.9850

	mineralization (86).txt
	0.5000
	0.5025
	0.9800
	0.9950

	mineralization (87).txt
	0.5125
	0.5000
	0.9750
	0.9800

	mineralization (88).txt
	0.4975
	0.4975
	0.9650
	0.9850

	mineralization (89).txt
	0.5050
	0.4900
	0.9900
	0.9600

	mineralization (9).txt
	0.4725
	0.3925
	0.8450
	0.6750

	mineralization (90).txt
	0.5050
	0.4950
	0.9900
	0.9700

	mineralization (92).txt
	0.5050
	0.4325
	0.9900
	0.8150

	mineralization (94).txt
	0.5050
	0.4850
	0.9900
	0.9500

	mineralization (95).txt
	0.5075
	0.5000
	0.9850
	0.9800

	mineralization (96).txt
	0.5025
	0.5025
	0.9950
	0.9950

	mineralization (97).txt
	0.4825
	0.4925
	0.9450
	0.9550

	mineralization (98).txt
	0.5575
	0.5025
	0.8850
	0.9950

Table S2. The label information corresponding to the validation set images
	Picture
	x
	y
	w
	h

	cracking(1).txt
	0.4600
	0.5025
	0.5100
	0.9950

	cracking(10).txt
	0.4500
	0.5875
	0.8900
	0.1450

	cracking(109).txt
	0.5025
	0.4100
	0.9950
	0.5300

	cracking(121).txt
	0.5025
	0.5450
	0.9950
	0.2100

	cracking(125).txt
	0.4400
	0.5025
	0.1900
	0.9950

	cracking(133).txt
	0.5075
	0.5625
	0.8850
	0.2450

	cracking(137).txt
	0.4325
	0.5000
	0.3350
	0.9100

	cracking(139).txt
	0.4375
	0.5025
	0.5150
	0.9950

	cracking(14).txt
	0.5725
	0.5025
	0.5150
	0.9950

	cracking(15).txt
	0.5025
	0.7350
	0.9950
	0.3100

	cracking(162).txt
	0.5200
	0.4800
	0.9600
	0.6700

	cracking(164).txt
	0.5125
	0.5025
	0.6050
	0.9950

	cracking(169).txt
	0.5275
	0.4825
	0.4950
	0.9550

	cracking(178).txt
	0.4900
	0.4425
	0.5300
	0.8750

	cracking(20).txt
	0.5225
	0.6100
	0.9350
	0.7800

	cracking(22).txt
	0.4700
	0.2475
	0.9300
	0.0850

	cracking(22).txt
	0.5175
	0.6525
	0.3250
	0.6950

	cracking(35).txt
	0.6200
	0.5025
	0.2100
	0.9950

	cracking(38).txt
	0.7900
	0.5025
	0.2600
	0.9950

	cracking(53).txt
	0.3850
	0.5400
	0.2600
	0.7000

	cracking(56).txt
	0.3850
	0.7100
	0.1300
	0.5800

	cracking(56).txt
	0.6950
	0.5025
	0.4500
	0.9950

	cracking(6).txt
	0.5025
	0.6300
	0.9950
	0.7400

	cracking(65).txt
	0.8300
	0.5025
	0.3400
	0.9950

	cracking(73).txt
	0.3925
	0.5050
	0.2650
	0.9900

	cracking(8).txt
	0.5018
	0.3834
	0.9965
	0.3074

	cracking(80).txt
	0.5000
	0.5025
	0.2500
	0.9950

	cracking(80).txt
	0.3325
	0.5625
	0.3350
	0.4450

	cracking(81).txt
	0.4575
	0.5025
	0.4750
	0.9950

	cracking(85).txt
	0.3000
	0.5500
	0.1200
	0.9000

	cracking(85).txt
	0.4750
	0.3425
	0.3400
	0.6750

	cracking(9).txt
	0.5025
	0.4525
	0.9950
	0.4550

	cracking(90).txt
	0.2250
	0.3650
	0.4400
	0.2000

	cracking(90).txt
	0.5600
	0.5275
	0.8800
	0.1450

	cracking(91).txt
	0.5025
	0.4650
	0.9950
	0.2600

	cracking(91).txt
	0.4850
	0.6675
	0.7600
	0.2350

	cracking(93).txt
	0.5025
	0.3700
	0.9950
	0.2200

	holes (10).txt
	0.7125
	0.7750
	0.2050
	0.2100

	holes (10).txt
	0.4300
	0.6700
	0.1800
	0.1700

	holes (10).txt
	0.5500
	0.8200
	0.0900
	0.1100

	holes (10).txt
	0.3575
	0.7975
	0.1350
	0.1150

	holes (10).txt
	0.3025
	0.9250
	0.1050
	0.1200

	holes (101).txt
	0.5075
	0.5050
	0.0950
	0.1500

	holes (101).txt
	0.2275
	0.2700
	0.0950
	0.0800

	holes (101).txt
	0.0550
	0.3500
	0.1000
	0.1000

	holes (101).txt
	0.4625
	0.1775
	0.1050
	0.0950

	holes (101).txt
	0.7900
	0.6600
	0.0900
	0.1000

	holes (102).txt
	0.2475
	0.5100
	0.2150
	0.2000

	holes (102).txt
	0.6450
	0.5400
	0.1800
	0.1800

	holes (104).txt
	0.4850
	0.5275
	0.1500
	0.1950

	holes (105).txt
	0.7375
	0.4025
	0.2550
	0.2250

	holes (110).txt
	0.8825
	0.4750
	0.1650
	0.1600

	holes (110).txt
	0.5075
	0.8325
	0.1150
	0.1150

	holes (110).txt
	0.1900
	0.3050
	0.1000
	0.1100

	holes (110).txt
	0.3850
	0.5250
	0.1400
	0.1300

	holes (110).txt
	0.4200
	0.3975
	0.1100
	0.1250

	holes (110).txt
	0.9700
	0.0750
	0.0500
	0.0900

	holes (116).txt
	0.2300
	0.6000
	0.2500
	0.1800

	holes (119).txt
	0.5275
	0.5550
	0.1950
	0.1400

	holes (119).txt
	0.2950
	0.9400
	0.1500
	0.1200

	holes (122).txt
	0.3175
	0.3325
	0.1950
	0.1750

	holes (122).txt
	0.6450
	0.7675
	0.2000
	0.1450

	holes (124).txt
	0.3625
	0.4050
	0.2150
	0.2100

	holes (124).txt
	0.7150
	0.8050
	0.1200
	0.2100

	holes (128).txt
	0.4500
	0.2150
	0.1600
	0.1600

	holes (128).txt
	0.6100
	0.4075
	0.1800
	0.2550

	holes (128).txt
	0.5875
	0.9250
	0.1250
	0.1500

	holes (130).txt
	0.8600
	0.4325
	0.1500
	0.1750

	holes (133).txt
	0.3250
	0.3450
	0.2200
	0.1700

	holes (138).txt
	0.7550
	0.2650
	0.1300
	0.1900

	holes (141).txt
	0.3575
	0.3500
	0.1350
	0.1800

	holes (142).txt
	0.2200
	0.3775
	0.1600
	0.1550

	holes (149).txt
	0.6350
	0.3650
	0.2000
	0.2700

	holes (154).txt
	0.6500
	0.1150
	0.1400
	0.1500

	holes (155).txt
	0.5325
	0.4600
	0.1050
	0.1600

	holes (157).txt
	0.4350
	0.4400
	0.1600
	0.1400

	holes (159).txt
	0.7850
	0.3575
	0.1600
	0.1150

	holes (16).txt
	0.6400
	0.2250
	0.1500
	0.2200

	holes (16).txt
	0.6600
	0.4500
	0.0900
	0.1100

	holes (16).txt
	0.8025
	0.5550
	0.1250
	0.1200

	holes (16).txt
	0.9525
	0.5300
	0.0950
	0.1200

	holes (16).txt
	0.7900
	0.3725
	0.0800
	0.0950

	holes (165).txt
	0.7800
	0.2800
	0.2400
	0.2100

	holes (166).txt
	0.4100
	0.4575
	0.2000
	0.1850

	holes (167).txt
	0.3950
	0.3350
	0.1700
	0.1500

	holes (170).txt
	0.5475
	0.4100
	0.1550
	0.1000

	holes (179).txt
	0.4575
	0.8075
	0.2250
	0.1850

	holes (180).txt
	0.4775
	0.8175
	0.1550
	0.1950

	holes (181).txt
	0.5900
	0.3600
	0.1400
	0.1300

	holes (182).txt
	0.8800
	0.5625
	0.2300
	0.1650

	holes (183).txt
	0.8650
	0.3500
	0.1500
	0.2000

	holes (185).txt
	0.2925
	0.2850
	0.1950
	0.1400

	holes (187).txt
	0.4500
	0.2700
	0.2400
	0.2400

	holes (188).txt
	0.6400
	0.2825
	0.1700
	0.2050

	holes (191).txt
	0.5825
	0.5975
	0.2050
	0.1850

	holes (191).txt
	0.4850
	0.4975
	0.1900
	0.1150

	holes (192).txt
	0.1275
	0.3575
	0.2450
	0.2650

	holes (192).txt
	0.2600
	0.7525
	0.2100
	0.2650

	holes (2).txt
	0.2925
	0.2425
	0.1750
	0.1250

	holes (2).txt
	0.7350
	0.1100
	0.1300
	0.1200

	holes (213).txt
	0.4725
	0.3125
	0.1950
	0.2350

	holes (213).txt
	0.8400
	0.5325
	0.1400
	0.1150

	holes (213).txt
	0.9075
	0.3675
	0.0950
	0.1050

	holes (213).txt
	0.5775
	0.5150
	0.0950
	0.0800

	holes (213).txt
	0.7200
	0.5850
	0.0900
	0.1100

	holes (215).txt
	0.1875
	0.2350
	0.1850
	0.1200

	holes (217).txt
	0.0900
	0.4450
	0.1500
	0.1700

	holes (217).txt
	0.2950
	0.3475
	0.1000
	0.0950

	holes (217).txt
	0.2625
	0.2475
	0.0950
	0.0750

	holes (217).txt
	0.4750
	0.1575
	0.1000
	0.0850

	holes (217).txt
	0.6725
	0.4975
	0.1050
	0.1350

	holes (222).txt
	0.4825
	0.3100
	0.1850
	0.2100

	holes (222).txt
	0.8425
	0.4925
	0.1150
	0.1450

	holes (222).txt
	0.8125
	0.2600
	0.0650
	0.0800

	holes (222).txt
	0.9050
	0.3525
	0.1100
	0.0850

	holes (225).txt
	0.2375
	0.3425
	0.1950
	0.1750

	holes (227).txt
	0.4100
	0.5325
	0.1700
	0.1850

	holes (227).txt
	0.8750
	0.5750
	0.2200
	0.1600

	holes (227).txt
	0.0400
	0.9350
	0.0700
	0.1300

	holes (233).txt
	0.4650
	0.5250
	0.2300
	0.2900

	holes (236).txt
	0.4975
	0.6900
	0.2450
	0.2900

	holes (236).txt
	0.6800
	0.4925
	0.2600
	0.1950

	holes (236).txt
	0.7725
	0.6300
	0.2450
	0.1000

	holes (253).txt
	0.8375
	0.5500
	0.2850
	0.2900

	holes (254).txt
	0.4325
	0.6325
	0.5150
	0.3750

	holes (262).txt
	0.7575
	0.5525
	0.3150
	0.2250

	holes (264).txt
	0.4925
	0.4425
	0.1750
	0.2050

	holes (264).txt
	0.3575
	0.4375
	0.1350
	0.1150

	holes (276).txt
	0.1850
	0.5525
	0.2500
	0.1850

	holes (283).txt
	0.6550
	0.5850
	0.1900
	0.1600

	holes (298).txt
	0.4450
	0.3825
	0.1800
	0.1950

	holes (298).txt
	0.1325
	0.8925
	0.2150
	0.2050

	holes (34).txt
	0.5075
	0.6400
	0.1750
	0.1800

	holes (34).txt
	0.1450
	0.2075
	0.1500
	0.1550

	holes (36).txt
	0.4900
	0.5000
	0.1400
	0.1100

	holes (36).txt
	0.2125
	0.2875
	0.1150
	0.1150

	holes (36).txt
	0.7700
	0.9375
	0.1100
	0.0950

	holes (36).txt
	0.0625
	0.3800
	0.1050
	0.1200

	holes (36).txt
	0.4075
	0.1925
	0.1350
	0.0950

	holes (36).txt
	0.8200
	0.1650
	0.1100
	0.0800

	holes (36).txt
	0.9625
	0.2175
	0.0750
	0.1550

	holes (36).txt
	0.8650
	0.3000
	0.1100
	0.0800

	holes (46).txt
	0.4475
	0.2725
	0.1350
	0.1550

	holes (53).txt
	0.6225
	0.3650
	0.3050
	0.2000

	holes (55).txt
	0.4675
	0.8700
	0.1850
	0.2000

	holes (59).txt
	0.3950
	0.2275
	0.1500
	0.1550

	holes (69).txt
	0.6100
	0.2875
	0.3400
	0.2250

	holes (7).txt
	0.0725
	0.4650
	0.1050
	0.1700

	holes (7).txt
	0.2000
	0.4675
	0.1100
	0.1650

	holes (7).txt
	0.3300
	0.5700
	0.1000
	0.1600

	holes (7).txt
	0.3325
	0.7850
	0.1850
	0.1100

	holes (76).txt
	0.2675
	0.3600
	0.1250
	0.1500

	holes (76).txt
	0.4300
	0.3225
	0.1200
	0.1550

	holes (76).txt
	0.5300
	0.2125
	0.1300
	0.1250

	holes (81).txt
	0.3300
	0.7575
	0.2900
	0.2050

	incomplete(102).txt
	0.5250
	0.4800
	0.3200
	0.3600

	incomplete(109).txt
	0.5425
	0.5000
	0.2250
	0.2800

	incomplete(112).txt
	0.5000
	0.4950
	0.3300
	0.2100

	incomplete(113).txt
	0.5200
	0.5100
	0.2400
	0.2600

	incomplete(119).txt
	0.4825
	0.4400
	0.2350
	0.5100

	incomplete(120).txt
	0.5175
	0.4150
	0.3850
	0.4500

	incomplete(121).txt
	0.5150
	0.4400
	0.5300
	0.3000

	incomplete(122).txt
	0.5225
	0.4375
	0.4950
	0.2750

	incomplete(131).txt
	0.5575
	0.5575
	0.3250
	0.3950

	incomplete(148).txt
	0.6075
	0.3975
	0.1950
	0.1250

	incomplete(15).txt
	0.5000
	0.6325
	0.2600
	0.2350

	incomplete(150).txt
	0.5200
	0.3775
	0.1900
	0.1550

	incomplete(152).txt
	0.4325
	0.3375
	0.1250
	0.2250

	incomplete(153).txt
	0.3425
	0.4600
	0.2350
	0.2100

	incomplete(157).txt
	0.3700
	0.5700
	0.1800
	0.2100

	incomplete(159).txt
	0.3600
	0.4625
	0.1600
	0.2250

	incomplete(162).txt
	0.7075
	0.1200
	0.3350
	0.2200

	incomplete(165).txt
	0.7400
	0.3700
	0.4500
	0.3100

	incomplete(17).txt
	0.4625
	0.6425
	0.2150
	0.2850

	incomplete(174).txt
	0.5000
	0.2800
	0.4600
	0.4700

	incomplete(174).txt
	0.1900
	0.5600
	0.3200
	0.4300

	incomplete(176).txt
	0.4300
	0.6325
	0.6800
	0.7350

	incomplete(179).txt
	0.6700
	0.3000
	0.6000
	0.5300

	incomplete(18).txt
	0.4450
	0.6325
	0.1900
	0.3250

	incomplete(195).txt
	0.8050
	0.4225
	0.2600
	0.3150

	incomplete(200).txt
	0.7800
	0.8125
	0.2300
	0.1550

	incomplete(200).txt
	0.3000
	0.8025
	0.5300
	0.1250

	incomplete(208).txt
	0.2600
	0.7600
	0.1500
	0.2200

	incomplete(208).txt
	0.4275
	0.3975
	0.1250
	0.1850

	incomplete(221).txt
	0.4150
	0.4675
	0.6300
	0.7150

	incomplete(225).txt
	0.5350
	0.5625
	0.4300
	0.7650

	incomplete(228).txt
	0.6650
	0.3075
	0.2300
	0.6050

	incomplete(229).txt
	0.3925
	0.2600
	0.5050
	0.4500

	incomplete(230).txt
	0.4375
	0.2525
	0.4550
	0.4950

	incomplete(232).txt
	0.5025
	0.5100
	0.9950
	0.5200

	incomplete(233).txt
	0.3650
	0.5150
	0.7100
	0.2600

	incomplete(233).txt
	0.8600
	0.3850
	0.2800
	0.4500

	incomplete(24).txt
	0.3975
	0.4075
	0.3450
	0.1850

	incomplete(246).txt
	0.4225
	0.3325
	0.3150
	0.1750

	incomplete(251).txt
	0.3900
	0.6425
	0.2000
	0.2250

	incomplete(253).txt
	0.4275
	0.6200
	0.2750
	0.2000

	incomplete(269).txt
	0.3875
	0.5475
	0.6750
	0.5150

	incomplete(280).txt
	0.5250
	0.5200
	0.4400
	0.1600

	incomplete(29).txt
	0.5650
	0.5200
	0.1900
	0.2100

	incomplete(296).txt
	0.3525
	0.4825
	0.5950
	0.4750

	incomplete(296).txt
	0.8300
	0.3750
	0.2000
	0.2200

	incomplete(298).txt
	0.6425
	0.2550
	0.3950
	0.4400

	incomplete(300).txt
	0.3900
	0.4025
	0.5400
	0.7050

	incomplete(32).txt
	0.5325
	0.5375
	0.1450
	0.2750

	incomplete(34).txt
	0.4925
	0.5650
	0.1250
	0.2300

	incomplete(36).txt
	0.4800
	0.5200
	0.2200
	0.1500

	incomplete(4).txt
	0.5700
	0.3675
	0.2000
	0.3350

	incomplete(5).txt
	0.6200
	0.3650
	0.2200
	0.3600

	incomplete(50).txt
	0.5250
	0.4525
	0.1400
	0.2350

	incomplete(52).txt
	0.5225
	0.6800
	0.3450
	0.5100

	incomplete(53).txt
	0.4900
	0.6950
	0.3300
	0.4000

	incomplete(56).txt
	0.3425
	0.6200
	0.5150
	0.2400

	incomplete(57).txt
	0.3625
	0.5650
	0.5350
	0.2500

	incomplete(59).txt
	0.3150
	0.5675
	0.4500
	0.2750

	incomplete(60).txt
	0.3475
	0.4750
	0.4950
	0.4100

	incomplete(61).txt
	0.3150
	0.4275
	0.3800
	0.4250

	incomplete(63).txt
	0.4450
	0.3075
	0.1800
	0.4750

	incomplete(65).txt
	0.5350
	0.2475
	0.3600
	0.4150

	incomplete(69).txt
	0.6750
	0.5875
	0.2800
	0.4750

	incomplete(70).txt
	0.5075
	0.4475
	0.9050
	0.7150

	incomplete(78).txt
	0.6125
	0.5175
	0.6050
	0.9650

	incomplete(82).txt
	0.4950
	0.5050
	0.9700
	0.9200

	incomplete(84).txt
	0.4175
	0.4550
	0.8150
	0.8900

	incomplete(87).txt
	0.4625
	0.5075
	0.7550
	0.9850

	incomplete(91).txt
	0.5325
	0.3875
	0.9350
	0.7150

	mineralization (10).txt
	0.5525
	0.5325
	0.8650
	0.8450

	mineralization (101).txt
	0.4950
	0.4975
	0.9800
	0.9750

	mineralization (102).txt
	0.5050
	0.5050
	0.9800
	0.9900

	mineralization (107).txt
	0.5075
	0.4925
	0.9850
	0.9750

	mineralization (11).txt
	0.5000
	0.6125
	0.8700
	0.6450

	mineralization (114).txt
	0.4975
	0.5025
	0.9750
	0.9950

	mineralization (119).txt
	0.5000
	0.5025
	0.9900
	0.9950

	mineralization (12).txt
	0.5250
	0.5700
	0.9500
	0.8400

	mineralization (120).txt
	0.4925
	0.5075
	0.9650
	0.9850

	mineralization (124).txt
	0.5075
	0.5025
	0.9850
	0.9950

	mineralization (125).txt
	0.4900
	0.5025
	0.9700
	0.9950

	mineralization (143).txt
	0.5000
	0.5025
	0.9700
	0.9950

	mineralization (149).txt
	0.5125
	0.5050
	0.9750
	0.9900

	mineralization (150).txt
	0.5125
	0.4850
	0.9750
	0.9600

	mineralization (167).txt
	0.5150
	0.5050
	0.9700
	0.9900

	mineralization (172).txt
	0.5050
	0.5075
	0.9700
	0.9850

	mineralization (174).txt
	0.5100
	0.5050
	0.9800
	0.9800

	mineralization (177).txt
	0.5025
	0.5075
	0.9450
	0.9750

	mineralization (179).txt
	0.5100
	0.5075
	0.9600
	0.9850

	mineralization (18).txt
	0.4875
	0.5075
	0.8850
	0.8550

	mineralization (185).txt
	0.4925
	0.5025
	0.9750
	0.9750

	mineralization (192).txt
	0.5100
	0.5025
	0.9800
	0.9950

	mineralization (200).txt
	0.4975
	0.4925
	0.9650
	0.9650

	mineralization (206).txt
	0.5175
	0.5100
	0.9650
	0.9800

	mineralization (209).txt
	0.5025
	0.4950
	0.9550
	0.9500

	mineralization (210).txt
	0.5100
	0.5050
	0.9800
	0.9900

	mineralization (216).txt
	0.5125
	0.5050
	0.9750
	0.9900

	mineralization (220).txt
	0.5025
	0.5050
	0.9550
	0.9900

	mineralization (23).txt
	0.5075
	0.5200
	0.9650
	0.9200

	mineralization (236).txt
	0.4975
	0.5075
	0.9650
	0.9850

	mineralization (240).txt
	0.5050
	0.5100
	0.9900
	0.9800

	mineralization (247).txt
	0.5050
	0.5025
	0.9900
	0.9950

	mineralization (248).txt
	0.5100
	0.5100
	0.9600
	0.9800

	mineralization (250).txt
	0.5025
	0.4750
	0.9950
	0.9300

	mineralization (260).txt
	0.5025
	0.5000
	0.9250
	0.9800

	mineralization (263).txt
	0.5100
	0.5100
	0.9800
	0.9700

	mineralization (266).txt
	0.5075
	0.4850
	0.9850
	0.9400

	mineralization (275).txt
	0.5025
	0.5050
	0.9950
	0.9900

	mineralization (276).txt
	0.5075
	0.4850
	0.9850
	0.9600

	mineralization (277).txt
	0.5125
	0.5125
	0.9750
	0.9750

	mineralization (280).txt
	0.4950
	0.5075
	0.9100
	0.9650

	mineralization (284).txt
	0.5025
	0.5025
	0.9950
	0.9950

	mineralization (291).txt
	0.5125
	0.5075
	0.9750
	0.9850

	mineralization (296).txt
	0.5075
	0.5050
	0.9750
	0.9900

	mineralization (35).txt
	0.5150
	0.5000
	0.9100
	0.8600

	mineralization (36).txt
	0.5250
	0.5150
	0.8900
	0.9100

	mineralization (39).txt
	0.5175
	0.4875
	0.8350
	0.9350

	mineralization (4).txt
	0.5325
	0.4475
	0.9350
	0.8350

	mineralization (41).txt
	0.5150
	0.5250
	0.8900
	0.9500

	mineralization (42).txt
	0.5050
	0.4925
	0.9500
	0.8950

	mineralization (44).txt
	0.5250
	0.5150
	0.8900
	0.9700

	mineralization (52).txt
	0.5050
	0.5000
	0.9900
	0.9900

	mineralization (64).txt
	0.4525
	0.5100
	0.8550
	0.9800

	mineralization (64).txt
	0.9475
	0.7075
	0.1050
	0.3350

	mineralization (91).txt
	0.5100
	0.4925
	0.9800
	0.9750

	mineralization (93).txt
	0.7550
	0.3625
	0.4900
	0.6950

	mineralization (99).txt
	0.5050
	0.5025
	0.9900
	0.9950

Table S3. YOLOv5 code from PyCharm2021.3.1
	# Parameters

	nc: 80 # number of classes

	depth_multiple: 0.33 # model depth multiple

	width_multiple: 0.50 # layer channel multiple

	anchors:

	 - [10, 13, 16, 30, 33, 23] # P3/8

	 - [30, 61, 62, 45, 59, 119] # P4/16

	 - [116, 90, 156, 198, 373, 326] # P5/32

	# YOLOv5s v6.0 backbone

	backbone:

	 # [from, number, module, args]

	 [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2

	 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4

	 [-1, 3, C3, [128]], # 2

	 [-1, 1, Conv, [256, 3, 2]], # 3-P3/8

	 [-1, 6, C3, [256]], # 4

	 [-1, 1, Conv, [512, 3, 2]], # 5-P4/16

	 [-1, 9, C3, [512]],

	 [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32

	 [-1, 3, C3, [1024]],

	 [-1, 1, SPPF, [1024, 5]], # 9

]

	# YOLOv5s v6.0 head

	head:

	 [[-1, 1, Conv, [512, 1, 1]],

	 [-1, 1, nn.Upsample, [None, 2, 'nearest']], #11

	 [[-1, 6], 1, Concat, [1]], # 12 cat backbone P4

	 [-1, 3, C3, [512, False]], # 13

	 [-1, 1, Conv, [256, 1, 1]],

	 [-1, 1, nn.Upsample, [None, 2, 'nearest']],

	 [[-1, 4], 1, Concat, [1]], # cat backbone P3

	 [-1, 3, C3, [256, False]], # 17 (P3/8-small)

	 [-1, 1, Conv, [256, 3, 2]],

	 [[-1, 14], 1, Concat, [1]], # cat head P4，

	 [-1, 3, C3, [512, False]], # 20 (P4/16-medium)

	 [-1, 1, Conv, [512, 3, 2]],

	 [[-1, 10], 1, Concat, [1]], # cat head P5，

	 [-1, 3, C3, [1024, False]], # 23 (P5/32-large)

	 [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)

]

Table S4. yolov5s-GCB code from PyCharm2021.3.1
	# Parameters

	nc: 80 # number of classes

	depth_multiple: 0.33 # model depth multiple

	width_multiple: 0.50 # layer channel multiple

	anchors:

	 - [10, 13, 16, 30, 33, 23] # P3/8

	 - [30, 61, 62, 45, 59, 119] # P4/16

	 - [116, 90, 156, 198, 373, 326] # P5/32

	# YOLOv5 v6.0 backbone

	backbone:

	 # [from, number, module, args]

	 [

	 [-1, 1, GhostConv, [64, 3, 2]], # 0-P1/2

	 [-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4

	 [-1, 3, C3Ghost, [128]],

	 [-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8

	 [-1, 6, C3Ghost, [256]],

	 [-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16

	 [-1, 9, C3Ghost, [512]],

	 [-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32

	 [-1, 3, C3Ghost, [1024]],

	 [-1, 1, CoordAtt, [1024]],

	 [-1, 1, SPPF, [1024, 5]], # 9

]

	# YOLOV5 V6.1 BiFPN head

	head:

	 [

	 [-1, 1, Conv, [512, 1, 1]],

	 [-1, 1, nn.Upsample, [None, 2, 'nearest']],

	 [[-1, 6], 1, BiFPN_Add2, [256, 256]], # cat backbone P4

	 [-1, 3, C3, [512, False]], # 13

	 [-1, 1, Conv, [256, 1, 1]],

	 [-1, 1, nn.Upsample, [None, 2, 'nearest']],

	 [[-1, 4], 1, BiFPN_Add2, [128, 128]], # cat backbone P3

	 [-1, 3, C3, [256, False]], # 17

	 [-1, 1, Conv, [512, 3, 2]],

	 [[-1, 14, 6], 1, BiFPN_Add3, [256, 256]],

	 [-1, 3, C3, [512, False]], # 20

	 [-1, 1, Conv, [512, 3, 2]],

	 [[-1, 11], 1, BiFPN_Add2, [256, 256]], # cat head P5

	 [-1, 3, C3, [1024, False]], # 23

	 [[18, 21, 24], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)

]

Table S5. yolov5s_EfficientNetV2_CA code from PyCharm2021.3.1
	# Parameters

	nc: 80 # number of classes

	depth_multiple: 0.33 # model depth multiple

	width_multiple: 0.50 # layer channel multiple

	anchors:

	 - [10, 13, 16, 30, 33, 23] # P3/8

	 - [30, 61, 62, 45, 59, 119] # P4/16

	 - [116, 90, 156, 198, 373, 326] # P5/32

	# YOLOv5 v6.0 backbone

	backbone:

	 # [from, number, module, args]

	 [

	 [-1, 1, stem, [24, 3, 2]], # 0-P1/2

	 [-1, 2, FusedMBConv, [24, 3, 1, 1, 0]], # 1-P2/4

	 [-1, 1, FusedMBConv, [48, 3, 2, 4, 0]],

	 [-1, 3, FusedMBConv, [48, 3, 1, 4, 0]], # 3-P3/8

	 [-1, 1, FusedMBConv, [64, 3, 2, 4, 0]],

	 [-1, 3, FusedMBConv, [64, 3, 1, 4, 0]], # 5-P4/16

	 [-1, 1, MBConv, [128, 3, 2, 4, 0.25]],

	 [-1, 5, MBConv, [128, 3, 1, 4, 0.25]], # 7-P5/32

	 [-1, 1, MBConv, [160, 3, 2, 6, 0.25]],

	 [-1, 8, MBConv, [160, 3, 1, 6, 0.25]], # 9

	 [-1, 1, MBConv, [272, 3, 2, 4, 0.25]],

	 [-1, 14, MBConv, [272, 3, 1, 4, 0.25]],

	 [-1, 1, CoordAtt, [272]],

	 [-1, 1, SPPF, [1024, 5]]

]

	# YOLOv5 v6.0 head

	head: [

	 [-1, 1, Conv, [512, 1, 1]],

	 [-1, 1, nn.Upsample, [None, 2, "nearest"]],

	 [[-1, 9], 1, Concat, [1]], # cat backbone P4

	 [-1, 3, C3, [512, False]], # 13

	 [-1, 1, Conv, [256, 1, 1]],

	 [-1, 1, nn.Upsample, [None, 2, "nearest"]],

	 [[-1, 7], 1, Concat, [1]], # cat backbone P3

	 [-1, 3, C3, [256, False]], # 17 (P3/8-small)

	 [-1, 1, Conv, [256, 3, 2]],

	 [[-1, 18], 1, Concat, [1]], # cat head P4

	 [-1, 3, C3, [512, False]], # 20 (P4/16-medium)

	 [-1, 1, Conv, [512, 3, 2]],

	 [[-1, 14], 1, Concat, [1]], # cat head P5

	 [-1, 3, C3, [1024, False]], # 23 (P5/32-large)

	 [[21, 24, 27], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)

]

Table S6. yolov5s_EfficientNetV2 code from PyCharm2021.3.1
	# Parameters

	nc: 80 # number of classes

	depth_multiple: 0.33 # model depth multiple

	width_multiple: 0.50 # layer channel multiple

	anchors:

	 - [10, 13, 16, 30, 33, 23] # P3/8

	 - [30, 61, 62, 45, 59, 119] # P4/16

	 - [116, 90, 156, 198, 373, 326] # P5/32

	# YOLOv5 v6.0 backbone

	backbone:

	 # [from, number, module, args]

	 [

	 [-1, 1, stem, [24, 3, 2]], # 0-P1/2

	 [-1, 2, FusedMBConv, [24, 3, 1, 1, 0]], # 1-P2/4

	 [-1, 1, FusedMBConv, [48, 3, 2, 4, 0]],

	 [-1, 3, FusedMBConv, [48, 3, 1, 4, 0]], # 3-P3/8

	 [-1, 1, FusedMBConv, [64, 3, 2, 4, 0]],

	 [-1, 3, FusedMBConv, [64, 3, 1, 4, 0]], # 5-P4/16

	 [-1, 1, MBConv, [128, 3, 2, 4, 0.25]],

	 [-1, 5, MBConv, [128, 3, 1, 4, 0.25]], # 7-P5/32

	 [-1, 1, MBConv, [160, 3, 2, 6, 0.25]],

	 [-1, 8, MBConv, [160, 3, 1, 6, 0.25]], # 9

	 [-1, 1, MBConv, [272, 3, 2, 4, 0.25]],

	 [-1, 14, MBConv, [272, 3, 1, 4, 0.25]],

	 [-1, 1, SPPF, [1024, 5]]

]

	# YOLOv5 v6.0 head

	head: [

	 [-1, 1, Conv, [512, 1, 1]],

	 [-1, 1, nn.Upsample, [None, 2, "nearest"]],

	 [[-1, 9], 1, Concat, [1]], # cat backbone P4

	 [-1, 3, C3, [512, False]], # 13

	 [-1, 1, Conv, [256, 1, 1]],

	 [-1, 1, nn.Upsample, [None, 2, "nearest"]],

	 [[-1, 7], 1, Concat, [1]], # cat backbone P3

	 [-1, 3, C3, [256, False]], # 17 (P3/8-small)

	 [-1, 1, Conv, [256, 3, 2]],

	 [[-1, 17], 1, Concat, [1]], # cat head P4

	 [-1, 3, C3, [512, False]], # 20 (P4/16-medium)

	 [-1, 1, Conv, [512, 3, 2]],

	 [[-1, 13], 1, Concat, [1]], # cat head P5

	 [-1, 3, C3, [1024, False]], # 23 (P5/32-large)

	 [[20, 23, 26], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)

]

Table S7. common.py code for adding network structure by PyCharm2021.3.1
	import ast

	import contextlib

	import json

	import math

	import platform

	import warnings

	import zipfile

	from collections import OrderedDict, namedtuple

	from copy import copy

	from pathlib import Path

	from urllib.parse import urlparse

	import cv2

	import numpy as np

	import pandas as pd

	import requests

	import torch

	import torch.nn as nn

	from PIL import Image

	from torch.cuda import amp

	# Import 'ultralytics' package or install if missing

	from ultralytics.nn.modules import C3

	try:

	 import ultralytics

	 assert hasattr(ultralytics, "__version__") # verify package is not directory

	except (ImportError, AssertionError):

	 import os

	 os.system("pip install -U ultralytics")

	 import ultralytics

	from ultralytics.utils.plotting import Annotator, colors, save_one_box

	from utils import TryExcept

	from utils.dataloaders import exif_transpose, letterbox

	from utils.general import (

	 LOGGER,

	 ROOT,

	 Profile,

	 check_requirements,

	 check_suffix,

	 check_version,

	 colorstr,

	 increment_path,

	 is_jupyter,

	 make_divisible,

	 non_max_suppression,

	 scale_boxes,

	 xywh2xyxy,

	 xyxy2xywh,

	 yaml_load,

)

	from utils.torch_utils import copy_attr, smart_inference_mode

	def channel_shuffle(x, groups):

	 batchsize, num_channels, height, width = x.data.size()

	 channels_per_group = num_channels // groups

	 x = x.view(batchsize, groups, channels_per_group, height, width)

	 x = torch.transpose(x, 1, 2).contiguous()

	 x = x.view(batchsize, -1, height, width)

	 return x

	class stem(nn.Module):

	 def __init__(self, c1, c2):

	 super(stem, self).__init__()

	 self.conv = nn.Sequential(

	 nn.Conv2d(c1, c2, kernel_size=3, stride=2, padding=1, bias=False),

	 nn.BatchNorm2d(c2),

	 nn.ReLU(inplace=True),

)

	 self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)

	 def forward(self, x):

	 return self.maxpool(self.conv(x))

	class Shuffle_Block(nn.Module):

	 def __init__(self, ch_in, ch_out, stride):

	 super(Shuffle_Block, self).__init__()

	 if not (1 <= stride <= 2):

	 raise ValueError('illegal stride value')

	 self.stride = stride

	 branch_features = ch_out // 2

	 assert (self.stride != 1) or (ch_in == branch_features << 1)

	 if self.stride > 1:

	 self.branch1 = nn.Sequential(

	 self.depthwise_conv(ch_in, ch_in, kernel_size=3, stride=self.stride, padding=1),

	 nn.BatchNorm2d(ch_in),

	 nn.Conv2d(ch_in, branch_features, kernel_size=1, stride=1, padding=0, bias=False),

	 nn.BatchNorm2d(branch_features),

	 nn.ReLU(inplace=True),

)

	 self.branch2 = nn.Sequential(

	 nn.Conv2d(ch_in if (self.stride > 1) else branch_features,

	 branch_features, kernel_size=1, stride=1, padding=0, bias=False),

	 nn.BatchNorm2d(branch_features),

	 nn.ReLU(inplace=True),

	 self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),

	 nn.BatchNorm2d(branch_features),

	 nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),

	 nn.BatchNorm2d(branch_features),

	 nn.ReLU(inplace=True),

)

	 @staticmethod

	 def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):

	 return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)

	 def forward(self, x):

	 if self.stride == 1:

	 x1, x2 = x.chunk(2, dim=1)

	 out = torch.cat((x1, self.branch2(x2)), dim=1)

	 else:

	 out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)

	 out = channel_shuffle(out, 2)

	 return out

	def autopad(k, p=None, d=1):

	 """

	 Pads kernel to 'same' output shape, adjusting for optional dilation; returns padding size.

	 `k`: kernel, `p`: padding, `d`: dilation.

	 """

	 if d > 1:

	 k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size

	 if p is None:

	 p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad

	 return p

	class GhostConv(nn.Module):

	 def __init__(self, c1, c2, k=1, s=1, g=1, act=True):

	 super(GhostConv, self).__init__()

	 c_ = c2 // 2

	 self.cv1 = Conv(c1, c_, k, s, None, g, act)

	 self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)

	 def forward(self, x):

	 y = self.cv1(x)

	 return torch.cat([y, self.cv2(y)], 1)

	class GhostBottleneck(nn.Module):

	 def __init__(self, c1, c2, k=3, s=1):

	 super().__init__()

	 c_ = c2 // 2

	 self.conv = nn.Sequential(

	 GhostConv(c1, c_, 1, 1),

	 DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),

	 GhostConv(c_, c2, 1, 1, act=False))

	 self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,

	 act=False)) if s == 2 else nn.Identity()

	 def forward(self, x):

	 return self.conv(x) + self.shortcut(x)

	class C3Ghost(C3):

	 def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):

	 super().__init__(c1, c2, n, shortcut, g, e)

	 c_ = int(c2 * e)

	 self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))

	class Conv(nn.Module):

	 """Applies a convolution, batch normalization, and activation function to an input tensor in a neural network."""

	 default_act = nn.SiLU() # default activation

	 def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):

	 """Initializes a standard convolution layer with optional batch normalization and activation."""

	 super().__init__()

	 self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)

	 self.bn = nn.BatchNorm2d(c2)

	 self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

	 def forward(self, x):

	 """Applies a convolution followed by batch normalization and an activation function to the input tensor `x`."""

	 return self.act(self.bn(self.conv(x)))

	 def forward_fuse(self, x):

	 """Applies a fused convolution and activation function to the input tensor `x`."""

	 return self.act(self.conv(x))

	class DWConv(Conv):

	 """Implements a depth-wise convolution layer with optional activation for efficient spatial filtering."""

	 def __init__(self, c1, c2, k=1, s=1, d=1, act=True):

	 """Initializes a depth-wise convolution layer with optional activation; args: input channels (c1), output

	 channels (c2), kernel size (k), stride (s), dilation (d), and activation flag (act).

	 """

	 super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)

	class DWConvTranspose2d(nn.ConvTranspose2d):

	 """A depth-wise transpose convolutional layer for upsampling in neural networks, particularly in YOLOv5 models."""

	 def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):

	 """Initializes a depth-wise transpose convolutional layer for YOLOv5; args: input channels (c1), output channels

	 (c2), kernel size (k), stride (s), input padding (p1), output padding (p2).

	 """

	 super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))

	class TransformerLayer(nn.Module):

	 """Transformer layer with multihead attention and linear layers, optimized by removing LayerNorm."""

	 def __init__(self, c, num_heads):

	 """

	 Initializes a transformer layer, sans LayerNorm for performance, with multihead attention and linear layers.

	 See as described in https://arxiv.org/abs/2010.11929.

	 """

	 super().__init__()

	 self.q = nn.Linear(c, c, bias=False)

	 self.k = nn.Linear(c, c, bias=False)

	 self.v = nn.Linear(c, c, bias=False)

	 self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)

	 self.fc1 = nn.Linear(c, c, bias=False)

	 self.fc2 = nn.Linear(c, c, bias=False)

	 def forward(self, x):

	 """Performs forward pass using MultiheadAttention and two linear transformations with residual connections."""

	 x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x

	 x = self.fc2(self.fc1(x)) + x

	 return x

	class TransformerBlock(nn.Module):

	 """A Transformer block for vision tasks with convolution, position embeddings, and Transformer layers."""

	 def __init__(self, c1, c2, num_heads, num_layers):

	 """Initializes a Transformer block for vision tasks, adapting dimensions if necessary and stacking specified

	 layers.

	 """

	 super().__init__()

	 self.conv = None

	 if c1 != c2:

	 self.conv = Conv(c1, c2)

	 self.linear = nn.Linear(c2, c2) # learnable position embedding

	 self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))

	 self.c2 = c2

	 def forward(self, x):

	 """Processes input through an optional convolution, followed by Transformer layers and position embeddings for

	 object detection.

	 """

	 if self.conv is not None:

	 x = self.conv(x)

	 b, _, w, h = x.shape

	 p = x.flatten(2).permute(2, 0, 1)

	 return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)

	class Bottleneck(nn.Module):

	 """A bottleneck layer with optional shortcut and group convolution for efficient feature extraction."""

	 def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):

	 """Initializes a standard bottleneck layer with optional shortcut and group convolution, supporting channel

	 expansion.

	 """

	 super().__init__()

	 c_ = int(c2 * e) # hidden channels

	 self.cv1 = Conv(c1, c_, 1, 1)

	 self.cv2 = Conv(c_, c2, 3, 1, g=g)

	 self.add = shortcut and c1 == c2

	 def forward(self, x):

	 """Processes input through two convolutions, optionally adds shortcut if channel dimensions match; input is a

	 tensor.

	 """

	 return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

	class BottleneckCSP(nn.Module):

	 """CSP bottleneck layer for feature extraction with cross-stage partial connections and optional shortcuts."""

	 def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):

	 """Initializes CSP bottleneck with optional shortcuts; args: ch_in, ch_out, number of repeats, shortcut bool,

	 groups, expansion.

	 """

	 super().__init__()

	 c_ = int(c2 * e) # hidden channels

	 self.cv1 = Conv(c1, c_, 1, 1)

	 self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)

	 self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)

	 self.cv4 = Conv(2 * c_, c2, 1, 1)

	 self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)

	 self.act = nn.SiLU()

	 self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

	 def forward(self, x):

	 """Performs forward pass by applying layers, activation, and concatenation on input x, returning feature-

	 enhanced output.

	 """

	 y1 = self.cv3(self.m(self.cv1(x)))

	 y2 = self.cv2(x)

	 return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))

	class CrossConv(nn.Module):

	 """Implements a cross convolution layer with downsampling, expansion, and optional shortcut."""

	 def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):

	 """

	 Initializes CrossConv with downsampling, expanding, and optionally shortcutting; `c1` input, `c2` output

	 channels.

	 Inputs are ch_in, ch_out, kernel, stride, groups, expansion, shortcut.

	 """

	 super().__init__()

	 c_ = int(c2 * e) # hidden channels

	 self.cv1 = Conv(c1, c_, (1, k), (1, s))

	 self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)

	 self.add = shortcut and c1 == c2

	 def forward(self, x):

	 """Performs feature sampling, expanding, and applies shortcut if channels match; expects `x` input tensor."""

	 return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

	class C3(nn.Module):

	 """Implements a CSP Bottleneck module with three convolutions for enhanced feature extraction in neural networks."""

	 def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):

	 """Initializes C3 module with options for channel count, bottleneck repetition, shortcut usage, group

	 convolutions, and expansion.

	 """

	 super().__init__()

	 c_ = int(c2 * e) # hidden channels

	 self.cv1 = Conv(c1, c_, 1, 1)

	 self.cv2 = Conv(c1, c_, 1, 1)

	 self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)

	 self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

	 def forward(self, x):

	 """Performs forward propagation using concatenated outputs from two convolutions and a Bottleneck sequence."""

	 return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

	class C3x(C3):

	 """Extends the C3 module with cross-convolutions for enhanced feature extraction in neural networks."""

	 def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):

	 """Initializes C3x module with cross-convolutions, extending C3 with customizable channel dimensions, groups,

	 and expansion.

	 """

	 super().__init__(c1, c2, n, shortcut, g, e)

	 c_ = int(c2 * e)

	 self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))

	class C3TR(C3):

	 """C3 module with TransformerBlock for enhanced feature extraction in object detection models."""

	 def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):

	 """Initializes C3 module with TransformerBlock for enhanced feature extraction, accepts channel sizes, shortcut

	 config, group, and expansion.

	 """

	 super().__init__(c1, c2, n, shortcut, g, e)

	 c_ = int(c2 * e)

	 self.m = TransformerBlock(c_, c_, 4, n)

	class C3SPP(C3):

	 """Extends the C3 module with an SPP layer for enhanced spatial feature extraction and customizable channels."""

	 def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):

	 """Initializes a C3 module with SPP layer for advanced spatial feature extraction, given channel sizes, kernel

	 sizes, shortcut, group, and expansion ratio.

	 """

	 super().__init__(c1, c2, n, shortcut, g, e)

	 c_ = int(c2 * e)

	 self.m = SPP(c_, c_, k)

	class C3Ghost(C3):

	 """Implements a C3 module with Ghost Bottlenecks for efficient feature extraction in YOLOv5."""

	 def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):

	 """Initializes YOLOv5's C3 module with Ghost Bottlenecks for efficient feature extraction."""

	 super().__init__(c1, c2, n, shortcut, g, e)

	 c_ = int(c2 * e) # hidden channels

	 self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))

	class SPP(nn.Module):

	 """Implements Spatial Pyramid Pooling (SPP) for feature extraction, ref: https://arxiv.org/abs/1406.4729."""

	 def __init__(self, c1, c2, k=(5, 9, 13)):

	 """Initializes SPP layer with Spatial Pyramid Pooling, ref: https://arxiv.org/abs/1406.4729, args: c1 (input channels), c2 (output channels), k (kernel sizes)."""

	 super().__init__()

	 c_ = c1 // 2 # hidden channels

	 self.cv1 = Conv(c1, c_, 1, 1)

	 self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)

	 self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

	 def forward(self, x):

	 """Applies convolution and max pooling layers to the input tensor `x`, concatenates results, and returns output

	 tensor.

	 """

	 x = self.cv1(x)

	 with warnings.catch_warnings():

	 warnings.simplefilter("ignore") # suppress torch 1.9.0 max_pool2d() warning

	 return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))

	class SPPF(nn.Module):

	 """Implements a fast Spatial Pyramid Pooling (SPPF) layer for efficient feature extraction in YOLOv5 models."""

	 def __init__(self, c1, c2, k=5):

	 """

	 Initializes YOLOv5 SPPF layer with given channels and kernel size for YOLOv5 model, combining convolution and

	 max pooling.

	 Equivalent to SPP(k=(5, 9, 13)).

	 """

	 super().__init__()

	 c_ = c1 // 2 # hidden channels

	 self.cv1 = Conv(c1, c_, 1, 1)

	 self.cv2 = Conv(c_ * 4, c2, 1, 1)

	 self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

	 def forward(self, x):

	 """Processes input through a series of convolutions and max pooling operations for feature extraction."""

	 x = self.cv1(x)

	 with warnings.catch_warnings():

	 warnings.simplefilter("ignore") # suppress torch 1.9.0 max_pool2d() warning

	 y1 = self.m(x)

	 y2 = self.m(y1)

	 return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))

	class Focus(nn.Module):

	 """Focuses spatial information into channel space using slicing and convolution for efficient feature extraction."""

	 def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):

	 """Initializes Focus module to concentrate width-height info into channel space with configurable convolution

	 parameters.

	 """

	 super().__init__()

	 self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)

	 # self.contract = Contract(gain=2)

	 def forward(self, x):

	 """Processes input through Focus mechanism, reshaping (b,c,w,h) to (b,4c,w/2,h/2) then applies convolution."""

	 return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))

	 # return self.conv(self.contract(x))

	class GhostConv(nn.Module):

	 """Implements Ghost Convolution for efficient feature extraction, see https://github.com/huawei-noah/ghostnet."""

	 def __init__(self, c1, c2, k=1, s=1, g=1, act=True):

	 """Initializes GhostConv with in/out channels, kernel size, stride, groups, and activation; halves out channels

	 for efficiency.

	 """

	 super().__init__()

	 c_ = c2 // 2 # hidden channels

	 self.cv1 = Conv(c1, c_, k, s, None, g, act=act)

	 self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)

	 def forward(self, x):

	 """Performs forward pass, concatenating outputs of two convolutions on input `x`: shape (B,C,H,W)."""

	 y = self.cv1(x)

	 return torch.cat((y, self.cv2(y)), 1)

	class GhostBottleneck(nn.Module):

	 """Efficient bottleneck layer using Ghost Convolutions, see https://github.com/huawei-noah/ghostnet."""

	 def __init__(self, c1, c2, k=3, s=1):

	 """Initializes GhostBottleneck with ch_in `c1`, ch_out `c2`, kernel size `k`, stride `s`; see https://github.com/huawei-noah/ghostnet."""

	 super().__init__()

	 c_ = c2 // 2

	 self.conv = nn.Sequential(

	 GhostConv(c1, c_, 1, 1), # pw

	 DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw

	 GhostConv(c_, c2, 1, 1, act=False),

) # pw-linear

	 self.shortcut = (

	 nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()

)

	 def forward(self, x):

	 """Processes input through conv and shortcut layers, returning their summed output."""

	 return self.conv(x) + self.shortcut(x)

	class Contract(nn.Module):

	 """Contracts spatial dimensions into channel dimensions for efficient processing in neural networks."""

	 def __init__(self, gain=2):

	 """Initializes a layer to contract spatial dimensions (width-height) into channels, e.g., input shape

	 (1,64,80,80) to (1,256,40,40).

	 """

	 super().__init__()

	 self.gain = gain

	 def forward(self, x):

	 """Processes input tensor to expand channel dimensions by contracting spatial dimensions, yielding output shape

	 `(b, c*s*s, h//s, w//s)`.

	 """

	 b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'

	 s = self.gain

	 x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)

	 x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)

	 return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)

	class Expand(nn.Module):

	 """Expands spatial dimensions by redistributing channels, e.g., from (1,64,80,80) to (1,16,160,160)."""

	 def __init__(self, gain=2):

	 """

	 Initializes the Expand module to increase spatial dimensions by redistributing channels, with an optional gain

	 factor.

	 Example: x(1,64,80,80) to x(1,16,160,160).

	 """

	 super().__init__()

	 self.gain = gain

	 def forward(self, x):

	 """Processes input tensor x to expand spatial dimensions by redistributing channels, requiring C / gain^2 ==

	0

	 """

	 b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'

	 s = self.gain

	 x = x.view(b, s, s, c // s**2, h, w) # x(1,2,2,16,80,80)

	 x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)

	 return x.view(b, c // s**2, h * s, w * s) # x(1,16,160,160)

	class Concat(nn.Module):

	 """Concatenates tensors along a specified dimension for efficient tensor manipulation in neural networks."""

	 def __init__(self, dimension=1):

	 """Initializes a Concat module to concatenate tensors along a specified dimension."""

	 super().__init__()

	 self.d = dimension

	 def forward(self, x):

	 """Concatenates a list of tensors along a specified dimension; `x` is a list of tensors, `dimension` is an

	 int.

	 """

	 return torch.cat(x, self.d)

	class DetectMultiBackend(nn.Module):

	 """YOLOv5 MultiBackend class for inference on various backends including PyTorch, ONNX, TensorRT, and more."""

	 def __init__(self, weights="yolov5s.pt", device=torch.device("cpu"), dnn=False, data=None, fp16=False, fuse=True,

	 openvino=None):

	 """Initializes DetectMultiBackend with support for various inference backends, including PyTorch and ONNX."""

	 # PyTorch: weights = *.pt

	 # TorchScript: *.torchscript

	 # ONNX Runtime: *.onnx

	 # ONNX OpenCV DNN: *.onnx --dnn

	 # OpenVINO: *_openvino_model

	 # CoreML: *.mlpackage

	 # TensorRT: *.engine

	 # TensorFlow SavedModel: *_saved_model

	 # TensorFlow GraphDef: *.pb

	 # TensorFlow Lite: *.tflite

	 # TensorFlow Edge TPU: *_edgetpu.tflite

	 # PaddlePaddle: *_paddle_model

	 from models.experimental import attempt_download, attempt_load # scoped to avoid circular import

	 super().__init__()

	 w = str(weights[0] if isinstance(weights, list) else weights)

	 pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)

	 fp16 &= pt or jit or onnx or engine or triton # FP16

	 nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)

	 stride = 32 # default stride

	 cuda = torch.cuda.is_available() and device.type != "cpu" # use CUDA

	 if not (pt or triton):

	 w = attempt_download(w) # download if not local

	 if pt: # PyTorch

	 model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)

	 stride = max(int(model.stride.max()), 32) # model stride

	 names = model.module.names if hasattr(model, "module") else model.names # get class names

	 model.half() if fp16 else model.float()

	 self.model = model # explicitly assign for to(), cpu(), cuda(), half()

	 elif jit: # TorchScript

	 LOGGER.info(f"Loading {w} for TorchScript inference...")

	 extra_files = {"config.txt": ""} # model metadata

	 model = torch.jit.load(w, _extra_files=extra_files, map_location=device)

	 model.half() if fp16 else model.float()

	 if extra_files["config.txt"]: # load metadata dict

	 d = json.loads(

	 extra_files["config.txt"],

	 object_hook=lambda d: {int(k) if k.isdigit() else k: v for k, v in d.items()},

)

	 stride, names = int(d["stride"]), d["names"]

	 elif dnn: # ONNX OpenCV DNN

	 LOGGER.info(f"Loading {w} for ONNX OpenCV DNN inference...")

	 check_requirements("opencv-python>=4.5.4")

	 net = cv2.dnn.readNetFromONNX(w)

	 elif onnx: # ONNX Runtime

	 LOGGER.info(f"Loading {w} for ONNX Runtime inference...")

	 check_requirements(("onnx", "onnxruntime-gpu" if cuda else "onnxruntime"))

	 import onnxruntime

	 providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] if cuda else ["CPUExecutionProvider"]

	 session = onnxruntime.InferenceSession(w, providers=providers)

	 output_names = [x.name for x in session.get_outputs()]

	 meta = session.get_modelmeta().custom_metadata_map # metadata

	 if "stride" in meta:

	 stride, names = int(meta["stride"]), eval(meta["names"])

	 elif xml: # OpenVINO

	 LOGGER.info(f"Loading {w} for OpenVINO inference...")

	 check_requirements("openvino>=2023.0") # requires openvino-dev: https://pypi.org/project/openvino-dev/

	 from openvino.runtime import Core, Layout, get_batch

	 core = Core()

	 if not Path(w).is_file(): # if not *.xml

	 w = next(Path(w).glob("*.xml")) # get *.xml file from *_openvino_model dir

	 ov_model = core.read_model(model=w, weights=Path(w).with_suffix(".bin"))

	 if ov_model.get_parameters()[0].get_layout().empty:

	 ov_model.get_parameters()[0].set_layout(Layout("NCHW"))

	 batch_dim = get_batch(ov_model)

	 if batch_dim.is_static:

	 batch_size = batch_dim.get_length()

	 ov_compiled_model = core.compile_model(ov_model, device_name="AUTO") # AUTO selects best available device

	 stride, names = self._load_metadata(Path(w).with_suffix(".yaml")) # load metadata

	 elif engine: # TensorRT

	 LOGGER.info(f"Loading {w} for TensorRT inference...")

	 import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download

	 check_version(trt.__version__, "7.0.0", hard=True) # require tensorrt>=7.0.0

	 if device.type == "cpu":

	 device = torch.device("cuda:0")

	 Binding = namedtuple("Binding", ("name", "dtype", "shape", "data", "ptr"))

	 logger = trt.Logger(trt.Logger.INFO)

	 with open(w, "rb") as f, trt.Runtime(logger) as runtime:

	 model = runtime.deserialize_cuda_engine(f.read())

	 context = model.create_execution_context()

	 bindings = OrderedDict()

	 output_names = []

	 fp16 = False # default updated below

	 dynamic = False

	 is_trt10 = not hasattr(model, "num_bindings")

	 num = range(model.num_io_tensors) if is_trt10 else range(model.num_bindings)

	 for i in num:

	 if is_trt10:

	 name = model.get_tensor_name(i)

	 dtype = trt.nptype(model.get_tensor_dtype(name))

	 is_input = model.get_tensor_mode(name) == trt.TensorIOMode.INPUT

	 if is_input:

	 if -1 in tuple(model.get_tensor_shape(name)): # dynamic

	 dynamic = True

	 context.set_input_shape(name, tuple(model.get_profile_shape(name, 0)[2]))

	 if dtype == np.float16:

	 fp16 = True

	 else: # output

	 output_names.append(name)

	 shape = tuple(context.get_tensor_shape(name))

	 else:

	 name = model.get_binding_name(i)

	 dtype = trt.nptype(model.get_binding_dtype(i))

	 if model.binding_is_input(i):

	 if -1 in tuple(model.get_binding_shape(i)): # dynamic

	 dynamic = True

	 context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))

	 if dtype == np.float16:

	 fp16 = True

	 else: # output

	 output_names.append(name)

	 shape = tuple(context.get_binding_shape(i))

	 im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)

	 bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))

	 binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())

	 batch_size = bindings["images"].shape[0] # if dynamic, this is instead max batch size

	 elif coreml: # CoreML

	 LOGGER.info(f"Loading {w} for CoreML inference...")

	 import coremltools as ct

	 model = ct.models.MLModel(w)

	 elif saved_model: # TF SavedModel

	 LOGGER.info(f"Loading {w} for TensorFlow SavedModel inference...")

	 import tensorflow as tf

	 keras = False # assume TF1 saved_model

	 model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)

	 elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt

	 LOGGER.info(f"Loading {w} for TensorFlow GraphDef inference...")

	 import tensorflow as tf

	 def wrap_frozen_graph(gd, inputs, outputs):

	 """Wraps a TensorFlow GraphDef for inference, returning a pruned function."""

	 x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped

	 ge = x.graph.as_graph_element

	 return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))

	 def gd_outputs(gd):

	 """Generates a sorted list of graph outputs excluding NoOp nodes and inputs, formatted as '<name>:0'."""

	 name_list, input_list = [], []

	 for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef

	 name_list.append(node.name)

	 input_list.extend(node.input)

	 return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp"))

	 gd = tf.Graph().as_graph_def() # TF GraphDef

	 with open(w, "rb") as f:

	 gd.ParseFromString(f.read())

	 frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))

	 elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python

	 try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu

	 from tflite_runtime.interpreter import Interpreter, load_delegate

	 except ImportError:

	 import tensorflow as tf

	 Interpreter, load_delegate = (

	 tf.lite.Interpreter,

	 tf.lite.experimental.load_delegate,

)

	 if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime

	 LOGGER.info(f"Loading {w} for TensorFlow Lite Edge TPU inference...")

	 delegate = {"Linux": "libedgetpu.so.1", "Darwin": "libedgetpu.1.dylib", "Windows": "edgetpu.dll"}[

	 platform.system()

]

	 interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])

	 else: # TFLite

	 LOGGER.info(f"Loading {w} for TensorFlow Lite inference...")

	 interpreter = Interpreter(model_path=w) # load TFLite model

	 interpreter.allocate_tensors() # allocate

	 input_details = interpreter.get_input_details() # inputs

	 output_details = interpreter.get_output_details() # outputs

	 # load metadata

	 with contextlib.suppress(zipfile.BadZipFile):

	 with zipfile.ZipFile(w, "r") as model:

	 meta_file = model.namelist()[0]

	 meta = ast.literal_eval(model.read(meta_file).decode("utf-8"))

	 stride, names = int(meta["stride"]), meta["names"]

	 elif tfjs: # TF.js

	 raise NotImplementedError("ERROR: YOLOv5 TF.js inference is not supported")

	 elif paddle: # PaddlePaddle

	 LOGGER.info(f"Loading {w} for PaddlePaddle inference...")

	 check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle")

	 import paddle.inference as pdi

	 if not Path(w).is_file(): # if not *.pdmodel

	 w = next(Path(w).rglob("*.pdmodel")) # get *.pdmodel file from *_paddle_model dir

	 weights = Path(w).with_suffix(".pdiparams")

	 config = pdi.Config(str(w), str(weights))

	 if cuda:

	 config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)

	 predictor = pdi.create_predictor(config)

	 input_handle = predictor.get_input_handle(predictor.get_input_names()[0])

	 output_names = predictor.get_output_names()

	 elif triton: # NVIDIA Triton Inference Server

	 LOGGER.info(f"Using {w} as Triton Inference Server...")

	 check_requirements("tritonclient[all]")

	 from utils.triton import TritonRemoteModel

	 model = TritonRemoteModel(url=w)

	 nhwc = model.runtime.startswith("tensorflow")

	 else:

	 raise NotImplementedError(f"ERROR: {w} is not a supported format")

	 # class names

	 if "names" not in locals():

	 names = yaml_load(data)["names"] if data else {i: f"class{i}" for i in range(999)}

	 if names[0] == "n01440764" and len(names) == 1000: # ImageNet

	 names = yaml_load(ROOT / "data/ImageNet.yaml")["names"] # human-readable names

	 self.__dict__.update(locals()) # assign all variables to self

	 def forward(self, im, augment=False, visualize=False):

	 """Performs YOLOv5 inference on input images with options for augmentation and visualization."""

	 b, ch, h, w = im.shape # batch, channel, height, width

	 if self.fp16 and im.dtype != torch.float16:

	 im = im.half() # to FP16

	 if self.nhwc:

	 im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)

	 if self.pt: # PyTorch

	 y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)

	 elif self.jit: # TorchScript

	 y = self.model(im)

	 elif self.dnn: # ONNX OpenCV DNN

	 im = im.cpu().numpy() # torch to numpy

	 self.net.setInput(im)

	 y = self.net.forward()

	 elif self.onnx: # ONNX Runtime

	 im = im.cpu().numpy() # torch to numpy

	 y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})

	 elif self.xml: # OpenVINO

	 im = im.cpu().numpy() # FP32

	 y = list(self.ov_compiled_model(im).values())

	 elif self.engine: # TensorRT

	 if self.dynamic and im.shape != self.bindings["images"].shape:

	 i = self.model.get_binding_index("images")

	 self.context.set_binding_shape(i, im.shape) # reshape if dynamic

	 self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape)

	 for name in self.output_names:

	 i = self.model.get_binding_index(name)

	 self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))

	 s = self.bindings["images"].shape

	 assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"

	 self.binding_addrs["images"] = int(im.data_ptr())

	 self.context.execute_v2(list(self.binding_addrs.values()))

	 y = [self.bindings[x].data for x in sorted(self.output_names)]

	 elif self.coreml: # CoreML

	 im = im.cpu().numpy()

	 im = Image.fromarray((im[0] * 255).astype("uint8"))

	 # im = im.resize((192, 320), Image.BILINEAR)

	 y = self.model.predict({"image": im}) # coordinates are xywh normalized

	 if "confidence" in y:

	 box = xywh2xyxy(y["coordinates"] * [[w, h, w, h]]) # xyxy pixels

	 conf, cls = y["confidence"].max(1), y["confidence"].argmax(1).astype(np.float)

	 y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)

	 else:

	 y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)

	 elif self.paddle: # PaddlePaddle

	 im = im.cpu().numpy().astype(np.float32)

	 self.input_handle.copy_from_cpu(im)

	 self.predictor.run()

	 y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]

	 elif self.triton: # NVIDIA Triton Inference Server

	 y = self.model(im)

	 else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)

	 im = im.cpu().numpy()

	 if self.saved_model: # SavedModel

	 y = self.model(im, training=False) if self.keras else self.model(im)

	 elif self.pb: # GraphDef

	 y = self.frozen_func(x=self.tf.constant(im))

	 else: # Lite or Edge TPU

	 input = self.input_details[0]

	 int8 = input["dtype"] == np.uint8 # is TFLite quantized uint8 model

	 if int8:

	 scale, zero_point = input["quantization"]

	 im = (im / scale + zero_point).astype(np.uint8) # de-scale

	 self.interpreter.set_tensor(input["index"], im)

	 self.interpreter.invoke()

	 y = []

	 for output in self.output_details:

	 x = self.interpreter.get_tensor(output["index"])

	 if int8:

	 scale, zero_point = output["quantization"]

	 x = (x.astype(np.float32) - zero_point) * scale # re-scale

	 y.append(x)

	 y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]

	 y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels

	 if isinstance(y, (list, tuple)):

	 return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]

	 else:

	 return self.from_numpy(y)

	 def from_numpy(self, x):

	 """Converts a NumPy array to a torch tensor, maintaining device compatibility."""

	 return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x

	 def warmup(self, imgsz=(1, 3, 640, 640)):

	 """Performs a single inference warmup to initialize model weights, accepting an `imgsz` tuple for image size."""

	 warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton

	 if any(warmup_types) and (self.device.type != "cpu" or self.triton):

	 im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input

	 for _ in range(2 if self.jit else 1): #

	 self.forward(im) # warmup

	 @staticmethod

	 def _model_type(p="path/to/model.pt"):

	 """

	 Determines model type from file path or URL, supporting various export formats.

	 Example: path='path/to/model.onnx' -> type=onnx

	 """

	 # types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]

	 from export import export_formats

	 from utils.downloads import is_url

	 sf = list(export_formats().Suffix) # export suffixes

	 if not is_url(p, check=False):

	 check_suffix(p, sf) # checks

	 url = urlparse(p) # if url may be Triton inference server

	 types = [s in Path(p).name for s in sf]

	 types[8] &= not types[9] # tflite &= not edgetpu

	 triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])

	 return types + [triton]

	 @staticmethod

	 def _load_metadata(f=Path("path/to/meta.yaml")):

	 """Loads metadata from a YAML file, returning strides and names if the file exists, otherwise `None`."""

	 if f.exists():

	 d = yaml_load(f)

	 return d["stride"], d["names"] # assign stride, names

	 return None, None

	class AutoShape(nn.Module):

	 """AutoShape class for robust YOLOv5 inference with preprocessing, NMS, and support for various input formats."""

	 conf = 0.25 # NMS confidence threshold

	 iou = 0.45 # NMS IoU threshold

	 agnostic = False # NMS class-agnostic

	 multi_label = False # NMS multiple labels per box

	 classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs

	 max_det = 1000 # maximum number of detections per image

	 amp = False # Automatic Mixed Precision (AMP) inference

	 def __init__(self, model, verbose=True):

	 """Initializes YOLOv5 model for inference, setting up attributes and preparing model for evaluation."""

	 super().__init__()

	 if verbose:

	 LOGGER.info("Adding AutoShape... ")

	 copy_attr(self, model, include=("yaml", "nc", "hyp", "names", "stride", "abc"), exclude=()) # copy attributes

	 self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance

	 self.pt = not self.dmb or model.pt # PyTorch model

	 self.model = model.eval()

	 if self.pt:

	 m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()

	 m.inplace = False # Detect.inplace=False for safe multithread inference

	 m.export = True # do not output loss values

	 def _apply(self, fn):

	 """

	 Applies to(), cpu(), cuda(), half() etc.

	 to model tensors excluding parameters or registered buffers.

	 """

	 self = super()._apply(fn)

	 if self.pt:

	 m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()

	 m.stride = fn(m.stride)

	 m.grid = list(map(fn, m.grid))

	 if isinstance(m.anchor_grid, list):

	 m.anchor_grid = list(map(fn, m.anchor_grid))

	 return self

	 @smart_inference_mode()

	 def forward(self, ims, size=640, augment=False, profile=False):

	 """

	 Performs inference on inputs with optional augment & profiling.

	 Supports various formats including file, URI, OpenCV, PIL, numpy, torch.

	 """

	 # For size(height=640, width=1280), RGB images example inputs are:

	 # file: ims = 'data/images/zidane.jpg' # str or PosixPath

	 # URI: = 'https://ultralytics.com/images/zidane.jpg'

	 # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)

	 # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)

	 # numpy: = np.zeros((640,1280,3)) # HWC

	 # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)

	 # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images

	 dt = (Profile(), Profile(), Profile())

	 with dt[0]:

	 if isinstance(size, int): # expand

	 size = (size, size)

	 p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param

	 autocast = self.amp and (p.device.type != "cpu") # Automatic Mixed Precision (AMP) inference

	 if isinstance(ims, torch.Tensor): # torch

	 with amp.autocast(autocast):

	 return self.model(ims.to(p.device).type_as(p), augment=augment) # inference

	 # Pre-process

	 n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images

	 shape0, shape1, files = [], [], [] # image and inference shapes, filenames

	 for i, im in enumerate(ims):

	 f = f"image{i}" # filename

	 if isinstance(im, (str, Path)): # filename or uri

	 im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith("http") else im), im

	 im = np.asarray(exif_transpose(im))

	 elif isinstance(im, Image.Image): # PIL Image

	 im, f = np.asarray(exif_transpose(im)), getattr(im, "filename", f) or f

	 files.append(Path(f).with_suffix(".jpg").name)

	 if im.shape[0] < 5: # image in CHW

	 im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)

	 im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input

	 s = im.shape[:2] # HWC

	 shape0.append(s) # image shape

	 g = max(size) / max(s) # gain

	 shape1.append([int(y * g) for y in s])

	 ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update

	 shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] # inf shape

	 x = [letterbox(im, shape1, auto=False)[0] for im in ims] # pad

	 x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW

	 x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32

	 with amp.autocast(autocast):

	 # Inference

	 with dt[1]:

	 y = self.model(x, augment=augment) # forward

	 # Post-process

	 with dt[2]:

	 y = non_max_suppression(

	 y if self.dmb else y[0],

	 self.conf,

	 self.iou,

	 self.classes,

	 self.agnostic,

	 self.multi_label,

	 max_det=self.max_det,

) # NMS

	 for i in range(n):

	 scale_boxes(shape1, y[i][:, :4], shape0[i])

	 return Detections(ims, y, files, dt, self.names, x.shape)

	class Detections:

	 """Manages YOLOv5 detection results with methods for visualization, saving, cropping, and exporting detections."""

	 def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):

	 """Initializes the YOLOv5 Detections class with image info, predictions, filenames, timing and normalization."""

	 super().__init__()

	 d = pred[0].device # device

	 gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations

	 self.ims = ims # list of images as numpy arrays

	 self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)

	 self.names = names # class names

	 self.files = files # image filenames

	 self.times = times # profiling times

	 self.xyxy = pred # xyxy pixels

	 self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels

	 self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized

	 self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized

	 self.n = len(self.pred) # number of images (batch size)

	 self.t = tuple(x.t / self.n * 1e3 for x in times) # timestamps (ms)

	 self.s = tuple(shape) # inference BCHW shape

	 def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path("")):

	 """Executes model predictions, displaying and/or saving outputs with optional crops and labels."""

	 s, crops = "", []

	 for i, (im, pred) in enumerate(zip(self.ims, self.pred)):

	 s += f"\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} " # string

	 if pred.shape[0]:

	 for c in pred[:, -1].unique():

	 n = (pred[:, -1] == c).sum() # detections per class

	 s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string

	 s = s.rstrip(", ")

	 if show or save or render or crop:

	 annotator = Annotator(im, example=str(self.names))

	 for *box, conf, cls in reversed(pred): # xyxy, confidence, class

	 label = f"{self.names[int(cls)]} {conf:.2f}"

	 if crop:

	 file = save_dir / "crops" / self.names[int(cls)] / self.files[i] if save else None

	 crops.append(

	 {

	 "box": box,

	 "conf": conf,

	 "cls": cls,

	 "label": label,

	 "im": save_one_box(box, im, file=file, save=save),

	 }

)

	 else: # all others

	 annotator.box_label(box, label if labels else "", color=colors(cls))

	 im = annotator.im

	 else:

	 s += "(no detections)"

	 im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np

	 if show:

	 if is_jupyter():

	 from IPython.display import display

	 display(im)

	 else:

	 im.show(self.files[i])

	 if save:

	 f = self.files[i]

	 im.save(save_dir / f) # save

	 if i == self.n - 1:

	 LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")

	 if render:

	 self.ims[i] = np.asarray(im)

	 if pprint:

	 s = s.lstrip("\n")

	 return f"{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}" % self.t

	 if crop:

	 if save:

	 LOGGER.info(f"Saved results to {save_dir}\n")

	 return crops

	 @TryExcept("Showing images is not supported in this environment")

	 def show(self, labels=True):

	 """

	 Displays detection results with optional labels.

	 Usage: show(labels=True)

	 """

	 self._run(show=True, labels=labels) # show results

	 def save(self, labels=True, save_dir="runs/detect/exp", exist_ok=False):

	 """

	 Saves detection results with optional labels to a specified directory.

	 Usage: save(labels=True, save_dir='runs/detect/exp', exist_ok=False)

	 """

	 save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir

	 self._run(save=True, labels=labels, save_dir=save_dir) # save results

	 def crop(self, save=True, save_dir="runs/detect/exp", exist_ok=False):

	 """

	 Crops detection results, optionally saves them to a directory.

	 Args: save (bool), save_dir (str), exist_ok (bool).

	 """

	 save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None

	 return self._run(crop=True, save=save, save_dir=save_dir) # crop results

	 def render(self, labels=True):

	 """Renders detection results with optional labels on images; args: labels (bool) indicating label inclusion."""

	 self._run(render=True, labels=labels) # render results

	 return self.ims

	 def pandas(self):

	 """

	 Returns detections as pandas DataFrames for various box formats (xyxy, xyxyn, xywh, xywhn).

	 Example: print(results.pandas().xyxy[0]).

	 """

	 new = copy(self) # return copy

	 ca = "xmin", "ymin", "xmax", "ymax", "confidence", "class", "name" # xyxy columns

	 cb = "xcenter", "ycenter", "width", "height", "confidence", "class", "name" # xywh columns

	 for k, c in zip(["xyxy", "xyxyn", "xywh", "xywhn"], [ca, ca, cb, cb]):

	 a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update

	 setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])

	 return new

	 def tolist(self):

	 """

	 Converts a Detections object into a list of individual detection results for iteration.

	 Example: for result in results.tolist():

	 """

	 r = range(self.n) # iterable

	 return [

	 Detections(

	 [self.ims[i]],

	 [self.pred[i]],

	 [self.files[i]],

	 self.times,

	 self.names,

	 self.s,

)

	 for i in r

]

	 def print(self):

	 """Logs the string representation of the current object's state via the LOGGER."""

	 LOGGER.info(self.__str__())

	 def __len__(self):

	 """Returns the number of results stored, overrides the default len(results)."""

	 return self.n

	 def __str__(self):

	 """Returns a string representation of the model's results, suitable for printing, overrides default

	 print(results).

	 """

	 return self._run(pprint=True) # print results

	 def __repr__(self):

	 """Returns a string representation of the YOLOv5 object, including its class and formatted results."""

	 return f"YOLOv5 {self.__class__} instance\n" + self.__str__()

	class Proto(nn.Module):

	 """YOLOv5 mask Proto module for segmentation models, performing convolutions and upsampling on input tensors."""

	 def __init__(self, c1, c_=256, c2=32):

	 """Initializes YOLOv5 Proto module for segmentation with input, proto, and mask channels configuration."""

	 super().__init__()

	 self.cv1 = Conv(c1, c_, k=3)

	 self.upsample = nn.Upsample(scale_factor=2, mode="nearest")

	 self.cv2 = Conv(c_, c_, k=3)

	 self.cv3 = Conv(c_, c2)

	 def forward(self, x):

	 """Performs a forward pass using convolutional layers and upsampling on input tensor `x`."""

	 return self.cv3(self.cv2(self.upsample(self.cv1(x))))

	class Classify(nn.Module):

	 """YOLOv5 classification head with convolution, pooling, and dropout layers for channel transformation."""

	 def __init__(

	 self, c1, c2, k=1, s=1, p=None, g=1, dropout_p=0.0

): # ch_in, ch_out, kernel, stride, padding, groups, dropout probability

	 """Initializes YOLOv5 classification head with convolution, pooling, and dropout layers for input to output

	 channel transformation.

	 """

	 super().__init__()

	 c_ = 1280 # efficientnet_b0 size

	 self.conv = Conv(c1, c_, k, s, autopad(k, p), g)

	 self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)

	 self.drop = nn.Dropout(p=dropout_p, inplace=True)

	 self.linear = nn.Linear(c_, c2) # to x(b,c2)

	 def forward(self, x):

	 """Processes input through conv, pool, drop, and linear layers; supports list concatenation input."""

	 if isinstance(x, list):

	 x = torch.cat(x, 1)

	 return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))

	class SE(nn.Module):

	 def __init__(self,c1,c2,r=16):

	 super(SE,self).__init__()

	 self.avgpool = nn.AdaptiveAvgPool2d(1)

	 self.l1 = nn.Linear(c1,c1 //r,bias=False)

	 self.relu = nn.ReLU(inplace=True)

	 self.l2 = nn.Linear(c1 // r,c1,bias=False)

	 self.sig = nn.Sigmoid()

	 def forward(self,x):

	 print(x.size())

	 b,c,_,_=x.size()

	 y = self.avgpool(x).view(b,c)

	 y = self.l1(y)

	 y = self.relu(y)

	 y = self.l2(y)

	 y = self.sig(y)

	 y = y.view(b,c,1,1)

	 return x*y.expand_as(x)

	# CA

	class h_sigmoid(nn.Module):

	 def __init__(self, inplace=True):

	 super(h_sigmoid, self).__init__()

	 self.relu = nn.ReLU6(inplace=inplace)

	 def forward(self, x):

	 return self.relu(x + 3) / 6

	class h_swish(nn.Module):

	 def __init__(self, inplace=True):

	 super(h_swish, self).__init__()

	 self.sigmoid = h_sigmoid(inplace=inplace)

	 def forward(self, x):

	 return x * self.sigmoid(x)

	class CoordAtt(nn.Module):

	 def __init__(self, inp, oup, reduction=32):

	 super(CoordAtt, self).__init__()

	 self.pool_h = nn.AdaptiveAvgPool2d((None, 1))

	 self.pool_w = nn.AdaptiveAvgPool2d((1, None))

	 mip = max(8, inp // reduction)

	 self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)

	 self.bn1 = nn.BatchNorm2d(mip)

	 self.act = h_swish()

	 self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)

	 self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)

	 def forward(self, x):

	 identity = x

	 n, c, h, w = x.size()

	 # c*1*W

	 x_h = self.pool_h(x)

	 # c*H*1

	 # C*1*h

	 x_w = self.pool_w(x).permute(0, 1, 3, 2)

	 y = torch.cat([x_h, x_w], dim=2)

	 # C*1*(h+w)

	 y = self.conv1(y)

	 y = self.bn1(y)

	 y = self.act(y)

	 x_h, x_w = torch.split(y, [h, w], dim=2)

	 x_w = x_w.permute(0, 1, 3, 2)

	 a_h = self.conv_h(x_h).sigmoid()

	 a_w = self.conv_w(x_w).sigmoid()

	 out = identity * a_w * a_h

	 return out

	class stem(nn.Module):

	 def __init__(self,c1,c2,kernel_size=3,stride=1, groups=1):

	 super().__init__()

	 padding=(kernel_size-1)//2

	 self.conv = nn.Conv2d(c1, c2, kernel_size, stride, padding=padding, groups=groups, bias=False)

	 self.bn =nn.BatchNorm2d(c2,eps=1e-3,momentum=0.1)

	 self.act = nn.SiLU(inplace=True)

	 def forward(self, x):

	 print(x.shape)

	 x= self.conv(x)

	 x= self.bn(x)

	 x= self.act(x)

	 return x

	def drop_path(x,drop_prob: float = 0.,training: bool =False):

	 if drop_prob ==0. or not training:

	 return x

	 keep_prob = 1-drop_prob

	 shape = (x.shape[0],)+(1,)*(x.ndim - 1)

	 random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)

	 random_tensor.floor_()# binarize

	 output = x.div(keep_prob) * random_tensor

	 return output

	class DropPath(nn.Module):

	 def __init__(self, drop_prob=None):

	 super(DropPath,self).__init__()

	 self.drop_prob = drop_prob

	 def forward(self,x):

	 return drop_path(x,self.drop_prob, self.training)

	class SqueezeExcite_efficientv2(nn.Module):

	 def __init__(self, c1, c2, se_ratio=0.25,act_layer=nn.ReLU):

	 super().__init__()

	 self.gate_fn = nn.Sigmoid()

	 reduced_chs =int(c1 * se_ratio)

	 self.avg_pool = nn.AdaptiveAvgPool2d(1)

	 self.conv_reduce =nn.Conv2d(c1, reduced_chs, 1, bias=True)

	 self.act1 =act_layer(inplace=True)

	 self.conv_expand =nn.Conv2d(reduced_chs, c2, 1, bias=True)

	 def forward(self,x):

	 x_se = self.avg_pool(x)

	 x_se = self.conv_reduce(x_se)

	 x_se = self.act1(x_se)

	 x_se = self.conv_expand(x_se)

	 x_se = self.gate_fn(x_se)

	 x = x * (x_se.expand_as(x))

	 return x

	class FusedMBConv(nn.Module):

	 def __init__(self, c1, c2, k=3, s=1, expansion=1, se_ration=0, dropout_rate=0.2, drop_connect_rate=0.2):

	 super().__init__()

	 self.has_shortcut = (s == 1 and c1 == c2)

	 self.has_expansion = expansion !=1

	 # expansion==1

	 expanded_c = c1 * expansion

	 if self.has_expansion:

	 self.expansion_conv = stem(c1, expanded_c, kernel_size=k, stride=s)

	 self.project_conv = stem(expanded_c, c2, kernel_size=1, stride=1)

	 else:

	 self.project_conv = stem(c1, c2, kernel_size=k, stride=s)

	 self.drop_connect_rate = drop_connect_rate

	 if self.has_shortcut and drop_connect_rate > 0:

	 self.dropout = DropPath(drop_connect_rate)

	 def forward(self, x):

	 if self.has_expansion:

	 result = self.expansion_conv(x)

	 result = self.project_conv(result)

	 else:

	 result = self.project_conv(x)

	 if self.has_shortcut:

	 if self.drop_connect_rate >0:

	 result = self.dropout(result)

	 result += x

	 return result

	class MBConv(nn.Module):

	 def __init__(self, c1, c2, k=3, s=1, expansion=1, se_ration=0, dropout_rate=0.2, drop_connect_rate=0.2):

	 super().__init__()

	 self.has_shortcut = (s == 1 and c1 == c2)

	 expanded_c = c1 * expansion

	 self.expansion_conv = stem(c1, expanded_c, kernel_size=1, stride=1)

	 self.dw_conv = stem(expanded_c, expanded_c, kernel_size=k, stride=s, groups=expanded_c)

	 self.se = SqueezeExcite_efficientv2(expanded_c, expanded_c, se_ration) if se_ration > 0 else nn.Identity()

	 self.project_conv = stem(expanded_c, c2, kernel_size=1, stride=1)

	 self.drop_connect_rate = drop_connect_rate

	 if self.has_shortcut and drop_connect_rate > 0:

	 self.dropout = DropPath(drop_connect_rate)

	 def forward(self, x):

	 result =self.expansion_conv(x)

	 result=self.dw_conv(result)

	 result = self.se(result)

	 result = self.project_conv(result)

	 if self.has_shortcut:

	 if self.drop_connect_rate >0:

	 result = self.dropout(result)

	 result += x

	 return result

	class BiFPN_Add2(nn.Module):

	 def __init__(self, c1, c2):

	 super(BiFPN_Add2, self) .__init__()

	 self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)

	 self.epsilon = 0.0001

	 self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)

	 self.silu = nn.SiLU()

	 def forward(self, x):

	 w = self.w

	 weight = w / (torch.sum(w, dim=0) + self.epsilon)

	 return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1]))

	class BiFPN_Add3(nn.Module):

	 def __init__(self, c1, c2):

	 super(BiFPN_Add3, self) .__init__()

	 self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)

	 self.epsilon = 0.0001

	 self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)

	 self.silu = nn.SiLU()

	 def forward(self, x):

	 w = self.w

	 weight = w / (torch.sum(w, dim=0) + self.epsilon)

	 # Fast normalized fusion

	 return self.conv(self.silu(weight[0]*x[0] + weight[1] * x[1] + weight[2] * x[2]))

Table S8. yolo.py code for adding network structure by PyCharm2021.3.1
	import argparse

	import contextlib

	import math

	import os

	import platform

	import sys

	from copy import deepcopy

	from pathlib import Path

	import torch

	import torch.nn as nn

	FILE = Path(__file__).resolve()

	ROOT = FILE.parents[1] # YOLOv5 root directory

	if str(ROOT) not in sys.path:

	 sys.path.append(str(ROOT)) # add ROOT to PATH

	if platform.system() != "Windows":

	 ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative

	from models.common import (

	 C3,

	 C3SPP,

	 C3TR,

	 SPP,

	 SPPF,

	 Bottleneck,

	 BottleneckCSP,

	 C3Ghost,

	 C3x,

	 Classify,

	 Concat,

	 Contract,

	 Conv,

	 CrossConv,

	 DetectMultiBackend,

	 DWConv,

	 DWConvTranspose2d,

	 Expand,

	 Focus,

	 GhostBottleneck,

	 GhostConv,

	 Proto, stem, Shuffle_Block, SE, CoordAtt, FusedMBConv, MBConv, BiFPN_Add2, BiFPN_Add3,

)

	from models.experimental import MixConv2d

	from utils.autoanchor import check_anchor_order

	from utils.general import LOGGER, check_version, check_yaml, colorstr, make_divisible, print_args

	from utils.plots import feature_visualization

	from utils.torch_utils import (

	 fuse_conv_and_bn,

	 initialize_weights,

	 model_info,

	 profile,

	 scale_img,

	 select_device,

	 time_sync,

)

	try:

	 import thop # for FLOPs computation

	except ImportError:

	 thop = None

	class Detect(nn.Module):

	 """YOLOv5 Detect head for processing input tensors and generating detection outputs in object detection models."""

	 stride = None # strides computed during build

	 dynamic = False # force grid reconstruction

	 export = False # export mode

	 def __init__(self, nc=80, anchors=(), ch=(), inplace=True):

	 """Initializes YOLOv5 detection layer with specified classes, anchors, channels, and inplace operations."""

	 super().__init__()

	 self.nc = nc # number of classes

	 self.no = nc + 5 # number of outputs per anchor

	 self.nl = len(anchors) # number of detection layers

	 self.na = len(anchors[0]) // 2 # number of anchors

	 self.grid = [torch.empty(0) for _ in range(self.nl)] # init grid

	 self.anchor_grid = [torch.empty(0) for _ in range(self.nl)] # init anchor grid

	 self.register_buffer("anchors", torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)

	 self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv

	 self.inplace = inplace # use inplace ops (e.g. slice assignment)

	 def forward(self, x):

	 """Processes input through YOLOv5 layers, altering shape for detection: `x(bs, 3, ny, nx, 85)`."""

	 z = [] # inference output

	 for i in range(self.nl):

	 x[i] = self.m[i](x[i]) # conv

	 bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)

	 x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

	 if not self.training: # inference

	 if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:

	 self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

	 if isinstance(self, Segment): # (boxes + masks)

	 xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)

	 xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i] # xy

	 wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh

	 y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)

	 else: # Detect (boxes only)

	 xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)

	 xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy

	 wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh

	 y = torch.cat((xy, wh, conf), 4)

	 z.append(y.view(bs, self.na * nx * ny, self.no))

	 return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)

	 def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, "1.10.0")):

	 """Generates a mesh grid for anchor boxes with optional compatibility for torch versions < 1.10."""

	 d = self.anchors[i].device

	 t = self.anchors[i].dtype

	 shape = 1, self.na, ny, nx, 2 # grid shape

	 y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)

	 yv, xv = torch.meshgrid(y, x, indexing="ij") if torch_1_10 else torch.meshgrid(y, x) # torch>=0.7 compatibility

	 grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5

	 anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)

	 return grid, anchor_grid

	class Segment(Detect):

	 """YOLOv5 Segment head for segmentation models, extending Detect with mask and prototype layers."""

	 def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True):

	 """Initializes YOLOv5 Segment head with options for mask count, protos, and channel adjustments."""

	 super().__init__(nc, anchors, ch, inplace)

	 self.nm = nm # number of masks

	 self.npr = npr # number of protos

	 self.no = 5 + nc + self.nm # number of outputs per anchor

	 self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv

	 self.proto = Proto(ch[0], self.npr, self.nm) # protos

	 self.detect = Detect.forward

	 def forward(self, x):

	 """Processes input through the network, returning detections and prototypes; adjusts output based on

	 training/export mode.

	 """

	 p = self.proto(x[0])

	 x = self.detect(self, x)

	 return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1])

	class BaseModel(nn.Module):

	 """YOLOv5 base model."""

	 def forward(self, x, profile=False, visualize=False):

	 """Executes a single-scale inference or training pass on the YOLOv5 base model, with options for profiling and

	 visualization.

	 """

	 return self._forward_once(x, profile, visualize) # single-scale inference, train

	 def _forward_once(self, x, profile=False, visualize=False):

	 """Performs a forward pass on the YOLOv5 model, enabling profiling and feature visualization options."""

	 y, dt = [], [] # outputs

	 for m in self.model:

	 if m.f != -1: # if not from previous layer

	 x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers

	 if profile:

	 self._profile_one_layer(m, x, dt)

	 x = m(x) # run

	 y.append(x if m.i in self.save else None) # save output

	 if visualize:

	 feature_visualization(x, m.type, m.i, save_dir=visualize)

	 return x

	 def _profile_one_layer(self, m, x, dt):

	 """Profiles a single layer's performance by computing GFLOPs, execution time, and parameters."""

	 c = m == self.model[-1] # is final layer, copy input as inplace fix

	 o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1e9 * 2 if thop else 0 # FLOPs

	 t = time_sync()

	 for _ in range(10):

	 m(x.copy() if c else x)

	 dt.append((time_sync() - t) * 100)

	 if m == self.model[0]:

	 LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")

	 LOGGER.info(f"{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}")

	 if c:

	 LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")

	 def fuse(self):

	 """Fuses Conv2d() and BatchNorm2d() layers in the model to improve inference speed."""

	 LOGGER.info("Fusing layers... ")

	 for m in self.model.modules():

	 if isinstance(m, (Conv, DWConv)) and hasattr(m, "bn"):

	 m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv

	 delattr(m, "bn") # remove batchnorm

	 m.forward = m.forward_fuse # update forward

	 self.info()

	 return self

	 def info(self, verbose=False, img_size=640):

	 """Prints model information given verbosity and image size, e.g., `info(verbose=True, img_size=640)`."""

	 model_info(self, verbose, img_size)

	 def _apply(self, fn):

	 """Applies transformations like to(), cpu(), cuda(), half() to model tensors excluding parameters or registered

	 buffers.

	 """

	 self = super()._apply(fn)

	 m = self.model[-1] # Detect()

	 if isinstance(m, (Detect, Segment)):

	 m.stride = fn(m.stride)

	 m.grid = list(map(fn, m.grid))

	 if isinstance(m.anchor_grid, list):

	 m.anchor_grid = list(map(fn, m.anchor_grid))

	 return self

	class DetectionModel(BaseModel):

	 """YOLOv5 detection model class for object detection tasks, supporting custom configurations and anchors."""

	 def __init__(self, cfg="yolov5s_BiFPN.yaml", ch=3, nc=None, anchors=None):

	 """Initializes YOLOv5 model with configuration file, input channels, number of classes, and custom anchors."""

	 super().__init__()

	 if isinstance(cfg, dict):

	 self.yaml = cfg # model dict

	 else: # is *.yaml

	 import yaml # for torch hub

	 self.yaml_file = Path(cfg).name

	 with open(cfg, encoding="ascii", errors="ignore") as f:

	 self.yaml = yaml.safe_load(f) # model dict

	 # Define model

	 ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels

	 if nc and nc != self.yaml['nc']:

	 LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")

	 self.yaml["nc"] = nc # override yaml value

	 if anchors:

	 LOGGER.info(f"Overriding model.yaml anchors with anchors={anchors}")

	 self.yaml["anchors"] = round(anchors) # override yaml value

	 self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist

	 self.names = [str(i) for i in range(self.yaml["nc"])] # default names

	 self.inplace = self.yaml.get("inplace", True)

	 # Build strides, anchors

	 m = self.model[-1] # Detect()

	 if isinstance(m, (Detect, Segment)):

	 def _forward(x):

	 """Passes the input 'x' through the model and returns the processed output."""

	 return self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)

	 s = 256 # 2x min stride

	 m.inplace = self.inplace

	 m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))]) # forward

	 check_anchor_order(m)

	 m.anchors /= m.stride.view(-1, 1, 1)

	 self.stride = m.stride

	 self._initialize_biases() # only run once

	 # Init weights, biases

	 initialize_weights(self)

	 self.info()

	 LOGGER.info("")

	 def forward(self, x, augment=False, profile=False, visualize=False):

	 """Performs single-scale or augmented inference and may include profiling or visualization."""

	 if augment:

	 return self._forward_augment(x) # augmented inference, None

	 return self._forward_once(x, profile, visualize) # single-scale inference, train

	 def _forward_augment(self, x):

	 """Performs augmented inference across different scales and flips, returning combined detections."""

	 img_size = x.shape[-2:] # height, width

	 s = [1, 0.83, 0.67] # scales

	 f = [None, 3, None] # flips (2-ud, 3-lr)

	 y = [] # outputs

	 for si, fi in zip(s, f):

	 xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))

	 yi = self._forward_once(xi)[0] # forward

	 # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save

	 yi = self._descale_pred(yi, fi, si, img_size)

	 y.append(yi)

	 y = self._clip_augmented(y) # clip augmented tails

	 return torch.cat(y, 1), None # augmented inference, train

	 def _descale_pred(self, p, flips, scale, img_size):

	 """De-scales predictions from augmented inference, adjusting for flips and image size."""

	 if self.inplace:

	 p[..., :4] /= scale # de-scale

	 if flips == 2:

	 p[..., 1] = img_size[0] - p[..., 1] # de-flip ud

	 elif flips == 3:

	 p[..., 0] = img_size[1] - p[..., 0] # de-flip lr

	 else:

	 x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale

	 if flips == 2:

	 y = img_size[0] - y # de-flip ud

	 elif flips == 3:

	 x = img_size[1] - x # de-flip lr

	 p = torch.cat((x, y, wh, p[..., 4:]), -1)

	 return p

	 def _clip_augmented(self, y):

	 """Clips augmented inference tails for YOLOv5 models, affecting first and last tensors based on grid points and

	 layer counts.

	 """

	 nl = self.model[-1].nl # number of detection layers (P3-P5)

	 g = sum(4**x for x in range(nl)) # grid points

	 e = 1 # exclude layer count

	 i = (y[0].shape[1] // g) * sum(4**x for x in range(e)) # indices

	 y[0] = y[0][:, :-i] # large

	 i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices

	 y[-1] = y[-1][:, i:] # small

	 return y

	 def _initialize_biases(self, cf=None):

	 """

	 Initializes biases for YOLOv5's Detect() module, optionally using class frequencies (cf).

	 For details see https://arxiv.org/abs/1708.02002 section 3.3.

	 """

	 # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.

	 m = self.model[-1] # Detect() module

	 for mi, s in zip(m.m, m.stride): # from

	 b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)

	 b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)

	 b.data[:, 5 : 5 + m.nc] += (

	 math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum())

) # cls

	 mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

	Model = DetectionModel # retain YOLOv5 'Model' class for backwards compatibility

	class SegmentationModel(DetectionModel):

	 """YOLOv5 segmentation model for object detection and segmentation tasks with configurable parameters."""

	 def __init__(self, cfg="yolov5s-seg.yaml", ch=3, nc=None, anchors=None):

	 """Initializes a YOLOv5 segmentation model with configurable params: cfg (str) for configuration, ch (int) for channels, nc (int) for num classes, anchors (list)."""

	 super().__init__(cfg, ch, nc, anchors)

	class ClassificationModel(BaseModel):

	 """YOLOv5 classification model for image classification tasks, initialized with a config file or detection model."""

	 def __init__(self, cfg=None, model=None, nc=1000, cutoff=10):

	 """Initializes YOLOv5 model with config file `cfg`, input channels `ch`, number of classes `nc`, and `cuttoff`

	 index.

	 """

	 super().__init__()

	 self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)

	 def _from_detection_model(self, model, nc=1000, cutoff=10):

	 """Creates a classification model from a YOLOv5 detection model, slicing at `cutoff` and adding a classification

	 layer.

	 """

	 if isinstance(model, DetectMultiBackend):

	 model = model.model # unwrap DetectMultiBackend

	 model.model = model.model[:cutoff] # backbone

	 m = model.model[-1] # last layer

	 ch = m.conv.in_channels if hasattr(m, "conv") else m.cv1.conv.in_channels # ch into module

	 c = Classify(ch, nc) # Classify()

	 c.i, c.f, c.type = m.i, m.f, "models.common.Classify" # index, from, type

	 model.model[-1] = c # replace

	 self.model = model.model

	 self.stride = model.stride

	 self.save = []

	 self.nc = nc

	 def _from_yaml(self, cfg):

	 """Creates a YOLOv5 classification model from a specified *.yaml configuration file."""

	 self.model = None

	def parse_model(d, ch):

	 """Parses a YOLOv5 model from a dict `d`, configuring layers based on input channels `ch` and model architecture."""

	 LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")

	 anchors, nc, gd, gw, act, ch_mul = (

	 d["anchors"],

	 d["nc"],

	 d["depth_multiple"],

	 d["width_multiple"],

	 d.get("activation"),

	 d.get("channel_multiple"),

)

	 if act:

	 Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()

	 LOGGER.info(f"{colorstr('activation:')} {act}") # print

	 if not ch_mul:

	 ch_mul = 8

	 na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors

	 no = na * (nc + 5) # number of outputs = anchors * (classes + 5)

	 layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out

	 for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args

	 m = eval(m) if isinstance(m, str) else m # eval strings

	 for j, a in enumerate(args):

	 with contextlib.suppress(NameError):

	 args[j] = eval(a) if isinstance(a, str) else a # eval strings

	 n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain

	 if m in {

	 Conv,

	 GhostConv,

	 Bottleneck,

	 GhostBottleneck,

	 SPP,

	 SPPF,

	 DWConv,

	 MixConv2d,

	 Focus,

	 CrossConv,

	 BottleneckCSP,

	 C3,

	 C3TR,

	 C3SPP,

	 C3Ghost,

	 nn.ConvTranspose2d,

	 DWConvTranspose2d,

	 C3x,

	 stem,

	 Shuffle_Block,

	 GhostBottleneck,

	 GhostConv,

	 SE,

	 CoordAtt,

	 stem,

	 FusedMBConv,

	 MBConv,

	 }:

	 c1, c2 = ch[f], args[0]

	 if c2 != no: # if not output

	 c2 = make_divisible(c2 * gw, ch_mul)

	 args = [c1, c2, *args[1:]]

	 if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:

	 args.insert(2, n) # number of repeats

	 n = 1

	 elif m is nn.BatchNorm2d:

	 args = [ch[f]]

	 elif m is Concat:

	 c2 = sum(ch[x] for x in f)

	 # TODO: channel, gw, gd

	 elif m in [BiFPN_Add2, BiFPN_Add3]:

	 c2 = max([ch[x] for x in f])

	 elif m in {Detect, Segment}:

	 args.append([ch[x] for x in f])

	 if isinstance(args[1], int): # number of anchors

	 args[1] = [list(range(args[1] * 2))] * len(f)

	 if m is Segment:

	 args[3] = make_divisible(args[3] * gw, ch_mul)

	 elif m is Contract:

	 c2 = ch[f] * args[0] ** 2

	 elif m is Expand:

	 c2 = ch[f] // args[0] ** 2

	 else:

	 c2 = ch[f]

	 m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module

	 t = str(m)[8:-2].replace("__main__.", "") # module type

	 np = sum(x.numel() for x in m_.parameters()) # number params

	 m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params

	 LOGGER.info(f"{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}") # print

	 save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist

	 layers.append(m_)

	 if i == 0:

	 ch = []

	 ch.append(c2)

	 return nn.Sequential(*layers), sorted(save)

	if __name__ == "__main__":

	 parser = argparse.ArgumentParser()

	 parser.add_argument("--cfg", type=str, default="yolov5s_BiFPN.yaml", help="model.yaml")

	 parser.add_argument("--batch-size", type=int, default=1, help="total batch size for all GPUs")

	 parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")

	 parser.add_argument("--profile", action="store_true", help="profile model speed")

	 parser.add_argument("--line-profile", action="store_true", help="profile model speed layer by layer")

	 parser.add_argument("--test", action="store_true", help="test all yolo*.yaml")

	 opt = parser.parse_args()

	 opt.cfg = check_yaml(opt.cfg) # check YAML

	 print_args(vars(opt))

	 device = select_device(opt.device)

	 # Create model

	 im = torch.rand(opt.batch_size, 3, 640, 640).to(device)

	 model = Model(opt.cfg).to(device)

	 # Options

	 if opt.line_profile: # profile layer by layer

	 model(im, profile=True)

	 elif opt.profile: # profile forward-backward

	 results = profile(input=im, ops=[model], n=3)

	 elif opt.test: # test all models

	 for cfg in Path(ROOT / "models").rglob("yolo*.yaml"):

	 try:

	 _ = Model(cfg)

	 except Exception as e:

	 print(f"Error in {cfg}: {e}")

	 else: # report fused model summary

	 model.fuse()

[bookmark: OLE_LINK1]Original pictures of bronze wares
1.jpg[image:]

2.jpg[image:]

3.jpg[image:]

4.jpg[image:]

5.jpg[image:]

6.jpg[image:]

7.jpg[image:]

8.jpg[image:]

9.jpg[image:]

10.jpg[image:]

11.jpg[image:]

12.jpg[image:]

13.jpg[image:]

14.jpg[image:]

15.jpg[image:]

16.jpg[image:]

17.jpg[image:]

18.jpg[image:]

19.jpg[image:]

20.jpg[image:]

21.jpg[image:]

22.jpg[image:]

23.jpg[image:]

24.jpg[image:]

25.jpg[image:]

26.jpg[image:]

27.jpg[image:]

28.jpg[image:]

29.jpg[image:]

30.jpg[image:]

31.jpg[image:]

32.jpg[image:]

33.jpg[image:]

34.jpg[image:]

35.jpg[image:]

36.jpg[image:]

37.jpg[image:]

38.jpg[image:]

39.jpg[image:]

40.jpg[image:]

41.jpg[image:]

42.jpg[image:]

43.jpg[image:]

44.jpg[image:]

45.jpg[image:]

Train set
cracking(105).jpg
[image:]

cracking(106).jpg
[image:]

cracking(108).jpg
[image:]

cracking(11).jpg
[image:]

cracking(111).jpg
[image:]

cracking(12).jpg
[image:]

cracking(120).jpg
[image:]

cracking(122).jpg
[image:]

cracking(123).jpg
[image:]

cracking(124).jpg
[image:]

cracking(126).jpg
[image:]

cracking(13).jpg
[image:]

cracking(134).jpg
[image:]

cracking(138).jpg
[image:]

cracking(142).jpg
[image:]

cracking(16).jpg
[image:]

cracking(160).jpg
[image:]

cracking(161).jpg
[image:]

cracking(163).jpg
[image:]

cracking(165).jpg
[image:]

cracking(166).jpg
[image:]

cracking(167).jpg
[image:]

cracking(168).jpg
[image:]

cracking(170).jpg
[image:]

cracking(171).jpg
[image:]

cracking(172).jpg
[image:]

cracking(173).jpg
[image:]

cracking(174).jpg
[image:]

cracking(175).jpg
[image:]

cracking(176).jpg
[image:]

cracking(177).jpg
[image:]

cracking(18).jpg
[image:]

cracking(181).jpg
[image:]

cracking(182).jpg
[image:]

cracking(183).jpg
[image:]

cracking(184).jpg
[image:]

cracking(185).jpg
[image:]

cracking(186).jpg
[image:]

cracking(187).jpg
[image:]

cracking(188).jpg
[image:]

cracking(189).jpg
[image:]

cracking(19).jpg
[image:]

cracking(190).jpg
[image:]

cracking(191).jpg
[image:]

cracking(192).jpg
[image:]

cracking(193).jpg
[image:]

cracking(194).jpg
[image:]

cracking(195).jpg
[image:]

cracking(196).jpg
[image:]

cracking(197).jpg
[image:]

cracking(198).jpg
[image:]

cracking(2).jpg
[image:]

cracking(204).jpg
[image:]

cracking(205).jpg
[image:]

cracking(206).jpg
[image:]

cracking(207).jpg
[image:]

cracking(208).jpg
[image:]

cracking(209).jpg
[image:]

cracking(21).jpg
[image:]

cracking(210).jpg
[image:]

cracking(211).jpg
[image:]

cracking(212).jpg
[image:]

cracking(213).jpg
[image:]

cracking(214).jpg
[image:]

cracking(215).jpg
[image:]

cracking(216).jpg
[image:]

cracking(217).jpg
[image:]

cracking(218).jpg
[image:]

cracking(23).jpg
[image:]

cracking(24).jpg
[image:]

cracking(27).jpg
[image:]

cracking(28).jpg
[image:]

cracking(3).jpg
[image:]

cracking(30).jpg
[image:]

cracking(31).jpg
[image:]

cracking(32).jpg
[image:]

cracking(36).jpg
[image:]

cracking(37).jpg
[image:]

cracking(39).jpg
[image:]

cracking(4).jpg
[image:]

cracking(42).jpg
[image:]

cracking(43).jpg
[image:]

cracking(52).jpg
[image:]

cracking(54).jpg
[image:]

cracking(55).jpg
[image:]

cracking(57).jpg
[image:]

cracking(58).jpg
[image:]

cracking(59).jpg
[image:]

cracking(60).jpg
[image:]

cracking(61).jpg
[image:]

cracking(62).jpg
[image:]

cracking(63).jpg
[image:]

cracking(64).jpg
[image:]

cracking(66).jpg
[image:]

cracking(67).jpg
[image:]

cracking(68).jpg
[image:]

cracking(69).jpg
[image:]

cracking(70).jpg
[image:]

cracking(71).jpg
[image:]

cracking(72).jpg
[image:]

cracking(74).jpg
[image:]

cracking(76).jpg
[image:]

cracking(77).jpg
[image:]

cracking(79).jpg
[image:]

cracking(82).jpg
[image:]

cracking(83).jpg
[image:]

cracking(84).jpg
[image:]

cracking(86).jpg
[image:]

cracking(87).jpg
[image:]

cracking(92).jpg
[image:]

holes (1).jpg
[image:]

holes (100).jpg
[image:]

holes (103).jpg
[image:]

holes (106).jpg
[image:]

holes (107).jpg
[image:]

holes (108).jpg
[image:]

holes (109).jpg
[image:]

holes (11).jpg
[image:]

holes (111).jpg
[image:]

holes (112).jpg
[image:]

holes (113).jpg
[image:]

holes (114).jpg
[image:]

holes (115).jpg
[image:]

holes (117).jpg
[image:]

holes (118).jpg
[image:]

holes (12).jpg
[image:]

holes (120).jpg
[image:]

holes (121).jpg
[image:]

holes (123).jpg
[image:]

holes (125).jpg
[image:]

holes (126).jpg
[image:]

holes (127).jpg
[image:]

holes (129).jpg
[image:]

holes (13).jpg
[image:]

holes (131).jpg
[image:]

holes (132).jpg
[image:]

holes (134).jpg
[image:]

holes (135).jpg
[image:]

holes (136).jpg
[image:]

holes (137).jpg
[image:]

holes (139).jpg
[image:]

holes (14).jpg
[image:]

holes (140).jpg
[image:]

holes (143).jpg
[image:]

holes (144).jpg
[image:]

holes (145).jpg
[image:]

holes (146).jpg
[image:]

holes (147).jpg
[image:]

holes (148).jpg
[image:]

holes (15).jpg
[image:]

holes (150).jpg
[image:]

holes (151).jpg
[image:]

holes (152).jpg
[image:]

holes (153).jpg
[image:]

holes (156).jpg
[image:]

holes (158).jpg
[image:]

holes (160).jpg
[image:]

holes (161).jpg
[image:]

holes (162).jpg
[image:]

holes (163).jpg
[image:]

holes (168).jpg
[image:]

holes (169).jpg
[image:]

holes (17).jpg
[image:]

holes (171).jpg
[image:]

holes (172).jpg
[image:]

holes (173).jpg
[image:]

holes (174).jpg
[image:]

holes (175).jpg
[image:]

holes (176).jpg
[image:]

holes (177).jpg
[image:]

holes (178).jpg
[image:]

holes (18).jpg
[image:]

holes (184).jpg
[image:]

holes (186).jpg
[image:]

holes (189).jpg
[image:]

holes (19).jpg
[image:]

holes (190).jpg
[image:]

holes (193).jpg
[image:]

holes (194).jpg
[image:]

holes (195).jpg
[image:]

holes (196).jpg
[image:]

holes (197).jpg
[image:]

holes (198).jpg
[image:]

holes (199).jpg
[image:]

holes (20).jpg
[image:]

holes (200).jpg
[image:]

holes (201).jpg
[image:]

holes (202).jpg
[image:]

holes (203).jpg
[image:]

holes (204).jpg
[image:]

holes (205).jpg
[image:]

holes (206).jpg
[image:]

holes (207).jpg
[image:]

holes (208).jpg
[image:]

holes (209).jpg
[image:]

holes (21).jpg
[image:]

holes (210).jpg
[image:]

holes (211).jpg
[image:]

holes (212).jpg
[image:]

holes (214).jpg
[image:]

holes (216).jpg
[image:]

holes (218).jpg
[image:]

holes (219).jpg
[image:]

holes (22).jpg
[image:]

holes (220).jpg
[image:]

holes (221).jpg
[image:]

holes (223).jpg
[image:]

holes (224).jpg
[image:]

holes (226).jpg
[image:]

holes (228).jpg
[image:]

holes (229).jpg
[image:]

holes (23).jpg
[image:]

holes (230).jpg
[image:]

holes (231).jpg
[image:]

holes (232).jpg
[image:]

holes (234).jpg
[image:]

holes (235).jpg
[image:]

holes (237).jpg
[image:]

holes (238).jpg
[image:]

holes (239).jpg
[image:]

holes (24).jpg
[image:]

holes (240).jpg
[image:]

holes (241).jpg
[image:]

holes (242).jpg
[image:]

holes (243).jpg
[image:]

holes (244).jpg
[image:]

holes (245).jpg
[image:]

holes (246).jpg
[image:]

holes (247).jpg
[image:]

holes (248).jpg
[image:]

holes (249).jpg
[image:]

holes (25).jpg
[image:]

holes (250).jpg
[image:]

holes (251).jpg
[image:]

holes (252).jpg
[image:]

holes (255).jpg
[image:]

holes (256).jpg
[image:]

holes (257).jpg
[image:]

holes (258).jpg
[image:]

holes (259).jpg
[image:]

holes (26).jpg
[image:]

holes (260).jpg
[image:]

holes (261).jpg
[image:]

holes (263).jpg
[image:]

holes (265).jpg
[image:]

holes (266).jpg
[image:]

holes (267).jpg
[image:]

holes (268).jpg
[image:]

holes (269).jpg
[image:]

holes (27).jpg
[image:]

holes (270).jpg
[image:]

holes (271).jpg
[image:]

holes (272).jpg
[image:]

holes (273).jpg
[image:]

holes (274).jpg
[image:]

holes (275).jpg
[image:]

holes (277).jpg
[image:]

holes (278).jpg
[image:]

holes (279).jpg
[image:]

holes (28).jpg
[image:]

holes (280).jpg
[image:]

holes (281).jpg
[image:]

holes (282).jpg
[image:]

holes (284).jpg
[image:]

holes (285).jpg
[image:]

holes (286).jpg
[image:]

holes (287).jpg
[image:]

holes (288).jpg
[image:]

holes (289).jpg
[image:]

holes (29).jpg
[image:]

holes (290).jpg
[image:]

holes (291).jpg
[image:]

holes (292).jpg
[image:]

holes (293).jpg
[image:]

holes (294).jpg
[image:]

holes (295).jpg
[image:]

holes (296).jpg
[image:]

holes (297).jpg
[image:]

holes (299).jpg
[image:]

holes (3).jpg
[image:]

holes (30).jpg
[image:]

holes (31).jpg
[image:]

holes (32).jpg
[image:]

holes (33).jpg
[image:]

holes (35).jpg
[image:]

holes (37).jpg
[image:]

holes (38).jpg
[image:]

holes (39).jpg
[image:]

holes (4).jpg
[image:]

holes (40).jpg
[image:]

holes (41).jpg
[image:]

holes (42).jpg
[image:]

holes (43).jpg
[image:]

holes (44).jpg
[image:]

holes (45).jpg
[image:]

holes (47).jpg
[image:]

holes (48).jpg
[image:]

holes (49).jpg
[image:]

holes (5).jpg
[image:]

holes (50).jpg
[image:]

holes (51).jpg
[image:]

holes (52).jpg
[image:]

holes (54).jpg
[image:]

holes (56).jpg
[image:]

holes (57).jpg
[image:]

holes (58).jpg
[image:]

holes (6).jpg
[image:]

holes (60).jpg
[image:]

holes (61).jpg
[image:]

holes (62).jpg
[image:]

holes (63).jpg
[image:]

holes (64).jpg
[image:]

holes (65).jpg
[image:]

holes (66).jpg
[image:]

holes (67).jpg
[image:]

holes (68).jpg
[image:]

holes (70).jpg
[image:]

holes (71).jpg
[image:]

holes (72).jpg
[image:]

holes (73).jpg
[image:]

holes (74).jpg
[image:]

holes (75).jpg
[image:]

holes (77).jpg
[image:]

holes (78).jpg
[image:]

holes (79).jpg
[image:]

holes (8).jpg
[image:]

holes (80).jpg
[image:]

holes (82).jpg
[image:]

holes (83).jpg
[image:]

holes (84).jpg
[image:]

holes (85).jpg
[image:]

holes (86).jpg
[image:]

holes (87).jpg
[image:]

holes (88).jpg
[image:]

holes (89).jpg
[image:]

holes (9).jpg
[image:]

holes (90).jpg
[image:]

holes (91).jpg
[image:]

holes (92).jpg
[image:]

holes (93).jpg
[image:]

holes (94).jpg
[image:]

holes (95).jpg
[image:]

holes (96).jpg
[image:]

holes (97).jpg
[image:]

holes (98).jpg
[image:]

holes (99).jpg
[image:]

incomplete(10).jpg
[image:]

incomplete(100).jpg
[image:]

incomplete(101).jpg
[image:]

incomplete(103).jpg
[image:]

incomplete(104).jpg
[image:]

incomplete(105).jpg
[image:]

incomplete(106).jpg
[image:]

incomplete(107).jpg
[image:]

incomplete(108).jpg
[image:]

incomplete(11).jpg
[image:]

incomplete(110).jpg
[image:]

incomplete(111).jpg
[image:]

incomplete(114).jpg
[image:]

incomplete(115).jpg
[image:]

incomplete(116).jpg
[image:]

incomplete(117).jpg
[image:]

incomplete(118).jpg
[image:]

incomplete(12).jpg
[image:]

incomplete(123).jpg
[image:]

incomplete(124).jpg
[image:]

incomplete(125).jpg
[image:]

incomplete(126).jpg
[image:]

incomplete(127).jpg
[image:]

incomplete(128).jpg
[image:]

incomplete(129).jpg
[image:]

incomplete(13).jpg
[image:]

incomplete(130).jpg
[image:]

incomplete(132).jpg
[image:]

incomplete(133).jpg
[image:]

incomplete(134).jpg
[image:]

incomplete(135).jpg
[image:]

incomplete(136).jpg
[image:]

incomplete(137).jpg
[image:]

incomplete(138).jpg
[image:]

incomplete(139).jpg
[image:]

incomplete(14).jpg
[image:]

incomplete(140).jpg
[image:]

incomplete(141).jpg
[image:]

incomplete(142).jpg
[image:]

incomplete(143).jpg
[image:]

incomplete(144).jpg
[image:]

incomplete(145).jpg
[image:]

incomplete(146).jpg
[image:]

incomplete(147).jpg
[image:]

incomplete(149).jpg
[image:]

incomplete(151).jpg
[image:]

incomplete(154).jpg
[image:]

incomplete(156).jpg
[image:]

incomplete(158).jpg
[image:]

incomplete(16).jpg
[image:]

incomplete(160).jpg
[image:]

incomplete(161).jpg
[image:]

incomplete(163).jpg
[image:]

incomplete(164).jpg
[image:]

incomplete(166).jpg
[image:]

incomplete(167).jpg
[image:]

incomplete(168).jpg
[image:]

incomplete(169).jpg
[image:]

incomplete(170).jpg
[image:]

incomplete(171).jpg
[image:]

incomplete(172).jpg
[image:]

incomplete(173).jpg
[image:]

incomplete(175).jpg
[image:]

incomplete(177).jpg
[image:]

incomplete(178).jpg
[image:]

incomplete(180).jpg
[image:]

incomplete(181).jpg
[image:]

incomplete(182).jpg
[image:]

incomplete(183).jpg
[image:]

incomplete(184).jpg
[image:]

incomplete(185).jpg
[image:]

incomplete(186).jpg
[image:]

incomplete(187).jpg
[image:]

incomplete(188).jpg
[image:]

incomplete(189).jpg
[image:]

incomplete(19).jpg
[image:]

incomplete(190).jpg
[image:]

incomplete(191).jpg
[image:]

incomplete(192).jpg
[image:]

incomplete(193).jpg
[image:]

incomplete(194).jpg
[image:]

incomplete(196).jpg
[image:]

incomplete(197).jpg
[image:]

incomplete(198).jpg
[image:]

incomplete(199).jpg
[image:]

incomplete(2).jpg
[image:]

incomplete(20).jpg
[image:]

incomplete(201).jpg
[image:]

incomplete(202).jpg
[image:]

incomplete(203).jpg
[image:]

incomplete(204).jpg
[image:]

incomplete(205).jpg
[image:]

incomplete(206).jpg
[image:]

incomplete(207).jpg
[image:]

incomplete(209).jpg
[image:]

incomplete(21).jpg
[image:]

incomplete(210).jpg
[image:]

incomplete(211).jpg
[image:]

incomplete(212).jpg
[image:]

incomplete(213).jpg
[image:]

incomplete(214).jpg
[image:]

incomplete(215).jpg
[image:]

incomplete(216).jpg
[image:]

incomplete(217).jpg
[image:]

incomplete(218).jpg
[image:]

incomplete(219).jpg
[image:]

incomplete(22).jpg
[image:]

incomplete(220).jpg
[image:]

incomplete(222).jpg
[image:]

incomplete(223).jpg
[image:]

incomplete(224).jpg
[image:]

incomplete(226).jpg
[image:]

incomplete(227).jpg
[image:]

incomplete(23).jpg
[image:]

incomplete(231).jpg
[image:]

incomplete(234).jpg
[image:]

incomplete(235).jpg
[image:]

incomplete(236).jpg
[image:]

incomplete(237).jpg
[image:]

incomplete(238).jpg
[image:]

incomplete(239).jpg
[image:]

incomplete(240).jpg
[image:]

incomplete(241).jpg
[image:]

incomplete(242).jpg
[image:]

incomplete(243).jpg
[image:]

incomplete(244).jpg
[image:]

incomplete(245).jpg
[image:]

incomplete(247).jpg
[image:]

incomplete(248).jpg
[image:]

incomplete(249).jpg
[image:]

incomplete(25).jpg
[image:]

incomplete(250).jpg
[image:]

incomplete(252).jpg
[image:]

incomplete(254).jpg
[image:]

incomplete(255).jpg
[image:]

incomplete(256).jpg
[image:]

incomplete(257).jpg
[image:]

incomplete(258).jpg
[image:]

incomplete(259).jpg
[image:]

incomplete(26).jpg
[image:]

incomplete(260).jpg
[image:]

incomplete(261).jpg
[image:]

incomplete(262).jpg
[image:]

incomplete(263).jpg
[image:]

incomplete(264).jpg
[image:]

incomplete(265).jpg
[image:]

incomplete(266).jpg
[image:]

incomplete(267).jpg
[image:]

incomplete(268).jpg
[image:]

incomplete(27).jpg
[image:]

incomplete(270).jpg
[image:]

incomplete(271).jpg
[image:]

incomplete(272).jpg
[image:]

incomplete(273).jpg
[image:]

incomplete(274).jpg
[image:]

incomplete(275).jpg
[image:]

incomplete(276).jpg
[image:]

incomplete(277).jpg
[image:]

incomplete(278).jpg
[image:]

incomplete(279).jpg
[image:]

incomplete(28).jpg
[image:]

incomplete(281).jpg
[image:]

incomplete(282).jpg
[image:]

incomplete(283).jpg
[image:]

incomplete(284).jpg
[image:]

incomplete(285).jpg
[image:]

incomplete(286).jpg
[image:]

incomplete(287).jpg
[image:]

incomplete(288).jpg
[image:]

incomplete(289).jpg
[image:]

incomplete(290).jpg
[image:]

incomplete(291).jpg
[image:]

incomplete(292).jpg
[image:]

incomplete(293).jpg
[image:]

incomplete(294).jpg
[image:]

incomplete(295).jpg
[image:]

incomplete(297).jpg
[image:]

incomplete(299).jpg
[image:]

incomplete(3).jpg
[image:]

incomplete(30).jpg
[image:]

incomplete(31).jpg
[image:]

incomplete(33).jpg
[image:]

incomplete(35).jpg
[image:]

incomplete(37).jpg
[image:]

incomplete(38).jpg
[image:]

incomplete(39).jpg
[image:]

incomplete(40).jpg
[image:]

incomplete(41).jpg
[image:]

incomplete(42).jpg
[image:]

incomplete(43).jpg
[image:]

incomplete(44).jpg
[image:]

incomplete(45).jpg
[image:]

incomplete(46).jpg
[image:]

incomplete(47).jpg
[image:]

incomplete(48).jpg
[image:]

incomplete(49).jpg
[image:]

incomplete(51).jpg
[image:]

incomplete(54).jpg
[image:]

incomplete(55).jpg
[image:]

incomplete(58).jpg
[image:]

incomplete(6).jpg
[image:]

incomplete(62).jpg
[image:]

incomplete(64).jpg
[image:]

incomplete(66).jpg
[image:]

incomplete(67).jpg
[image:]

incomplete(68).jpg
[image:]

incomplete(7).jpg
[image:]

incomplete(71).jpg
[image:]

incomplete(72).jpg
[image:]

incomplete(73).jpg
[image:]

incomplete(74).jpg
[image:]

incomplete(75).jpg
[image:]

incomplete(76).jpg
[image:]

incomplete(77).jpg
[image:]

incomplete(79).jpg
[image:]

incomplete(8).jpg
[image:]

incomplete(80).jpg
[image:]

incomplete(81).jpg
[image:]

incomplete(83).jpg
[image:]

incomplete(85).jpg
[image:]

incomplete(86).jpg
[image:]

incomplete(88).jpg
[image:]

incomplete(89).jpg
[image:]

incomplete(9).jpg
[image:]

incomplete(90).jpg
[image:]

incomplete(92).jpg
[image:]

incomplete(93).jpg
[image:]

incomplete(94).jpg
[image:]

incomplete(95).jpg
[image:]

incomplete(96).jpg
[image:]

incomplete(97).jpg
[image:]

incomplete(98).jpg
[image:]

incomplete(99).jpg
[image:]

mineralization (1).jpg
[image:]

mineralization (100).jpg
[image:]

mineralization (103).jpg
[image:]

mineralization (104).jpg
[image:]

mineralization (105).jpg
[image:]

mineralization (106).jpg
[image:]

mineralization (108).jpg
[image:]

mineralization (109).jpg
[image:]

mineralization (110).jpg
[image:]

mineralization (111).jpg
[image:]

mineralization (112).jpg
[image:]

mineralization (113).jpg
[image:]

mineralization (115).jpg
[image:]

mineralization (116).jpg
[image:]

mineralization (117).jpg
[image:]

mineralization (118).jpg
[image:]

mineralization (121).jpg
[image:]

mineralization (122).jpg
[image:]

mineralization (123).jpg
[image:]

mineralization (126).jpg
[image:]

mineralization (127).jpg
[image:]

mineralization (128).jpg
[image:]

mineralization (129).jpg
[image:]

mineralization (13).jpg
[image:]

mineralization (130).jpg
[image:]

mineralization (131).jpg
[image:]

mineralization (132).jpg
[image:]

mineralization (133).jpg
[image:]

mineralization (134).jpg
[image:]

mineralization (135).jpg
[image:]

mineralization (136).jpg
[image:]

mineralization (137).jpg
[image:]

mineralization (138).jpg
[image:]

mineralization (139).jpg
[image:]

mineralization (14).jpg
[image:]

mineralization (140).jpg
[image:]

mineralization (141).jpg
[image:]

mineralization (142).jpg
[image:]

mineralization (144).jpg
[image:]

mineralization (145).jpg
[image:]

mineralization (146).jpg
[image:]

mineralization (147).jpg
[image:]

mineralization (148).jpg
[image:]

mineralization (15).jpg
[image:]

mineralization (151).jpg
[image:]

mineralization (152).jpg
[image:]

mineralization (153).jpg
[image:]

mineralization (154).jpg
[image:]

mineralization (155).jpg
[image:]

mineralization (156).jpg
[image:]

mineralization (157).jpg
[image:]

mineralization (158).jpg
[image:]

mineralization (159).jpg
[image:]

mineralization (16).jpg
[image:]

mineralization (160).jpg
[image:]

mineralization (161).jpg
[image:]

mineralization (162).jpg
[image:]

mineralization (163).jpg
[image:]

mineralization (164).jpg
[image:]

mineralization (165).jpg
[image:]

mineralization (166).jpg
[image:]

mineralization (168).jpg
[image:]

mineralization (169).jpg
[image:]

mineralization (17).jpg
[image:]

mineralization (170).jpg
[image:]

mineralization (171).jpg
[image:]

mineralization (173).jpg
[image:]

mineralization (175).jpg
[image:]

mineralization (176).jpg
[image:]

mineralization (178).jpg
[image:]

mineralization (180).jpg
[image:]

mineralization (181).jpg
[image:]

mineralization (182).jpg
[image:]

mineralization (183).jpg
[image:]

mineralization (184).jpg
[image:]

mineralization (186).jpg
[image:]

mineralization (187).jpg
[image:]

mineralization (188).jpg
[image:]

mineralization (189).jpg
[image:]

mineralization (19).jpg
[image:]

mineralization (190).jpg
[image:]

mineralization (191).jpg
[image:]

mineralization (193).jpg
[image:]

mineralization (194).jpg
[image:]

mineralization (195).jpg
[image:]

mineralization (196).jpg
[image:]

mineralization (197).jpg
[image:]

mineralization (198).jpg
[image:]

mineralization (199).jpg
[image:]

mineralization (2).jpg
[image:]

mineralization (20).jpg
[image:]

mineralization (201).jpg
[image:]

mineralization (202).jpg
[image:]

mineralization (203).jpg
[image:]

mineralization (204).jpg
[image:]

mineralization (205).jpg
[image:]

mineralization (207).jpg
[image:]

mineralization (208).jpg
[image:]

mineralization (21).jpg
[image:]

mineralization (211).jpg
[image:]

mineralization (212).jpg
[image:]

mineralization (213).jpg
[image:]

mineralization (214).jpg
[image:]

mineralization (215).jpg
[image:]

mineralization (217).jpg
[image:]

mineralization (218).jpg
[image:]

mineralization (219).jpg
[image:]

mineralization (22).jpg
[image:]

mineralization (221).jpg
[image:]

mineralization (222).jpg
[image:]

mineralization (223).jpg
[image:]

mineralization (224).jpg
[image:]

mineralization (225).jpg
[image:]

mineralization (226).jpg
[image:]

mineralization (227).jpg
[image:]

mineralization (228).jpg
[image:]

mineralization (229).jpg
[image:]

mineralization (230).jpg
[image:]

mineralization (231).jpg
[image:]

mineralization (232).jpg
[image:]

mineralization (233).jpg
[image:]

mineralization (234).jpg
[image:]

mineralization (235).jpg
[image:]

mineralization (237).jpg
[image:]

mineralization (238).jpg
[image:]

mineralization (239).jpg
[image:]

mineralization (24).jpg
[image:]

mineralization (241).jpg
[image:]

mineralization (242).jpg
[image:]

mineralization (243).jpg
[image:]

mineralization (244).jpg
[image:]

mineralization (245).jpg
[image:]

mineralization (246).jpg
[image:]

mineralization (249).jpg
[image:]

mineralization (25).jpg
[image:]

mineralization (251).jpg
[image:]

mineralization (252).jpg
[image:]

mineralization (253).jpg
[image:]

mineralization (254).jpg
[image:]

mineralization (255).jpg
[image:]

mineralization (256).jpg
[image:]

mineralization (257).jpg
[image:]

mineralization (258).jpg
[image:]

mineralization (259).jpg
[image:]

mineralization (26).jpg
[image:]

mineralization (261).jpg
[image:]

mineralization (262).jpg
[image:]

mineralization (264).jpg
[image:]

mineralization (265).jpg
[image:]

mineralization (267).jpg
[image:]

mineralization (268).jpg
[image:]

mineralization (269).jpg
[image:]

mineralization (27).jpg
[image:]

mineralization (270).jpg
[image:]

mineralization (271).jpg
[image:]

mineralization (272).jpg
[image:]

mineralization (273).jpg
[image:]

mineralization (274).jpg
[image:]

mineralization (278).jpg
[image:]

mineralization (279).jpg
[image:]

mineralization (28).jpg
[image:]

mineralization (281).jpg
[image:]

mineralization (282).jpg
[image:]

mineralization (283).jpg
[image:]

mineralization (285).jpg
[image:]

mineralization (286).jpg
[image:]

mineralization (287).jpg
[image:]

mineralization (288).jpg
[image:]

mineralization (289).jpg
[image:]

mineralization (29).jpg
[image:]

mineralization (290).jpg
[image:]

mineralization (292).jpg
[image:]

mineralization (293).jpg
[image:]

mineralization (294).jpg
[image:]

mineralization (295).jpg
[image:]

mineralization (297).jpg
[image:]

mineralization (298).jpg
[image:]

mineralization (299).jpg
[image:]

mineralization (3).jpg
[image:]

mineralization (30).jpg
[image:]

mineralization (300).jpg
[image:]

mineralization (31).jpg
[image:]

mineralization (32).jpg
[image:]

mineralization (33).jpg
[image:]

mineralization (34).jpg
[image:]

mineralization (37).jpg
[image:]

mineralization (38).jpg
[image:]

mineralization (40).jpg
[image:]

mineralization (43).jpg
[image:]

mineralization (45).jpg
[image:]

mineralization (46).jpg
[image:]

mineralization (47).jpg
[image:]

mineralization (48).jpg
[image:]

mineralization (49).jpg
[image:]

mineralization (5).jpg
[image:]

mineralization (50).jpg
[image:]

mineralization (51).jpg
[image:]

mineralization (53).jpg
[image:]

mineralization (54).jpg
[image:]

mineralization (55).jpg
[image:]

mineralization (56).jpg
[image:]

mineralization (57).jpg
[image:]

mineralization (58).jpg
[image:]

mineralization (59).jpg
[image:]

mineralization (6).jpg
[image:]

mineralization (60).jpg
[image:]

mineralization (61).jpg
[image:]

mineralization (62).jpg
[image:]

mineralization (63).jpg
[image:]

mineralization (65).jpg
[image:]

mineralization (66).jpg
[image:]

mineralization (67).jpg
[image:]

mineralization (68).jpg
[image:]

mineralization (69).jpg
[image:]

mineralization (7).jpg
[image:]

mineralization (70).jpg
[image:]

mineralization (71).jpg
[image:]

mineralization (72).jpg
[image:]

mineralization (73).jpg
[image:]

mineralization (74).jpg
[image:]

mineralization (75).jpg
[image:]

mineralization (76).jpg
[image:]

mineralization (77).jpg
[image:]

mineralization (78).jpg
[image:]

mineralization (79).jpg
[image:]

mineralization (8).jpg
[image:]

mineralization (80).jpg
[image:]

mineralization (81).jpg
[image:]

mineralization (82).jpg
[image:]

mineralization (83).jpg
[image:]

mineralization (84).jpg
[image:]

mineralization (85).jpg
[image:]

mineralization (86).jpg
[image:]

mineralization (87).jpg
[image:]

mineralization (88).jpg
[image:]

mineralization (89).jpg
[image:]

mineralization (9).jpg
[image:]

mineralization (90).jpg
[image:]

mineralization (92).jpg
[image:]

mineralization (94).jpg
[image:]

mineralization (95).jpg
[image:]

mineralization (96).jpg
[image:]

mineralization (97).jpg
[image:]

mineralization (98).jpg
[image:]

Val set
cracking(1).jpg
[image:]

cracking(10).jpg
[image:]

cracking(109).jpg
[image:]

cracking(121).jpg
[image:]

cracking(125).jpg
[image:]

cracking(133).jpg
[image:]

cracking(137).jpg
[image:]

cracking(139).jpg
[image:]

cracking(14).jpg
[image:]

cracking(15).jpg
[image:]

cracking(162).jpg
[image:]

cracking(164).jpg
[image:]

cracking(169).jpg
[image:]

cracking(178).jpg
[image:]

cracking(20).jpg
[image:]

cracking(22).jpg
[image:]

cracking(35).jpg
[image:]

cracking(38).jpg
[image:]

cracking(53).jpg
[image:]

cracking(56).jpg
[image:]

cracking(6).jpg
[image:]

cracking(65).jpg
[image:]

cracking(73).jpg
[image:]

cracking(8).jpg
[image:]

cracking(80).jpg
[image:]

cracking(81).jpg
[image:]

cracking(85).jpg
[image:]

cracking(9).jpg
[image:]

cracking(90).jpg
[image:]

cracking(91).jpg
[image:]

cracking(93).jpg
[image:]

holes (10).jpg
[image:]

holes (101).jpg
[image:]

holes (102).jpg
[image:]

holes (104).jpg
[image:]

holes (105).jpg
[image:]

holes (110).jpg
[image:]

holes (116).jpg
[image:]

holes (119).jpg
[image:]

holes (122).jpg
[image:]

holes (124).jpg
[image:]

holes (128).jpg
[image:]

holes (130).jpg
[image:]

holes (133).jpg
[image:]

holes (138).jpg
[image:]

holes (141).jpg
[image:]

holes (142).jpg
[image:]

holes (149).jpg
[image:]

holes (154).jpg
[image:]

holes (155).jpg
[image:]

holes (157).jpg
[image:]

holes (159).jpg
[image:]

holes (16).jpg
[image:]

holes (165).jpg
[image:]

holes (166).jpg
[image:]

holes (167).jpg
[image:]

holes (170).jpg
[image:]

holes (179).jpg
[image:]

holes (180).jpg
[image:]

holes (181).jpg
[image:]

holes (182).jpg
[image:]

holes (183).jpg
[image:]

holes (185).jpg
[image:]

holes (187).jpg
[image:]

holes (188).jpg
[image:]

holes (191).jpg

holes (192).jpg
[image:]

holes (2).jpg
[image:]

holes (213).jpg
[image:]

holes (215).jpg
[image:]

holes (217).jpg
[image:]

holes (222).jpg
[image:]

holes (225).jpg
[image:]

holes (227).jpg
[image:]

holes (233).jpg
[image:]

holes (236).jpg
[image:]

holes (253).jpg
[image:]

holes (254).jpg
[image:]

holes (262).jpg
[image:]

holes (264).jpg
[image:]

holes (276).jpg
[image:]

holes (283).jpg
[image:]

holes (298).jpg
[image:]

holes (34).jpg
[image:]

holes (36).jpg
[image:]

holes (46).jpg
[image:]

holes (53).jpg
[image:]

holes (55).jpg
[image:]

holes (59).jpg
[image:]

holes (69).jpg
[image:]

holes (7).jpg
[image:]

holes (76).jpg
[image:]

holes (81).jpg
[image:]

incomplete(102).jpg
[image:]

incomplete(109).jpg
[image:]

incomplete(112).jpg
[image:]

incomplete(113).jpg
[image:]

incomplete(119).jpg
[image:]

incomplete(120).jpg
[image:]

incomplete(121).jpg
[image:]

incomplete(122).jpg
[image:]

incomplete(131).jpg
[image:]

incomplete(148).jpg
[image:]

incomplete(15).jpg
[image:]

incomplete(150).jpg
[image:]

incomplete(152).jpg
[image:]

incomplete(153).jpg
[image:]

incomplete(157).jpg
[image:]

incomplete(159).jpg
[image:]

incomplete(162).jpg
[image:]

incomplete(165).jpg
[image:]

incomplete(17).jpg
[image:]

incomplete(174).jpg
[image:]

incomplete(176).jpg
[image:]

incomplete(179).jpg
[image:]

incomplete(18).jpg
[image:]

incomplete(195).jpg
[image:]

incomplete(200).jpg
[image:]

incomplete(208).jpg
[image:]

incomplete(221).jpg
[image:]

incomplete(225).jpg
[image:]

incomplete(228).jpg
[image:]

incomplete(229).jpg
[image:]

incomplete(230).jpg
[image:]

incomplete(232).jpg
[image:]

incomplete(233).jpg
[image:]

incomplete(24).jpg
[image:]

incomplete(246).jpg
[image:]

incomplete(251).jpg
[image:]

incomplete(253).jpg
[image:]

incomplete(269).jpg
[image:]

incomplete(280).jpg
[image:]

incomplete(29).jpg
[image:]

incomplete(296).jpg
[image:]

incomplete(298).jpg
[image:]

incomplete(300).jpg
[image:]

incomplete(32).jpg
[image:]

incomplete(34).jpg
[image:]

incomplete(36).jpg
[image:]

incomplete(4).jpg
[image:]

incomplete(5).jpg
[image:]

incomplete(50).jpg
[image:]

incomplete(52).jpg
[image:]

incomplete(53).jpg
[image:]

incomplete(56).jpg
[image:]

incomplete(57).jpg
[image:]

incomplete(59).jpg
[image:]

incomplete(60).jpg
[image:]

incomplete(61).jpg
[image:]

incomplete(63).jpg
[image:]

incomplete(65).jpg
[image:]

incomplete(69).jpg
[image:]

incomplete(70).jpg
[image:]

incomplete(78).jpg
[image:]

incomplete(82).jpg
[image:]

incomplete(84).jpg
[image:]

incomplete(87).jpg
[image:]

incomplete(91).jpg
[image:]

mineralization (10).jpg
[image:]

mineralization (101).jpg
[image:]

mineralization (102).jpg
[image:]

mineralization (107).jpg
[image:]

mineralization (11).jpg
[image:]

mineralization (114).jpg
[image:]

mineralization (119).jpg
[image:]

mineralization (12).jpg
[image:]

mineralization (120).jpg
[image:]

mineralization (124).jpg
[image:]

mineralization (125).jpg
[image:]

mineralization (143).jpg
[image:]

mineralization (149).jpg
[image:]

mineralization (150).jpg
[image:]

mineralization (167).jpg
[image:]

mineralization (172).jpg
[image:]

mineralization (174).jpg
[image:]

mineralization (177).jpg
[image:]

mineralization (179).jpg
[image:]

mineralization (18).jpg
[image:]

mineralization (185).jpg
[image:]

mineralization (192).jpg
[image:]

mineralization (200).jpg
[image:]

mineralization (206).jpg
[image:]

mineralization (209).jpg
[image:]

mineralization (210).jpg
[image:]

mineralization (216).jpg
[image:]

mineralization (220).jpg
[image:]

mineralization (23).jpg
[image:]

mineralization (236).jpg
[image:]

mineralization (240).jpg
[image:]

mineralization (247).jpg
[image:]

mineralization (248).jpg
[image:]

mineralization (250).jpg
[image:]

mineralization (260).jpg
[image:]

mineralization (263).jpg
[image:]

mineralization (266).jpg
[image:]

mineralization (275).jpg
[image:]

mineralization (276).jpg
[image:]

mineralization (277).jpg
[image:]

mineralization (280).jpg
[image:]

mineralization (284).jpg
[image:]

mineralization (291).jpg
[image:]

mineralization (296).jpg
[image:]

mineralization (35).jpg
[image:]

mineralization (36).jpg
[image:]

mineralization (39).jpg
[image:]

mineralization (4).jpg
[image:]

mineralization (41).jpg
[image:]

mineralization (42).jpg
[image:]

mineralization (44).jpg
[image:]

mineralization (52).jpg
[image:]

mineralization (64).jpg
[image:]

mineralization (91).jpg
[image:]

mineralization (93).jpg
[image:]

mineralization (99).jpg
[image:]

image3.jpeg

image93.jpeg

image993.jpeg

image994.jpeg

image995.jpeg

image996.jpeg

image997.jpeg

image998.jpeg

image999.jpeg

image1000.jpeg

image1001.jpeg

image1002.jpeg

image94.jpeg

image1003.jpeg

image1004.jpeg

image1005.jpeg

image1006.jpeg

image1007.jpeg

image1008.jpeg

image1009.jpeg

image1010.jpeg

image1011.jpeg

image1012.jpeg

image95.jpeg

image1013.jpeg

image1014.jpeg

image1015.jpeg

image1016.jpeg

image1017.jpeg
e
S
=
o

image1018.jpeg

image1019.jpeg

image1020.jpeg

image1021.jpeg

image1022.jpeg

image96.jpeg

image1023.jpeg

image1024.jpeg

image1025.jpeg

image1026.jpeg

image1027.jpeg

image1028.jpeg
2™

image1029.jpeg

image1030.jpeg

image1031.jpeg

image1032.jpeg

image97.jpeg

image1033.jpeg

image1034.jpeg

image1035.jpeg

image1036.jpeg

image1037.jpeg

image1038.jpeg

image1039.jpeg

image1040.jpeg

image1041.jpeg

image1042.jpeg

image98.jpeg

image1043.jpeg

image1044.jpeg

image1045.jpeg

image1046.jpeg

image1047.jpeg
‘\l"'. ‘f‘\:
’,&);,

image1048.jpeg

image1049.jpeg

image1050.jpeg

image1051.jpeg

image1052.jpeg

image99.jpeg

image1053.jpeg

image1054.jpeg

image1055.jpeg

image1056.jpeg

image1057.jpeg

image1058.jpeg

image1059.jpeg

image1060.jpeg

image1061.jpeg

image1062.jpeg

image100.jpeg

image1063.jpeg

image1064.jpeg

image1065.jpeg

image1066.jpeg

image1067.jpeg

image1068.jpeg

image1069.jpeg

image1070.jpeg

image1071.jpeg

image1072.jpeg

image101.jpeg

image1073.jpeg

image1074.jpeg

image1075.jpeg

image1076.jpeg

image1077.jpeg

image102.jpeg

image4.jpeg

image103.jpeg

image104.jpeg

image105.jpeg

image106.jpeg

image107.jpeg

image108.jpeg

image109.jpeg

image110.jpeg

image111.jpeg

image112.jpeg

image5.jpeg

image113.jpeg

image114.jpeg

image115.jpeg

image116.jpeg

image117.jpeg

image118.jpeg

image119.jpeg

image120.jpeg

image121.jpeg

image122.jpeg

image6.jpeg

image123.jpeg

image124.jpeg

image125.jpeg

image126.jpeg

image127.jpeg

image128.jpeg

image129.jpeg

image130.jpeg

image131.jpeg

image132.jpeg

image7.jpeg

image133.jpeg

image134.jpeg

image135.jpeg

image136.jpeg

image137.jpeg

image138.jpeg

image139.jpeg

image140.jpeg

image141.jpeg

image142.jpeg

image8.jpeg

image143.jpeg

image144.jpeg

image145.jpeg
—. o,y ¢
é t.fiw..

image146.jpeg

image147.jpeg

image148.jpeg

image149.jpeg

image150.jpeg

image151.jpeg

image152.jpeg

image9.jpeg

image153.jpeg

image154.jpeg

image155.jpeg

image156.jpeg

image157.jpeg

image158.jpeg

image159.jpeg

image160.jpeg

image161.jpeg

image162.jpeg

image10.jpeg

image163.jpeg

image164.jpeg

image165.jpeg

image166.jpeg

image167.jpeg

image168.jpeg

image169.jpeg

image170.jpeg

image171.jpeg

image172.jpeg

image11.jpeg

image173.jpeg

image174.jpeg

image175.jpeg

image176.jpeg

image177.jpeg

image178.jpeg

image179.jpeg

image180.jpeg

image181.jpeg

image182.jpeg

image12.jpeg

image183.jpeg

image184.jpeg

image185.jpeg

image186.jpeg

image187.jpeg

image188.jpeg

image189.jpeg

image190.jpeg

image191.jpeg

image192.jpeg

image13.jpeg

image193.jpeg

image194.jpeg

image195.jpeg

image196.jpeg

image197.jpeg

image198.jpeg

image199.jpeg

image200.jpeg

image201.jpeg

image202.jpeg

image14.jpeg

image203.jpeg

image204.jpeg

image205.jpeg

image206.jpeg

image207.jpeg

image208.jpeg

image209.jpeg

image210.jpeg

image211.jpeg

image212.jpeg

image15.jpeg

image213.jpeg

image214.jpeg

image215.jpeg

image216.jpeg

image217.jpeg

image218.jpeg

image219.jpeg

image220.jpeg

image221.jpeg

image222.jpeg

image16.jpeg

image223.jpeg

image224.jpeg

image225.jpeg

image226.jpeg

image227.jpeg

image228.jpeg

image229.jpeg

image230.jpeg

image231.jpeg

image232.jpeg

image17.jpeg

image233.jpeg

image234.jpeg

image235.jpeg
"

image236.jpeg

image237.jpeg

image238.jpeg

image239.jpeg

image240.jpeg

image241.jpeg

image242.jpeg

image18.jpeg

image243.jpeg

image244.jpeg

image245.jpeg

image246.jpeg

image247.jpeg

image248.jpeg

image249.jpeg

image250.jpeg

image251.jpeg

image252.jpeg

image19.jpeg

image253.jpeg

image254.jpeg

image255.jpeg

image256.jpeg

image257.jpeg

image258.jpeg

image259.jpeg

image260.jpeg

image261.jpeg

image262.jpeg

image20.jpeg

image263.jpeg

image264.jpeg

image265.jpeg

image266.jpeg

image267.jpeg

image268.jpeg

image269.jpeg

image270.jpeg

image271.jpeg

image272.jpeg

image21.jpeg

image273.jpeg

image274.jpeg

image275.jpeg

image276.jpeg

image277.jpeg

image278.jpeg

image279.jpeg

image280.jpeg
.

image281.jpeg

image282.jpeg

image22.jpeg

image283.jpeg

image284.jpeg

image285.jpeg

image286.jpeg

image287.jpeg

image288.jpeg

image289.jpeg

image290.jpeg

image291.jpeg

image292.jpeg

image23.jpeg

image293.jpeg

image294.jpeg

image295.jpeg

image296.jpeg

image297.jpeg

image298.jpeg

image299.jpeg

image300.jpeg

image301.jpeg

image302.jpeg

image24.jpeg

image303.jpeg

image304.jpeg

image305.jpeg

image306.jpeg

image307.jpeg

image308.jpeg

image309.jpeg

image310.jpeg

image311.jpeg

image312.jpeg

image25.jpeg

image313.jpeg

image314.jpeg

image315.jpeg

image316.jpeg

image317.jpeg

image318.jpeg

image319.jpeg

image320.jpeg

image321.jpeg

image322.jpeg

image26.jpeg

image323.jpeg

image324.jpeg

image325.jpeg

image326.jpeg

image327.jpeg

image328.jpeg

image329.jpeg

image330.jpeg

image331.jpeg

image332.jpeg

image27.jpeg

image333.jpeg

image334.jpeg

image335.jpeg

image336.jpeg

image337.jpeg

image338.jpeg

image339.jpeg

image340.jpeg

image341.jpeg

image342.jpeg

image28.jpeg

image343.jpeg

image344.jpeg

image345.jpeg

image346.jpeg

image347.jpeg

image348.jpeg

image349.jpeg

image350.jpeg

image351.jpeg

image352.jpeg

image29.jpeg

image353.jpeg

image354.jpeg

image355.jpeg

image356.jpeg

image357.jpeg

image358.jpeg

image359.jpeg

image360.jpeg

image361.jpeg

image362.jpeg

image30.jpeg

image363.jpeg

image364.jpeg

image365.jpeg

image366.jpeg

image367.jpeg

image368.jpeg

image369.jpeg

image370.jpeg

image371.jpeg

image372.jpeg

image31.jpeg

image373.jpeg

image374.jpeg

image375.jpeg

image376.jpeg

image377.jpeg

image378.jpeg

image379.jpeg

image380.jpeg

image381.jpeg

image382.jpeg

image32.jpeg

image383.jpeg

image384.jpeg

image385.jpeg

image386.jpeg

image387.jpeg

image388.jpeg

image389.jpeg
i 4

image390.jpeg

image391.jpeg

image392.jpeg

image33.jpeg

image393.jpeg

image394.jpeg

image395.jpeg

image396.jpeg

image397.jpeg

image398.jpeg

image399.jpeg

image400.jpeg

image401.jpeg

image402.jpeg

image34.jpeg

image403.jpeg

image404.jpeg

image405.jpeg

image406.jpeg

image407.jpeg

image408.jpeg

image409.jpeg

image410.jpeg

image411.jpeg

image412.jpeg

image35.jpeg

image413.jpeg

image414.jpeg

image415.jpeg

image416.jpeg

image417.jpeg
13

image418.jpeg

image419.jpeg

image420.jpeg

image421.jpeg

image422.jpeg

image36.jpeg

image423.jpeg

image424.jpeg

image425.jpeg

image426.jpeg

image427.jpeg

image428.jpeg

image429.jpeg

image430.jpeg

image431.jpeg

image432.jpeg

image37.jpeg

image433.jpeg

image434.jpeg

image435.jpeg

image436.jpeg

image437.jpeg

image438.jpeg

image439.jpeg

image440.jpeg

image441.jpeg

image442.jpeg

image38.jpeg

image443.jpeg

image444.jpeg

image445.jpeg

image446.jpeg

image447.jpeg

image448.jpeg

image449.jpeg

image450.jpeg

image451.jpeg

image452.jpeg

image39.jpeg

image453.jpeg

image454.jpeg

image455.jpeg

image456.jpeg

image457.jpeg

image458.jpeg

image459.jpeg

image460.jpeg

image461.jpeg

image462.jpeg

image40.jpeg

image463.jpeg

image464.jpeg

image465.jpeg

image466.jpeg

image467.jpeg

image468.jpeg

image469.jpeg

image470.jpeg

image471.jpeg

image472.jpeg

image41.jpeg

image473.jpeg

image474.jpeg

image475.jpeg

image476.jpeg

image477.jpeg

image478.jpeg

image479.jpeg

image480.jpeg

image481.jpeg

image482.jpeg

image42.jpeg

image483.jpeg

image484.jpeg

image485.jpeg

image486.jpeg

image487.jpeg

image488.jpeg

image489.jpeg

image490.jpeg

image491.jpeg

image492.jpeg

image43.jpeg

image493.jpeg

image494.jpeg

image495.jpeg

image496.jpeg

image497.jpeg

image498.jpeg

image499.jpeg

image500.jpeg

image501.jpeg

image502.jpeg

image44.jpeg

image503.jpeg

image504.jpeg

image505.jpeg

image506.jpeg

image507.jpeg

image508.jpeg

image509.jpeg

image510.jpeg

image511.jpeg

image512.jpeg

image45.jpeg

image513.jpeg

image514.jpeg

image515.jpeg

image516.jpeg

image517.jpeg

image518.jpeg

image519.jpeg

image520.jpeg

image521.jpeg

image522.jpeg

image46.jpeg

image523.jpeg

image524.jpeg

image525.jpeg

image526.jpeg

image527.jpeg

image528.jpeg

image529.jpeg

image530.jpeg

image531.jpeg

image532.jpeg

image47.jpeg

image533.jpeg

image534.jpeg

image535.jpeg

image536.jpeg

image537.jpeg

image538.jpeg
i S
) Al e

image539.jpeg

image540.jpeg

image541.jpeg

image542.jpeg

image48.jpeg

image543.jpeg
«;

image544.jpeg
SR o 4

image545.jpeg

image546.jpeg

image547.jpeg

image548.jpeg

image549.jpeg

image550.jpeg

image551.jpeg

image552.jpeg

image49.jpeg

image553.jpeg

image554.jpeg

image555.jpeg

image556.jpeg

image557.jpeg

image558.jpeg

image559.jpeg

image560.jpeg

image561.jpeg

image562.jpeg

image50.jpeg

image563.jpeg

image564.jpeg

image565.jpeg

image566.jpeg

image567.jpeg

image568.jpeg

image569.jpeg

image570.jpeg

image571.jpeg

image572.jpeg

image51.jpeg

image573.jpeg

image574.jpeg

image575.jpeg

image576.jpeg

image577.jpeg

image578.jpeg

image579.jpeg

image580.jpeg

image581.jpeg

image582.jpeg

image52.jpeg

image583.jpeg

image584.jpeg

image585.jpeg

image586.jpeg

image587.jpeg

image588.jpeg

image589.jpeg

image590.jpeg

image591.jpeg

image592.jpeg

image53.jpeg

image593.jpeg

image594.jpeg

image595.jpeg

image596.jpeg

image597.jpeg

image598.jpeg

image599.jpeg

image600.jpeg

image601.jpeg

image602.jpeg

image54.jpeg

image603.jpeg

image604.jpeg

image605.jpeg
S e

image606.jpeg

image607.jpeg

image608.jpeg

image609.jpeg

image610.jpeg

image611.jpeg

image612.jpeg

image55.jpeg

image613.jpeg

image614.jpeg

image615.jpeg

image616.jpeg

image617.jpeg

image618.jpeg

image619.jpeg

image620.jpeg

image621.jpeg

image622.jpeg

image56.jpeg

image623.jpeg

image624.jpeg

image625.jpeg

image626.jpeg

image627.jpeg
‘

O\

image628.jpeg

image629.jpeg

image630.jpeg

image631.jpeg

image632.jpeg

image57.jpeg

image633.jpeg

image634.jpeg

image635.jpeg

image636.jpeg
e

o

image637.jpeg

image638.jpeg

image639.jpeg

image640.jpeg

image641.jpeg

image642.jpeg

image58.jpeg

image643.jpeg

image644.jpeg

image645.jpeg

image646.jpeg

image647.jpeg

image648.jpeg

image649.jpeg

image650.jpeg

image651.jpeg

image652.jpeg

image59.jpeg

image653.jpeg

image654.jpeg

image655.jpeg

image656.jpeg

image657.jpeg

image658.jpeg

image659.jpeg

image660.jpeg

image661.jpeg

image662.jpeg

image60.jpeg

image663.jpeg

image664.jpeg

image665.jpeg

image666.jpeg

image667.jpeg

image668.jpeg

image669.jpeg

image670.jpeg

image671.jpeg

image672.jpeg

image61.jpeg

image673.jpeg

image674.jpeg

image675.jpeg

image676.jpeg

image677.jpeg

image678.jpeg

image679.jpeg

image680.jpeg

image681.jpeg

image682.jpeg

image62.jpeg

image683.jpeg

image684.jpeg

image685.jpeg

image686.jpeg

image687.jpeg

image688.jpeg

image689.jpeg

image690.jpeg

image691.jpeg

image692.jpeg

image63.jpeg

image693.jpeg

image694.jpeg

image695.jpeg

image696.jpeg

image697.jpeg

image698.jpeg
W

image699.jpeg

image700.jpeg

image701.jpeg

image702.jpeg

image64.jpeg

image703.jpeg

image704.jpeg

image705.jpeg

image706.jpeg
L) S
%

W2

image707.jpeg

image708.jpeg

image709.jpeg

image710.jpeg

image711.jpeg

image712.jpeg

image65.jpeg

image713.jpeg

image714.jpeg

image715.jpeg

image716.jpeg
& . v- | .u

image717.jpeg

image718.jpeg

image719.jpeg

image720.jpeg

image721.jpeg

image722.jpeg

image66.jpeg

image723.jpeg

image724.jpeg

image725.jpeg

image726.jpeg
l'yi " Ta &

image727.jpeg

image728.jpeg

image729.jpeg

image730.jpeg

image731.jpeg
Lﬁ.’ Ko

image732.jpeg

image67.jpeg

image733.jpeg

image734.jpeg

image735.jpeg

image736.jpeg

image737.jpeg

image738.jpeg

image739.jpeg

image740.jpeg

image741.jpeg

image742.jpeg

image68.jpeg

image743.jpeg

image744.jpeg

image745.jpeg

image746.jpeg

image747.jpeg

image748.jpeg

image749.jpeg

image750.jpeg

image751.jpeg

image752.jpeg

image69.jpeg

image753.jpeg

image754.jpeg

image755.jpeg

image756.jpeg

image757.jpeg

image758.jpeg

image759.jpeg

image760.jpeg

image761.jpeg

image762.jpeg

image70.jpeg

image763.jpeg

image764.jpeg

image765.jpeg

image766.jpeg

image767.jpeg

image768.jpeg

image769.jpeg

image770.jpeg

image771.jpeg

image772.jpeg
-
y . 4

image71.jpeg

image773.jpeg

image774.jpeg

image775.jpeg

image776.jpeg

image777.jpeg

image778.jpeg

image779.jpeg

image780.jpeg

image781.jpeg

image782.jpeg

image72.jpeg

image783.jpeg

image784.jpeg

image785.jpeg

image786.jpeg

image787.jpeg

image788.jpeg

image789.jpeg

image790.jpeg

image791.jpeg

image792.jpeg

image1.jpeg

image73.jpeg

image793.jpeg

image794.jpeg

image795.jpeg

image796.jpeg

image797.jpeg

image798.jpeg

image799.jpeg

image800.jpeg

image801.jpeg

image802.jpeg

image74.jpeg

image803.jpeg

image804.jpeg

image805.jpeg

image806.jpeg

image807.jpeg

image808.jpeg

image809.jpeg

image810.jpeg

image811.jpeg

image812.jpeg
-

image75.jpeg

image813.jpeg
v’

image814.jpeg

image815.jpeg

image816.jpeg

image817.jpeg

image818.jpeg

image819.jpeg

image820.jpeg

image821.jpeg

image822.jpeg

image76.jpeg

image823.jpeg

image824.jpeg

image825.jpeg

image826.jpeg

image827.jpeg

image828.jpeg

image829.jpeg

image830.jpeg

image831.jpeg

image832.jpeg

image77.jpeg

image833.jpeg

image834.jpeg

image835.jpeg

image836.jpeg

image837.jpeg

image838.jpeg

image839.jpeg

image840.jpeg

image841.jpeg

image842.jpeg

image78.jpeg

image843.jpeg

image844.jpeg

image845.jpeg

image846.jpeg

image847.jpeg

image848.jpeg

image849.jpeg

image850.jpeg

image851.jpeg

image852.jpeg

image79.jpeg

image853.jpeg

image854.jpeg

image855.jpeg

image856.jpeg

image857.jpeg

image858.jpeg

image859.jpeg

image860.jpeg

image861.jpeg

image862.jpeg

image80.jpeg

image863.jpeg

image864.jpeg

image865.jpeg

image866.jpeg

image867.jpeg

image868.jpeg

image869.jpeg

image870.jpeg

image871.jpeg

image872.jpeg

image81.jpeg

image873.jpeg

image874.jpeg

image875.jpeg

image876.jpeg

image877.jpeg

image878.jpeg

image879.jpeg

image880.jpeg
2 .

image881.jpeg

image882.jpeg

image82.jpeg

image883.jpeg

image884.jpeg

image885.jpeg

image886.jpeg

image887.jpeg

image888.jpeg

image889.jpeg

image890.jpeg

image891.jpeg

image892.jpeg

image2.jpeg

image83.jpeg

image893.jpeg

image894.jpeg

image895.jpeg

image896.jpeg

image897.jpeg

image898.jpeg

image899.jpeg

image900.jpeg

image901.jpeg

image902.jpeg

image84.jpeg

image903.jpeg

image904.jpeg
~¥: N il
"'iijs '41

" AN |
ﬂ&l.wij K

image905.jpeg

image906.jpeg

image907.jpeg

image908.jpeg

image909.jpeg

image910.jpeg

image911.jpeg

image912.jpeg

image85.jpeg

image913.jpeg

image914.jpeg

image915.jpeg

image916.jpeg

image917.jpeg

image918.jpeg

image919.jpeg

image920.jpeg

image921.jpeg

image922.jpeg

image86.jpeg

image923.jpeg
af‘;%j

image924.jpeg
af‘;%j

image925.jpeg

image926.jpeg

image927.jpeg

image928.jpeg

image929.jpeg

image930.jpeg

image931.jpeg

image932.jpeg

image87.jpeg
-

image933.jpeg

image934.jpeg

image935.jpeg

image936.jpeg

image937.jpeg
- S ,.
.. 4 kﬁ
KPR
TN g

image938.jpeg

image939.jpeg

image940.jpeg

image941.jpeg

image942.jpeg

image88.jpeg

image943.jpeg

image944.jpeg

image945.jpeg

image946.jpeg

image947.jpeg

image948.jpeg

image949.jpeg

image950.jpeg

image951.jpeg

image952.jpeg

image89.jpeg

image953.jpeg

image954.jpeg

image955.jpeg

image956.jpeg

image957.jpeg

image958.jpeg

image959.jpeg

image960.jpeg

image961.jpeg

image962.jpeg

image90.jpeg

image963.jpeg

image964.jpeg

image965.jpeg

image966.jpeg

image967.jpeg

image968.jpeg

image969.jpeg

image970.jpeg

image971.jpeg

image972.jpeg

image91.jpeg

image973.jpeg

image974.jpeg

image975.jpeg

image976.jpeg

image977.jpeg

image978.jpeg

image979.jpeg

image980.jpeg

image981.jpeg

image982.jpeg

image92.jpeg
~ad

image983.jpeg

image984.jpeg

image985.jpeg

image986.jpeg

image987.jpeg

image988.jpeg

image989.jpeg

image990.jpeg

image991.jpeg

image992.jpeg

