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Table S1. The label information corresponding to the training set images
	Picture
	x
	y
	w
	h

	cracking(105).txt
	0.5025 
	0.3025 
	0.9950 
	0.2850 

	cracking(106).txt
	0.4450 
	0.5350 
	0.8800 
	0.4100 

	cracking(108).txt
	0.5025 
	0.4150 
	0.9950 
	0.2900 

	cracking(11).txt
	0.5025 
	0.5775 
	0.9950 
	0.4950 

	cracking(111).txt
	0.6125 
	0.5025 
	0.3850 
	0.9950 

	cracking(12).txt
	0.4075 
	0.5025 
	0.5050 
	0.9950 

	cracking(120).txt
	0.5025 
	0.4350 
	0.9950 
	0.1800 

	cracking(122).txt
	0.5025 
	0.5800 
	0.9950 
	0.5500 

	cracking(123).txt
	0.5025 
	0.5875 
	0.9950 
	0.7950 

	cracking(124).txt
	0.4150 
	0.5000 
	0.4700 
	0.9900 

	cracking(126).txt
	0.4575 
	0.5025 
	0.2650 
	0.9950 

	cracking(13).txt
	0.5025 
	0.4125 
	0.9950 
	0.5050 

	cracking(134).txt
	0.4850 
	0.5525 
	0.9100 
	0.4050 

	cracking(138).txt
	0.4650 
	0.4875 
	0.3400 
	0.9350 

	cracking(142).txt
	0.5000 
	0.4025 
	0.9900 
	0.5350 

	cracking(16).txt
	0.5025 
	0.5975 
	0.9950 
	0.5950 

	cracking(160).txt
	0.5025 
	0.5200 
	0.9950 
	0.2800 

	cracking(161).txt
	0.5025 
	0.4900 
	0.9950 
	0.4300 

	cracking(163).txt
	0.5475 
	0.5300 
	0.8350 
	0.9200 

	cracking(165).txt
	0.5025 
	0.4875 
	0.9950 
	0.6950 

	cracking(166).txt
	0.4850 
	0.5025 
	0.2400 
	0.9950 

	cracking(167).txt
	0.4875 
	0.5025 
	0.6250 
	0.9950 

	cracking(168).txt
	0.4900 
	0.4850 
	0.9700 
	0.7000 

	cracking(170).txt
	0.5475 
	0.4675 
	0.2750 
	0.9250 

	cracking(171).txt
	0.6050 
	0.4250 
	0.6100 
	0.8400 

	cracking(172).txt
	0.5600 
	0.4750 
	0.8700 
	0.5100 

	cracking(173).txt
	0.5400 
	0.5625 
	0.9200 
	0.2950 

	cracking(174).txt
	0.5875 
	0.6025 
	0.8250 
	0.7350 

	cracking(175).txt
	0.4725 
	0.5375 
	0.2650 
	0.9250 

	cracking(176).txt
	0.4425 
	0.5350 
	0.8750 
	0.5300 

	cracking(177).txt
	0.4500 
	0.4425 
	0.8900 
	0.4450 

	cracking(18).txt
	0.4975 
	0.7400 
	0.9850 
	0.4200 

	cracking(181).txt
	0.4100 
	0.7075 
	0.2700 
	0.5850 

	cracking(181).txt
	0.6000 
	0.2250 
	0.3000 
	0.4300 

	cracking(182).txt
	0.5050 
	0.4850 
	0.9900 
	0.3300 

	cracking(183).txt
	0.4775 
	0.5475 
	0.9450 
	0.8450 

	cracking(184).txt
	0.4675 
	0.5025 
	0.5250 
	0.9950 

	cracking(185).txt
	0.5000 
	0.4250 
	0.9900 
	0.7000 

	cracking(186).txt
	0.5025 
	0.4700 
	0.9950 
	0.5400 

	cracking(187).txt
	0.5950 
	0.4850 
	0.8100 
	0.9600 

	cracking(188).txt
	0.5150 
	0.5025 
	0.5800 
	0.9950 

	cracking(189).txt
	0.5025 
	0.5625 
	0.9950 
	0.5550 

	cracking(19).txt
	0.6100 
	0.4500 
	0.7800 
	0.8900 

	cracking(190).txt
	0.5025 
	0.5625 
	0.9950 
	0.6550 

	cracking(191).txt
	0.5025 
	0.5325 
	0.9950 
	0.3050 

	cracking(192).txt
	0.4650 
	0.5100 
	0.7700 
	0.9800 

	cracking(193).txt
	0.3925 
	0.5050 
	0.5750 
	0.9900 

	cracking(194).txt
	0.4150 
	0.3450 
	0.8200 
	0.6800 

	cracking(195).txt
	0.6350 
	0.6600 
	0.7300 
	0.2900 

	cracking(196).txt
	0.4925 
	0.7125 
	0.3250 
	0.5750 

	cracking(197).txt
	0.2875 
	0.6300 
	0.5650 
	0.7400 

	cracking(198).txt
	0.3700 
	0.2475 
	0.7300 
	0.4850 

	cracking(2).txt
	0.6850 
	0.5050 
	0.5200 
	0.9900 

	cracking(204).txt
	0.5775 
	0.4100 
	0.7150 
	0.7900 

	cracking(205).txt
	0.4775 
	0.5025 
	0.7050 
	0.9950 

	cracking(206).txt
	0.5525 
	0.5025 
	0.3750 
	0.9950 

	cracking(207).txt
	0.3425 
	0.5575 
	0.6750 
	0.8350 

	cracking(208).txt
	0.4925 
	0.5025 
	0.4750 
	0.9950 

	cracking(209).txt
	0.5550 
	0.5025 
	0.2300 
	0.9950 

	cracking(21).txt
	0.3850 
	0.5025 
	0.7600 
	0.8750 

	cracking(210).txt
	0.4650 
	0.3100 
	0.9200 
	0.4600 

	cracking(211).txt
	0.5025 
	0.5500 
	0.9950 
	0.2600 

	cracking(212).txt
	0.4925 
	0.5025 
	0.2250 
	0.9950 

	cracking(213).txt
	0.5025 
	0.3450 
	0.9950 
	0.3100 

	cracking(214).txt
	0.5025 
	0.3875 
	0.9950 
	0.3350 

	cracking(215).txt
	0.4925 
	0.3425 
	0.9650 
	0.6750 

	cracking(216).txt
	0.5025 
	0.3425 
	0.9950 
	0.3850 

	cracking(217).txt
	0.2475 
	0.5025 
	0.4850 
	0.9950 

	cracking(218).txt
	0.4100 
	0.6250 
	0.7400 
	0.7500 

	cracking(23).txt
	0.3925 
	0.8025 
	0.7750 
	0.3950 

	cracking(24).txt
	0.5025 
	0.2375 
	0.9950 
	0.4650 

	cracking(27).txt
	0.3150 
	0.5025 
	0.2100 
	0.9950 

	cracking(28).txt
	0.6150 
	0.5900 
	0.7500 
	0.8200 

	cracking(3).txt
	0.4950 
	0.6825 
	0.9800 
	0.4950 

	cracking(30).txt
	0.2375 
	0.5300 
	0.2150 
	0.9400 

	cracking(31).txt
	0.4375 
	0.2900 
	0.8250 
	0.5600 

	cracking(32).txt
	0.4075 
	0.3675 
	0.8050 
	0.7250 

	cracking(36).txt
	0.3150 
	0.3950 
	0.6200 
	0.7800 

	cracking(37).txt
	0.3750 
	0.3625 
	0.7400 
	0.1750 

	cracking(37).txt
	0.8600 
	0.1875 
	0.2700 
	0.3150 

	cracking(39).txt
	0.2050 
	0.3500 
	0.4000 
	0.6900 

	cracking(4).txt
	0.5025 
	0.3075 
	0.9950 
	0.4850 

	cracking(42).txt
	0.5325 
	0.5025 
	0.2350 
	0.9950 

	cracking(43).txt
	0.3700 
	0.5025 
	0.3400 
	0.9950 

	cracking(52).txt
	0.6100 
	0.5850 
	0.1500 
	0.8300 

	cracking(54).txt
	0.5225 
	0.5025 
	0.1950 
	0.9950 

	cracking(55).txt
	0.1175 
	0.7000 
	0.0750 
	0.5700 

	cracking(55).txt
	0.4125 
	0.5000 
	0.4750 
	0.9900 

	cracking(57).txt
	0.7950 
	0.5025 
	0.1900 
	0.9950 

	cracking(57).txt
	0.1825 
	0.8850 
	0.1350 
	0.2300 

	cracking(58).txt
	0.5750 
	0.6225 
	0.2000 
	0.7450 

	cracking(59).txt
	0.7575 
	0.3150 
	0.1450 
	0.5700 

	cracking(60).txt
	0.3325 
	0.5250 
	0.6550 
	0.9500 

	cracking(61).txt
	0.6975 
	0.5025 
	0.1150 
	0.9950 

	cracking(61).txt
	0.5250 
	0.7375 
	0.2500 
	0.5250 

	cracking(62).txt
	0.1425 
	0.8450 
	0.1050 
	0.3100 

	cracking(62).txt
	0.4075 
	0.5025 
	0.3150 
	0.9950 

	cracking(63).txt
	0.5775 
	0.5025 
	0.1650 
	0.9950 

	cracking(63).txt
	0.7550 
	0.2625 
	0.2800 
	0.5150 

	cracking(64).txt
	0.8225 
	0.5025 
	0.3350 
	0.9950 

	cracking(64).txt
	0.6025 
	0.4200 
	0.2750 
	0.4300 

	cracking(66).txt
	0.5025 
	0.4575 
	0.9950 
	0.5350 

	cracking(67).txt
	0.4475 
	0.4900 
	0.8850 
	0.9700 

	cracking(68).txt
	0.2150 
	0.4775 
	0.4200 
	0.9450 

	cracking(69).txt
	0.4025 
	0.5025 
	0.3350 
	0.9950 

	cracking(70).txt
	0.4275 
	0.7050 
	0.0850 
	0.5900 

	cracking(70).txt
	0.5800 
	0.3575 
	0.2600 
	0.7050 

	cracking(71).txt
	0.3275 
	0.5025 
	0.2250 
	0.9950 

	cracking(72).txt
	0.4375 
	0.5025 
	0.1950 
	0.9950 

	cracking(72).txt
	0.7300 
	0.5025 
	0.5400 
	0.9950 

	cracking(74).txt
	0.3250 
	0.6350 
	0.3900 
	0.7100 

	cracking(74).txt
	0.7375 
	0.2725 
	0.4950 
	0.5250 

	cracking(76).txt
	0.5025 
	0.6075 
	0.9950 
	0.6550 

	cracking(77).txt
	0.6050 
	0.5050 
	0.3700 
	0.8500 

	cracking(79).txt
	0.2650 
	0.5025 
	0.2700 
	0.9950 

	cracking(82).txt
	0.0950 
	0.5375 
	0.1500 
	0.9250 

	cracking(82).txt
	0.3475 
	0.4125 
	0.4650 
	0.8150 

	cracking(83).txt
	0.6100 
	0.5025 
	0.1700 
	0.9950 

	cracking(84).txt
	0.8400 
	0.5025 
	0.3200 
	0.9950 

	cracking(86).txt
	0.3925 
	0.5825 
	0.5050 
	0.8350 

	cracking(86).txt
	0.7800 
	0.4200 
	0.4400 
	0.3100 

	cracking(87).txt
	0.3200 
	0.6800 
	0.3600 
	0.6400 

	cracking(87).txt
	0.3450 
	0.3600 
	0.1500 
	0.7100 

	cracking(92).txt
	0.5025 
	0.4350 
	0.9950 
	0.2600 

	holes (1).txt
	0.5600 
	0.3200 
	0.1600 
	0.1600 

	holes (1).txt
	0.9350 
	0.5300 
	0.1000 
	0.1100 

	holes (100).txt
	0.2875 
	0.2425 
	0.1650 
	0.1250 

	holes (100).txt
	0.5375 
	0.5750 
	0.1050 
	0.1100 

	holes (100).txt
	0.0800 
	0.0725 
	0.0700 
	0.0650 

	holes (103).txt
	0.6150 
	0.2775 
	0.2400 
	0.1750 

	holes (106).txt
	0.0550 
	0.2200 
	0.1000 
	0.0900 

	holes (106).txt
	0.3100 
	0.3775 
	0.1100 
	0.1150 

	holes (106).txt
	0.5125 
	0.8725 
	0.1750 
	0.1550 

	holes (106).txt
	0.6300 
	0.3725 
	0.0900 
	0.0750 

	holes (106).txt
	0.3200 
	0.1750 
	0.0500 
	0.0600 

	holes (106).txt
	0.3625 
	0.2575 
	0.1150 
	0.0650 

	holes (106).txt
	0.4900 
	0.2700 
	0.0900 
	0.0700 

	holes (107).txt
	0.6875 
	0.5600 
	0.2250 
	0.2100 

	holes (108).txt
	0.5825 
	0.1125 
	0.1650 
	0.1250 

	holes (108).txt
	0.8450 
	0.4725 
	0.1600 
	0.1550 

	holes (109).txt
	0.2000 
	0.2025 
	0.2400 
	0.1850 

	holes (109).txt
	0.4825 
	0.2775 
	0.1350 
	0.1450 

	holes (109).txt
	0.4825 
	0.1450 
	0.0850 
	0.0900 

	holes (109).txt
	0.5950 
	0.1725 
	0.0700 
	0.1050 

	holes (109).txt
	0.7700 
	0.2200 
	0.0600 
	0.1000 

	holes (109).txt
	0.7325 
	0.6800 
	0.1350 
	0.0900 

	holes (11).txt
	0.8375 
	0.6150 
	0.1550 
	0.2200 

	holes (11).txt
	0.5775 
	0.6925 
	0.0550 
	0.1150 

	holes (11).txt
	0.4900 
	0.8250 
	0.1000 
	0.1200 

	holes (11).txt
	0.5325 
	0.9475 
	0.1150 
	0.1050 

	holes (111).txt
	0.6600 
	0.5175 
	0.1700 
	0.1950 

	holes (111).txt
	0.3550 
	0.1475 
	0.1100 
	0.1250 

	holes (111).txt
	0.2225 
	0.2200 
	0.0850 
	0.0700 

	holes (111).txt
	0.1425 
	0.3075 
	0.0950 
	0.1050 

	holes (111).txt
	0.2100 
	0.3800 
	0.1500 
	0.1000 

	holes (112).txt
	0.6750 
	0.5625 
	0.1400 
	0.0950 

	holes (112).txt
	0.1900 
	0.6900 
	0.0800 
	0.1100 

	holes (113).txt
	0.7625 
	0.5000 
	0.1350 
	0.1500 

	holes (113).txt
	0.4575 
	0.7150 
	0.0850 
	0.1400 

	holes (113).txt
	0.3850 
	0.9575 
	0.1600 
	0.0850 

	holes (114).txt
	0.3175 
	0.5750 
	0.1750 
	0.1100 

	holes (114).txt
	0.1425 
	0.2900 
	0.1550 
	0.0900 

	holes (115).txt
	0.6725 
	0.1900 
	0.1650 
	0.1200 

	holes (115).txt
	0.3125 
	0.6150 
	0.1650 
	0.1900 

	holes (117).txt
	0.4600 
	0.4000 
	0.2200 
	0.2300 

	holes (118).txt
	0.8400 
	0.3350 
	0.1200 
	0.1900 

	holes (12).txt
	0.8525 
	0.5175 
	0.2050 
	0.2150 

	holes (12).txt
	0.6425 
	0.6650 
	0.0850 
	0.1400 

	holes (12).txt
	0.7525 
	0.7050 
	0.0850 
	0.1400 

	holes (12).txt
	0.5925 
	0.8075 
	0.1150 
	0.1250 

	holes (12).txt
	0.6375 
	0.9325 
	0.1050 
	0.0850 

	holes (12).txt
	0.9250 
	0.8925 
	0.0800 
	0.1250 

	holes (12).txt
	0.8375 
	0.9550 
	0.0650 
	0.0900 

	holes (120).txt
	0.6125 
	0.4275 
	0.1750 
	0.1150 

	holes (121).txt
	0.6200 
	0.4425 
	0.2200 
	0.1550 

	holes (123).txt
	0.3975 
	0.2150 
	0.1850 
	0.2200 

	holes (125).txt
	0.3550 
	0.7425 
	0.2800 
	0.2050 

	holes (126).txt
	0.8775 
	0.4775 
	0.1550 
	0.2450 

	holes (127).txt
	0.3725 
	0.6650 
	0.1750 
	0.2100 

	holes (129).txt
	0.7625 
	0.5500 
	0.1150 
	0.2100 

	holes (129).txt
	0.5500 
	0.2925 
	0.1300 
	0.1650 

	holes (13).txt
	0.8575 
	0.4350 
	0.2150 
	0.1600 

	holes (13).txt
	0.6900 
	0.6250 
	0.1900 
	0.1500 

	holes (13).txt
	0.6675 
	0.7725 
	0.1350 
	0.1050 

	holes (13).txt
	0.7500 
	0.8825 
	0.1100 
	0.0950 

	holes (13).txt
	0.9375 
	0.8850 
	0.1050 
	0.0900 

	holes (131).txt
	0.3800 
	0.4925 
	0.1300 
	0.1450 

	holes (132).txt
	0.8975 
	0.4225 
	0.2050 
	0.1450 

	holes (134).txt
	0.8875 
	0.4500 
	0.2250 
	0.1900 

	holes (135).txt
	0.7900 
	0.1925 
	0.1000 
	0.1050 

	holes (136).txt
	0.5675 
	0.5100 
	0.1750 
	0.1400 

	holes (137).txt
	0.4925 
	0.3100 
	0.2350 
	0.2200 

	holes (139).txt
	0.7875 
	0.5100 
	0.1950 
	0.1900 

	holes (14).txt
	0.7775 
	0.3475 
	0.1450 
	0.2250 

	holes (14).txt
	0.7100 
	0.5750 
	0.1300 
	0.1500 

	holes (14).txt
	0.7250 
	0.7200 
	0.1200 
	0.1400 

	holes (14).txt
	0.8575 
	0.7925 
	0.1150 
	0.1450 

	holes (14).txt
	0.8475 
	0.5600 
	0.0950 
	0.1400 

	holes (140).txt
	0.2700 
	0.3950 
	0.2200 
	0.1700 

	holes (143).txt
	0.2350 
	0.3350 
	0.2000 
	0.1500 

	holes (144).txt
	0.3625 
	0.1975 
	0.2150 
	0.1750 

	holes (145).txt
	0.4725 
	0.3700 
	0.2150 
	0.1700 

	holes (146).txt
	0.4100 
	0.3250 
	0.2000 
	0.1800 

	holes (147).txt
	0.5925 
	0.3625 
	0.1550 
	0.1450 

	holes (148).txt
	0.6050 
	0.3550 
	0.1200 
	0.1600 

	holes (15).txt
	0.7525 
	0.2650 
	0.1850 
	0.1800 

	holes (15).txt
	0.7000 
	0.5200 
	0.1000 
	0.1300 

	holes (15).txt
	0.7875 
	0.6525 
	0.1050 
	0.1450 

	holes (15).txt
	0.9275 
	0.7100 
	0.1250 
	0.1500 

	holes (150).txt
	0.3250 
	0.4175 
	0.1200 
	0.1350 

	holes (151).txt
	0.1825 
	0.7300 
	0.1950 
	0.1900 

	holes (152).txt
	0.5000 
	0.4225 
	0.1400 
	0.1350 

	holes (153).txt
	0.4100 
	0.4025 
	0.1200 
	0.1150 

	holes (156).txt
	0.4625 
	0.6850 
	0.1250 
	0.1400 

	holes (158).txt
	0.5650 
	0.3300 
	0.1900 
	0.1300 

	holes (160).txt
	0.3450 
	0.2525 
	0.2400 
	0.2750 

	holes (161).txt
	0.8475 
	0.4825 
	0.1950 
	0.1850 

	holes (162).txt
	0.6450 
	0.5250 
	0.1700 
	0.1500 

	holes (163).txt
	0.5425 
	0.5575 
	0.2550 
	0.2450 

	holes (163).txt
	0.1625 
	0.9300 
	0.1850 
	0.1400 

	holes (168).txt
	0.7025 
	0.5650 
	0.1450 
	0.2300 

	holes (169).txt
	0.1625 
	0.3550 
	0.1950 
	0.1600 

	holes (17).txt
	0.6025 
	0.2025 
	0.1450 
	0.1550 

	holes (17).txt
	0.9550 
	0.4650 
	0.0800 
	0.1200 

	holes (17).txt
	0.6525 
	0.4250 
	0.0950 
	0.1100 

	holes (17).txt
	0.8175 
	0.4900 
	0.0650 
	0.1200 

	holes (17).txt
	0.7550 
	0.3400 
	0.0700 
	0.1200 

	holes (17).txt
	0.9725 
	0.1975 
	0.0550 
	0.0750 

	holes (171).txt
	0.5700 
	0.2150 
	0.1900 
	0.1800 

	holes (172).txt
	0.6975 
	0.2875 
	0.1950 
	0.1550 

	holes (173).txt
	0.6525 
	0.3825 
	0.1250 
	0.1050 

	holes (174).txt
	0.3575 
	0.3400 
	0.1950 
	0.1800 

	holes (175).txt
	0.3875 
	0.5175 
	0.2150 
	0.2850 

	holes (176).txt
	0.5725 
	0.2875 
	0.2650 
	0.2350 

	holes (177).txt
	0.6275 
	0.2375 
	0.2550 
	0.1950 

	holes (178).txt
	0.6350 
	0.3425 
	0.1100 
	0.1450 

	holes (18).txt
	0.6700 
	0.6300 
	0.2800 
	0.3200 

	holes (184).txt
	0.4700 
	0.3475 
	0.2000 
	0.1950 

	holes (186).txt
	0.5350 
	0.5050 
	0.1300 
	0.1100 

	holes (189).txt
	0.5250 
	0.4900 
	0.2400 
	0.2000 

	holes (19).txt
	0.6025 
	0.6975 
	0.2950 
	0.2850 

	holes (190).txt
	0.3500 
	0.2650 
	0.2000 
	0.1300 

	holes (193).txt
	0.4650 
	0.3875 
	0.1700 
	0.1550 

	holes (193).txt
	0.6900 
	0.3375 
	0.1900 
	0.1150 

	holes (194).txt
	0.3325 
	0.6650 
	0.1350 
	0.1600 

	holes (194).txt
	0.2225 
	0.5925 
	0.1450 
	0.1250 

	holes (195).txt
	0.2450 
	0.1975 
	0.1500 
	0.1350 

	holes (195).txt
	0.3725 
	0.1050 
	0.1650 
	0.1300 

	holes (196).txt
	0.2575 
	0.2075 
	0.1850 
	0.1650 

	holes (196).txt
	0.3050 
	0.4150 
	0.1800 
	0.1400 

	holes (197).txt
	0.4975 
	0.7100 
	0.1250 
	0.1500 

	holes (197).txt
	0.7025 
	0.8200 
	0.2150 
	0.2100 

	holes (198).txt
	0.3650 
	0.3000 
	0.1200 
	0.1300 

	holes (199).txt
	0.5375 
	0.3450 
	0.1050 
	0.0900 

	holes (199).txt
	0.5850 
	0.4725 
	0.0800 
	0.0950 

	holes (199).txt
	0.2375 
	0.2775 
	0.0950 
	0.0850 

	holes (199).txt
	0.3000 
	0.5500 
	0.1000 
	0.1400 

	holes (20).txt
	0.4450 
	0.7000 
	0.3400 
	0.2700 

	holes (200).txt
	0.2225 
	0.3350 
	0.1150 
	0.1400 

	holes (200).txt
	0.1825 
	0.2025 
	0.1050 
	0.1050 

	holes (201).txt
	0.2350 
	0.2950 
	0.1700 
	0.2000 

	holes (201).txt
	0.3875 
	0.2675 
	0.1750 
	0.1150 

	holes (201).txt
	0.1125 
	0.2900 
	0.1150 
	0.1100 

	holes (201).txt
	0.6625 
	0.5925 
	0.1150 
	0.1150 

	holes (202).txt
	0.5525 
	0.5425 
	0.0950 
	0.1150 

	holes (203).txt
	0.3600 
	0.5300 
	0.2100 
	0.1600 

	holes (203).txt
	0.3125 
	0.2825 
	0.1850 
	0.2550 

	holes (204).txt
	0.5400 
	0.3250 
	0.2300 
	0.2200 

	holes (204).txt
	0.2575 
	0.4125 
	0.2550 
	0.2350 

	holes (205).txt
	0.8125 
	0.4975 
	0.2150 
	0.2050 

	holes (206).txt
	0.4250 
	0.4125 
	0.1600 
	0.1950 

	holes (207).txt
	0.1350 
	0.1150 
	0.1500 
	0.2000 

	holes (207).txt
	0.5300 
	0.6400 
	0.1500 
	0.1300 

	holes (208).txt
	0.6100 
	0.4475 
	0.2300 
	0.2650 

	holes (209).txt
	0.2950 
	0.4650 
	0.2000 
	0.1900 

	holes (209).txt
	0.5375 
	0.2875 
	0.1250 
	0.1250 

	holes (209).txt
	0.6450 
	0.2850 
	0.1000 
	0.1000 

	holes (209).txt
	0.6650 
	0.7550 
	0.1200 
	0.1900 

	holes (21).txt
	0.6375 
	0.3675 
	0.2650 
	0.2650 

	holes (210).txt
	0.2325 
	0.2550 
	0.1150 
	0.1200 

	holes (211).txt
	0.4350 
	0.6125 
	0.2200 
	0.2250 

	holes (211).txt
	0.2825 
	0.5775 
	0.1250 
	0.1050 

	holes (212).txt
	0.3900 
	0.3825 
	0.1800 
	0.1450 

	holes (214).txt
	0.2900 
	0.4800 
	0.2200 
	0.1700 

	holes (216).txt
	0.2950 
	0.0850 
	0.1900 
	0.1600 

	holes (216).txt
	0.6500 
	0.2625 
	0.0900 
	0.1450 

	holes (216).txt
	0.8850 
	0.8575 
	0.1400 
	0.1150 

	holes (216).txt
	0.7125 
	0.1175 
	0.0850 
	0.0850 

	holes (216).txt
	0.8175 
	0.1575 
	0.0750 
	0.0850 

	holes (218).txt
	0.2250 
	0.4825 
	0.2000 
	0.1650 

	holes (218).txt
	0.4875 
	0.3275 
	0.1750 
	0.0950 

	holes (218).txt
	0.6675 
	0.1325 
	0.0850 
	0.1350 

	holes (218).txt
	0.5750 
	0.3400 
	0.0800 
	0.0600 

	holes (218).txt
	0.6000 
	0.7850 
	0.1600 
	0.1500 

	holes (218).txt
	0.8975 
	0.9225 
	0.0850 
	0.0650 

	holes (218).txt
	0.9500 
	0.7875 
	0.0900 
	0.0950 

	holes (219).txt
	0.5500 
	0.4200 
	0.1500 
	0.1900 

	holes (219).txt
	0.9175 
	0.4500 
	0.1550 
	0.1400 

	holes (219).txt
	0.2475 
	0.7350 
	0.0750 
	0.0800 

	holes (22).txt
	0.6925 
	0.6775 
	0.2850 
	0.2950 

	holes (22).txt
	0.2250 
	0.9050 
	0.1000 
	0.1300 

	holes (22).txt
	0.2500 
	0.7800 
	0.0700 
	0.0700 

	holes (22).txt
	0.4225 
	0.9450 
	0.0650 
	0.0800 

	holes (22).txt
	0.3225 
	0.8950 
	0.1150 
	0.0900 

	holes (220).txt
	0.7375 
	0.5525 
	0.2650 
	0.2150 

	holes (221).txt
	0.2400 
	0.6200 
	0.2300 
	0.1700 

	holes (223).txt
	0.1375 
	0.2400 
	0.1350 
	0.1500 

	holes (224).txt
	0.7650 
	0.3975 
	0.1800 
	0.2250 

	holes (226).txt
	0.4675 
	0.4725 
	0.1750 
	0.2350 

	holes (228).txt
	0.3825 
	0.2450 
	0.1950 
	0.2600 

	holes (228).txt
	0.9150 
	0.5150 
	0.1300 
	0.1400 

	holes (228).txt
	0.9625 
	0.3150 
	0.0750 
	0.1000 

	holes (229).txt
	0.3100 
	0.5450 
	0.1600 
	0.1500 

	holes (229).txt
	0.2150 
	0.5550 
	0.0900 
	0.1200 

	holes (229).txt
	0.7650 
	0.3200 
	0.1300 
	0.1000 

	holes (229).txt
	0.9150 
	0.3225 
	0.1200 
	0.0850 

	holes (229).txt
	0.9350 
	0.9550 
	0.1100 
	0.0900 

	holes (23).txt
	0.6100 
	0.4625 
	0.2100 
	0.2350 

	holes (230).txt
	0.4700 
	0.3200 
	0.1800 
	0.1800 

	holes (231).txt
	0.4400 
	0.3150 
	0.1900 
	0.1400 

	holes (231).txt
	0.8175 
	0.5550 
	0.1050 
	0.1200 

	holes (231).txt
	0.8800 
	0.3850 
	0.1100 
	0.1000 

	holes (232).txt
	0.3300 
	0.4400 
	0.2600 
	0.2100 

	holes (234).txt
	0.5525 
	0.5950 
	0.2250 
	0.2400 

	holes (234).txt
	0.4825 
	0.7150 
	0.1150 
	0.0800 

	holes (235).txt
	0.3475 
	0.3675 
	0.2850 
	0.1850 

	holes (235).txt
	0.8025 
	0.6450 
	0.1450 
	0.1800 

	holes (235).txt
	0.8700 
	0.4475 
	0.1600 
	0.1050 

	holes (235).txt
	0.4775 
	0.6250 
	0.1450 
	0.1300 

	holes (237).txt
	0.4400 
	0.2700 
	0.2400 
	0.2000 

	holes (238).txt
	0.6225 
	0.3975 
	0.2250 
	0.3050 

	holes (239).txt
	0.4600 
	0.8150 
	0.1900 
	0.2500 

	holes (239).txt
	0.6150 
	0.7600 
	0.1700 
	0.2200 

	holes (24).txt
	0.5725 
	0.4050 
	0.1350 
	0.2700 

	holes (240).txt
	0.3800 
	0.3975 
	0.1800 
	0.1750 

	holes (240).txt
	0.9275 
	0.4425 
	0.1450 
	0.1550 

	holes (241).txt
	0.4300 
	0.2625 
	0.2200 
	0.2050 

	holes (241).txt
	0.9200 
	0.5750 
	0.1600 
	0.1900 

	holes (242).txt
	0.2550 
	0.5025 
	0.1900 
	0.2050 

	holes (243).txt
	0.3875 
	0.7150 
	0.1650 
	0.1700 

	holes (244).txt
	0.4200 
	0.4700 
	0.2600 
	0.2600 

	holes (244).txt
	0.2175 
	0.4275 
	0.1950 
	0.2050 

	holes (245).txt
	0.4225 
	0.3175 
	0.2650 
	0.2550 

	holes (245).txt
	0.9275 
	0.6725 
	0.1450 
	0.1850 

	holes (246).txt
	0.5075 
	0.3475 
	0.2950 
	0.2450 

	holes (247).txt
	0.8000 
	0.6900 
	0.3600 
	0.3400 

	holes (248).txt
	0.4525 
	0.4975 
	0.3750 
	0.3050 

	holes (249).txt
	0.6525 
	0.4725 
	0.3150 
	0.2250 

	holes (25).txt
	0.5900 
	0.4225 
	0.1700 
	0.2750 

	holes (250).txt
	0.6625 
	0.4525 
	0.2350 
	0.2050 

	holes (251).txt
	0.5100 
	0.4275 
	0.2000 
	0.2550 

	holes (252).txt
	0.4925 
	0.5550 
	0.3150 
	0.3300 

	holes (255).txt
	0.4875 
	0.5025 
	0.3050 
	0.4450 

	holes (256).txt
	0.3550 
	0.4375 
	0.2400 
	0.2550 

	holes (257).txt
	0.4875 
	0.3475 
	0.4850 
	0.3550 

	holes (258).txt
	0.7375 
	0.4500 
	0.3750 
	0.3100 

	holes (259).txt
	0.5750 
	0.6500 
	0.3100 
	0.2700 

	holes (26).txt
	0.5600 
	0.3850 
	0.2200 
	0.2600 

	holes (26).txt
	0.0975 
	0.2800 
	0.1850 
	0.1800 

	holes (26).txt
	0.3600 
	0.1300 
	0.1500 
	0.1400 

	holes (260).txt
	0.3575 
	0.2850 
	0.2350 
	0.2200 

	holes (260).txt
	0.7900 
	0.5475 
	0.1800 
	0.1950 

	holes (260).txt
	0.8875 
	0.3350 
	0.1450 
	0.1500 

	holes (261).txt
	0.4700 
	0.3475 
	0.3700 
	0.2850 

	holes (263).txt
	0.5775 
	0.4050 
	0.3250 
	0.2700 

	holes (265).txt
	0.8200 
	0.3950 
	0.2200 
	0.2400 

	holes (266).txt
	0.3850 
	0.4900 
	0.2600 
	0.2100 

	holes (267).txt
	0.6075 
	0.6250 
	0.2650 
	0.2500 

	holes (268).txt
	0.5275 
	0.3950 
	0.2250 
	0.2600 

	holes (269).txt
	0.8425 
	0.4175 
	0.2350 
	0.1850 

	holes (27).txt
	0.5700 
	0.4875 
	0.3100 
	0.3450 

	holes (270).txt
	0.8775 
	0.3400 
	0.1950 
	0.1700 

	holes (271).txt
	0.3125 
	0.1775 
	0.1650 
	0.1750 

	holes (271).txt
	0.6350 
	0.5800 
	0.1700 
	0.2000 

	holes (272).txt
	0.1750 
	0.4525 
	0.2900 
	0.1950 

	holes (272).txt
	0.7175 
	0.6025 
	0.2250 
	0.1550 

	holes (273).txt
	0.2150 
	0.6625 
	0.2000 
	0.1650 

	holes (273).txt
	0.7425 
	0.4775 
	0.1450 
	0.1550 

	holes (274).txt
	0.7250 
	0.3600 
	0.2200 
	0.1900 

	holes (274).txt
	0.2525 
	0.7750 
	0.1650 
	0.1700 

	holes (275).txt
	0.5825 
	0.2850 
	0.1750 
	0.1600 

	holes (275).txt
	0.4275 
	0.8575 
	0.0950 
	0.2050 

	holes (277).txt
	0.3575 
	0.5525 
	0.2250 
	0.1850 

	holes (278).txt
	0.3700 
	0.6850 
	0.2100 
	0.1700 

	holes (279).txt
	0.3075 
	0.4650 
	0.2150 
	0.2100 

	holes (279).txt
	0.6000 
	0.4750 
	0.2100 
	0.1800 

	holes (28).txt
	0.6100 
	0.6000 
	0.1900 
	0.1500 

	holes (28).txt
	0.9225 
	0.7050 
	0.0950 
	0.1600 

	holes (28).txt
	0.9550 
	0.5650 
	0.0900 
	0.1000 

	holes (28).txt
	0.1650 
	0.3825 
	0.1500 
	0.1050 

	holes (28).txt
	0.3950 
	0.1950 
	0.1200 
	0.0900 

	holes (28).txt
	0.5325 
	0.1675 
	0.1250 
	0.0750 

	holes (280).txt
	0.4800 
	0.5600 
	0.2700 
	0.2200 

	holes (281).txt
	0.2625 
	0.2000 
	0.1950 
	0.1900 

	holes (282).txt
	0.6875 
	0.4500 
	0.2150 
	0.2200 

	holes (284).txt
	0.8150 
	0.2550 
	0.2300 
	0.2100 

	holes (284).txt
	0.3950 
	0.8500 
	0.2100 
	0.3000 

	holes (285).txt
	0.5725 
	0.4650 
	0.3550 
	0.2400 

	holes (286).txt
	0.4950 
	0.5000 
	0.2600 
	0.2600 

	holes (287).txt
	0.2775 
	0.3800 
	0.2050 
	0.1800 

	holes (288).txt
	0.1275 
	0.1675 
	0.2450 
	0.1950 

	holes (288).txt
	0.6075 
	0.7900 
	0.1550 
	0.1700 

	holes (289).txt
	0.5300 
	0.1400 
	0.1600 
	0.1500 

	holes (29).txt
	0.3025 
	0.4075 
	0.1350 
	0.1650 

	holes (290).txt
	0.8800 
	0.4050 
	0.2100 
	0.2200 

	holes (291).txt
	0.7375 
	0.4125 
	0.2450 
	0.2250 

	holes (292).txt
	0.5725 
	0.4250 
	0.2250 
	0.1500 

	holes (293).txt
	0.3700 
	0.3700 
	0.1500 
	0.1600 

	holes (294).txt
	0.6600 
	0.3825 
	0.1900 
	0.2050 

	holes (295).txt
	0.4975 
	0.2800 
	0.1950 
	0.2000 

	holes (296).txt
	0.8125 
	0.3575 
	0.1350 
	0.1650 

	holes (297).txt
	0.4550 
	0.0925 
	0.1800 
	0.1350 

	holes (297).txt
	0.6625 
	0.8675 
	0.1550 
	0.1550 

	holes (299).txt
	0.8150 
	0.2675 
	0.2100 
	0.2450 

	holes (3).txt
	0.4700 
	0.0550 
	0.1300 
	0.1000 

	holes (3).txt
	0.2150 
	0.4000 
	0.1500 
	0.1500 

	holes (30).txt
	0.6375 
	0.3525 
	0.1250 
	0.1450 

	holes (31).txt
	0.2800 
	0.3225 
	0.1500 
	0.1050 

	holes (31).txt
	0.1800 
	0.3025 
	0.0400 
	0.0650 

	holes (31).txt
	0.0450 
	0.2700 
	0.0700 
	0.0600 

	holes (31).txt
	0.6075 
	0.1450 
	0.0650 
	0.0800 

	holes (31).txt
	0.7400 
	0.1500 
	0.0900 
	0.0500 

	holes (31).txt
	0.7450 
	0.7025 
	0.1500 
	0.1750 

	holes (32).txt
	0.3350 
	0.3925 
	0.1500 
	0.1350 

	holes (32).txt
	0.4975 
	0.2725 
	0.1150 
	0.1150 

	holes (32).txt
	0.8575 
	0.3875 
	0.1250 
	0.1350 

	holes (32).txt
	0.9775 
	0.4200 
	0.0450 
	0.2000 

	holes (32).txt
	0.6025 
	0.4175 
	0.1350 
	0.1050 

	holes (32).txt
	0.8800 
	0.1875 
	0.0800 
	0.1150 

	holes (33).txt
	0.4275 
	0.5975 
	0.1950 
	0.2250 

	holes (33).txt
	0.1425 
	0.0400 
	0.1650 
	0.0700 

	holes (33).txt
	0.5400 
	0.0375 
	0.0700 
	0.0650 

	holes (35).txt
	0.2625 
	0.1600 
	0.1350 
	0.1000 

	holes (35).txt
	0.6325 
	0.6525 
	0.1250 
	0.1550 

	holes (35).txt
	0.7450 
	0.2750 
	0.1100 
	0.0800 

	holes (35).txt
	0.4775 
	0.2800 
	0.0950 
	0.0900 

	holes (35).txt
	0.5100 
	0.1800 
	0.0700 
	0.0500 

	holes (35).txt
	0.5950 
	0.1975 
	0.0400 
	0.0550 

	holes (35).txt
	0.3550 
	0.3100 
	0.1200 
	0.1100 

	holes (37).txt
	0.3475 
	0.5425 
	0.1650 
	0.1150 

	holes (37).txt
	0.9125 
	0.6450 
	0.0950 
	0.1400 

	holes (37).txt
	0.0475 
	0.5575 
	0.0850 
	0.0650 

	holes (38).txt
	0.9175 
	0.3900 
	0.1450 
	0.1500 

	holes (38).txt
	0.3650 
	0.6250 
	0.1700 
	0.1100 

	holes (38).txt
	0.5325 
	0.4275 
	0.0650 
	0.0850 

	holes (38).txt
	0.1350 
	0.7875 
	0.0500 
	0.0850 

	holes (39).txt
	0.7300 
	0.1825 
	0.0800 
	0.0750 

	holes (39).txt
	0.4675 
	0.6725 
	0.0650 
	0.1050 

	holes (39).txt
	0.4400 
	0.9375 
	0.1400 
	0.1050 

	holes (4).txt
	0.2375 
	0.4775 
	0.2350 
	0.1650 

	holes (4).txt
	0.3975 
	0.0650 
	0.1750 
	0.1000 

	holes (40).txt
	0.5575 
	0.3775 
	0.1050 
	0.1250 

	holes (40).txt
	0.8475 
	0.1675 
	0.0750 
	0.0750 

	holes (41).txt
	0.6675 
	0.4675 
	0.1450 
	0.1750 

	holes (42).txt
	0.3425 
	0.4025 
	0.1250 
	0.1150 

	holes (43).txt
	0.2250 
	0.7075 
	0.1700 
	0.1750 

	holes (44).txt
	0.6300 
	0.3800 
	0.2300 
	0.1800 

	holes (45).txt
	0.4725 
	0.2775 
	0.2150 
	0.1750 

	holes (47).txt
	0.5550 
	0.4300 
	0.1900 
	0.1700 

	holes (48).txt
	0.7175 
	0.5700 
	0.2450 
	0.2300 

	holes (49).txt
	0.6100 
	0.3925 
	0.2100 
	0.2250 

	holes (5).txt
	0.1650 
	0.5675 
	0.2200 
	0.1750 

	holes (5).txt
	0.2575 
	0.1200 
	0.1950 
	0.1200 

	holes (5).txt
	0.0900 
	0.1100 
	0.0800 
	0.0700 

	holes (5).txt
	0.3350 
	0.3725 
	0.1500 
	0.1050 

	holes (50).txt
	0.6725 
	0.1875 
	0.1450 
	0.0950 

	holes (51).txt
	0.5025 
	0.3625 
	0.0950 
	0.0650 

	holes (52).txt
	0.7025 
	0.5250 
	0.1850 
	0.2500 

	holes (54).txt
	0.8400 
	0.5050 
	0.1200 
	0.1900 

	holes (56).txt
	0.7350 
	0.5100 
	0.2200 
	0.1700 

	holes (57).txt
	0.3050 
	0.4125 
	0.1900 
	0.1750 

	holes (58).txt
	0.5075 
	0.4850 
	0.1850 
	0.1600 

	holes (6).txt
	0.1200 
	0.2625 
	0.1500 
	0.1650 

	holes (6).txt
	0.2250 
	0.7025 
	0.1700 
	0.1650 

	holes (6).txt
	0.3300 
	0.4525 
	0.1200 
	0.1450 

	holes (6).txt
	0.2350 
	0.3050 
	0.0700 
	0.1200 

	holes (60).txt
	0.2500 
	0.5900 
	0.1700 
	0.2400 

	holes (60).txt
	0.4050 
	0.8550 
	0.0900 
	0.1100 

	holes (60).txt
	0.6750 
	0.7150 
	0.1100 
	0.1700 

	holes (60).txt
	0.8525 
	0.7725 
	0.0950 
	0.1350 

	holes (61).txt
	0.3475 
	0.2450 
	0.1550 
	0.1900 

	holes (62).txt
	0.3325 
	0.2825 
	0.1650 
	0.1550 

	holes (63).txt
	0.3425 
	0.4475 
	0.0850 
	0.1150 

	holes (63).txt
	0.5175 
	0.2675 
	0.1850 
	0.2250 

	holes (64).txt
	0.5275 
	0.2550 
	0.1550 
	0.1300 

	holes (65).txt
	0.5650 
	0.6475 
	0.1600 
	0.1950 

	holes (66).txt
	0.4475 
	0.5150 
	0.1950 
	0.1500 

	holes (67).txt
	0.3650 
	0.3750 
	0.1700 
	0.1800 

	holes (68).txt
	0.8100 
	0.5850 
	0.2100 
	0.2200 

	holes (68).txt
	0.4525 
	0.9025 
	0.1650 
	0.1750 

	holes (70).txt
	0.2425 
	0.5025 
	0.1850 
	0.1650 

	holes (70).txt
	0.6700 
	0.5750 
	0.1500 
	0.1600 

	holes (70).txt
	0.7000 
	0.7450 
	0.1600 
	0.1100 

	holes (70).txt
	0.3400 
	0.8250 
	0.0900 
	0.0900 

	holes (71).txt
	0.2925 
	0.6850 
	0.1650 
	0.1200 

	holes (71).txt
	0.7175 
	0.6500 
	0.1250 
	0.1300 

	holes (71).txt
	0.8400 
	0.9450 
	0.1100 
	0.1100 

	holes (71).txt
	0.5925 
	0.6550 
	0.0950 
	0.0600 

	holes (72).txt
	0.3525 
	0.3225 
	0.2150 
	0.1350 

	holes (72).txt
	0.5375 
	0.2125 
	0.1250 
	0.1350 

	holes (73).txt
	0.2825 
	0.5400 
	0.1450 
	0.1100 

	holes (73).txt
	0.5525 
	0.5950 
	0.1050 
	0.1000 

	holes (73).txt
	0.6025 
	0.7000 
	0.1750 
	0.1100 

	holes (73).txt
	0.3450 
	0.7500 
	0.0900 
	0.1000 

	holes (74).txt
	0.1850 
	0.4625 
	0.1200 
	0.1050 

	holes (74).txt
	0.5025 
	0.4650 
	0.1550 
	0.0900 

	holes (74).txt
	0.7525 
	0.5075 
	0.1150 
	0.0950 

	holes (74).txt
	0.8100 
	0.6150 
	0.1100 
	0.1000 

	holes (74).txt
	0.5875 
	0.6650 
	0.1250 
	0.1000 

	holes (75).txt
	0.4800 
	0.8750 
	0.1100 
	0.0800 

	holes (75).txt
	0.3875 
	0.8350 
	0.1150 
	0.0700 

	holes (75).txt
	0.2350 
	0.8925 
	0.1200 
	0.1250 

	holes (77).txt
	0.3025 
	0.3350 
	0.1450 
	0.0900 

	holes (77).txt
	0.2125 
	0.3075 
	0.1050 
	0.0950 

	holes (77).txt
	0.6575 
	0.4150 
	0.1550 
	0.1200 

	holes (77).txt
	0.6925 
	0.5675 
	0.1450 
	0.1250 

	holes (77).txt
	0.3825 
	0.6750 
	0.1550 
	0.1700 

	holes (78).txt
	0.3950 
	0.3150 
	0.1500 
	0.1100 

	holes (78).txt
	0.5700 
	0.3025 
	0.1700 
	0.1550 

	holes (79).txt
	0.3550 
	0.2525 
	0.1100 
	0.1450 

	holes (79).txt
	0.0750 
	0.2025 
	0.0500 
	0.1050 

	holes (8).txt
	0.0725 
	0.6575 
	0.0950 
	0.1250 

	holes (8).txt
	0.2225 
	0.6125 
	0.1450 
	0.1550 

	holes (8).txt
	0.3375 
	0.6350 
	0.1250 
	0.1200 

	holes (8).txt
	0.0300 
	0.8200 
	0.0500 
	0.0700 

	holes (8).txt
	0.4975 
	0.8200 
	0.1550 
	0.1300 

	holes (80).txt
	0.4150 
	0.3125 
	0.1600 
	0.1250 

	holes (82).txt
	0.4425 
	0.3775 
	0.1950 
	0.1850 

	holes (83).txt
	0.3200 
	0.3625 
	0.2400 
	0.1250 

	holes (84).txt
	0.2675 
	0.2425 
	0.1650 
	0.1650 

	holes (85).txt
	0.4300 
	0.5200 
	0.2200 
	0.2400 

	holes (86).txt
	0.4825 
	0.6550 
	0.2050 
	0.2200 

	holes (86).txt
	0.6925 
	0.3525 
	0.1750 
	0.1750 

	holes (86).txt
	0.0775 
	0.1625 
	0.1450 
	0.1050 

	holes (87).txt
	0.1550 
	0.3550 
	0.1100 
	0.1800 

	holes (87).txt
	0.5125 
	0.8075 
	0.1850 
	0.1950 

	holes (88).txt
	0.2450 
	0.2725 
	0.2300 
	0.1850 

	holes (88).txt
	0.6275 
	0.1375 
	0.2250 
	0.1750 

	holes (88).txt
	0.7125 
	0.6275 
	0.2150 
	0.2150 

	holes (89).txt
	0.5250 
	0.7475 
	0.2000 
	0.2250 

	holes (9).txt
	0.6025 
	0.8200 
	0.1650 
	0.1400 

	holes (9).txt
	0.1525 
	0.8175 
	0.1150 
	0.1350 

	holes (9).txt
	0.2550 
	0.6900 
	0.0900 
	0.1400 

	holes (9).txt
	0.4325 
	0.7075 
	0.0950 
	0.1450 

	holes (9).txt
	0.1725 
	0.9625 
	0.1050 
	0.0750 

	holes (90).txt
	0.5350 
	0.4725 
	0.2900 
	0.1950 

	holes (91).txt
	0.4550 
	0.3650 
	0.2200 
	0.2200 

	holes (91).txt
	0.8975 
	0.6475 
	0.2050 
	0.2150 

	holes (91).txt
	0.9625 
	0.4225 
	0.0750 
	0.1450 

	holes (91).txt
	0.6375 
	0.6550 
	0.2950 
	0.1600 

	holes (92).txt
	0.2250 
	0.2225 
	0.1400 
	0.2350 

	holes (92).txt
	0.6000 
	0.6775 
	0.2400 
	0.1750 

	holes (92).txt
	0.6750 
	0.3150 
	0.1300 
	0.0700 

	holes (92).txt
	0.4300 
	0.3300 
	0.0800 
	0.1100 

	holes (92).txt
	0.4625 
	0.2100 
	0.0850 
	0.0600 

	holes (93).txt
	0.5100 
	0.4400 
	0.2200 
	0.2200 

	holes (94).txt
	0.8175 
	0.6175 
	0.2450 
	0.2150 

	holes (95).txt
	0.2475 
	0.3850 
	0.2150 
	0.1800 

	holes (96).txt
	0.4825 
	0.2825 
	0.1850 
	0.2050 

	holes (96).txt
	0.8900 
	0.4975 
	0.1400 
	0.1650 

	holes (96).txt
	0.9675 
	0.3250 
	0.0650 
	0.1600 

	holes (96).txt
	0.6225 
	0.4825 
	0.1050 
	0.1150 

	holes (97).txt
	0.5500 
	0.5125 
	0.1300 
	0.1450 

	holes (98).txt
	0.5025 
	0.5150 
	0.2850 
	0.1900 

	holes (99).txt
	0.1175 
	0.1650 
	0.1750 
	0.0700 

	holes (99).txt
	0.5225 
	0.4675 
	0.1950 
	0.1350 

	holes (99).txt
	0.3800 
	0.0350 
	0.1300 
	0.0600 

	holes (99).txt
	0.4850 
	0.0350 
	0.0500 
	0.0600 

	holes (99).txt
	0.8750 
	0.5075 
	0.0900 
	0.0950 

	holes (99).txt
	0.7875 
	0.6550 
	0.2150 
	0.0700 

	incomplete(10).txt
	0.6425 
	0.5700 
	0.3050 
	0.1900 

	incomplete(100).txt
	0.5025 
	0.4825 
	0.3950 
	0.2550 

	incomplete(101).txt
	0.4900 
	0.4800 
	0.2900 
	0.3000 

	incomplete(103).txt
	0.5375 
	0.5075 
	0.2150 
	0.2950 

	incomplete(104).txt
	0.5425 
	0.5075 
	0.1850 
	0.3150 

	incomplete(105).txt
	0.5225 
	0.4875 
	0.1250 
	0.3050 

	incomplete(106).txt
	0.5200 
	0.5025 
	0.1800 
	0.3150 

	incomplete(107).txt
	0.5150 
	0.4975 
	0.2100 
	0.2650 

	incomplete(108).txt
	0.5100 
	0.5075 
	0.2200 
	0.2850 

	incomplete(11).txt
	0.6375 
	0.6000 
	0.3050 
	0.1500 

	incomplete(110).txt
	0.5300 
	0.5150 
	0.2600 
	0.2100 

	incomplete(111).txt
	0.5425 
	0.5275 
	0.3450 
	0.2450 

	incomplete(114).txt
	0.5075 
	0.4975 
	0.2350 
	0.2550 

	incomplete(115).txt
	0.5325 
	0.5225 
	0.2650 
	0.3350 

	incomplete(116).txt
	0.4550 
	0.5025 
	0.2200 
	0.4250 

	incomplete(117).txt
	0.4625 
	0.4800 
	0.1850 
	0.4700 

	incomplete(118).txt
	0.4650 
	0.5075 
	0.1900 
	0.5250 

	incomplete(12).txt
	0.5800 
	0.6075 
	0.3200 
	0.1550 

	incomplete(123).txt
	0.5050 
	0.4475 
	0.6100 
	0.2950 

	incomplete(124).txt
	0.5675 
	0.4600 
	0.5750 
	0.3300 

	incomplete(125).txt
	0.5650 
	0.4450 
	0.5700 
	0.3700 

	incomplete(126).txt
	0.6125 
	0.4750 
	0.4450 
	0.4900 

	incomplete(127).txt
	0.5900 
	0.4900 
	0.3000 
	0.5000 

	incomplete(128).txt
	0.6075 
	0.4950 
	0.2150 
	0.6000 

	incomplete(129).txt
	0.5650 
	0.5475 
	0.2000 
	0.5250 

	incomplete(13).txt
	0.5725 
	0.6300 
	0.2550 
	0.1700 

	incomplete(130).txt
	0.5700 
	0.5375 
	0.2200 
	0.5550 

	incomplete(132).txt
	0.6000 
	0.5425 
	0.4200 
	0.2350 

	incomplete(133).txt
	0.5150 
	0.5675 
	0.5200 
	0.2050 

	incomplete(134).txt
	0.5300 
	0.5525 
	0.6700 
	0.1750 

	incomplete(135).txt
	0.4625 
	0.5400 
	0.5550 
	0.2800 

	incomplete(136).txt
	0.4950 
	0.5425 
	0.3700 
	0.4950 

	incomplete(137).txt
	0.6325 
	0.3425 
	0.1650 
	0.2950 

	incomplete(137).txt
	0.6875 
	0.6575 
	0.1550 
	0.1750 

	incomplete(138).txt
	0.6350 
	0.3825 
	0.0900 
	0.2650 

	incomplete(138).txt
	0.6400 
	0.6875 
	0.1200 
	0.1550 

	incomplete(139).txt
	0.6675 
	0.4350 
	0.1150 
	0.2400 

	incomplete(139).txt
	0.6025 
	0.7025 
	0.1450 
	0.1350 

	incomplete(14).txt
	0.5575 
	0.6500 
	0.2450 
	0.2400 

	incomplete(140).txt
	0.6925 
	0.4625 
	0.1750 
	0.2150 

	incomplete(140).txt
	0.5475 
	0.7075 
	0.1850 
	0.1450 

	incomplete(141).txt
	0.6975 
	0.5200 
	0.2250 
	0.1700 

	incomplete(141).txt
	0.4725 
	0.7175 
	0.1350 
	0.1250 

	incomplete(142).txt
	0.6950 
	0.5625 
	0.2000 
	0.1350 

	incomplete(142).txt
	0.4050 
	0.6900 
	0.1400 
	0.0800 

	incomplete(143).txt
	0.6700 
	0.6125 
	0.2800 
	0.1250 

	incomplete(143).txt
	0.3450 
	0.6450 
	0.1300 
	0.1000 

	incomplete(144).txt
	0.5875 
	0.6675 
	0.2450 
	0.1650 

	incomplete(144).txt
	0.2925 
	0.5900 
	0.1950 
	0.1200 

	incomplete(145).txt
	0.2725 
	0.4925 
	0.1250 
	0.1350 

	incomplete(145).txt
	0.4975 
	0.6925 
	0.1650 
	0.2050 

	incomplete(146).txt
	0.6450 
	0.4900 
	0.1900 
	0.2100 

	incomplete(147).txt
	0.6400 
	0.4975 
	0.1400 
	0.1950 

	incomplete(149).txt
	0.5625 
	0.3575 
	0.1950 
	0.1350 

	incomplete(151).txt
	0.5200 
	0.3500 
	0.1400 
	0.2000 

	incomplete(154).txt
	0.3925 
	0.5800 
	0.3250 
	0.1900 

	incomplete(156).txt
	0.4050 
	0.5800 
	0.2300 
	0.1700 

	incomplete(158).txt
	0.3650 
	0.5500 
	0.2200 
	0.2300 

	incomplete(16).txt
	0.4700 
	0.6300 
	0.2100 
	0.2700 

	incomplete(160).txt
	0.3900 
	0.4125 
	0.1000 
	0.2050 

	incomplete(161).txt
	0.7975 
	0.3625 
	0.4050 
	0.2750 

	incomplete(163).txt
	0.6825 
	0.1700 
	0.3350 
	0.3100 

	incomplete(164).txt
	0.3950 
	0.2150 
	0.2600 
	0.3600 

	incomplete(166).txt
	0.7900 
	0.4125 
	0.4200 
	0.3150 

	incomplete(167).txt
	0.7550 
	0.4875 
	0.4500 
	0.4150 

	incomplete(168).txt
	0.7700 
	0.7425 
	0.2200 
	0.4050 

	incomplete(169).txt
	0.5975 
	0.6800 
	0.2350 
	0.4200 

	incomplete(170).txt
	0.5675 
	0.5025 
	0.5650 
	0.8950 

	incomplete(171).txt
	0.5250 
	0.3350 
	0.8300 
	0.6300 

	incomplete(172).txt
	0.4600 
	0.3275 
	0.8400 
	0.4950 

	incomplete(173).txt
	0.4325 
	0.3500 
	0.8150 
	0.4400 

	incomplete(175).txt
	0.4050 
	0.5825 
	0.6500 
	0.8350 

	incomplete(177).txt
	0.5175 
	0.6675 
	0.7950 
	0.5750 

	incomplete(178).txt
	0.5025 
	0.6675 
	0.8150 
	0.5650 

	incomplete(180).txt
	0.5350 
	0.7775 
	0.5600 
	0.4450 

	incomplete(180).txt
	0.6050 
	0.1100 
	0.5900 
	0.2000 

	incomplete(181).txt
	0.1600 
	0.3125 
	0.2700 
	0.5750 

	incomplete(181).txt
	0.7975 
	0.5800 
	0.4050 
	0.3000 

	incomplete(182).txt
	0.5600 
	0.7150 
	0.3200 
	0.2400 

	incomplete(183).txt
	0.7050 
	0.7875 
	0.2100 
	0.2950 

	incomplete(184).txt
	0.8450 
	0.5825 
	0.2200 
	0.3850 

	incomplete(185).txt
	0.8200 
	0.4150 
	0.2500 
	0.3200 

	incomplete(186).txt
	0.7225 
	0.2425 
	0.3550 
	0.2150 

	incomplete(187).txt
	0.5875 
	0.1900 
	0.3650 
	0.1800 

	incomplete(188).txt
	0.5525 
	0.1650 
	0.3450 
	0.1700 

	incomplete(189).txt
	0.2875 
	0.2550 
	0.2150 
	0.2200 

	incomplete(19).txt
	0.3750 
	0.5625 
	0.1400 
	0.3550 

	incomplete(190).txt
	0.1750 
	0.4050 
	0.1800 
	0.2900 

	incomplete(191).txt
	0.1850 
	0.6275 
	0.2600 
	0.3050 

	incomplete(192).txt
	0.3125 
	0.7675 
	0.3150 
	0.2050 

	incomplete(193).txt
	0.5875 
	0.8050 
	0.2550 
	0.2800 

	incomplete(194).txt
	0.8350 
	0.6950 
	0.2300 
	0.4200 

	incomplete(196).txt
	0.6475 
	0.4600 
	0.4050 
	0.8200 

	incomplete(197).txt
	0.4600 
	0.8225 
	0.2600 
	0.1450 

	incomplete(198).txt
	0.8000 
	0.8675 
	0.1900 
	0.1950 

	incomplete(199).txt
	0.4750 
	0.6875 
	0.5600 
	0.2250 

	incomplete(2).txt
	0.5125 
	0.3650 
	0.2750 
	0.2600 

	incomplete(20).txt
	0.3900 
	0.4900 
	0.2300 
	0.2200 

	incomplete(201).txt
	0.9025 
	0.5275 
	0.1950 
	0.1250 

	incomplete(201).txt
	0.7350 
	0.7125 
	0.1200 
	0.1150 

	incomplete(201).txt
	0.5450 
	0.8800 
	0.1400 
	0.1500 

	incomplete(202).txt
	0.8800 
	0.3400 
	0.1300 
	0.1500 

	incomplete(202).txt
	0.7875 
	0.6075 
	0.0950 
	0.1950 

	incomplete(202).txt
	0.6975 
	0.8350 
	0.0950 
	0.2500 

	incomplete(203).txt
	0.8025 
	0.4775 
	0.0750 
	0.7550 

	incomplete(204).txt
	0.7025 
	0.1275 
	0.1250 
	0.1750 

	incomplete(204).txt
	0.7975 
	0.3900 
	0.1050 
	0.1900 

	incomplete(204).txt
	0.8525 
	0.6200 
	0.1150 
	0.2300 

	incomplete(205).txt
	0.3475 
	0.1075 
	0.1550 
	0.1350 

	incomplete(205).txt
	0.7250 
	0.2550 
	0.4000 
	0.2400 

	incomplete(206).txt
	0.0975 
	0.4075 
	0.1550 
	0.1050 

	incomplete(206).txt
	0.3050 
	0.2500 
	0.1500 
	0.0900 

	incomplete(206).txt
	0.5100 
	0.1400 
	0.2300 
	0.1200 

	incomplete(207).txt
	0.7925 
	0.2300 
	0.2850 
	0.1500 

	incomplete(207).txt
	0.4900 
	0.3750 
	0.2000 
	0.1100 

	incomplete(207).txt
	0.1425 
	0.6125 
	0.2050 
	0.1650 

	incomplete(209).txt
	0.3800 
	0.4900 
	0.1300 
	0.2600 

	incomplete(209).txt
	0.4675 
	0.8625 
	0.1850 
	0.2550 

	incomplete(21).txt
	0.3675 
	0.4625 
	0.2750 
	0.2450 

	incomplete(210).txt
	0.2825 
	0.5375 
	0.4950 
	0.2650 

	incomplete(210).txt
	0.8375 
	0.7300 
	0.2750 
	0.2300 

	incomplete(211).txt
	0.5150 
	0.3275 
	0.9400 
	0.5050 

	incomplete(212).txt
	0.3350 
	0.4525 
	0.4900 
	0.8750 

	incomplete(213).txt
	0.3525 
	0.5050 
	0.6050 
	0.9600 

	incomplete(214).txt
	0.4125 
	0.6175 
	0.7850 
	0.7350 

	incomplete(215).txt
	0.5450 
	0.6750 
	0.9100 
	0.4600 

	incomplete(216).txt
	0.6300 
	0.6150 
	0.6000 
	0.6800 

	incomplete(217).txt
	0.4050 
	0.5025 
	0.8000 
	0.9950 

	incomplete(218).txt
	0.4400 
	0.5200 
	0.8500 
	0.9600 

	incomplete(219).txt
	0.5750 
	0.4475 
	0.7700 
	0.3350 

	incomplete(22).txt
	0.3600 
	0.4425 
	0.3000 
	0.2050 

	incomplete(220).txt
	0.4875 
	0.4125 
	0.4750 
	0.6950 

	incomplete(222).txt
	0.3825 
	0.5125 
	0.7350 
	0.5050 

	incomplete(223).txt
	0.4125 
	0.5550 
	0.7250 
	0.3700 

	incomplete(224).txt
	0.5050 
	0.6075 
	0.4700 
	0.6850 

	incomplete(226).txt
	0.5650 
	0.5800 
	0.4700 
	0.7300 

	incomplete(227).txt
	0.5525 
	0.5850 
	0.3450 
	0.7800 

	incomplete(23).txt
	0.3775 
	0.4025 
	0.3250 
	0.2050 

	incomplete(231).txt
	0.4975 
	0.5400 
	0.8550 
	0.8800 

	incomplete(234).txt
	0.5675 
	0.1600 
	0.3750 
	0.3100 

	incomplete(234).txt
	0.4375 
	0.6450 
	0.3050 
	0.6300 

	incomplete(235).txt
	0.3150 
	0.1900 
	0.5200 
	0.3600 

	incomplete(235).txt
	0.5425 
	0.6825 
	0.3650 
	0.6350 

	incomplete(236).txt
	0.3450 
	0.2000 
	0.3700 
	0.3400 

	incomplete(236).txt
	0.6550 
	0.6375 
	0.4600 
	0.7250 

	incomplete(237).txt
	0.4400 
	0.4350 
	0.8700 
	0.5500 

	incomplete(238).txt
	0.3800 
	0.5550 
	0.6000 
	0.8600 

	incomplete(239).txt
	0.4200 
	0.5550 
	0.5800 
	0.8900 

	incomplete(240).txt
	0.4850 
	0.4650 
	0.4900 
	0.7600 

	incomplete(241).txt
	0.4350 
	0.4975 
	0.6700 
	0.6750 

	incomplete(242).txt
	0.3875 
	0.5125 
	0.7350 
	0.5650 

	incomplete(243).txt
	0.4200 
	0.5300 
	0.7000 
	0.5100 

	incomplete(244).txt
	0.4525 
	0.5100 
	0.6550 
	0.6500 

	incomplete(245).txt
	0.4800 
	0.5325 
	0.6200 
	0.6750 

	incomplete(247).txt
	0.3775 
	0.4175 
	0.2650 
	0.1750 

	incomplete(248).txt
	0.3075 
	0.4875 
	0.1650 
	0.2150 

	incomplete(249).txt
	0.3375 
	0.5450 
	0.1450 
	0.2100 

	incomplete(25).txt
	0.5600 
	0.4825 
	0.3800 
	0.1950 

	incomplete(250).txt
	0.3650 
	0.5800 
	0.1900 
	0.2000 

	incomplete(252).txt
	0.4075 
	0.6425 
	0.2150 
	0.1850 

	incomplete(254).txt
	0.4800 
	0.6200 
	0.2700 
	0.1500 

	incomplete(255).txt
	0.5300 
	0.6350 
	0.2500 
	0.1400 

	incomplete(256).txt
	0.5475 
	0.6300 
	0.2150 
	0.1500 

	incomplete(257).txt
	0.5875 
	0.6025 
	0.2450 
	0.2450 

	incomplete(258).txt
	0.6325 
	0.5900 
	0.2050 
	0.2700 

	incomplete(259).txt
	0.6200 
	0.5275 
	0.1600 
	0.2950 

	incomplete(26).txt
	0.5800 
	0.5025 
	0.3600 
	0.1450 

	incomplete(260).txt
	0.6425 
	0.4900 
	0.1750 
	0.2600 

	incomplete(261).txt
	0.6625 
	0.4725 
	0.2550 
	0.2750 

	incomplete(262).txt
	0.5000 
	0.3200 
	0.2000 
	0.2000 

	incomplete(263).txt
	0.5750 
	0.5350 
	0.5100 
	0.5500 

	incomplete(264).txt
	0.5675 
	0.5100 
	0.5350 
	0.4400 

	incomplete(265).txt
	0.5675 
	0.4950 
	0.4650 
	0.3900 

	incomplete(266).txt
	0.2775 
	0.5025 
	0.2150 
	0.2450 

	incomplete(267).txt
	0.5275 
	0.6550 
	0.6850 
	0.6400 

	incomplete(268).txt
	0.4250 
	0.6350 
	0.6500 
	0.6500 

	incomplete(27).txt
	0.5475 
	0.4950 
	0.3050 
	0.1800 

	incomplete(270).txt
	0.3900 
	0.4325 
	0.6100 
	0.7250 

	incomplete(271).txt
	0.4975 
	0.3750 
	0.5250 
	0.7400 

	incomplete(272).txt
	0.5250 
	0.3700 
	0.5700 
	0.6500 

	incomplete(273).txt
	0.5525 
	0.3575 
	0.6750 
	0.5550 

	incomplete(274).txt
	0.6400 
	0.4550 
	0.7100 
	0.4800 

	incomplete(275).txt
	0.6225 
	0.5250 
	0.7050 
	0.5200 

	incomplete(276).txt
	0.3425 
	0.6975 
	0.3050 
	0.3650 

	incomplete(277).txt
	0.2450 
	0.5200 
	0.2400 
	0.3500 

	incomplete(278).txt
	0.3025 
	0.3750 
	0.2450 
	0.2700 

	incomplete(279).txt
	0.3175 
	0.3325 
	0.4150 
	0.5450 

	incomplete(279).txt
	0.5325 
	0.8375 
	0.2150 
	0.2250 

	incomplete(28).txt
	0.5625 
	0.5050 
	0.3050 
	0.2200 

	incomplete(281).txt
	0.4700 
	0.4800 
	0.3100 
	0.3100 

	incomplete(282).txt
	0.5275 
	0.4775 
	0.1650 
	0.3350 

	incomplete(283).txt
	0.4400 
	0.3400 
	0.3400 
	0.2300 

	incomplete(284).txt
	0.5900 
	0.4075 
	0.5900 
	0.4050 

	incomplete(285).txt
	0.5275 
	0.4450 
	0.8150 
	0.2700 

	incomplete(286).txt
	0.5075 
	0.4850 
	0.6050 
	0.4900 

	incomplete(287).txt
	0.7475 
	0.4450 
	0.3750 
	0.2500 

	incomplete(288).txt
	0.7275 
	0.4100 
	0.4550 
	0.3100 

	incomplete(289).txt
	0.7150 
	0.4900 
	0.4300 
	0.3300 

	incomplete(290).txt
	0.5025 
	0.4375 
	0.9950 
	0.2550 

	incomplete(291).txt
	0.9100 
	0.2225 
	0.1800 
	0.2450 

	incomplete(291).txt
	0.7425 
	0.3125 
	0.1650 
	0.2350 

	incomplete(291).txt
	0.5825 
	0.4025 
	0.1550 
	0.2350 

	incomplete(291).txt
	0.4300 
	0.4700 
	0.1500 
	0.2200 

	incomplete(291).txt
	0.2900 
	0.5325 
	0.1200 
	0.2250 

	incomplete(291).txt
	0.1275 
	0.6250 
	0.2350 
	0.2100 

	incomplete(292).txt
	0.4300 
	0.5050 
	0.2200 
	0.9900 

	incomplete(293).txt
	0.2000 
	0.2475 
	0.3900 
	0.4850 

	incomplete(293).txt
	0.5650 
	0.5600 
	0.4000 
	0.4500 

	incomplete(293).txt
	0.8375 
	0.8325 
	0.2450 
	0.3350 

	incomplete(294).txt
	0.5025 
	0.5275 
	0.9950 
	0.3450 

	incomplete(295).txt
	0.4225 
	0.3375 
	0.4650 
	0.5350 

	incomplete(295).txt
	0.8350 
	0.6375 
	0.2200 
	0.3350 

	incomplete(297).txt
	0.7925 
	0.6075 
	0.3250 
	0.4050 

	incomplete(299).txt
	0.6725 
	0.6725 
	0.2450 
	0.2950 

	incomplete(3).txt
	0.5400 
	0.3600 
	0.2500 
	0.3000 

	incomplete(30).txt
	0.5400 
	0.5175 
	0.1900 
	0.1950 

	incomplete(31).txt
	0.5325 
	0.5275 
	0.2050 
	0.2450 

	incomplete(33).txt
	0.5200 
	0.5425 
	0.0900 
	0.2550 

	incomplete(35).txt
	0.4925 
	0.5450 
	0.2350 
	0.2000 

	incomplete(37).txt
	0.4700 
	0.5250 
	0.3000 
	0.1600 

	incomplete(38).txt
	0.4625 
	0.5150 
	0.2650 
	0.1500 

	incomplete(39).txt
	0.4575 
	0.4800 
	0.2350 
	0.1900 

	incomplete(40).txt
	0.4525 
	0.4550 
	0.1750 
	0.2000 

	incomplete(41).txt
	0.4825 
	0.4775 
	0.2250 
	0.2450 

	incomplete(42).txt
	0.4825 
	0.4325 
	0.1550 
	0.2850 

	incomplete(43).txt
	0.5200 
	0.4350 
	0.1400 
	0.2500 

	incomplete(44).txt
	0.5200 
	0.4350 
	0.1500 
	0.2400 

	incomplete(45).txt
	0.5375 
	0.4500 
	0.2150 
	0.1600 

	incomplete(46).txt
	0.5450 
	0.4550 
	0.2400 
	0.1400 

	incomplete(47).txt
	0.5500 
	0.4875 
	0.3100 
	0.2150 

	incomplete(48).txt
	0.5600 
	0.5125 
	0.2600 
	0.2250 

	incomplete(49).txt
	0.5025 
	0.4775 
	0.1850 
	0.2250 

	incomplete(51).txt
	0.6600 
	0.6500 
	0.3200 
	0.5200 

	incomplete(54).txt
	0.4425 
	0.6700 
	0.4650 
	0.3300 

	incomplete(55).txt
	0.4000 
	0.6200 
	0.5600 
	0.2600 

	incomplete(58).txt
	0.3300 
	0.5825 
	0.4700 
	0.2250 

	incomplete(6).txt
	0.6250 
	0.4100 
	0.2100 
	0.3800 

	incomplete(62).txt
	0.3600 
	0.3775 
	0.2900 
	0.4650 

	incomplete(64).txt
	0.4850 
	0.2800 
	0.2100 
	0.4500 

	incomplete(66).txt
	0.6200 
	0.3200 
	0.4900 
	0.2200 

	incomplete(67).txt
	0.7125 
	0.4300 
	0.5450 
	0.2600 

	incomplete(68).txt
	0.7300 
	0.5150 
	0.4600 
	0.3500 

	incomplete(7).txt
	0.6725 
	0.4650 
	0.1650 
	0.3100 

	incomplete(71).txt
	0.5200 
	0.4825 
	0.9500 
	0.7650 

	incomplete(72).txt
	0.5275 
	0.4950 
	0.9450 
	0.8900 

	incomplete(73).txt
	0.5700 
	0.4800 
	0.8600 
	0.8400 

	incomplete(74).txt
	0.5850 
	0.5300 
	0.8200 
	0.9100 

	incomplete(75).txt
	0.6025 
	0.5150 
	0.7450 
	0.9500 

	incomplete(76).txt
	0.6050 
	0.5025 
	0.7900 
	0.9450 

	incomplete(77).txt
	0.6125 
	0.5025 
	0.7550 
	0.9950 

	incomplete(79).txt
	0.5550 
	0.5050 
	0.6900 
	0.9100 

	incomplete(8).txt
	0.6750 
	0.5175 
	0.2300 
	0.2050 

	incomplete(80).txt
	0.4975 
	0.5575 
	0.9250 
	0.7750 

	incomplete(81).txt
	0.5000 
	0.5525 
	0.9800 
	0.8250 

	incomplete(83).txt
	0.4925 
	0.5000 
	0.9450 
	0.9400 

	incomplete(85).txt
	0.4225 
	0.5125 
	0.8350 
	0.9650 

	incomplete(86).txt
	0.4375 
	0.5025 
	0.8150 
	0.9750 

	incomplete(88).txt
	0.4975 
	0.4825 
	0.7950 
	0.9450 

	incomplete(89).txt
	0.4800 
	0.4700 
	0.8200 
	0.9300 

	incomplete(9).txt
	0.6275 
	0.5575 
	0.3150 
	0.1750 

	incomplete(90).txt
	0.4975 
	0.4225 
	0.9850 
	0.8050 

	incomplete(92).txt
	0.5050 
	0.4500 
	0.9900 
	0.7500 

	incomplete(93).txt
	0.4900 
	0.4925 
	0.2400 
	0.3350 

	incomplete(94).txt
	0.5125 
	0.4775 
	0.1550 
	0.2950 

	incomplete(95).txt
	0.4775 
	0.4850 
	0.2450 
	0.3100 

	incomplete(96).txt
	0.4750 
	0.4825 
	0.2300 
	0.2550 

	incomplete(97).txt
	0.5125 
	0.5275 
	0.3150 
	0.2050 

	incomplete(98).txt
	0.5075 
	0.5050 
	0.3150 
	0.2200 

	incomplete(99).txt
	0.5125 
	0.4700 
	0.3050 
	0.2200 

	mineralization (1).txt
	0.5500 
	0.5075 
	0.9000 
	0.8150 

	mineralization (1).txt
	0.5850 
	0.4450 
	0.8100 
	0.7800 

	mineralization (100).txt
	0.5025 
	0.4975 
	0.9850 
	0.9850 

	mineralization (103).txt
	0.4950 
	0.4700 
	0.9600 
	0.9200 

	mineralization (104).txt
	0.5175 
	0.4950 
	0.9650 
	0.9800 

	mineralization (105).txt
	0.5050 
	0.5050 
	0.9800 
	0.9900 

	mineralization (106).txt
	0.4975 
	0.4825 
	0.9850 
	0.9550 

	mineralization (108).txt
	0.7575 
	0.3625 
	0.4850 
	0.7150 

	mineralization (109).txt
	0.5075 
	0.5050 
	0.9850 
	0.9900 

	mineralization (110).txt
	0.5075 
	0.5050 
	0.9850 
	0.9900 

	mineralization (111).txt
	0.5050 
	0.5100 
	0.9900 
	0.9800 

	mineralization (112).txt
	0.5025 
	0.5025 
	0.9950 
	0.9950 

	mineralization (113).txt
	0.5025 
	0.4825 
	0.9950 
	0.9550 

	mineralization (115).txt
	0.4925 
	0.4875 
	0.9550 
	0.9350 

	mineralization (116).txt
	0.5025 
	0.5050 
	0.9750 
	0.9900 

	mineralization (117).txt
	0.5050 
	0.5000 
	0.9900 
	0.9900 

	mineralization (118).txt
	0.4925 
	0.5000 
	0.9650 
	0.9800 

	mineralization (121).txt
	0.4975 
	0.5050 
	0.9750 
	0.9900 

	mineralization (122).txt
	0.4900 
	0.5050 
	0.9600 
	0.9900 

	mineralization (123).txt
	0.5025 
	0.5050 
	0.9750 
	0.9900 

	mineralization (126).txt
	0.5050 
	0.4975 
	0.9900 
	0.9850 

	mineralization (127).txt
	0.5050 
	0.5050 
	0.9900 
	0.9800 

	mineralization (128).txt
	0.5050 
	0.5075 
	0.9900 
	0.9850 

	mineralization (129).txt
	0.5025 
	0.5050 
	0.9750 
	0.9900 

	mineralization (13).txt
	0.5150 
	0.4950 
	0.8800 
	0.9600 

	mineralization (130).txt
	0.5125 
	0.5075 
	0.9750 
	0.9850 

	mineralization (131).txt
	0.5050 
	0.5050 
	0.9900 
	0.9800 

	mineralization (132).txt
	0.5050 
	0.4975 
	0.9800 
	0.9750 

	mineralization (133).txt
	0.5050 
	0.5025 
	0.9900 
	0.9950 

	mineralization (134).txt
	0.4875 
	0.5025 
	0.9550 
	0.9950 

	mineralization (135).txt
	0.5025 
	0.5075 
	0.9950 
	0.9850 

	mineralization (136).txt
	0.5025 
	0.5025 
	0.9950 
	0.9950 

	mineralization (137).txt
	0.4925 
	0.5050 
	0.9550 
	0.9900 

	mineralization (138).txt
	0.5125 
	0.4950 
	0.9750 
	0.9800 

	mineralization (139).txt
	0.5050 
	0.5000 
	0.9900 
	0.9800 

	mineralization (14).txt
	0.4750 
	0.5750 
	0.7900 
	0.8500 

	mineralization (140).txt
	0.5050 
	0.5050 
	0.9900 
	0.9900 

	mineralization (141).txt
	0.4800 
	0.5025 
	0.9500 
	0.9950 

	mineralization (142).txt
	0.5100 
	0.5025 
	0.9800 
	0.9950 

	mineralization (144).txt
	0.5075 
	0.5050 
	0.9750 
	0.9900 

	mineralization (145).txt
	0.5025 
	0.4850 
	0.9750 
	0.9500 

	mineralization (146).txt
	0.4925 
	0.5025 
	0.9550 
	0.9950 

	mineralization (147).txt
	0.5100 
	0.5100 
	0.9800 
	0.9800 

	mineralization (148).txt
	0.5000 
	0.5000 
	0.9700 
	0.9700 

	mineralization (15).txt
	0.4825 
	0.5125 
	0.9350 
	0.9150 

	mineralization (151).txt
	0.5050 
	0.5075 
	0.9700 
	0.9850 

	mineralization (152).txt
	0.5100 
	0.5025 
	0.9800 
	0.9950 

	mineralization (153).txt
	0.5075 
	0.5125 
	0.9850 
	0.9750 

	mineralization (154).txt
	0.4925 
	0.5050 
	0.9350 
	0.9900 

	mineralization (155).txt
	0.5050 
	0.5075 
	0.9900 
	0.9850 

	mineralization (156).txt
	0.5050 
	0.5100 
	0.9900 
	0.9800 

	mineralization (157).txt
	0.5100 
	0.5075 
	0.9800 
	0.9850 

	mineralization (158).txt
	0.4925 
	0.5075 
	0.9650 
	0.9850 

	mineralization (159).txt
	0.4900 
	0.4800 
	0.9400 
	0.9400 

	mineralization (16).txt
	0.4950 
	0.5225 
	0.8800 
	0.9050 

	mineralization (160).txt
	0.5000 
	0.5100 
	0.9400 
	0.9800 

	mineralization (161).txt
	0.5050 
	0.4925 
	0.9900 
	0.9550 

	mineralization (162).txt
	0.5075 
	0.5100 
	0.9850 
	0.9800 

	mineralization (163).txt
	0.5125 
	0.5025 
	0.9750 
	0.9950 

	mineralization (164).txt
	0.5075 
	0.5100 
	0.9850 
	0.9800 

	mineralization (165).txt
	0.5200 
	0.5100 
	0.9600 
	0.9800 

	mineralization (166).txt
	0.5125 
	0.4925 
	0.9450 
	0.9450 

	mineralization (168).txt
	0.5050 
	0.5025 
	0.9900 
	0.9950 

	mineralization (169).txt
	0.5175 
	0.5000 
	0.9350 
	0.9500 

	mineralization (17).txt
	0.4850 
	0.5375 
	0.8600 
	0.8850 

	mineralization (170).txt
	0.5000 
	0.5025 
	0.9600 
	0.9650 

	mineralization (171).txt
	0.4975 
	0.4950 
	0.8850 
	0.9400 

	mineralization (173).txt
	0.5075 
	0.4575 
	0.9650 
	0.9050 

	mineralization (175).txt
	0.5050 
	0.4875 
	0.9800 
	0.9550 

	mineralization (176).txt
	0.4950 
	0.4900 
	0.9600 
	0.9500 

	mineralization (178).txt
	0.4975 
	0.5025 
	0.9650 
	0.9750 

	mineralization (180).txt
	0.5025 
	0.4825 
	0.9650 
	0.9450 

	mineralization (181).txt
	0.4900 
	0.5075 
	0.9600 
	0.9850 

	mineralization (182).txt
	0.4900 
	0.4850 
	0.9300 
	0.9400 

	mineralization (183).txt
	0.4975 
	0.4875 
	0.9650 
	0.9650 

	mineralization (184).txt
	0.5125 
	0.4950 
	0.9750 
	0.9600 

	mineralization (186).txt
	0.4950 
	0.4975 
	0.9500 
	0.9750 

	mineralization (187).txt
	0.4975 
	0.5000 
	0.9450 
	0.9800 

	mineralization (188).txt
	0.5025 
	0.5025 
	0.9950 
	0.9950 

	mineralization (189).txt
	0.4975 
	0.5000 
	0.9650 
	0.9600 

	mineralization (19).txt
	0.5150 
	0.4925 
	0.9700 
	0.8850 

	mineralization (190).txt
	0.5100 
	0.4975 
	0.9800 
	0.9650 

	mineralization (191).txt
	0.5025 
	0.5050 
	0.9650 
	0.9900 

	mineralization (193).txt
	0.5125 
	0.5025 
	0.9750 
	0.9650 

	mineralization (194).txt
	0.5100 
	0.5050 
	0.9700 
	0.9900 

	mineralization (195).txt
	0.4900 
	0.5050 
	0.9600 
	0.9800 

	mineralization (196).txt
	0.4850 
	0.5025 
	0.9600 
	0.9950 

	mineralization (197).txt
	0.5100 
	0.5050 
	0.9800 
	0.9900 

	mineralization (198).txt
	0.5000 
	0.5025 
	0.9800 
	0.9950 

	mineralization (199).txt
	0.5050 
	0.5025 
	0.9900 
	0.9950 

	mineralization (2).txt
	0.6900 
	0.5425 
	0.5500 
	0.6850 

	mineralization (20).txt
	0.5025 
	0.5075 
	0.8950 
	0.9350 

	mineralization (201).txt
	0.5025 
	0.5025 
	0.9950 
	0.9750 

	mineralization (202).txt
	0.5000 
	0.5050 
	0.9400 
	0.9900 

	mineralization (203).txt
	0.5125 
	0.5050 
	0.9750 
	0.9800 

	mineralization (204).txt
	0.5125 
	0.4975 
	0.9750 
	0.9750 

	mineralization (205).txt
	0.5075 
	0.4950 
	0.9850 
	0.9800 

	mineralization (207).txt
	0.5000 
	0.5050 
	0.9300 
	0.9800 

	mineralization (208).txt
	0.4975 
	0.4975 
	0.9350 
	0.9850 

	mineralization (21).txt
	0.5025 
	0.5175 
	0.9150 
	0.9150 

	mineralization (211).txt
	0.5025 
	0.5075 
	0.9650 
	0.9850 

	mineralization (212).txt
	0.5225 
	0.5025 
	0.9550 
	0.9950 

	mineralization (213).txt
	0.5050 
	0.5075 
	0.9900 
	0.9850 

	mineralization (214).txt
	0.5150 
	0.5050 
	0.9700 
	0.9900 

	mineralization (215).txt
	0.5125 
	0.5025 
	0.9750 
	0.9950 

	mineralization (217).txt
	0.5050 
	0.5050 
	0.9900 
	0.9900 

	mineralization (218).txt
	0.5000 
	0.5025 
	0.9600 
	0.9950 

	mineralization (219).txt
	0.5025 
	0.5050 
	0.9850 
	0.9900 

	mineralization (22).txt
	0.5050 
	0.4900 
	0.9300 
	0.9100 

	mineralization (221).txt
	0.4975 
	0.5025 
	0.9450 
	0.9950 

	mineralization (222).txt
	0.5025 
	0.5025 
	0.9950 
	0.9950 

	mineralization (223).txt
	0.5100 
	0.4825 
	0.9800 
	0.9550 

	mineralization (224).txt
	0.5200 
	0.5100 
	0.9600 
	0.9800 

	mineralization (225).txt
	0.4600 
	0.5050 
	0.8300 
	0.9900 

	mineralization (226).txt
	0.4650 
	0.5125 
	0.8400 
	0.9750 

	mineralization (227).txt
	0.5025 
	0.5075 
	0.9950 
	0.9850 

	mineralization (228).txt
	0.5200 
	0.5100 
	0.9600 
	0.9800 

	mineralization (229).txt
	0.5200 
	0.5100 
	0.9600 
	0.9800 

	mineralization (230).txt
	0.5025 
	0.5075 
	0.9950 
	0.9850 

	mineralization (231).txt
	0.5075 
	0.5025 
	0.9850 
	0.9950 

	mineralization (232).txt
	0.4975 
	0.4950 
	0.9750 
	0.9600 

	mineralization (233).txt
	0.5050 
	0.5075 
	0.9300 
	0.9850 

	mineralization (234).txt
	0.4875 
	0.5050 
	0.9250 
	0.9900 

	mineralization (235).txt
	0.4950 
	0.5050 
	0.9700 
	0.9900 

	mineralization (237).txt
	0.5075 
	0.5075 
	0.9850 
	0.9850 

	mineralization (238).txt
	0.4950 
	0.5025 
	0.9500 
	0.9950 

	mineralization (239).txt
	0.5125 
	0.5075 
	0.9750 
	0.9850 

	mineralization (24).txt
	0.4975 
	0.5125 
	0.9150 
	0.9350 

	mineralization (241).txt
	0.5025 
	0.5050 
	0.9950 
	0.9900 

	mineralization (242).txt
	0.5050 
	0.5100 
	0.9900 
	0.9800 

	mineralization (243).txt
	0.5050 
	0.5100 
	0.9900 
	0.9800 

	mineralization (244).txt
	0.5125 
	0.5050 
	0.9750 
	0.9700 

	mineralization (245).txt
	0.5050 
	0.5025 
	0.9800 
	0.9950 

	mineralization (246).txt
	0.5025 
	0.5025 
	0.9750 
	0.9950 

	mineralization (249).txt
	0.5100 
	0.4475 
	0.9800 
	0.8650 

	mineralization (25).txt
	0.4625 
	0.4825 
	0.9050 
	0.9050 

	mineralization (251).txt
	0.4925 
	0.5075 
	0.9650 
	0.9850 

	mineralization (252).txt
	0.5050 
	0.4950 
	0.9400 
	0.9500 

	mineralization (253).txt
	0.5075 
	0.5025 
	0.9650 
	0.9550 

	mineralization (254).txt
	0.5025 
	0.5100 
	0.9950 
	0.9800 

	mineralization (255).txt
	0.5050 
	0.5125 
	0.9900 
	0.9750 

	mineralization (256).txt
	0.4850 
	0.5100 
	0.9400 
	0.9800 

	mineralization (257).txt
	0.5150 
	0.5100 
	0.9700 
	0.9800 

	mineralization (258).txt
	0.5100 
	0.5050 
	0.9800 
	0.9900 

	mineralization (259).txt
	0.5050 
	0.5025 
	0.9900 
	0.9950 

	mineralization (26).txt
	0.5100 
	0.4850 
	0.9300 
	0.9000 

	mineralization (261).txt
	0.5225 
	0.5100 
	0.9550 
	0.9800 

	mineralization (262).txt
	0.4950 
	0.5175 
	0.9300 
	0.9650 

	mineralization (264).txt
	0.5075 
	0.5050 
	0.9850 
	0.9900 

	mineralization (265).txt
	0.5025 
	0.5075 
	0.9950 
	0.9850 

	mineralization (267).txt
	0.5000 
	0.5100 
	0.9800 
	0.9800 

	mineralization (268).txt
	0.5050 
	0.5100 
	0.9600 
	0.9800 

	mineralization (269).txt
	0.5100 
	0.4975 
	0.9800 
	0.9550 

	mineralization (27).txt
	0.5200 
	0.4550 
	0.9400 
	0.8100 

	mineralization (270).txt
	0.5150 
	0.5025 
	0.9700 
	0.9550 

	mineralization (271).txt
	0.5125 
	0.5075 
	0.9750 
	0.9750 

	mineralization (272).txt
	0.5100 
	0.5050 
	0.9800 
	0.9900 

	mineralization (273).txt
	0.5025 
	0.5100 
	0.9950 
	0.9800 

	mineralization (274).txt
	0.5025 
	0.5050 
	0.9950 
	0.9900 

	mineralization (278).txt
	0.5050 
	0.5075 
	0.9900 
	0.9750 

	mineralization (279).txt
	0.5125 
	0.4675 
	0.9750 
	0.9150 

	mineralization (28).txt
	0.5225 
	0.3575 
	0.9550 
	0.6150 

	mineralization (281).txt
	0.5050 
	0.4600 
	0.9900 
	0.9100 

	mineralization (282).txt
	0.4950 
	0.4875 
	0.9600 
	0.9550 

	mineralization (283).txt
	0.5100 
	0.5075 
	0.9800 
	0.9850 

	mineralization (285).txt
	0.4950 
	0.5100 
	0.9500 
	0.9800 

	mineralization (286).txt
	0.5125 
	0.4975 
	0.9750 
	0.9750 

	mineralization (287).txt
	0.5125 
	0.5075 
	0.9650 
	0.9850 

	mineralization (288).txt
	0.5125 
	0.5075 
	0.9750 
	0.9850 

	mineralization (289).txt
	0.5050 
	0.5050 
	0.9900 
	0.9800 

	mineralization (29).txt
	0.5250 
	0.4925 
	0.9500 
	0.9150 

	mineralization (290).txt
	0.5075 
	0.5050 
	0.9850 
	0.9900 

	mineralization (292).txt
	0.5100 
	0.5100 
	0.9800 
	0.9800 

	mineralization (293).txt
	0.5100 
	0.5100 
	0.9800 
	0.9800 

	mineralization (294).txt
	0.5200 
	0.5100 
	0.9600 
	0.9800 

	mineralization (295).txt
	0.5125 
	0.5100 
	0.9750 
	0.9800 

	mineralization (297).txt
	0.4950 
	0.5050 
	0.9500 
	0.9800 

	mineralization (297).txt
	0.6875 
	0.5525 
	0.6250 
	0.8950 

	mineralization (298).txt
	0.5050 
	0.4725 
	0.9000 
	0.8550 

	mineralization (299).txt
	0.4900 
	0.4975 
	0.9100 
	0.9350 

	mineralization (3).txt
	0.5500 
	0.2975 
	0.9000 
	0.5250 

	mineralization (30).txt
	0.5100 
	0.4800 
	0.9800 
	0.8700 

	mineralization (300).txt
	0.5025 
	0.5125 
	0.9450 
	0.9750 

	mineralization (31).txt
	0.5150 
	0.4575 
	0.9500 
	0.8450 

	mineralization (32).txt
	0.5100 
	0.5250 
	0.9100 
	0.9400 

	mineralization (33).txt
	0.4900 
	0.4925 
	0.9000 
	0.9050 

	mineralization (34).txt
	0.4725 
	0.5000 
	0.8850 
	0.9200 

	mineralization (37).txt
	0.4900 
	0.5100 
	0.8400 
	0.9400 

	mineralization (38).txt
	0.4525 
	0.5000 
	0.7950 
	0.9000 

	mineralization (40).txt
	0.5475 
	0.4775 
	0.9050 
	0.8950 

	mineralization (43).txt
	0.5375 
	0.5250 
	0.9150 
	0.9500 

	mineralization (45).txt
	0.5025 
	0.4550 
	0.9750 
	0.8800 

	mineralization (46).txt
	0.5325 
	0.4975 
	0.9350 
	0.9150 

	mineralization (47).txt
	0.5250 
	0.5125 
	0.9500 
	0.9350 

	mineralization (48).txt
	0.5325 
	0.5200 
	0.9350 
	0.9600 

	mineralization (49).txt
	0.5275 
	0.5250 
	0.9450 
	0.9500 

	mineralization (5).txt
	0.5525 
	0.5075 
	0.7750 
	0.8850 

	mineralization (50).txt
	0.4975 
	0.4850 
	0.8550 
	0.8800 

	mineralization (51).txt
	0.5250 
	0.4825 
	0.9500 
	0.8850 

	mineralization (53).txt
	0.4900 
	0.5025 
	0.8900 
	0.9950 

	mineralization (54).txt
	0.4750 
	0.4750 
	0.9400 
	0.9100 

	mineralization (55).txt
	0.5050 
	0.5050 
	0.9900 
	0.9900 

	mineralization (56).txt
	0.4975 
	0.4800 
	0.8950 
	0.9200 

	mineralization (57).txt
	0.5175 
	0.5000 
	0.9550 
	0.9900 

	mineralization (58).txt
	0.4775 
	0.5100 
	0.8950 
	0.9800 

	mineralization (59).txt
	0.5075 
	0.5025 
	0.9850 
	0.9750 

	mineralization (6).txt
	0.5125 
	0.3925 
	0.9550 
	0.6050 

	mineralization (60).txt
	0.5025 
	0.4925 
	0.9950 
	0.9350 

	mineralization (61).txt
	0.5200 
	0.5050 
	0.9600 
	0.9800 

	mineralization (62).txt
	0.5175 
	0.5025 
	0.9650 
	0.9950 

	mineralization (63).txt
	0.5025 
	0.4775 
	0.9250 
	0.9150 

	mineralization (65).txt
	0.5700 
	0.2125 
	0.6200 
	0.3950 

	mineralization (65).txt
	0.2375 
	0.8250 
	0.2550 
	0.2700 

	mineralization (65).txt
	0.8075 
	0.7100 
	0.3850 
	0.5100 

	mineralization (66).txt
	0.5575 
	0.6225 
	0.8850 
	0.7150 

	mineralization (66).txt
	0.6900 
	0.1275 
	0.6200 
	0.2450 

	mineralization (67).txt
	0.5050 
	0.4575 
	0.8000 
	0.5250 

	mineralization (68).txt
	0.5075 
	0.3950 
	0.8250 
	0.5400 

	mineralization (69).txt
	0.6075 
	0.2350 
	0.6250 
	0.4000 

	mineralization (69).txt
	0.1550 
	0.8100 
	0.2900 
	0.2800 

	mineralization (69).txt
	0.8575 
	0.8925 
	0.2850 
	0.2150 

	mineralization (7).txt
	0.4950 
	0.4900 
	0.8800 
	0.9000 

	mineralization (70).txt
	0.5700 
	0.5825 
	0.6200 
	0.5850 

	mineralization (71).txt
	0.3475 
	0.4975 
	0.4250 
	0.3650 

	mineralization (71).txt
	0.6275 
	0.2175 
	0.6150 
	0.2750 

	mineralization (71).txt
	0.8875 
	0.5900 
	0.2250 
	0.4100 

	mineralization (71).txt
	0.0975 
	0.7850 
	0.1750 
	0.2100 

	mineralization (71).txt
	0.1800 
	0.1850 
	0.3000 
	0.3600 

	mineralization (72).txt
	0.2525 
	0.3175 
	0.4850 
	0.3450 

	mineralization (72).txt
	0.8050 
	0.8050 
	0.3900 
	0.3100 

	mineralization (72).txt
	0.1300 
	0.7675 
	0.2500 
	0.4550 

	mineralization (73).txt
	0.3800 
	0.3950 
	0.5000 
	0.5100 

	mineralization (73).txt
	0.8575 
	0.2950 
	0.2850 
	0.1900 

	mineralization (73).txt
	0.5250 
	0.0625 
	0.1900 
	0.1050 

	mineralization (74).txt
	0.1350 
	0.3525 
	0.2600 
	0.2450 

	mineralization (74).txt
	0.1675 
	0.6900 
	0.3150 
	0.2900 

	mineralization (74).txt
	0.6925 
	0.6350 
	0.4050 
	0.4100 

	mineralization (74).txt
	0.8925 
	0.3200 
	0.1250 
	0.1300 

	mineralization (75).txt
	0.1625 
	0.1950 
	0.3150 
	0.3100 

	mineralization (75).txt
	0.8325 
	0.3500 
	0.3350 
	0.2600 

	mineralization (75).txt
	0.6825 
	0.0850 
	0.5050 
	0.1600 

	mineralization (75).txt
	0.4450 
	0.8450 
	0.5200 
	0.3100 

	mineralization (76).txt
	0.1150 
	0.1775 
	0.2000 
	0.1850 

	mineralization (76).txt
	0.1600 
	0.3975 
	0.2400 
	0.1550 

	mineralization (76).txt
	0.5225 
	0.3625 
	0.2850 
	0.2550 

	mineralization (76).txt
	0.4325 
	0.7900 
	0.1050 
	0.1300 

	mineralization (76).txt
	0.8175 
	0.8750 
	0.1950 
	0.2500 

	mineralization (76).txt
	0.8200 
	0.6000 
	0.2800 
	0.1600 

	mineralization (76).txt
	0.9325 
	0.0550 
	0.1350 
	0.1000 

	mineralization (76).txt
	0.6575 
	0.1625 
	0.1450 
	0.1250 

	mineralization (76).txt
	0.9350 
	0.2700 
	0.1300 
	0.1600 

	mineralization (77).txt
	0.1450 
	0.3025 
	0.2600 
	0.2150 

	mineralization (77).txt
	0.2050 
	0.5575 
	0.2600 
	0.1750 

	mineralization (77).txt
	0.6225 
	0.5450 
	0.3250 
	0.3000 

	mineralization (77).txt
	0.8300 
	0.3175 
	0.1900 
	0.1450 

	mineralization (77).txt
	0.9325 
	0.7750 
	0.1250 
	0.3100 

	mineralization (78).txt
	0.5800 
	0.3775 
	0.7500 
	0.6950 

	mineralization (79).txt
	0.5800 
	0.4925 
	0.7500 
	0.9750 

	mineralization (8).txt
	0.5075 
	0.4175 
	0.9250 
	0.8150 

	mineralization (80).txt
	0.5075 
	0.5050 
	0.9550 
	0.9700 

	mineralization (81).txt
	0.4975 
	0.5075 
	0.9650 
	0.9850 

	mineralization (82).txt
	0.5025 
	0.5025 
	0.9850 
	0.9750 

	mineralization (83).txt
	0.4950 
	0.4750 
	0.9800 
	0.9400 

	mineralization (84).txt
	0.4950 
	0.4975 
	0.9700 
	0.9750 

	mineralization (85).txt
	0.5050 
	0.5075 
	0.9900 
	0.9850 

	mineralization (86).txt
	0.5000 
	0.5025 
	0.9800 
	0.9950 

	mineralization (87).txt
	0.5125 
	0.5000 
	0.9750 
	0.9800 

	mineralization (88).txt
	0.4975 
	0.4975 
	0.9650 
	0.9850 

	mineralization (89).txt
	0.5050 
	0.4900 
	0.9900 
	0.9600 

	mineralization (9).txt
	0.4725 
	0.3925 
	0.8450 
	0.6750 

	mineralization (90).txt
	0.5050 
	0.4950 
	0.9900 
	0.9700 

	mineralization (92).txt
	0.5050 
	0.4325 
	0.9900 
	0.8150 

	mineralization (94).txt
	0.5050 
	0.4850 
	0.9900 
	0.9500 

	mineralization (95).txt
	0.5075 
	0.5000 
	0.9850 
	0.9800 

	mineralization (96).txt
	0.5025 
	0.5025 
	0.9950 
	0.9950 

	mineralization (97).txt
	0.4825 
	0.4925 
	0.9450 
	0.9550 

	mineralization (98).txt
	0.5575 
	0.5025 
	0.8850 
	0.9950 




Table S2. The label information corresponding to the validation set images
	Picture
	x
	y
	w
	h

	cracking(1).txt
	0.4600 
	0.5025 
	0.5100 
	0.9950 

	cracking(10).txt
	0.4500 
	0.5875 
	0.8900 
	0.1450 

	cracking(109).txt
	0.5025 
	0.4100 
	0.9950 
	0.5300 

	cracking(121).txt
	0.5025 
	0.5450 
	0.9950 
	0.2100 

	cracking(125).txt
	0.4400 
	0.5025 
	0.1900 
	0.9950 

	cracking(133).txt
	0.5075 
	0.5625 
	0.8850 
	0.2450 

	cracking(137).txt
	0.4325 
	0.5000 
	0.3350 
	0.9100 

	cracking(139).txt
	0.4375 
	0.5025 
	0.5150 
	0.9950 

	cracking(14).txt
	0.5725 
	0.5025 
	0.5150 
	0.9950 

	cracking(15).txt
	0.5025 
	0.7350 
	0.9950 
	0.3100 

	cracking(162).txt
	0.5200 
	0.4800 
	0.9600 
	0.6700 

	cracking(164).txt
	0.5125 
	0.5025 
	0.6050 
	0.9950 

	cracking(169).txt
	0.5275 
	0.4825 
	0.4950 
	0.9550 

	cracking(178).txt
	0.4900 
	0.4425 
	0.5300 
	0.8750 

	cracking(20).txt
	0.5225 
	0.6100 
	0.9350 
	0.7800 

	cracking(22).txt
	0.4700 
	0.2475 
	0.9300 
	0.0850 

	cracking(22).txt
	0.5175 
	0.6525 
	0.3250 
	0.6950 

	cracking(35).txt
	0.6200 
	0.5025 
	0.2100 
	0.9950 

	cracking(38).txt
	0.7900 
	0.5025 
	0.2600 
	0.9950 

	cracking(53).txt
	0.3850 
	0.5400 
	0.2600 
	0.7000 

	cracking(56).txt
	0.3850 
	0.7100 
	0.1300 
	0.5800 

	cracking(56).txt
	0.6950 
	0.5025 
	0.4500 
	0.9950 

	cracking(6).txt
	0.5025 
	0.6300 
	0.9950 
	0.7400 

	cracking(65).txt
	0.8300 
	0.5025 
	0.3400 
	0.9950 

	cracking(73).txt
	0.3925 
	0.5050 
	0.2650 
	0.9900 

	cracking(8).txt
	0.5018 
	0.3834 
	0.9965 
	0.3074 

	cracking(80).txt
	0.5000 
	0.5025 
	0.2500 
	0.9950 

	cracking(80).txt
	0.3325 
	0.5625 
	0.3350 
	0.4450 

	cracking(81).txt
	0.4575 
	0.5025 
	0.4750 
	0.9950 

	cracking(85).txt
	0.3000 
	0.5500 
	0.1200 
	0.9000 

	cracking(85).txt
	0.4750 
	0.3425 
	0.3400 
	0.6750 

	cracking(9).txt
	0.5025 
	0.4525 
	0.9950 
	0.4550 

	cracking(90).txt
	0.2250 
	0.3650 
	0.4400 
	0.2000 

	cracking(90).txt
	0.5600 
	0.5275 
	0.8800 
	0.1450 

	cracking(91).txt
	0.5025 
	0.4650 
	0.9950 
	0.2600 

	cracking(91).txt
	0.4850 
	0.6675 
	0.7600 
	0.2350 

	cracking(93).txt
	0.5025 
	0.3700 
	0.9950 
	0.2200 

	holes (10).txt
	0.7125 
	0.7750 
	0.2050 
	0.2100 

	holes (10).txt
	0.4300 
	0.6700 
	0.1800 
	0.1700 

	holes (10).txt
	0.5500 
	0.8200 
	0.0900 
	0.1100 

	holes (10).txt
	0.3575 
	0.7975 
	0.1350 
	0.1150 

	holes (10).txt
	0.3025 
	0.9250 
	0.1050 
	0.1200 

	holes (101).txt
	0.5075 
	0.5050 
	0.0950 
	0.1500 

	holes (101).txt
	0.2275 
	0.2700 
	0.0950 
	0.0800 

	holes (101).txt
	0.0550 
	0.3500 
	0.1000 
	0.1000 

	holes (101).txt
	0.4625 
	0.1775 
	0.1050 
	0.0950 

	holes (101).txt
	0.7900 
	0.6600 
	0.0900 
	0.1000 

	holes (102).txt
	0.2475 
	0.5100 
	0.2150 
	0.2000 

	holes (102).txt
	0.6450 
	0.5400 
	0.1800 
	0.1800 

	holes (104).txt
	0.4850 
	0.5275 
	0.1500 
	0.1950 

	holes (105).txt
	0.7375 
	0.4025 
	0.2550 
	0.2250 

	holes (110).txt
	0.8825 
	0.4750 
	0.1650 
	0.1600 

	holes (110).txt
	0.5075 
	0.8325 
	0.1150 
	0.1150 

	holes (110).txt
	0.1900 
	0.3050 
	0.1000 
	0.1100 

	holes (110).txt
	0.3850 
	0.5250 
	0.1400 
	0.1300 

	holes (110).txt
	0.4200 
	0.3975 
	0.1100 
	0.1250 

	holes (110).txt
	0.9700 
	0.0750 
	0.0500 
	0.0900 

	holes (116).txt
	0.2300 
	0.6000 
	0.2500 
	0.1800 

	holes (119).txt
	0.5275 
	0.5550 
	0.1950 
	0.1400 

	holes (119).txt
	0.2950 
	0.9400 
	0.1500 
	0.1200 

	holes (122).txt
	0.3175 
	0.3325 
	0.1950 
	0.1750 

	holes (122).txt
	0.6450 
	0.7675 
	0.2000 
	0.1450 

	holes (124).txt
	0.3625 
	0.4050 
	0.2150 
	0.2100 

	holes (124).txt
	0.7150 
	0.8050 
	0.1200 
	0.2100 

	holes (128).txt
	0.4500 
	0.2150 
	0.1600 
	0.1600 

	holes (128).txt
	0.6100 
	0.4075 
	0.1800 
	0.2550 

	holes (128).txt
	0.5875 
	0.9250 
	0.1250 
	0.1500 

	holes (130).txt
	0.8600 
	0.4325 
	0.1500 
	0.1750 

	holes (133).txt
	0.3250 
	0.3450 
	0.2200 
	0.1700 

	holes (138).txt
	0.7550 
	0.2650 
	0.1300 
	0.1900 

	holes (141).txt
	0.3575 
	0.3500 
	0.1350 
	0.1800 

	holes (142).txt
	0.2200 
	0.3775 
	0.1600 
	0.1550 

	holes (149).txt
	0.6350 
	0.3650 
	0.2000 
	0.2700 

	holes (154).txt
	0.6500 
	0.1150 
	0.1400 
	0.1500 

	holes (155).txt
	0.5325 
	0.4600 
	0.1050 
	0.1600 

	holes (157).txt
	0.4350 
	0.4400 
	0.1600 
	0.1400 

	holes (159).txt
	0.7850 
	0.3575 
	0.1600 
	0.1150 

	holes (16).txt
	0.6400 
	0.2250 
	0.1500 
	0.2200 

	holes (16).txt
	0.6600 
	0.4500 
	0.0900 
	0.1100 

	holes (16).txt
	0.8025 
	0.5550 
	0.1250 
	0.1200 

	holes (16).txt
	0.9525 
	0.5300 
	0.0950 
	0.1200 

	holes (16).txt
	0.7900 
	0.3725 
	0.0800 
	0.0950 

	holes (165).txt
	0.7800 
	0.2800 
	0.2400 
	0.2100 

	holes (166).txt
	0.4100 
	0.4575 
	0.2000 
	0.1850 

	holes (167).txt
	0.3950 
	0.3350 
	0.1700 
	0.1500 

	holes (170).txt
	0.5475 
	0.4100 
	0.1550 
	0.1000 

	holes (179).txt
	0.4575 
	0.8075 
	0.2250 
	0.1850 

	holes (180).txt
	0.4775 
	0.8175 
	0.1550 
	0.1950 

	holes (181).txt
	0.5900 
	0.3600 
	0.1400 
	0.1300 

	holes (182).txt
	0.8800 
	0.5625 
	0.2300 
	0.1650 

	holes (183).txt
	0.8650 
	0.3500 
	0.1500 
	0.2000 

	holes (185).txt
	0.2925 
	0.2850 
	0.1950 
	0.1400 

	holes (187).txt
	0.4500 
	0.2700 
	0.2400 
	0.2400 

	holes (188).txt
	0.6400 
	0.2825 
	0.1700 
	0.2050 

	holes (191).txt
	0.5825 
	0.5975 
	0.2050 
	0.1850 

	holes (191).txt
	0.4850 
	0.4975 
	0.1900 
	0.1150 

	holes (192).txt
	0.1275 
	0.3575 
	0.2450 
	0.2650 

	holes (192).txt
	0.2600 
	0.7525 
	0.2100 
	0.2650 

	holes (2).txt
	0.2925 
	0.2425 
	0.1750 
	0.1250 

	holes (2).txt
	0.7350 
	0.1100 
	0.1300 
	0.1200 

	holes (213).txt
	0.4725 
	0.3125 
	0.1950 
	0.2350 

	holes (213).txt
	0.8400 
	0.5325 
	0.1400 
	0.1150 

	holes (213).txt
	0.9075 
	0.3675 
	0.0950 
	0.1050 

	holes (213).txt
	0.5775 
	0.5150 
	0.0950 
	0.0800 

	holes (213).txt
	0.7200 
	0.5850 
	0.0900 
	0.1100 

	holes (215).txt
	0.1875 
	0.2350 
	0.1850 
	0.1200 

	holes (217).txt
	0.0900 
	0.4450 
	0.1500 
	0.1700 

	holes (217).txt
	0.2950 
	0.3475 
	0.1000 
	0.0950 

	holes (217).txt
	0.2625 
	0.2475 
	0.0950 
	0.0750 

	holes (217).txt
	0.4750 
	0.1575 
	0.1000 
	0.0850 

	holes (217).txt
	0.6725 
	0.4975 
	0.1050 
	0.1350 

	holes (222).txt
	0.4825 
	0.3100 
	0.1850 
	0.2100 

	holes (222).txt
	0.8425 
	0.4925 
	0.1150 
	0.1450 

	holes (222).txt
	0.8125 
	0.2600 
	0.0650 
	0.0800 

	holes (222).txt
	0.9050 
	0.3525 
	0.1100 
	0.0850 

	holes (225).txt
	0.2375 
	0.3425 
	0.1950 
	0.1750 

	holes (227).txt
	0.4100 
	0.5325 
	0.1700 
	0.1850 

	holes (227).txt
	0.8750 
	0.5750 
	0.2200 
	0.1600 

	holes (227).txt
	0.0400 
	0.9350 
	0.0700 
	0.1300 

	holes (233).txt
	0.4650 
	0.5250 
	0.2300 
	0.2900 

	holes (236).txt
	0.4975 
	0.6900 
	0.2450 
	0.2900 

	holes (236).txt
	0.6800 
	0.4925 
	0.2600 
	0.1950 

	holes (236).txt
	0.7725 
	0.6300 
	0.2450 
	0.1000 

	holes (253).txt
	0.8375 
	0.5500 
	0.2850 
	0.2900 

	holes (254).txt
	0.4325 
	0.6325 
	0.5150 
	0.3750 

	holes (262).txt
	0.7575 
	0.5525 
	0.3150 
	0.2250 

	holes (264).txt
	0.4925 
	0.4425 
	0.1750 
	0.2050 

	holes (264).txt
	0.3575 
	0.4375 
	0.1350 
	0.1150 

	holes (276).txt
	0.1850 
	0.5525 
	0.2500 
	0.1850 

	holes (283).txt
	0.6550 
	0.5850 
	0.1900 
	0.1600 

	holes (298).txt
	0.4450 
	0.3825 
	0.1800 
	0.1950 

	holes (298).txt
	0.1325 
	0.8925 
	0.2150 
	0.2050 

	holes (34).txt
	0.5075 
	0.6400 
	0.1750 
	0.1800 

	holes (34).txt
	0.1450 
	0.2075 
	0.1500 
	0.1550 

	holes (36).txt
	0.4900 
	0.5000 
	0.1400 
	0.1100 

	holes (36).txt
	0.2125 
	0.2875 
	0.1150 
	0.1150 

	holes (36).txt
	0.7700 
	0.9375 
	0.1100 
	0.0950 

	holes (36).txt
	0.0625 
	0.3800 
	0.1050 
	0.1200 

	holes (36).txt
	0.4075 
	0.1925 
	0.1350 
	0.0950 

	holes (36).txt
	0.8200 
	0.1650 
	0.1100 
	0.0800 

	holes (36).txt
	0.9625 
	0.2175 
	0.0750 
	0.1550 

	holes (36).txt
	0.8650 
	0.3000 
	0.1100 
	0.0800 

	holes (46).txt
	0.4475 
	0.2725 
	0.1350 
	0.1550 

	holes (53).txt
	0.6225 
	0.3650 
	0.3050 
	0.2000 

	holes (55).txt
	0.4675 
	0.8700 
	0.1850 
	0.2000 

	holes (59).txt
	0.3950 
	0.2275 
	0.1500 
	0.1550 

	holes (69).txt
	0.6100 
	0.2875 
	0.3400 
	0.2250 

	holes (7).txt
	0.0725 
	0.4650 
	0.1050 
	0.1700 

	holes (7).txt
	0.2000 
	0.4675 
	0.1100 
	0.1650 

	holes (7).txt
	0.3300 
	0.5700 
	0.1000 
	0.1600 

	holes (7).txt
	0.3325 
	0.7850 
	0.1850 
	0.1100 

	holes (76).txt
	0.2675 
	0.3600 
	0.1250 
	0.1500 

	holes (76).txt
	0.4300 
	0.3225 
	0.1200 
	0.1550 

	holes (76).txt
	0.5300 
	0.2125 
	0.1300 
	0.1250 

	holes (81).txt
	0.3300 
	0.7575 
	0.2900 
	0.2050 

	incomplete(102).txt
	0.5250 
	0.4800 
	0.3200 
	0.3600 

	incomplete(109).txt
	0.5425 
	0.5000 
	0.2250 
	0.2800 

	incomplete(112).txt
	0.5000 
	0.4950 
	0.3300 
	0.2100 

	incomplete(113).txt
	0.5200 
	0.5100 
	0.2400 
	0.2600 

	incomplete(119).txt
	0.4825 
	0.4400 
	0.2350 
	0.5100 

	incomplete(120).txt
	0.5175 
	0.4150 
	0.3850 
	0.4500 

	incomplete(121).txt
	0.5150 
	0.4400 
	0.5300 
	0.3000 

	incomplete(122).txt
	0.5225 
	0.4375 
	0.4950 
	0.2750 

	incomplete(131).txt
	0.5575 
	0.5575 
	0.3250 
	0.3950 

	incomplete(148).txt
	0.6075 
	0.3975 
	0.1950 
	0.1250 

	incomplete(15).txt
	0.5000 
	0.6325 
	0.2600 
	0.2350 

	incomplete(150).txt
	0.5200 
	0.3775 
	0.1900 
	0.1550 

	incomplete(152).txt
	0.4325 
	0.3375 
	0.1250 
	0.2250 

	incomplete(153).txt
	0.3425 
	0.4600 
	0.2350 
	0.2100 

	incomplete(157).txt
	0.3700 
	0.5700 
	0.1800 
	0.2100 

	incomplete(159).txt
	0.3600 
	0.4625 
	0.1600 
	0.2250 

	incomplete(162).txt
	0.7075 
	0.1200 
	0.3350 
	0.2200 

	incomplete(165).txt
	0.7400 
	0.3700 
	0.4500 
	0.3100 

	incomplete(17).txt
	0.4625 
	0.6425 
	0.2150 
	0.2850 

	incomplete(174).txt
	0.5000 
	0.2800 
	0.4600 
	0.4700 

	incomplete(174).txt
	0.1900 
	0.5600 
	0.3200 
	0.4300 

	incomplete(176).txt
	0.4300 
	0.6325 
	0.6800 
	0.7350 

	incomplete(179).txt
	0.6700 
	0.3000 
	0.6000 
	0.5300 

	incomplete(18).txt
	0.4450 
	0.6325 
	0.1900 
	0.3250 

	incomplete(195).txt
	0.8050 
	0.4225 
	0.2600 
	0.3150 

	incomplete(200).txt
	0.7800 
	0.8125 
	0.2300 
	0.1550 

	incomplete(200).txt
	0.3000 
	0.8025 
	0.5300 
	0.1250 

	incomplete(208).txt
	0.2600 
	0.7600 
	0.1500 
	0.2200 

	incomplete(208).txt
	0.4275 
	0.3975 
	0.1250 
	0.1850 

	incomplete(221).txt
	0.4150 
	0.4675 
	0.6300 
	0.7150 

	incomplete(225).txt
	0.5350 
	0.5625 
	0.4300 
	0.7650 

	incomplete(228).txt
	0.6650 
	0.3075 
	0.2300 
	0.6050 

	incomplete(229).txt
	0.3925 
	0.2600 
	0.5050 
	0.4500 

	incomplete(230).txt
	0.4375 
	0.2525 
	0.4550 
	0.4950 

	incomplete(232).txt
	0.5025 
	0.5100 
	0.9950 
	0.5200 

	incomplete(233).txt
	0.3650 
	0.5150 
	0.7100 
	0.2600 

	incomplete(233).txt
	0.8600 
	0.3850 
	0.2800 
	0.4500 

	incomplete(24).txt
	0.3975 
	0.4075 
	0.3450 
	0.1850 

	incomplete(246).txt
	0.4225 
	0.3325 
	0.3150 
	0.1750 

	incomplete(251).txt
	0.3900 
	0.6425 
	0.2000 
	0.2250 

	incomplete(253).txt
	0.4275 
	0.6200 
	0.2750 
	0.2000 

	incomplete(269).txt
	0.3875 
	0.5475 
	0.6750 
	0.5150 

	incomplete(280).txt
	0.5250 
	0.5200 
	0.4400 
	0.1600 

	incomplete(29).txt
	0.5650 
	0.5200 
	0.1900 
	0.2100 

	incomplete(296).txt
	0.3525 
	0.4825 
	0.5950 
	0.4750 

	incomplete(296).txt
	0.8300 
	0.3750 
	0.2000 
	0.2200 

	incomplete(298).txt
	0.6425 
	0.2550 
	0.3950 
	0.4400 

	incomplete(300).txt
	0.3900 
	0.4025 
	0.5400 
	0.7050 

	incomplete(32).txt
	0.5325 
	0.5375 
	0.1450 
	0.2750 

	incomplete(34).txt
	0.4925 
	0.5650 
	0.1250 
	0.2300 

	incomplete(36).txt
	0.4800 
	0.5200 
	0.2200 
	0.1500 

	incomplete(4).txt
	0.5700 
	0.3675 
	0.2000 
	0.3350 

	incomplete(5).txt
	0.6200 
	0.3650 
	0.2200 
	0.3600 

	incomplete(50).txt
	0.5250 
	0.4525 
	0.1400 
	0.2350 

	incomplete(52).txt
	0.5225 
	0.6800 
	0.3450 
	0.5100 

	incomplete(53).txt
	0.4900 
	0.6950 
	0.3300 
	0.4000 

	incomplete(56).txt
	0.3425 
	0.6200 
	0.5150 
	0.2400 

	incomplete(57).txt
	0.3625 
	0.5650 
	0.5350 
	0.2500 

	incomplete(59).txt
	0.3150 
	0.5675 
	0.4500 
	0.2750 

	incomplete(60).txt
	0.3475 
	0.4750 
	0.4950 
	0.4100 

	incomplete(61).txt
	0.3150 
	0.4275 
	0.3800 
	0.4250 

	incomplete(63).txt
	0.4450 
	0.3075 
	0.1800 
	0.4750 

	incomplete(65).txt
	0.5350 
	0.2475 
	0.3600 
	0.4150 

	incomplete(69).txt
	0.6750 
	0.5875 
	0.2800 
	0.4750 

	incomplete(70).txt
	0.5075 
	0.4475 
	0.9050 
	0.7150 

	incomplete(78).txt
	0.6125 
	0.5175 
	0.6050 
	0.9650 

	incomplete(82).txt
	0.4950 
	0.5050 
	0.9700 
	0.9200 

	incomplete(84).txt
	0.4175 
	0.4550 
	0.8150 
	0.8900 

	incomplete(87).txt
	0.4625 
	0.5075 
	0.7550 
	0.9850 

	incomplete(91).txt
	0.5325 
	0.3875 
	0.9350 
	0.7150 

	mineralization (10).txt
	0.5525 
	0.5325 
	0.8650 
	0.8450 

	mineralization (101).txt
	0.4950 
	0.4975 
	0.9800 
	0.9750 

	mineralization (102).txt
	0.5050 
	0.5050 
	0.9800 
	0.9900 

	mineralization (107).txt
	0.5075 
	0.4925 
	0.9850 
	0.9750 

	mineralization (11).txt
	0.5000 
	0.6125 
	0.8700 
	0.6450 

	mineralization (114).txt
	0.4975 
	0.5025 
	0.9750 
	0.9950 

	mineralization (119).txt
	0.5000 
	0.5025 
	0.9900 
	0.9950 

	mineralization (12).txt
	0.5250 
	0.5700 
	0.9500 
	0.8400 

	mineralization (120).txt
	0.4925 
	0.5075 
	0.9650 
	0.9850 

	mineralization (124).txt
	0.5075 
	0.5025 
	0.9850 
	0.9950 

	mineralization (125).txt
	0.4900 
	0.5025 
	0.9700 
	0.9950 

	mineralization (143).txt
	0.5000 
	0.5025 
	0.9700 
	0.9950 

	mineralization (149).txt
	0.5125 
	0.5050 
	0.9750 
	0.9900 

	mineralization (150).txt
	0.5125 
	0.4850 
	0.9750 
	0.9600 

	mineralization (167).txt
	0.5150 
	0.5050 
	0.9700 
	0.9900 

	mineralization (172).txt
	0.5050 
	0.5075 
	0.9700 
	0.9850 

	mineralization (174).txt
	0.5100 
	0.5050 
	0.9800 
	0.9800 

	mineralization (177).txt
	0.5025 
	0.5075 
	0.9450 
	0.9750 

	mineralization (179).txt
	0.5100 
	0.5075 
	0.9600 
	0.9850 

	mineralization (18).txt
	0.4875 
	0.5075 
	0.8850 
	0.8550 

	mineralization (185).txt
	0.4925 
	0.5025 
	0.9750 
	0.9750 

	mineralization (192).txt
	0.5100 
	0.5025 
	0.9800 
	0.9950 

	mineralization (200).txt
	0.4975 
	0.4925 
	0.9650 
	0.9650 

	mineralization (206).txt
	0.5175 
	0.5100 
	0.9650 
	0.9800 

	mineralization (209).txt
	0.5025 
	0.4950 
	0.9550 
	0.9500 

	mineralization (210).txt
	0.5100 
	0.5050 
	0.9800 
	0.9900 

	mineralization (216).txt
	0.5125 
	0.5050 
	0.9750 
	0.9900 

	mineralization (220).txt
	0.5025 
	0.5050 
	0.9550 
	0.9900 

	mineralization (23).txt
	0.5075 
	0.5200 
	0.9650 
	0.9200 

	mineralization (236).txt
	0.4975 
	0.5075 
	0.9650 
	0.9850 

	mineralization (240).txt
	0.5050 
	0.5100 
	0.9900 
	0.9800 

	mineralization (247).txt
	0.5050 
	0.5025 
	0.9900 
	0.9950 

	mineralization (248).txt
	0.5100 
	0.5100 
	0.9600 
	0.9800 

	mineralization (250).txt
	0.5025 
	0.4750 
	0.9950 
	0.9300 

	mineralization (260).txt
	0.5025 
	0.5000 
	0.9250 
	0.9800 

	mineralization (263).txt
	0.5100 
	0.5100 
	0.9800 
	0.9700 

	mineralization (266).txt
	0.5075 
	0.4850 
	0.9850 
	0.9400 

	mineralization (275).txt
	0.5025 
	0.5050 
	0.9950 
	0.9900 

	mineralization (276).txt
	0.5075 
	0.4850 
	0.9850 
	0.9600 

	mineralization (277).txt
	0.5125 
	0.5125 
	0.9750 
	0.9750 

	mineralization (280).txt
	0.4950 
	0.5075 
	0.9100 
	0.9650 

	mineralization (284).txt
	0.5025 
	0.5025 
	0.9950 
	0.9950 

	mineralization (291).txt
	0.5125 
	0.5075 
	0.9750 
	0.9850 

	mineralization (296).txt
	0.5075 
	0.5050 
	0.9750 
	0.9900 

	mineralization (35).txt
	0.5150 
	0.5000 
	0.9100 
	0.8600 

	mineralization (36).txt
	0.5250 
	0.5150 
	0.8900 
	0.9100 

	mineralization (39).txt
	0.5175 
	0.4875 
	0.8350 
	0.9350 

	mineralization (4).txt
	0.5325 
	0.4475 
	0.9350 
	0.8350 

	mineralization (41).txt
	0.5150 
	0.5250 
	0.8900 
	0.9500 

	mineralization (42).txt
	0.5050 
	0.4925 
	0.9500 
	0.8950 

	mineralization (44).txt
	0.5250 
	0.5150 
	0.8900 
	0.9700 

	mineralization (52).txt
	0.5050 
	0.5000 
	0.9900 
	0.9900 

	mineralization (64).txt
	0.4525 
	0.5100 
	0.8550 
	0.9800 

	mineralization (64).txt
	0.9475 
	0.7075 
	0.1050 
	0.3350 

	mineralization (91).txt
	0.5100 
	0.4925 
	0.9800 
	0.9750 

	mineralization (93).txt
	0.7550 
	0.3625 
	0.4900 
	0.6950 

	mineralization (99).txt
	0.5050 
	0.5025 
	0.9900 
	0.9950 




Table S3. YOLOv5 code from PyCharm2021.3.1
	# Parameters

	nc: 80 # number of classes

	depth_multiple: 0.33 # model depth multiple

	width_multiple: 0.50 # layer channel multiple

	anchors:

	  - [10, 13, 16, 30, 33, 23] # P3/8

	  - [30, 61, 62, 45, 59, 119] # P4/16

	  - [116, 90, 156, 198, 373, 326] # P5/32

	# YOLOv5s v6.0 backbone

	backbone:

	  # [from, number, module, args]

	  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2

	   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4

	   [-1, 3, C3, [128]],          # 2

	   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8

	   [-1, 6, C3, [256]],       # 4

	   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16

	   [-1, 9, C3, [512]],

	   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32

	   [-1, 3, C3, [1024]],

	   [-1, 1, SPPF, [1024, 5]],  # 9

	  ]

	# YOLOv5s v6.0 head

	head:

	  [[-1, 1, Conv, [512, 1, 1]],

	   [-1, 1, nn.Upsample, [None, 2, 'nearest']], #11 

	   [[-1, 6], 1, Concat, [1]],  # 12 cat backbone P4 

	   [-1, 3, C3, [512, False]],  # 13

	   [-1, 1, Conv, [256, 1, 1]],

	   [-1, 1, nn.Upsample, [None, 2, 'nearest']],

	   [[-1, 4], 1, Concat, [1]],  # cat backbone P3

	   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

	   [-1, 1, Conv, [256, 3, 2]],

	   [[-1, 14], 1, Concat, [1]],  # cat head P4，

	   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

	   [-1, 1, Conv, [512, 3, 2]],

	   [[-1, 10], 1, Concat, [1]],  # cat head P5，

	   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

	   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)

	  ]





Table S4. yolov5s-GCB code from PyCharm2021.3.1
	# Parameters

	nc: 80 # number of classes

	depth_multiple: 0.33 # model depth multiple

	width_multiple: 0.50 # layer channel multiple

	anchors:

	  - [10, 13, 16, 30, 33, 23] # P3/8

	  - [30, 61, 62, 45, 59, 119] # P4/16

	  - [116, 90, 156, 198, 373, 326] # P5/32

	# YOLOv5 v6.0 backbone

	backbone:

	  # [from, number, module, args]

	  [

	    [-1, 1, GhostConv, [64, 3, 2]], # 0-P1/2

	    [-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4

	    [-1, 3, C3Ghost, [128]],

	    [-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8

	    [-1, 6, C3Ghost, [256]],

	    [-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16

	    [-1, 9, C3Ghost, [512]],

	    [-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32

	    [-1, 3, C3Ghost, [1024]],

	    [-1, 1, CoordAtt, [1024]],

	    [-1, 1, SPPF, [1024, 5]], # 9

	  ]

	# YOLOV5 V6.1 BiFPN head

	head:

	  [

	    [-1, 1, Conv, [512, 1, 1]],

	    [-1, 1, nn.Upsample, [None, 2, 'nearest']],

	    [[-1, 6], 1, BiFPN_Add2, [256, 256]], # cat backbone P4

	    [-1, 3, C3, [512, False]], # 13

	    [-1, 1, Conv, [256, 1, 1]],

	    [-1, 1, nn.Upsample, [None, 2, 'nearest' ]],

	    [[-1, 4], 1, BiFPN_Add2, [128, 128]], # cat backbone P3

	    [-1, 3, C3, [256, False]], # 17

	    [-1, 1, Conv, [512, 3, 2]],

	    [[-1, 14, 6], 1, BiFPN_Add3, [256, 256]],

	    [-1, 3, C3, [512, False]], # 20

	    [-1, 1, Conv, [512, 3, 2]],

	    [[-1, 11], 1, BiFPN_Add2, [256, 256]], # cat head P5

	    [-1, 3, C3, [1024, False]], # 23

	    [[18, 21, 24], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)

	]




Table S5. yolov5s_EfficientNetV2_CA  code from PyCharm2021.3.1
	# Parameters

	nc: 80 # number of classes

	depth_multiple: 0.33 # model depth multiple

	width_multiple: 0.50 # layer channel multiple

	anchors:

	  - [10, 13, 16, 30, 33, 23] # P3/8

	  - [30, 61, 62, 45, 59, 119] # P4/16

	  - [116, 90, 156, 198, 373, 326] # P5/32

	# YOLOv5 v6.0 backbone

	backbone:

	  # [from, number, module, args]

	  [

	    [-1, 1, stem, [24, 3, 2]], # 0-P1/2

	    [-1, 2, FusedMBConv, [24, 3, 1, 1, 0]], # 1-P2/4

	    [-1, 1, FusedMBConv, [48, 3, 2, 4, 0]],

	    [-1, 3, FusedMBConv, [48, 3, 1, 4, 0]], # 3-P3/8

	    [-1, 1, FusedMBConv, [64, 3, 2, 4, 0]],

	    [-1, 3, FusedMBConv, [64, 3, 1, 4, 0]], # 5-P4/16

	    [-1, 1, MBConv, [128, 3, 2, 4, 0.25]],

	    [-1, 5, MBConv, [128, 3, 1, 4, 0.25]], # 7-P5/32

	    [-1, 1, MBConv, [160, 3, 2, 6, 0.25]],

	    [-1, 8, MBConv, [160, 3, 1, 6, 0.25]], # 9

	    [-1, 1, MBConv, [272, 3, 2, 4, 0.25]],

	    [-1, 14, MBConv, [272, 3, 1, 4, 0.25 ]],

	    [-1, 1, CoordAtt, [272]],

	    [-1, 1, SPPF, [1024, 5]]

	  ]

	# YOLOv5 v6.0 head

	head: [

	    [-1, 1, Conv, [512, 1, 1]],

	    [-1, 1, nn.Upsample, [None, 2, "nearest"]],

	    [[-1, 9], 1, Concat, [1]], # cat backbone P4

	    [-1, 3, C3, [512, False]], # 13

	    [-1, 1, Conv, [256, 1, 1]],

	    [-1, 1, nn.Upsample, [None, 2, "nearest"]],

	    [[-1, 7], 1, Concat, [1]], # cat backbone P3

	    [-1, 3, C3, [256, False]], # 17 (P3/8-small)

	    [-1, 1, Conv, [256, 3, 2]],

	    [[-1, 18], 1, Concat, [1]], # cat head P4

	    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)

	    [-1, 1, Conv, [512, 3, 2]],

	    [[-1, 14], 1, Concat, [1]], # cat head P5

	    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)

	    [[21, 24, 27], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)

	  ]




Table S6. yolov5s_EfficientNetV2  code from PyCharm2021.3.1
	# Parameters

	nc: 80 # number of classes

	depth_multiple: 0.33 # model depth multiple

	width_multiple: 0.50 # layer channel multiple

	anchors:

	  - [10, 13, 16, 30, 33, 23] # P3/8

	  - [30, 61, 62, 45, 59, 119] # P4/16

	  - [116, 90, 156, 198, 373, 326] # P5/32

	# YOLOv5 v6.0 backbone

	backbone:

	  # [from, number, module, args]

	  [

	    [-1, 1, stem, [24, 3, 2]], # 0-P1/2

	    [-1, 2, FusedMBConv, [24, 3, 1, 1, 0]], # 1-P2/4

	    [-1, 1, FusedMBConv, [48, 3, 2, 4, 0]],

	    [-1, 3, FusedMBConv, [48, 3, 1, 4, 0]], # 3-P3/8

	    [-1, 1, FusedMBConv, [64, 3, 2, 4, 0]],

	    [-1, 3, FusedMBConv, [64, 3, 1, 4, 0]], # 5-P4/16

	    [-1, 1, MBConv, [128, 3, 2, 4, 0.25]],

	    [-1, 5, MBConv, [128, 3, 1, 4, 0.25]], # 7-P5/32

	    [-1, 1, MBConv, [160, 3, 2, 6, 0.25]],

	    [-1, 8, MBConv, [160, 3, 1, 6, 0.25]], # 9

	    [-1, 1, MBConv, [272, 3, 2, 4, 0.25]],

	    [-1, 14, MBConv, [272, 3, 1, 4, 0.25 ]],

	    [-1, 1, SPPF, [1024, 5]]

	  ]

	# YOLOv5 v6.0 head

	head: [

	    [-1, 1, Conv, [512, 1, 1]],

	    [-1, 1, nn.Upsample, [None, 2, "nearest"]],

	    [[-1, 9], 1, Concat, [1]], # cat backbone P4

	    [-1, 3, C3, [512, False]], # 13

	    [-1, 1, Conv, [256, 1, 1]],

	    [-1, 1, nn.Upsample, [None, 2, "nearest"]],

	    [[-1, 7], 1, Concat, [1]], # cat backbone P3

	    [-1, 3, C3, [256, False]], # 17 (P3/8-small)

	    [-1, 1, Conv, [256, 3, 2]],

	    [[-1, 17], 1, Concat, [1]], # cat head P4

	    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)

	    [-1, 1, Conv, [512, 3, 2]],

	    [[-1, 13], 1, Concat, [1]], # cat head P5

	    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)

	    [[20, 23, 26], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)

	  ]





Table S7. common.py code for adding network structure by PyCharm2021.3.1
	import ast

	import contextlib

	import json

	import math

	import platform

	import warnings

	import zipfile

	from collections import OrderedDict, namedtuple

	from copy import copy

	from pathlib import Path

	from urllib.parse import urlparse

	import cv2

	import numpy as np

	import pandas as pd

	import requests

	import torch

	import torch.nn as nn

	from PIL import Image

	from torch.cuda import amp

	# Import 'ultralytics' package or install if missing

	from ultralytics.nn.modules import C3

	try:

	    import ultralytics

	    assert hasattr(ultralytics, "__version__")  # verify package is not directory

	except (ImportError, AssertionError):

	    import os

	    os.system("pip install -U ultralytics")

	    import ultralytics

	from ultralytics.utils.plotting import Annotator, colors, save_one_box

	from utils import TryExcept

	from utils.dataloaders import exif_transpose, letterbox

	from utils.general import (

	    LOGGER,

	    ROOT,

	    Profile,

	    check_requirements,

	    check_suffix,

	    check_version,

	    colorstr,

	    increment_path,

	    is_jupyter,

	    make_divisible,

	    non_max_suppression,

	    scale_boxes,

	    xywh2xyxy,

	    xyxy2xywh,

	    yaml_load,

	)

	from utils.torch_utils import copy_attr, smart_inference_mode

	def channel_shuffle(x, groups):

	    batchsize, num_channels, height, width = x.data.size()

	    channels_per_group = num_channels // groups

	    x = x.view(batchsize, groups, channels_per_group, height, width)

	    x = torch.transpose(x, 1, 2).contiguous()

	    x = x.view(batchsize, -1, height, width)

	    return x

	class stem(nn.Module):

	    def __init__(self, c1, c2):

	        super(stem, self).__init__()

	        self.conv = nn.Sequential(

	            nn.Conv2d(c1, c2, kernel_size=3, stride=2, padding=1, bias=False),

	            nn.BatchNorm2d(c2),

	            nn.ReLU(inplace=True),

	        )

	        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)

	    def forward(self, x):

	        return self.maxpool(self.conv(x))

	class Shuffle_Block(nn.Module):

	    def __init__(self, ch_in, ch_out, stride):

	        super(Shuffle_Block, self).__init__()

	        if not (1 <= stride <= 2):

	            raise ValueError('illegal stride value')

	        self.stride = stride

	        branch_features = ch_out // 2

	        assert (self.stride != 1) or (ch_in == branch_features << 1)

	        if self.stride > 1:

	            self.branch1 = nn.Sequential(

	                self.depthwise_conv(ch_in, ch_in, kernel_size=3, stride=self.stride, padding=1),

	                nn.BatchNorm2d(ch_in),

	                nn.Conv2d(ch_in, branch_features, kernel_size=1, stride=1, padding=0, bias=False),

	                nn.BatchNorm2d(branch_features),

	                nn.ReLU(inplace=True),

	            )

	        self.branch2 = nn.Sequential(

	            nn.Conv2d(ch_in if (self.stride > 1) else branch_features,

	                      branch_features, kernel_size=1, stride=1, padding=0, bias=False),

	            nn.BatchNorm2d(branch_features),

	            nn.ReLU(inplace=True),

	            self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),

	            nn.BatchNorm2d(branch_features),

	            nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),

	            nn.BatchNorm2d(branch_features),

	            nn.ReLU(inplace=True),

	        )

	    @staticmethod

	    def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):

	        return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)

	    def forward(self, x):

	        if self.stride == 1:

	            x1, x2 = x.chunk(2, dim=1)

	            out = torch.cat((x1, self.branch2(x2)), dim=1)

	        else:

	            out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)

	        out = channel_shuffle(out, 2)

	        return out

	def autopad(k, p=None, d=1):

	    """

	    Pads kernel to 'same' output shape, adjusting for optional dilation; returns padding size.

	    `k`: kernel, `p`: padding, `d`: dilation.

	    """

	    if d > 1:

	        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size

	    if p is None:

	        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad

	    return p

	class GhostConv(nn.Module):

	    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):

	        super(GhostConv, self).__init__()

	        c_ = c2 // 2

	        self.cv1 = Conv(c1, c_, k, s, None, g, act)

	        self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)

	    def forward(self, x):

	        y = self.cv1(x)

	        return torch.cat([y, self.cv2(y)], 1)

	class GhostBottleneck(nn.Module):

	    def __init__(self, c1, c2, k=3, s=1):

	        super().__init__()

	        c_ = c2 // 2

	        self.conv = nn.Sequential(

	            GhostConv(c1, c_, 1, 1),

	            DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),

	            GhostConv(c_, c2, 1, 1, act=False))

	        self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,

	                                                                            act=False)) if s == 2 else nn.Identity()

	    def forward(self, x):

	        return self.conv(x) + self.shortcut(x)

	class C3Ghost(C3):

	    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):

	        super().__init__(c1, c2, n, shortcut, g, e)

	        c_ = int(c2 * e)

	        self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))

	class Conv(nn.Module):

	    """Applies a convolution, batch normalization, and activation function to an input tensor in a neural network."""

	    default_act = nn.SiLU()  # default activation

	    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):

	        """Initializes a standard convolution layer with optional batch normalization and activation."""

	        super().__init__()

	        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)

	        self.bn = nn.BatchNorm2d(c2)

	        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

	    def forward(self, x):

	        """Applies a convolution followed by batch normalization and an activation function to the input tensor `x`."""

	        return self.act(self.bn(self.conv(x)))

	    def forward_fuse(self, x):

	        """Applies a fused convolution and activation function to the input tensor `x`."""

	        return self.act(self.conv(x))

	class DWConv(Conv):

	    """Implements a depth-wise convolution layer with optional activation for efficient spatial filtering."""

	    def __init__(self, c1, c2, k=1, s=1, d=1, act=True):

	        """Initializes a depth-wise convolution layer with optional activation; args: input channels (c1), output

	        channels (c2), kernel size (k), stride (s), dilation (d), and activation flag (act).

	        """

	        super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)

	class DWConvTranspose2d(nn.ConvTranspose2d):

	    """A depth-wise transpose convolutional layer for upsampling in neural networks, particularly in YOLOv5 models."""

	    def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):

	        """Initializes a depth-wise transpose convolutional layer for YOLOv5; args: input channels (c1), output channels

	        (c2), kernel size (k), stride (s), input padding (p1), output padding (p2).

	        """

	        super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))

	class TransformerLayer(nn.Module):

	    """Transformer layer with multihead attention and linear layers, optimized by removing LayerNorm."""

	    def __init__(self, c, num_heads):

	        """

	        Initializes a transformer layer, sans LayerNorm for performance, with multihead attention and linear layers.

	        See  as described in https://arxiv.org/abs/2010.11929.

	        """

	        super().__init__()

	        self.q = nn.Linear(c, c, bias=False)

	        self.k = nn.Linear(c, c, bias=False)

	        self.v = nn.Linear(c, c, bias=False)

	        self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)

	        self.fc1 = nn.Linear(c, c, bias=False)

	        self.fc2 = nn.Linear(c, c, bias=False)

	    def forward(self, x):

	        """Performs forward pass using MultiheadAttention and two linear transformations with residual connections."""

	        x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x

	        x = self.fc2(self.fc1(x)) + x

	        return x

	class TransformerBlock(nn.Module):

	    """A Transformer block for vision tasks with convolution, position embeddings, and Transformer layers."""

	    def __init__(self, c1, c2, num_heads, num_layers):

	        """Initializes a Transformer block for vision tasks, adapting dimensions if necessary and stacking specified

	        layers.

	        """

	        super().__init__()

	        self.conv = None

	        if c1 != c2:

	            self.conv = Conv(c1, c2)

	        self.linear = nn.Linear(c2, c2)  # learnable position embedding

	        self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))

	        self.c2 = c2

	    def forward(self, x):

	        """Processes input through an optional convolution, followed by Transformer layers and position embeddings for

	        object detection.

	        """

	        if self.conv is not None:

	            x = self.conv(x)

	        b, _, w, h = x.shape

	        p = x.flatten(2).permute(2, 0, 1)

	        return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)

	class Bottleneck(nn.Module):

	    """A bottleneck layer with optional shortcut and group convolution for efficient feature extraction."""

	    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):

	        """Initializes a standard bottleneck layer with optional shortcut and group convolution, supporting channel

	        expansion.

	        """

	        super().__init__()

	        c_ = int(c2 * e)  # hidden channels

	        self.cv1 = Conv(c1, c_, 1, 1)

	        self.cv2 = Conv(c_, c2, 3, 1, g=g)

	        self.add = shortcut and c1 == c2

	    def forward(self, x):

	        """Processes input through two convolutions, optionally adds shortcut if channel dimensions match; input is a

	        tensor.

	        """

	        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

	class BottleneckCSP(nn.Module):

	    """CSP bottleneck layer for feature extraction with cross-stage partial connections and optional shortcuts."""

	    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):

	        """Initializes CSP bottleneck with optional shortcuts; args: ch_in, ch_out, number of repeats, shortcut bool,

	        groups, expansion.

	        """

	        super().__init__()

	        c_ = int(c2 * e)  # hidden channels

	        self.cv1 = Conv(c1, c_, 1, 1)

	        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)

	        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)

	        self.cv4 = Conv(2 * c_, c2, 1, 1)

	        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)

	        self.act = nn.SiLU()

	        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

	    def forward(self, x):

	        """Performs forward pass by applying layers, activation, and concatenation on input x, returning feature-

	        enhanced output.

	        """

	        y1 = self.cv3(self.m(self.cv1(x)))

	        y2 = self.cv2(x)

	        return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))

	class CrossConv(nn.Module):

	    """Implements a cross convolution layer with downsampling, expansion, and optional shortcut."""

	    def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):

	        """

	        Initializes CrossConv with downsampling, expanding, and optionally shortcutting; `c1` input, `c2` output

	        channels.

	        Inputs are ch_in, ch_out, kernel, stride, groups, expansion, shortcut.

	        """

	        super().__init__()

	        c_ = int(c2 * e)  # hidden channels

	        self.cv1 = Conv(c1, c_, (1, k), (1, s))

	        self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)

	        self.add = shortcut and c1 == c2

	    def forward(self, x):

	        """Performs feature sampling, expanding, and applies shortcut if channels match; expects `x` input tensor."""

	        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

	class C3(nn.Module):

	    """Implements a CSP Bottleneck module with three convolutions for enhanced feature extraction in neural networks."""

	    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):

	        """Initializes C3 module with options for channel count, bottleneck repetition, shortcut usage, group

	        convolutions, and expansion.

	        """

	        super().__init__()

	        c_ = int(c2 * e)  # hidden channels

	        self.cv1 = Conv(c1, c_, 1, 1)

	        self.cv2 = Conv(c1, c_, 1, 1)

	        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)

	        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

	    def forward(self, x):

	        """Performs forward propagation using concatenated outputs from two convolutions and a Bottleneck sequence."""

	        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

	class C3x(C3):

	    """Extends the C3 module with cross-convolutions for enhanced feature extraction in neural networks."""

	    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):

	        """Initializes C3x module with cross-convolutions, extending C3 with customizable channel dimensions, groups,

	        and expansion.

	        """

	        super().__init__(c1, c2, n, shortcut, g, e)

	        c_ = int(c2 * e)

	        self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))

	class C3TR(C3):

	    """C3 module with TransformerBlock for enhanced feature extraction in object detection models."""

	    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):

	        """Initializes C3 module with TransformerBlock for enhanced feature extraction, accepts channel sizes, shortcut

	        config, group, and expansion.

	        """

	        super().__init__(c1, c2, n, shortcut, g, e)

	        c_ = int(c2 * e)

	        self.m = TransformerBlock(c_, c_, 4, n)

	class C3SPP(C3):

	    """Extends the C3 module with an SPP layer for enhanced spatial feature extraction and customizable channels."""

	    def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):

	        """Initializes a C3 module with SPP layer for advanced spatial feature extraction, given channel sizes, kernel

	        sizes, shortcut, group, and expansion ratio.

	        """

	        super().__init__(c1, c2, n, shortcut, g, e)

	        c_ = int(c2 * e)

	        self.m = SPP(c_, c_, k)

	class C3Ghost(C3):

	    """Implements a C3 module with Ghost Bottlenecks for efficient feature extraction in YOLOv5."""

	    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):

	        """Initializes YOLOv5's C3 module with Ghost Bottlenecks for efficient feature extraction."""

	        super().__init__(c1, c2, n, shortcut, g, e)

	        c_ = int(c2 * e)  # hidden channels

	        self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))

	class SPP(nn.Module):

	    """Implements Spatial Pyramid Pooling (SPP) for feature extraction, ref: https://arxiv.org/abs/1406.4729."""

	    def __init__(self, c1, c2, k=(5, 9, 13)):

	        """Initializes SPP layer with Spatial Pyramid Pooling, ref: https://arxiv.org/abs/1406.4729, args: c1 (input channels), c2 (output channels), k (kernel sizes)."""

	        super().__init__()

	        c_ = c1 // 2  # hidden channels

	        self.cv1 = Conv(c1, c_, 1, 1)

	        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)

	        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

	    def forward(self, x):

	        """Applies convolution and max pooling layers to the input tensor `x`, concatenates results, and returns output

	        tensor.

	        """

	        x = self.cv1(x)

	        with warnings.catch_warnings():

	            warnings.simplefilter("ignore")  # suppress torch 1.9.0 max_pool2d() warning

	            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))

	class SPPF(nn.Module):

	    """Implements a fast Spatial Pyramid Pooling (SPPF) layer for efficient feature extraction in YOLOv5 models."""

	    def __init__(self, c1, c2, k=5):

	        """

	        Initializes YOLOv5 SPPF layer with given channels and kernel size for YOLOv5 model, combining convolution and

	        max pooling.

	        Equivalent to SPP(k=(5, 9, 13)).

	        """

	        super().__init__()

	        c_ = c1 // 2  # hidden channels

	        self.cv1 = Conv(c1, c_, 1, 1)

	        self.cv2 = Conv(c_ * 4, c2, 1, 1)

	        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

	    def forward(self, x):

	        """Processes input through a series of convolutions and max pooling operations for feature extraction."""

	        x = self.cv1(x)

	        with warnings.catch_warnings():

	            warnings.simplefilter("ignore")  # suppress torch 1.9.0 max_pool2d() warning

	            y1 = self.m(x)

	            y2 = self.m(y1)

	            return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))

	class Focus(nn.Module):

	    """Focuses spatial information into channel space using slicing and convolution for efficient feature extraction."""

	    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):

	        """Initializes Focus module to concentrate width-height info into channel space with configurable convolution

	        parameters.

	        """

	        super().__init__()

	        self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)

	        # self.contract = Contract(gain=2)

	    def forward(self, x):

	        """Processes input through Focus mechanism, reshaping (b,c,w,h) to (b,4c,w/2,h/2) then applies convolution."""

	        return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))

	        # return self.conv(self.contract(x))

	class GhostConv(nn.Module):

	    """Implements Ghost Convolution for efficient feature extraction, see https://github.com/huawei-noah/ghostnet."""

	    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):

	        """Initializes GhostConv with in/out channels, kernel size, stride, groups, and activation; halves out channels

	        for efficiency.

	        """

	        super().__init__()

	        c_ = c2 // 2  # hidden channels

	        self.cv1 = Conv(c1, c_, k, s, None, g, act=act)

	        self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)

	    def forward(self, x):

	        """Performs forward pass, concatenating outputs of two convolutions on input `x`: shape (B,C,H,W)."""

	        y = self.cv1(x)

	        return torch.cat((y, self.cv2(y)), 1)

	class GhostBottleneck(nn.Module):

	    """Efficient bottleneck layer using Ghost Convolutions, see https://github.com/huawei-noah/ghostnet."""

	    def __init__(self, c1, c2, k=3, s=1):

	        """Initializes GhostBottleneck with ch_in `c1`, ch_out `c2`, kernel size `k`, stride `s`; see https://github.com/huawei-noah/ghostnet."""

	        super().__init__()

	        c_ = c2 // 2

	        self.conv = nn.Sequential(

	            GhostConv(c1, c_, 1, 1),  # pw

	            DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw

	            GhostConv(c_, c2, 1, 1, act=False),

	        )  # pw-linear

	        self.shortcut = (

	            nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()

	        )

	    def forward(self, x):

	        """Processes input through conv and shortcut layers, returning their summed output."""

	        return self.conv(x) + self.shortcut(x)

	class Contract(nn.Module):

	    """Contracts spatial dimensions into channel dimensions for efficient processing in neural networks."""

	    def __init__(self, gain=2):

	        """Initializes a layer to contract spatial dimensions (width-height) into channels, e.g., input shape

	        (1,64,80,80) to (1,256,40,40).

	        """

	        super().__init__()

	        self.gain = gain

	    def forward(self, x):

	        """Processes input tensor to expand channel dimensions by contracting spatial dimensions, yielding output shape

	        `(b, c*s*s, h//s, w//s)`.

	        """

	        b, c, h, w = x.size()  # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'

	        s = self.gain

	        x = x.view(b, c, h // s, s, w // s, s)  # x(1,64,40,2,40,2)

	        x = x.permute(0, 3, 5, 1, 2, 4).contiguous()  # x(1,2,2,64,40,40)

	        return x.view(b, c * s * s, h // s, w // s)  # x(1,256,40,40)

	class Expand(nn.Module):

	    """Expands spatial dimensions by redistributing channels, e.g., from (1,64,80,80) to (1,16,160,160)."""

	    def __init__(self, gain=2):

	        """

	        Initializes the Expand module to increase spatial dimensions by redistributing channels, with an optional gain

	        factor.

	        Example: x(1,64,80,80) to x(1,16,160,160).

	        """

	        super().__init__()

	        self.gain = gain

	    def forward(self, x):

	        """Processes input tensor x to expand spatial dimensions by redistributing channels, requiring C / gain^2 ==

	0

	        """

	        b, c, h, w = x.size()  # assert C / s ** 2 == 0, 'Indivisible gain'

	        s = self.gain

	        x = x.view(b, s, s, c // s**2, h, w)  # x(1,2,2,16,80,80)

	        x = x.permute(0, 3, 4, 1, 5, 2).contiguous()  # x(1,16,80,2,80,2)

	        return x.view(b, c // s**2, h * s, w * s)  # x(1,16,160,160)

	class Concat(nn.Module):

	    """Concatenates tensors along a specified dimension for efficient tensor manipulation in neural networks."""

	    def __init__(self, dimension=1):

	        """Initializes a Concat module to concatenate tensors along a specified dimension."""

	        super().__init__()

	        self.d = dimension

	    def forward(self, x):

	        """Concatenates a list of tensors along a specified dimension; `x` is a list of tensors, `dimension` is an

	        int.

	        """

	        return torch.cat(x, self.d)

	class DetectMultiBackend(nn.Module):

	    """YOLOv5 MultiBackend class for inference on various backends including PyTorch, ONNX, TensorRT, and more."""

	    def __init__(self, weights="yolov5s.pt", device=torch.device("cpu"), dnn=False, data=None, fp16=False, fuse=True,

	                 openvino=None):

	        """Initializes DetectMultiBackend with support for various inference backends, including PyTorch and ONNX."""

	        #   PyTorch:              weights = *.pt

	        #   TorchScript:                    *.torchscript

	        #   ONNX Runtime:                   *.onnx

	        #   ONNX OpenCV DNN:                *.onnx --dnn

	        #   OpenVINO:                       *_openvino_model

	        #   CoreML:                         *.mlpackage

	        #   TensorRT:                       *.engine

	        #   TensorFlow SavedModel:          *_saved_model

	        #   TensorFlow GraphDef:            *.pb

	        #   TensorFlow Lite:                *.tflite

	        #   TensorFlow Edge TPU:            *_edgetpu.tflite

	        #   PaddlePaddle:                   *_paddle_model

	        from models.experimental import attempt_download, attempt_load  # scoped to avoid circular import

	        super().__init__()

	        w = str(weights[0] if isinstance(weights, list) else weights)

	        pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)

	        fp16 &= pt or jit or onnx or engine or triton  # FP16

	        nhwc = coreml or saved_model or pb or tflite or edgetpu  # BHWC formats (vs torch BCWH)

	        stride = 32  # default stride

	        cuda = torch.cuda.is_available() and device.type != "cpu"  # use CUDA

	        if not (pt or triton):

	            w = attempt_download(w)  # download if not local

	        if pt:  # PyTorch

	            model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)

	            stride = max(int(model.stride.max()), 32)  # model stride

	            names = model.module.names if hasattr(model, "module") else model.names  # get class names

	            model.half() if fp16 else model.float()

	            self.model = model  # explicitly assign for to(), cpu(), cuda(), half()

	        elif jit:  # TorchScript

	            LOGGER.info(f"Loading {w} for TorchScript inference...")

	            extra_files = {"config.txt": ""}  # model metadata

	            model = torch.jit.load(w, _extra_files=extra_files, map_location=device)

	            model.half() if fp16 else model.float()

	            if extra_files["config.txt"]:  # load metadata dict

	                d = json.loads(

	                    extra_files["config.txt"],

	                    object_hook=lambda d: {int(k) if k.isdigit() else k: v for k, v in d.items()},

	                )

	                stride, names = int(d["stride"]), d["names"]

	        elif dnn:  # ONNX OpenCV DNN

	            LOGGER.info(f"Loading {w} for ONNX OpenCV DNN inference...")

	            check_requirements("opencv-python>=4.5.4")

	            net = cv2.dnn.readNetFromONNX(w)

	        elif onnx:  # ONNX Runtime

	            LOGGER.info(f"Loading {w} for ONNX Runtime inference...")

	            check_requirements(("onnx", "onnxruntime-gpu" if cuda else "onnxruntime"))

	            import onnxruntime

	            providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] if cuda else ["CPUExecutionProvider"]

	            session = onnxruntime.InferenceSession(w, providers=providers)

	            output_names = [x.name for x in session.get_outputs()]

	            meta = session.get_modelmeta().custom_metadata_map  # metadata

	            if "stride" in meta:

	                stride, names = int(meta["stride"]), eval(meta["names"])

	        elif xml:  # OpenVINO

	            LOGGER.info(f"Loading {w} for OpenVINO inference...")

	            check_requirements("openvino>=2023.0")  # requires openvino-dev: https://pypi.org/project/openvino-dev/

	            from openvino.runtime import Core, Layout, get_batch

	            core = Core()

	            if not Path(w).is_file():  # if not *.xml

	                w = next(Path(w).glob("*.xml"))  # get *.xml file from *_openvino_model dir

	            ov_model = core.read_model(model=w, weights=Path(w).with_suffix(".bin"))

	            if ov_model.get_parameters()[0].get_layout().empty:

	                ov_model.get_parameters()[0].set_layout(Layout("NCHW"))

	            batch_dim = get_batch(ov_model)

	            if batch_dim.is_static:

	                batch_size = batch_dim.get_length()

	            ov_compiled_model = core.compile_model(ov_model, device_name="AUTO")  # AUTO selects best available device

	            stride, names = self._load_metadata(Path(w).with_suffix(".yaml"))  # load metadata

	        elif engine:  # TensorRT

	            LOGGER.info(f"Loading {w} for TensorRT inference...")

	            import tensorrt as trt  # https://developer.nvidia.com/nvidia-tensorrt-download

	            check_version(trt.__version__, "7.0.0", hard=True)  # require tensorrt>=7.0.0

	            if device.type == "cpu":

	                device = torch.device("cuda:0")

	            Binding = namedtuple("Binding", ("name", "dtype", "shape", "data", "ptr"))

	            logger = trt.Logger(trt.Logger.INFO)

	            with open(w, "rb") as f, trt.Runtime(logger) as runtime:

	                model = runtime.deserialize_cuda_engine(f.read())

	            context = model.create_execution_context()

	            bindings = OrderedDict()

	            output_names = []

	            fp16 = False  # default updated below

	            dynamic = False

	            is_trt10 = not hasattr(model, "num_bindings")

	            num = range(model.num_io_tensors) if is_trt10 else range(model.num_bindings)

	            for i in num:

	                if is_trt10:

	                    name = model.get_tensor_name(i)

	                    dtype = trt.nptype(model.get_tensor_dtype(name))

	                    is_input = model.get_tensor_mode(name) == trt.TensorIOMode.INPUT

	                    if is_input:

	                        if -1 in tuple(model.get_tensor_shape(name)):  # dynamic

	                            dynamic = True

	                            context.set_input_shape(name, tuple(model.get_profile_shape(name, 0)[2]))

	                        if dtype == np.float16:

	                            fp16 = True

	                    else:  # output

	                        output_names.append(name)

	                    shape = tuple(context.get_tensor_shape(name))

	                else:

	                    name = model.get_binding_name(i)

	                    dtype = trt.nptype(model.get_binding_dtype(i))

	                    if model.binding_is_input(i):

	                        if -1 in tuple(model.get_binding_shape(i)):  # dynamic

	                            dynamic = True

	                            context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))

	                        if dtype == np.float16:

	                            fp16 = True

	                    else:  # output

	                        output_names.append(name)

	                    shape = tuple(context.get_binding_shape(i))

	                im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)

	                bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))

	            binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())

	            batch_size = bindings["images"].shape[0]  # if dynamic, this is instead max batch size

	        elif coreml:  # CoreML

	            LOGGER.info(f"Loading {w} for CoreML inference...")

	            import coremltools as ct

	            model = ct.models.MLModel(w)

	        elif saved_model:  # TF SavedModel

	            LOGGER.info(f"Loading {w} for TensorFlow SavedModel inference...")

	            import tensorflow as tf

	            keras = False  # assume TF1 saved_model

	            model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)

	        elif pb:  # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt

	            LOGGER.info(f"Loading {w} for TensorFlow GraphDef inference...")

	            import tensorflow as tf

	            def wrap_frozen_graph(gd, inputs, outputs):

	                """Wraps a TensorFlow GraphDef for inference, returning a pruned function."""

	                x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), [])  # wrapped

	                ge = x.graph.as_graph_element

	                return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))

	            def gd_outputs(gd):

	                """Generates a sorted list of graph outputs excluding NoOp nodes and inputs, formatted as '<name>:0'."""

	                name_list, input_list = [], []

	                for node in gd.node:  # tensorflow.core.framework.node_def_pb2.NodeDef

	                    name_list.append(node.name)

	                    input_list.extend(node.input)

	                return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp"))

	            gd = tf.Graph().as_graph_def()  # TF GraphDef

	            with open(w, "rb") as f:

	                gd.ParseFromString(f.read())

	            frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))

	        elif tflite or edgetpu:  # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python

	            try:  # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu

	                from tflite_runtime.interpreter import Interpreter, load_delegate

	            except ImportError:

	                import tensorflow as tf

	                Interpreter, load_delegate = (

	                    tf.lite.Interpreter,

	                    tf.lite.experimental.load_delegate,

	                )

	            if edgetpu:  # TF Edge TPU https://coral.ai/software/#edgetpu-runtime

	                LOGGER.info(f"Loading {w} for TensorFlow Lite Edge TPU inference...")

	                delegate = {"Linux": "libedgetpu.so.1", "Darwin": "libedgetpu.1.dylib", "Windows": "edgetpu.dll"}[

	                    platform.system()

	                ]

	                interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])

	            else:  # TFLite

	                LOGGER.info(f"Loading {w} for TensorFlow Lite inference...")

	                interpreter = Interpreter(model_path=w)  # load TFLite model

	            interpreter.allocate_tensors()  # allocate

	            input_details = interpreter.get_input_details()  # inputs

	            output_details = interpreter.get_output_details()  # outputs

	            # load metadata

	            with contextlib.suppress(zipfile.BadZipFile):

	                with zipfile.ZipFile(w, "r") as model:

	                    meta_file = model.namelist()[0]

	                    meta = ast.literal_eval(model.read(meta_file).decode("utf-8"))

	                    stride, names = int(meta["stride"]), meta["names"]

	        elif tfjs:  # TF.js

	            raise NotImplementedError("ERROR: YOLOv5 TF.js inference is not supported")

	        elif paddle:  # PaddlePaddle

	            LOGGER.info(f"Loading {w} for PaddlePaddle inference...")

	            check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle")

	            import paddle.inference as pdi

	            if not Path(w).is_file():  # if not *.pdmodel

	                w = next(Path(w).rglob("*.pdmodel"))  # get *.pdmodel file from *_paddle_model dir

	            weights = Path(w).with_suffix(".pdiparams")

	            config = pdi.Config(str(w), str(weights))

	            if cuda:

	                config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)

	            predictor = pdi.create_predictor(config)

	            input_handle = predictor.get_input_handle(predictor.get_input_names()[0])

	            output_names = predictor.get_output_names()

	        elif triton:  # NVIDIA Triton Inference Server

	            LOGGER.info(f"Using {w} as Triton Inference Server...")

	            check_requirements("tritonclient[all]")

	            from utils.triton import TritonRemoteModel

	            model = TritonRemoteModel(url=w)

	            nhwc = model.runtime.startswith("tensorflow")

	        else:

	            raise NotImplementedError(f"ERROR: {w} is not a supported format")

	        # class names

	        if "names" not in locals():

	            names = yaml_load(data)["names"] if data else {i: f"class{i}" for i in range(999)}

	        if names[0] == "n01440764" and len(names) == 1000:  # ImageNet

	            names = yaml_load(ROOT / "data/ImageNet.yaml")["names"]  # human-readable names

	        self.__dict__.update(locals())  # assign all variables to self

	    def forward(self, im, augment=False, visualize=False):

	        """Performs YOLOv5 inference on input images with options for augmentation and visualization."""

	        b, ch, h, w = im.shape  # batch, channel, height, width

	        if self.fp16 and im.dtype != torch.float16:

	            im = im.half()  # to FP16

	        if self.nhwc:

	            im = im.permute(0, 2, 3, 1)  # torch BCHW to numpy BHWC shape(1,320,192,3)

	        if self.pt:  # PyTorch

	            y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)

	        elif self.jit:  # TorchScript

	            y = self.model(im)

	        elif self.dnn:  # ONNX OpenCV DNN

	            im = im.cpu().numpy()  # torch to numpy

	            self.net.setInput(im)

	            y = self.net.forward()

	        elif self.onnx:  # ONNX Runtime

	            im = im.cpu().numpy()  # torch to numpy

	            y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})

	        elif self.xml:  # OpenVINO

	            im = im.cpu().numpy()  # FP32

	            y = list(self.ov_compiled_model(im).values())

	        elif self.engine:  # TensorRT

	            if self.dynamic and im.shape != self.bindings["images"].shape:

	                i = self.model.get_binding_index("images")

	                self.context.set_binding_shape(i, im.shape)  # reshape if dynamic

	                self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape)

	                for name in self.output_names:

	                    i = self.model.get_binding_index(name)

	                    self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))

	            s = self.bindings["images"].shape

	            assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"

	            self.binding_addrs["images"] = int(im.data_ptr())

	            self.context.execute_v2(list(self.binding_addrs.values()))

	            y = [self.bindings[x].data for x in sorted(self.output_names)]

	        elif self.coreml:  # CoreML

	            im = im.cpu().numpy()

	            im = Image.fromarray((im[0] * 255).astype("uint8"))

	            # im = im.resize((192, 320), Image.BILINEAR)

	            y = self.model.predict({"image": im})  # coordinates are xywh normalized

	            if "confidence" in y:

	                box = xywh2xyxy(y["coordinates"] * [[w, h, w, h]])  # xyxy pixels

	                conf, cls = y["confidence"].max(1), y["confidence"].argmax(1).astype(np.float)

	                y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)

	            else:

	                y = list(reversed(y.values()))  # reversed for segmentation models (pred, proto)

	        elif self.paddle:  # PaddlePaddle

	            im = im.cpu().numpy().astype(np.float32)

	            self.input_handle.copy_from_cpu(im)

	            self.predictor.run()

	            y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]

	        elif self.triton:  # NVIDIA Triton Inference Server

	            y = self.model(im)

	        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)

	            im = im.cpu().numpy()

	            if self.saved_model:  # SavedModel

	                y = self.model(im, training=False) if self.keras else self.model(im)

	            elif self.pb:  # GraphDef

	                y = self.frozen_func(x=self.tf.constant(im))

	            else:  # Lite or Edge TPU

	                input = self.input_details[0]

	                int8 = input["dtype"] == np.uint8  # is TFLite quantized uint8 model

	                if int8:

	                    scale, zero_point = input["quantization"]

	                    im = (im / scale + zero_point).astype(np.uint8)  # de-scale

	                self.interpreter.set_tensor(input["index"], im)

	                self.interpreter.invoke()

	                y = []

	                for output in self.output_details:

	                    x = self.interpreter.get_tensor(output["index"])

	                    if int8:

	                        scale, zero_point = output["quantization"]

	                        x = (x.astype(np.float32) - zero_point) * scale  # re-scale

	                    y.append(x)

	            y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]

	            y[0][..., :4] *= [w, h, w, h]  # xywh normalized to pixels

	        if isinstance(y, (list, tuple)):

	            return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]

	        else:

	            return self.from_numpy(y)

	    def from_numpy(self, x):

	        """Converts a NumPy array to a torch tensor, maintaining device compatibility."""

	        return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x

	    def warmup(self, imgsz=(1, 3, 640, 640)):

	        """Performs a single inference warmup to initialize model weights, accepting an `imgsz` tuple for image size."""

	        warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton

	        if any(warmup_types) and (self.device.type != "cpu" or self.triton):

	            im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device)  # input

	            for _ in range(2 if self.jit else 1):  #

	                self.forward(im)  # warmup

	    @staticmethod

	    def _model_type(p="path/to/model.pt"):

	        """

	        Determines model type from file path or URL, supporting various export formats.

	        Example: path='path/to/model.onnx' -> type=onnx

	        """

	        # types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]

	        from export import export_formats

	        from utils.downloads import is_url

	        sf = list(export_formats().Suffix)  # export suffixes

	        if not is_url(p, check=False):

	            check_suffix(p, sf)  # checks

	        url = urlparse(p)  # if url may be Triton inference server

	        types = [s in Path(p).name for s in sf]

	        types[8] &= not types[9]  # tflite &= not edgetpu

	        triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])

	        return types + [triton]

	    @staticmethod

	    def _load_metadata(f=Path("path/to/meta.yaml")):

	        """Loads metadata from a YAML file, returning strides and names if the file exists, otherwise `None`."""

	        if f.exists():

	            d = yaml_load(f)

	            return d["stride"], d["names"]  # assign stride, names

	        return None, None

	class AutoShape(nn.Module):

	    """AutoShape class for robust YOLOv5 inference with preprocessing, NMS, and support for various input formats."""

	    conf = 0.25  # NMS confidence threshold

	    iou = 0.45  # NMS IoU threshold

	    agnostic = False  # NMS class-agnostic

	    multi_label = False  # NMS multiple labels per box

	    classes = None  # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs

	    max_det = 1000  # maximum number of detections per image

	    amp = False  # Automatic Mixed Precision (AMP) inference

	    def __init__(self, model, verbose=True):

	        """Initializes YOLOv5 model for inference, setting up attributes and preparing model for evaluation."""

	        super().__init__()

	        if verbose:

	            LOGGER.info("Adding AutoShape... ")

	        copy_attr(self, model, include=("yaml", "nc", "hyp", "names", "stride", "abc"), exclude=())  # copy attributes

	        self.dmb = isinstance(model, DetectMultiBackend)  # DetectMultiBackend() instance

	        self.pt = not self.dmb or model.pt  # PyTorch model

	        self.model = model.eval()

	        if self.pt:

	            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()

	            m.inplace = False  # Detect.inplace=False for safe multithread inference

	            m.export = True  # do not output loss values

	    def _apply(self, fn):

	        """

	        Applies to(), cpu(), cuda(), half() etc.

	        to model tensors excluding parameters or registered buffers.

	        """

	        self = super()._apply(fn)

	        if self.pt:

	            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()

	            m.stride = fn(m.stride)

	            m.grid = list(map(fn, m.grid))

	            if isinstance(m.anchor_grid, list):

	                m.anchor_grid = list(map(fn, m.anchor_grid))

	        return self

	    @smart_inference_mode()

	    def forward(self, ims, size=640, augment=False, profile=False):

	        """

	        Performs inference on inputs with optional augment & profiling.

	        Supports various formats including file, URI, OpenCV, PIL, numpy, torch.

	        """

	        # For size(height=640, width=1280), RGB images example inputs are:

	        #   file:        ims = 'data/images/zidane.jpg'  # str or PosixPath

	        #   URI:             = 'https://ultralytics.com/images/zidane.jpg'

	        #   OpenCV:          = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(640,1280,3)

	        #   PIL:             = Image.open('image.jpg') or ImageGrab.grab()  # HWC x(640,1280,3)

	        #   numpy:           = np.zeros((640,1280,3))  # HWC

	        #   torch:           = torch.zeros(16,3,320,640)  # BCHW (scaled to size=640, 0-1 values)

	        #   multiple:        = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images

	        dt = (Profile(), Profile(), Profile())

	        with dt[0]:

	            if isinstance(size, int):  # expand

	                size = (size, size)

	            p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device)  # param

	            autocast = self.amp and (p.device.type != "cpu")  # Automatic Mixed Precision (AMP) inference

	            if isinstance(ims, torch.Tensor):  # torch

	                with amp.autocast(autocast):

	                    return self.model(ims.to(p.device).type_as(p), augment=augment)  # inference

	            # Pre-process

	            n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims])  # number, list of images

	            shape0, shape1, files = [], [], []  # image and inference shapes, filenames

	            for i, im in enumerate(ims):

	                f = f"image{i}"  # filename

	                if isinstance(im, (str, Path)):  # filename or uri

	                    im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith("http") else im), im

	                    im = np.asarray(exif_transpose(im))

	                elif isinstance(im, Image.Image):  # PIL Image

	                    im, f = np.asarray(exif_transpose(im)), getattr(im, "filename", f) or f

	                files.append(Path(f).with_suffix(".jpg").name)

	                if im.shape[0] < 5:  # image in CHW

	                    im = im.transpose((1, 2, 0))  # reverse dataloader .transpose(2, 0, 1)

	                im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)  # enforce 3ch input

	                s = im.shape[:2]  # HWC

	                shape0.append(s)  # image shape

	                g = max(size) / max(s)  # gain

	                shape1.append([int(y * g) for y in s])

	                ims[i] = im if im.data.contiguous else np.ascontiguousarray(im)  # update

	            shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)]  # inf shape

	            x = [letterbox(im, shape1, auto=False)[0] for im in ims]  # pad

	            x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2)))  # stack and BHWC to BCHW

	            x = torch.from_numpy(x).to(p.device).type_as(p) / 255  # uint8 to fp16/32

	        with amp.autocast(autocast):

	            # Inference

	            with dt[1]:

	                y = self.model(x, augment=augment)  # forward

	            # Post-process

	            with dt[2]:

	                y = non_max_suppression(

	                    y if self.dmb else y[0],

	                    self.conf,

	                    self.iou,

	                    self.classes,

	                    self.agnostic,

	                    self.multi_label,

	                    max_det=self.max_det,

	                )  # NMS

	                for i in range(n):

	                    scale_boxes(shape1, y[i][:, :4], shape0[i])

	            return Detections(ims, y, files, dt, self.names, x.shape)

	class Detections:

	    """Manages YOLOv5 detection results with methods for visualization, saving, cropping, and exporting detections."""

	    def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):

	        """Initializes the YOLOv5 Detections class with image info, predictions, filenames, timing and normalization."""

	        super().__init__()

	        d = pred[0].device  # device

	        gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims]  # normalizations

	        self.ims = ims  # list of images as numpy arrays

	        self.pred = pred  # list of tensors pred[0] = (xyxy, conf, cls)

	        self.names = names  # class names

	        self.files = files  # image filenames

	        self.times = times  # profiling times

	        self.xyxy = pred  # xyxy pixels

	        self.xywh = [xyxy2xywh(x) for x in pred]  # xywh pixels

	        self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)]  # xyxy normalized

	        self.xywhn = [x / g for x, g in zip(self.xywh, gn)]  # xywh normalized

	        self.n = len(self.pred)  # number of images (batch size)

	        self.t = tuple(x.t / self.n * 1e3 for x in times)  # timestamps (ms)

	        self.s = tuple(shape)  # inference BCHW shape

	    def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path("")):

	        """Executes model predictions, displaying and/or saving outputs with optional crops and labels."""

	        s, crops = "", []

	        for i, (im, pred) in enumerate(zip(self.ims, self.pred)):

	            s += f"\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} "  # string

	            if pred.shape[0]:

	                for c in pred[:, -1].unique():

	                    n = (pred[:, -1] == c).sum()  # detections per class

	                    s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string

	                s = s.rstrip(", ")

	                if show or save or render or crop:

	                    annotator = Annotator(im, example=str(self.names))

	                    for *box, conf, cls in reversed(pred):  # xyxy, confidence, class

	                        label = f"{self.names[int(cls)]} {conf:.2f}"

	                        if crop:

	                            file = save_dir / "crops" / self.names[int(cls)] / self.files[i] if save else None

	                            crops.append(

	                                {

	                                    "box": box,

	                                    "conf": conf,

	                                    "cls": cls,

	                                    "label": label,

	                                    "im": save_one_box(box, im, file=file, save=save),

	                                }

	                            )

	                        else:  # all others

	                            annotator.box_label(box, label if labels else "", color=colors(cls))

	                    im = annotator.im

	            else:

	                s += "(no detections)"

	            im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im  # from np

	            if show:

	                if is_jupyter():

	                    from IPython.display import display

	                    display(im)

	                else:

	                    im.show(self.files[i])

	            if save:

	                f = self.files[i]

	                im.save(save_dir / f)  # save

	                if i == self.n - 1:

	                    LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")

	            if render:

	                self.ims[i] = np.asarray(im)

	        if pprint:

	            s = s.lstrip("\n")

	            return f"{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}" % self.t

	        if crop:

	            if save:

	                LOGGER.info(f"Saved results to {save_dir}\n")

	            return crops

	    @TryExcept("Showing images is not supported in this environment")

	    def show(self, labels=True):

	        """

	        Displays detection results with optional labels.

	        Usage: show(labels=True)

	        """

	        self._run(show=True, labels=labels)  # show results

	    def save(self, labels=True, save_dir="runs/detect/exp", exist_ok=False):

	        """

	        Saves detection results with optional labels to a specified directory.

	        Usage: save(labels=True, save_dir='runs/detect/exp', exist_ok=False)

	        """

	        save_dir = increment_path(save_dir, exist_ok, mkdir=True)  # increment save_dir

	        self._run(save=True, labels=labels, save_dir=save_dir)  # save results

	    def crop(self, save=True, save_dir="runs/detect/exp", exist_ok=False):

	        """

	        Crops detection results, optionally saves them to a directory.

	        Args: save (bool), save_dir (str), exist_ok (bool).

	        """

	        save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None

	        return self._run(crop=True, save=save, save_dir=save_dir)  # crop results

	    def render(self, labels=True):

	        """Renders detection results with optional labels on images; args: labels (bool) indicating label inclusion."""

	        self._run(render=True, labels=labels)  # render results

	        return self.ims

	    def pandas(self):

	        """

	        Returns detections as pandas DataFrames for various box formats (xyxy, xyxyn, xywh, xywhn).

	        Example: print(results.pandas().xyxy[0]).

	        """

	        new = copy(self)  # return copy

	        ca = "xmin", "ymin", "xmax", "ymax", "confidence", "class", "name"  # xyxy columns

	        cb = "xcenter", "ycenter", "width", "height", "confidence", "class", "name"  # xywh columns

	        for k, c in zip(["xyxy", "xyxyn", "xywh", "xywhn"], [ca, ca, cb, cb]):

	            a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)]  # update

	            setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])

	        return new

	    def tolist(self):

	        """

	        Converts a Detections object into a list of individual detection results for iteration.

	        Example: for result in results.tolist():

	        """

	        r = range(self.n)  # iterable

	        return [

	            Detections(

	                [self.ims[i]],

	                [self.pred[i]],

	                [self.files[i]],

	                self.times,

	                self.names,

	                self.s,

	            )

	            for i in r

	        ]

	    def print(self):

	        """Logs the string representation of the current object's state via the LOGGER."""

	        LOGGER.info(self.__str__())

	    def __len__(self):

	        """Returns the number of results stored, overrides the default len(results)."""

	        return self.n

	    def __str__(self):

	        """Returns a string representation of the model's results, suitable for printing, overrides default

	        print(results).

	        """

	        return self._run(pprint=True)  # print results

	    def __repr__(self):

	        """Returns a string representation of the YOLOv5 object, including its class and formatted results."""

	        return f"YOLOv5 {self.__class__} instance\n" + self.__str__()

	class Proto(nn.Module):

	    """YOLOv5 mask Proto module for segmentation models, performing convolutions and upsampling on input tensors."""

	    def __init__(self, c1, c_=256, c2=32):

	        """Initializes YOLOv5 Proto module for segmentation with input, proto, and mask channels configuration."""

	        super().__init__()

	        self.cv1 = Conv(c1, c_, k=3)

	        self.upsample = nn.Upsample(scale_factor=2, mode="nearest")

	        self.cv2 = Conv(c_, c_, k=3)

	        self.cv3 = Conv(c_, c2)

	    def forward(self, x):

	        """Performs a forward pass using convolutional layers and upsampling on input tensor `x`."""

	        return self.cv3(self.cv2(self.upsample(self.cv1(x))))

	class Classify(nn.Module):

	    """YOLOv5 classification head with convolution, pooling, and dropout layers for channel transformation."""

	    def __init__(

	        self, c1, c2, k=1, s=1, p=None, g=1, dropout_p=0.0

	    ):  # ch_in, ch_out, kernel, stride, padding, groups, dropout probability

	        """Initializes YOLOv5 classification head with convolution, pooling, and dropout layers for input to output

	        channel transformation.

	        """

	        super().__init__()

	        c_ = 1280  # efficientnet_b0 size

	        self.conv = Conv(c1, c_, k, s, autopad(k, p), g)

	        self.pool = nn.AdaptiveAvgPool2d(1)  # to x(b,c_,1,1)

	        self.drop = nn.Dropout(p=dropout_p, inplace=True)

	        self.linear = nn.Linear(c_, c2)  # to x(b,c2)

	    def forward(self, x):

	        """Processes input through conv, pool, drop, and linear layers; supports list concatenation input."""

	        if isinstance(x, list):

	            x = torch.cat(x, 1)

	        return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))

	class SE(nn.Module):

	    def __init__(self,c1,c2,r=16):

	        super(SE,self).__init__()

	        self.avgpool = nn.AdaptiveAvgPool2d(1)

	        self.l1 = nn.Linear(c1,c1 //r,bias=False)

	        self.relu = nn.ReLU(inplace=True)

	        self.l2 = nn.Linear(c1 // r,c1,bias=False)

	        self.sig = nn.Sigmoid()

	    def forward(self,x):

	        print(x.size())

	        b,c,_,_=x.size()

	        y = self.avgpool(x).view(b,c)

	        y = self.l1(y)

	        y = self.relu(y)

	        y = self.l2(y)

	        y = self.sig(y)

	        y = y.view(b,c,1,1)

	        return  x*y.expand_as(x)

	# CA

	class h_sigmoid(nn.Module):

	    def __init__(self, inplace=True):

	        super(h_sigmoid, self).__init__()

	        self.relu = nn.ReLU6(inplace=inplace)

	    def forward(self, x):

	        return self.relu(x + 3) / 6

	class h_swish(nn.Module):

	    def __init__(self, inplace=True):

	        super(h_swish, self).__init__()

	        self.sigmoid = h_sigmoid(inplace=inplace)

	    def forward(self, x):

	        return x * self.sigmoid(x)

	class CoordAtt(nn.Module):

	    def __init__(self, inp, oup, reduction=32):

	        super(CoordAtt, self).__init__()

	        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))

	        self.pool_w = nn.AdaptiveAvgPool2d((1, None))

	        mip = max(8, inp // reduction)

	        self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)

	        self.bn1 = nn.BatchNorm2d(mip)

	        self.act = h_swish()

	        self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)

	        self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)

	    def forward(self, x):

	        identity = x

	        n, c, h, w = x.size()

	        # c*1*W

	        x_h = self.pool_h(x)

	        # c*H*1

	        # C*1*h

	        x_w = self.pool_w(x).permute(0, 1, 3, 2)

	        y = torch.cat([x_h, x_w], dim=2)

	        # C*1*(h+w)

	        y = self.conv1(y)

	        y = self.bn1(y)

	        y = self.act(y)

	        x_h, x_w = torch.split(y, [h, w], dim=2)

	        x_w = x_w.permute(0, 1, 3, 2)

	        a_h = self.conv_h(x_h).sigmoid()

	        a_w = self.conv_w(x_w).sigmoid()

	        out = identity * a_w * a_h

	        return out

	class stem(nn.Module):

	    def __init__(self,c1,c2,kernel_size=3,stride=1, groups=1):

	        super().__init__()

	        padding=(kernel_size-1)//2

	        self.conv = nn.Conv2d(c1, c2, kernel_size, stride, padding=padding, groups=groups, bias=False)

	        self.bn =nn.BatchNorm2d(c2,eps=1e-3,momentum=0.1)

	        self.act = nn.SiLU(inplace=True)

	    def forward(self, x):

	        print(x.shape)

	        x= self.conv(x)

	        x= self.bn(x)

	        x= self.act(x)

	        return x

	def drop_path(x,drop_prob: float = 0.,training: bool =False):

	    if drop_prob ==0. or not training:

	        return x

	    keep_prob = 1-drop_prob

	    shape = (x.shape[0],)+(1,)*(x.ndim - 1)

	    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)

	    random_tensor.floor_()# binarize

	    output = x.div(keep_prob) * random_tensor

	    return output

	class DropPath(nn.Module):

	    def __init__(self, drop_prob=None):

	        super(DropPath,self).__init__()

	        self.drop_prob = drop_prob

	    def forward(self,x):

	        return drop_path(x,self.drop_prob, self.training)

	class SqueezeExcite_efficientv2(nn.Module):

	    def __init__(self, c1, c2, se_ratio=0.25,act_layer=nn.ReLU):

	        super().__init__()

	        self.gate_fn = nn.Sigmoid()

	        reduced_chs =int(c1 * se_ratio)

	        self.avg_pool = nn.AdaptiveAvgPool2d(1)

	        self.conv_reduce =nn.Conv2d(c1, reduced_chs, 1, bias=True)

	        self.act1 =act_layer(inplace=True)

	        self.conv_expand =nn.Conv2d(reduced_chs, c2, 1, bias=True)

	    def forward(self,x):

	        x_se = self.avg_pool(x)

	        x_se = self.conv_reduce(x_se)

	        x_se = self.act1(x_se)

	        x_se = self.conv_expand(x_se)

	        x_se = self.gate_fn(x_se)

	        x = x * (x_se.expand_as(x))

	        return x

	class FusedMBConv(nn.Module):

	    def __init__(self, c1, c2, k=3, s=1, expansion=1, se_ration=0, dropout_rate=0.2, drop_connect_rate=0.2):

	        super().__init__()

	        self.has_shortcut = (s == 1 and c1 == c2)

	        self.has_expansion = expansion !=1

	        # expansion==1 

	        expanded_c = c1 * expansion

	        if self.has_expansion:

	            self.expansion_conv = stem(c1, expanded_c, kernel_size=k, stride=s)

	            self.project_conv = stem(expanded_c, c2, kernel_size=1, stride=1)

	        else:

	            self.project_conv = stem(c1, c2, kernel_size=k, stride=s)

	        self.drop_connect_rate = drop_connect_rate

	        if self.has_shortcut and drop_connect_rate > 0:

	            self.dropout = DropPath(drop_connect_rate)

	    def forward(self, x):

	        if self.has_expansion:

	            result = self.expansion_conv(x)

	            result = self.project_conv(result)

	        else:

	            result = self.project_conv(x)

	        if self.has_shortcut:

	            if self.drop_connect_rate >0:

	                result = self.dropout(result)

	            result += x

	        return result

	class MBConv(nn.Module):

	    def __init__(self, c1, c2, k=3, s=1, expansion=1, se_ration=0, dropout_rate=0.2, drop_connect_rate=0.2):

	        super().__init__()

	        self.has_shortcut = (s == 1 and c1 == c2)

	        expanded_c = c1 * expansion

	        self.expansion_conv = stem(c1, expanded_c, kernel_size=1, stride=1)

	        self.dw_conv = stem(expanded_c, expanded_c, kernel_size=k, stride=s, groups=expanded_c)

	        self.se = SqueezeExcite_efficientv2(expanded_c, expanded_c, se_ration) if se_ration > 0 else nn.Identity()

	        self.project_conv = stem(expanded_c, c2, kernel_size=1, stride=1)

	        self.drop_connect_rate = drop_connect_rate

	        if self.has_shortcut and drop_connect_rate > 0:

	            self.dropout = DropPath(drop_connect_rate)

	    def forward(self, x):

	        result =self.expansion_conv(x)

	        result=self.dw_conv(result)

	        result = self.se(result)

	        result = self.project_conv(result)

	        if self.has_shortcut:

	            if self.drop_connect_rate >0:

	                result = self.dropout(result)

	            result += x

	        return result

	class BiFPN_Add2(nn.Module):

	    def __init__(self, c1, c2):

	        super(BiFPN_Add2, self) .__init__()

	        self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)

	        self.epsilon = 0.0001

	        self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)

	        self.silu = nn.SiLU()

	    def forward(self, x):

	        w = self.w

	        weight = w / (torch.sum(w, dim=0) + self.epsilon)

	        return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1]))

	class BiFPN_Add3(nn.Module):

	    def __init__(self, c1, c2):

	        super(BiFPN_Add3, self) .__init__()

	        self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)

	        self.epsilon = 0.0001

	        self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)

	        self.silu = nn.SiLU()

	    def forward(self, x):

	        w = self.w

	        weight = w / (torch.sum(w, dim=0) + self.epsilon)

	        # Fast normalized fusion

	        return self.conv(self.silu(weight[0]*x[0] + weight[1] * x[1] + weight[2] * x[2]) )





Table S8. yolo.py code for adding network structure by PyCharm2021.3.1
	import argparse

	import contextlib

	import math

	import os

	import platform

	import sys

	from copy import deepcopy

	from pathlib import Path

	import torch

	import torch.nn as nn

	FILE = Path(__file__).resolve()

	ROOT = FILE.parents[1]  # YOLOv5 root directory

	if str(ROOT) not in sys.path:

	    sys.path.append(str(ROOT))  # add ROOT to PATH

	if platform.system() != "Windows":

	    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

	from models.common import (

	    C3,

	    C3SPP,

	    C3TR,

	    SPP,

	    SPPF,

	    Bottleneck,

	    BottleneckCSP,

	    C3Ghost,

	    C3x,

	    Classify,

	    Concat,

	    Contract,

	    Conv,

	    CrossConv,

	    DetectMultiBackend,

	    DWConv,

	    DWConvTranspose2d,

	    Expand,

	    Focus,

	    GhostBottleneck,

	    GhostConv,

	    Proto, stem, Shuffle_Block, SE, CoordAtt, FusedMBConv, MBConv, BiFPN_Add2, BiFPN_Add3,

	)

	from models.experimental import MixConv2d

	from utils.autoanchor import check_anchor_order

	from utils.general import LOGGER, check_version, check_yaml, colorstr, make_divisible, print_args

	from utils.plots import feature_visualization

	from utils.torch_utils import (

	    fuse_conv_and_bn,

	    initialize_weights,

	    model_info,

	    profile,

	    scale_img,

	    select_device,

	    time_sync,

	)

	try:

	    import thop  # for FLOPs computation

	except ImportError:

	    thop = None

	class Detect(nn.Module):

	    """YOLOv5 Detect head for processing input tensors and generating detection outputs in object detection models."""

	    stride = None  # strides computed during build

	    dynamic = False  # force grid reconstruction

	    export = False  # export mode

	    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):

	        """Initializes YOLOv5 detection layer with specified classes, anchors, channels, and inplace operations."""

	        super().__init__()

	        self.nc = nc  # number of classes

	        self.no = nc + 5  # number of outputs per anchor

	        self.nl = len(anchors)  # number of detection layers

	        self.na = len(anchors[0]) // 2  # number of anchors

	        self.grid = [torch.empty(0) for _ in range(self.nl)]  # init grid

	        self.anchor_grid = [torch.empty(0) for _ in range(self.nl)]  # init anchor grid

	        self.register_buffer("anchors", torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)

	        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv

	        self.inplace = inplace  # use inplace ops (e.g. slice assignment)

	    def forward(self, x):

	        """Processes input through YOLOv5 layers, altering shape for detection: `x(bs, 3, ny, nx, 85)`."""

	        z = []  # inference output

	        for i in range(self.nl):

	            x[i] = self.m[i](x[i])  # conv

	            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)

	            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

	            if not self.training:  # inference

	                if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:

	                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

	                if isinstance(self, Segment):  # (boxes + masks)

	                    xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)

	                    xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i]  # xy

	                    wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i]  # wh

	                    y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)

	                else:  # Detect (boxes only)

	                    xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)

	                    xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy

	                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh

	                    y = torch.cat((xy, wh, conf), 4)

	                z.append(y.view(bs, self.na * nx * ny, self.no))

	        return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)

	    def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, "1.10.0")):

	        """Generates a mesh grid for anchor boxes with optional compatibility for torch versions < 1.10."""

	        d = self.anchors[i].device

	        t = self.anchors[i].dtype

	        shape = 1, self.na, ny, nx, 2  # grid shape

	        y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)

	        yv, xv = torch.meshgrid(y, x, indexing="ij") if torch_1_10 else torch.meshgrid(y, x)  # torch>=0.7 compatibility

	        grid = torch.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5

	        anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)

	        return grid, anchor_grid

	class Segment(Detect):

	    """YOLOv5 Segment head for segmentation models, extending Detect with mask and prototype layers."""

	    def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True):

	        """Initializes YOLOv5 Segment head with options for mask count, protos, and channel adjustments."""

	        super().__init__(nc, anchors, ch, inplace)

	        self.nm = nm  # number of masks

	        self.npr = npr  # number of protos

	        self.no = 5 + nc + self.nm  # number of outputs per anchor

	        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv

	        self.proto = Proto(ch[0], self.npr, self.nm)  # protos

	        self.detect = Detect.forward

	    def forward(self, x):

	        """Processes input through the network, returning detections and prototypes; adjusts output based on

	        training/export mode.

	        """

	        p = self.proto(x[0])

	        x = self.detect(self, x)

	        return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1])

	class BaseModel(nn.Module):

	    """YOLOv5 base model."""

	    def forward(self, x, profile=False, visualize=False):

	        """Executes a single-scale inference or training pass on the YOLOv5 base model, with options for profiling and

	        visualization.

	        """

	        return self._forward_once(x, profile, visualize)  # single-scale inference, train

	    def _forward_once(self, x, profile=False, visualize=False):

	        """Performs a forward pass on the YOLOv5 model, enabling profiling and feature visualization options."""

	        y, dt = [], []  # outputs

	        for m in self.model:

	            if m.f != -1:  # if not from previous layer

	                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers

	            if profile:

	                self._profile_one_layer(m, x, dt)

	            x = m(x)  # run

	            y.append(x if m.i in self.save else None)  # save output

	            if visualize:

	                feature_visualization(x, m.type, m.i, save_dir=visualize)

	        return x

	    def _profile_one_layer(self, m, x, dt):

	        """Profiles a single layer's performance by computing GFLOPs, execution time, and parameters."""

	        c = m == self.model[-1]  # is final layer, copy input as inplace fix

	        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1e9 * 2 if thop else 0  # FLOPs

	        t = time_sync()

	        for _ in range(10):

	            m(x.copy() if c else x)

	        dt.append((time_sync() - t) * 100)

	        if m == self.model[0]:

	            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")

	        LOGGER.info(f"{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}")

	        if c:

	            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

	    def fuse(self):

	        """Fuses Conv2d() and BatchNorm2d() layers in the model to improve inference speed."""

	        LOGGER.info("Fusing layers... ")

	        for m in self.model.modules():

	            if isinstance(m, (Conv, DWConv)) and hasattr(m, "bn"):

	                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv

	                delattr(m, "bn")  # remove batchnorm

	                m.forward = m.forward_fuse  # update forward

	        self.info()

	        return self

	    def info(self, verbose=False, img_size=640):

	        """Prints model information given verbosity and image size, e.g., `info(verbose=True, img_size=640)`."""

	        model_info(self, verbose, img_size)

	    def _apply(self, fn):

	        """Applies transformations like to(), cpu(), cuda(), half() to model tensors excluding parameters or registered

	        buffers.

	        """

	        self = super()._apply(fn)

	        m = self.model[-1]  # Detect()

	        if isinstance(m, (Detect, Segment)):

	            m.stride = fn(m.stride)

	            m.grid = list(map(fn, m.grid))

	            if isinstance(m.anchor_grid, list):

	                m.anchor_grid = list(map(fn, m.anchor_grid))

	        return self

	class DetectionModel(BaseModel):

	    """YOLOv5 detection model class for object detection tasks, supporting custom configurations and anchors."""

	    def __init__(self, cfg="yolov5s_BiFPN.yaml", ch=3, nc=None, anchors=None):

	        """Initializes YOLOv5 model with configuration file, input channels, number of classes, and custom anchors."""

	        super().__init__()

	        if isinstance(cfg, dict):

	            self.yaml = cfg  # model dict

	        else:  # is *.yaml

	            import yaml  # for torch hub

	            self.yaml_file = Path(cfg).name

	            with open(cfg, encoding="ascii", errors="ignore") as f:

	                self.yaml = yaml.safe_load(f)  # model dict

	        # Define model

	        ch = self.yaml["ch"] = self.yaml.get("ch", ch)  # input channels

	        if nc and nc != self.yaml['nc']:

	            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")

	            self.yaml["nc"] = nc  # override yaml value

	        if anchors:

	            LOGGER.info(f"Overriding model.yaml anchors with anchors={anchors}")

	            self.yaml["anchors"] = round(anchors)  # override yaml value

	        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist

	        self.names = [str(i) for i in range(self.yaml["nc"])]  # default names

	        self.inplace = self.yaml.get("inplace", True)

	        # Build strides, anchors

	        m = self.model[-1]  # Detect()

	        if isinstance(m, (Detect, Segment)):

	            def _forward(x):

	                """Passes the input 'x' through the model and returns the processed output."""

	                return self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)

	            s = 256  # 2x min stride

	            m.inplace = self.inplace

	            m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))])  # forward

	            check_anchor_order(m)

	            m.anchors /= m.stride.view(-1, 1, 1)

	            self.stride = m.stride

	            self._initialize_biases()  # only run once

	        # Init weights, biases

	        initialize_weights(self)

	        self.info()

	        LOGGER.info("")

	    def forward(self, x, augment=False, profile=False, visualize=False):

	        """Performs single-scale or augmented inference and may include profiling or visualization."""

	        if augment:

	            return self._forward_augment(x)  # augmented inference, None

	        return self._forward_once(x, profile, visualize)  # single-scale inference, train

	    def _forward_augment(self, x):

	        """Performs augmented inference across different scales and flips, returning combined detections."""

	        img_size = x.shape[-2:]  # height, width

	        s = [1, 0.83, 0.67]  # scales

	        f = [None, 3, None]  # flips (2-ud, 3-lr)

	        y = []  # outputs

	        for si, fi in zip(s, f):

	            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))

	            yi = self._forward_once(xi)[0]  # forward

	            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save

	            yi = self._descale_pred(yi, fi, si, img_size)

	            y.append(yi)

	        y = self._clip_augmented(y)  # clip augmented tails

	        return torch.cat(y, 1), None  # augmented inference, train

	    def _descale_pred(self, p, flips, scale, img_size):

	        """De-scales predictions from augmented inference, adjusting for flips and image size."""

	        if self.inplace:

	            p[..., :4] /= scale  # de-scale

	            if flips == 2:

	                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud

	            elif flips == 3:

	                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr

	        else:

	            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale

	            if flips == 2:

	                y = img_size[0] - y  # de-flip ud

	            elif flips == 3:

	                x = img_size[1] - x  # de-flip lr

	            p = torch.cat((x, y, wh, p[..., 4:]), -1)

	        return p

	    def _clip_augmented(self, y):

	        """Clips augmented inference tails for YOLOv5 models, affecting first and last tensors based on grid points and

	        layer counts.

	        """

	        nl = self.model[-1].nl  # number of detection layers (P3-P5)

	        g = sum(4**x for x in range(nl))  # grid points

	        e = 1  # exclude layer count

	        i = (y[0].shape[1] // g) * sum(4**x for x in range(e))  # indices

	        y[0] = y[0][:, :-i]  # large

	        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices

	        y[-1] = y[-1][:, i:]  # small

	        return y

	    def _initialize_biases(self, cf=None):

	        """

	        Initializes biases for YOLOv5's Detect() module, optionally using class frequencies (cf).

	        For details see https://arxiv.org/abs/1708.02002 section 3.3.

	        """

	        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.

	        m = self.model[-1]  # Detect() module

	        for mi, s in zip(m.m, m.stride):  # from

	            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)

	            b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)

	            b.data[:, 5 : 5 + m.nc] += (

	                math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum())

	            )  # cls

	            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

	Model = DetectionModel  # retain YOLOv5 'Model' class for backwards compatibility

	class SegmentationModel(DetectionModel):

	    """YOLOv5 segmentation model for object detection and segmentation tasks with configurable parameters."""

	    def __init__(self, cfg="yolov5s-seg.yaml", ch=3, nc=None, anchors=None):

	        """Initializes a YOLOv5 segmentation model with configurable params: cfg (str) for configuration, ch (int) for channels, nc (int) for num classes, anchors (list)."""

	        super().__init__(cfg, ch, nc, anchors)

	class ClassificationModel(BaseModel):

	    """YOLOv5 classification model for image classification tasks, initialized with a config file or detection model."""

	    def __init__(self, cfg=None, model=None, nc=1000, cutoff=10):

	        """Initializes YOLOv5 model with config file `cfg`, input channels `ch`, number of classes `nc`, and `cuttoff`

	        index.

	        """

	        super().__init__()

	        self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)

	    def _from_detection_model(self, model, nc=1000, cutoff=10):

	        """Creates a classification model from a YOLOv5 detection model, slicing at `cutoff` and adding a classification

	        layer.

	        """

	        if isinstance(model, DetectMultiBackend):

	            model = model.model  # unwrap DetectMultiBackend

	        model.model = model.model[:cutoff]  # backbone

	        m = model.model[-1]  # last layer

	        ch = m.conv.in_channels if hasattr(m, "conv") else m.cv1.conv.in_channels  # ch into module

	        c = Classify(ch, nc)  # Classify()

	        c.i, c.f, c.type = m.i, m.f, "models.common.Classify"  # index, from, type

	        model.model[-1] = c  # replace

	        self.model = model.model

	        self.stride = model.stride

	        self.save = []

	        self.nc = nc

	    def _from_yaml(self, cfg):

	        """Creates a YOLOv5 classification model from a specified *.yaml configuration file."""

	        self.model = None

	def parse_model(d, ch):

	    """Parses a YOLOv5 model from a dict `d`, configuring layers based on input channels `ch` and model architecture."""

	    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")

	    anchors, nc, gd, gw, act, ch_mul = (

	        d["anchors"],

	        d["nc"],

	        d["depth_multiple"],

	        d["width_multiple"],

	        d.get("activation"),

	        d.get("channel_multiple"),

	    )

	    if act:

	        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()

	        LOGGER.info(f"{colorstr('activation:')} {act}")  # print

	    if not ch_mul:

	        ch_mul = 8

	    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors

	    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

	    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out

	    for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, args

	        m = eval(m) if isinstance(m, str) else m  # eval strings

	        for j, a in enumerate(args):

	            with contextlib.suppress(NameError):

	                args[j] = eval(a) if isinstance(a, str) else a  # eval strings

	        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain

	        if m in {

	            Conv,

	            GhostConv,

	            Bottleneck,

	            GhostBottleneck,

	            SPP,

	            SPPF,

	            DWConv,

	            MixConv2d,

	            Focus,

	            CrossConv,

	            BottleneckCSP,

	            C3,

	            C3TR,

	            C3SPP,

	            C3Ghost,

	            nn.ConvTranspose2d,

	            DWConvTranspose2d,

	            C3x,

	            stem,

	            Shuffle_Block,

	            GhostBottleneck,

	            GhostConv,

	            SE,

	            CoordAtt,

	            stem,

	            FusedMBConv,

	            MBConv,

	        }:

	            c1, c2 = ch[f], args[0]

	            if c2 != no:  # if not output

	                c2 = make_divisible(c2 * gw, ch_mul)

	            args = [c1, c2, *args[1:]]

	            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:

	                args.insert(2, n)  # number of repeats

	                n = 1

	        elif m is nn.BatchNorm2d:

	            args = [ch[f]]

	        elif m is Concat:

	            c2 = sum(ch[x] for x in f)

	        # TODO: channel, gw, gd

	        elif m in [BiFPN_Add2, BiFPN_Add3]:

	            c2 = max([ch[x] for x in f])

	        elif m in {Detect, Segment}:

	            args.append([ch[x] for x in f])

	            if isinstance(args[1], int):  # number of anchors

	                args[1] = [list(range(args[1] * 2))] * len(f)

	            if m is Segment:

	                args[3] = make_divisible(args[3] * gw, ch_mul)

	        elif m is Contract:

	            c2 = ch[f] * args[0] ** 2

	        elif m is Expand:

	            c2 = ch[f] // args[0] ** 2

	        else:

	            c2 = ch[f]

	        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module

	        t = str(m)[8:-2].replace("__main__.", "")  # module type

	        np = sum(x.numel() for x in m_.parameters())  # number params

	        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params

	        LOGGER.info(f"{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}")  # print

	        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist

	        layers.append(m_)

	        if i == 0:

	            ch = []

	        ch.append(c2)

	    return nn.Sequential(*layers), sorted(save)

	if __name__ == "__main__":

	    parser = argparse.ArgumentParser()

	    parser.add_argument("--cfg", type=str, default="yolov5s_BiFPN.yaml", help="model.yaml")

	    parser.add_argument("--batch-size", type=int, default=1, help="total batch size for all GPUs")

	    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")

	    parser.add_argument("--profile", action="store_true", help="profile model speed")

	    parser.add_argument("--line-profile", action="store_true", help="profile model speed layer by layer")

	    parser.add_argument("--test", action="store_true", help="test all yolo*.yaml")

	    opt = parser.parse_args()

	    opt.cfg = check_yaml(opt.cfg)  # check YAML

	    print_args(vars(opt))

	    device = select_device(opt.device)

	    # Create model

	    im = torch.rand(opt.batch_size, 3, 640, 640).to(device)

	    model = Model(opt.cfg).to(device)

	    # Options

	    if opt.line_profile:  # profile layer by layer

	        model(im, profile=True)

	    elif opt.profile:  # profile forward-backward

	        results = profile(input=im, ops=[model], n=3)

	    elif opt.test:  # test all models

	        for cfg in Path(ROOT / "models").rglob("yolo*.yaml"):

	            try:

	                _ = Model(cfg)

	            except Exception as e:

	                print(f"Error in {cfg}: {e}")

	    else:  # report fused model summary

	        model.fuse()
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