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1. NUMERICAL OPTIMIZATION OF THE CHANNEL CAPACITY AND THE DISCOVERY OF THE
Z3 SOURCE

The result of the optimization procedure described in the Methods is a density matrix pop¢ which is a local maximum
of the coherent information. For the point ¢, = 0.1, qy = 0.05 in the ORUM phase diagram, an optimization trace
is shown in Fig. Sla showing smooth monotonic trajectory with a few small bumps along the way that presumably
correspond to other nearby local maxima or saddlepoints. We then plot the density matrix p,,¢ in Fig. S1b as an
image, finding that each matrix element has either zero magnitude or a magnitude of 1/2, where N is the number of
qubits in the system. Each non-zero matrix element has a phase which is 0 along the diagonal and generally non-zero
in the off-diagonal elements. A quick computation of the purity reveals Tr ngt = 1/2. By converting the two and
column indices of the non-zero elements to binary, we find that they either correspond to two numbers with an even
number of ones in the binary strings or an odd number of ones. We go into further detail in Section 2. In this
way, optimization has revealed optimal input density matrices that represent encoded information with a surprising
simplicity.

We numerically optimize the coherent information over all possible input density matrices to the ORUM channels.
By using PyTorch [72] to implement the density matrix and channel superoperators, we optimize using autograd
techniques familiar in machine learning together with a careful attention to preserving the norm of the density
matrix. In the Methods section, we present details on how this optimization was carried out and on how we analyzed
the resulting optimal density matrices to discover the Zs source. Similarly, in Fig. S1, we present the optimization
trace as well as the optimal density matrix that corresponds to the Zs source.
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FIG. S1. Discovery of the Z, source for N = 2. a optimization trace showing the rise of the coherent information I. as a
function of the gradient ascent optimization step. b An image plot of the (16 x 16) density matrix, corresponding to 2 system
and 2 reference qubits, elements with white corresponding to zero matrix elements and color corresponding to matrix elements
with a magnitude of 1/16 and phase given by the color. The light blue matrix elements have zero phase, the light red matrix
elements have a phase of m while all other colors are some other values of the phase between 0 and 2.
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2. Z> SOURCE AS A SPIN LIQUID

The Zsy code optimal density matrix, found in section 1, is defined as follows. Let |even)g be the state

1 . .
leven) g = W(|00...000>s +¢€'1100...011)s + €*2[00...101)g +...) (S1)

where the sum extends over all basis states of the system |z)g with an even number of 1’s in the bit string x, each
state having an arbitrary phase ¢;. Then define the state |odd)s to be the state

1 . ,
W(|00...001>S +¢'%2100...010)s + €**|00...100)s + ... ), (S2)

‘Odd>5 =
where the sum extends over all basis states of the system |z) s with an odd number of bit strings, again each state having

an arbitrary phase. Then, we can define a purification of this state observed in the quantum capacity calculations to
be

1

WJZ2>RS = (|0>R ® |even>s + |1>R & |Odd>s) . (83)

S

2

and tracing over R shows us this state is

1
PZ,.8 = §(|even>ss<even\ + |odd) s s{odd|) (S4)

The arbitrary phases that enter the purification suggest the existence of a gauge symmetry. Applying the unitary
transformation U ({6;}) = ¢’ 25075 with n; = (14 Z;)/2 just alters the phases ¢1, ¢2, etc. in |even)s. Applying a
similar transformation but with ny = (1 — Z1)/2, n; = (1 + Z;)/2, j > 2 to |odd) g similarly alters its phases. But if
we set 0; = 7, then we find |even)s — |even)s and |odd)s — —|odd)s which leaves pz, ¢ invariant.

To show ORUM has a gauge symmetry, let us first define it more carefully. We can write the two-qubit depolarizing
channel as

Uij(p) =1 —q)p+q Z TiaTjbPTiaTjb (S5)
a,b

where 7;, are the identity and three Pauli operators I;, X;, Y;, Z; on site i indexed by a. We can also write the
one-qubit dephasing channel as

Zi(p) = (1 —q)p+aZipZ; (S6)
Then, if we pass a gauge-transformed state U({0,})pUT({6;}) through the ORUM quantum channel, we find
Zi (U0 DU ({0;}) = U0 D Z:(mUT({0;3) (S7)
and
Usivr (U0 DU ({6;}) = U0 Uii1(0)UT ({65} (S8)

for U({0; N TiaTis 15U ({6;}) = TiaTii1, amounts to rotating the Pauli operators to a new local basis which still
preserves the one-design property of these unitaries. Namely, after the gauge transformation, our expression for I; ;41
has a different set of Kraus operators which define the same channel (Krauss operators are not unique). Hence, the
phases we find numerically in |even)s and |odd)g are a consequence of a U(1)®™ gauge symmetry.

As a result of the gauge symmetry, the Zs source is like a Zo spin liquid, it breaks the U(1) gauge symmetry of the
dynamics down to the global Zy symmetry of pz, s.

3. SIMILARITIES BETWEEN QUANTUM CAPACITY AND THE MAXIMUM ENTROPY PRINCIPLE

In 1957, Jaynes, inspired by Shannon’s invention of information theory [73], rederived statistical mechanics from
an information perspective via the maximum entropy principle [74, 75]. This principle states that the entropy is
maximized in equilibrium, subject to constraints of what is known about a system. Here we revisit this principle
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for quantum statistical mechanics to draw attention of the similarity between it and the quantum capacity theorem
discussed in the main text.

The extension from classical statistical mechanics to quantum statistical mechanics was likely recognized immedi-
ately after Jaynes’s papers, and a good early discussion on the topic is present in Douglas J. Scalopino’s thesis [76].
One modern accessible reference is John Preskill’s notes on quantum Shannon theory [77], where the Gibbs state
is derived from a free energy minimization principle, but the focus of this treatment is on information theory, not
statistical mechanics.

The maximum entropy principle states that the entropy should be maximized subject to known constraints. For
a closed statistical mechanics system, the von Neumann entropy, viewed as a function of the density matrix, is
constrained by the known energy F = Tr pH of the system fixed by the initial conditions. We want to maximize the
entropy with respect to varying p while maintaining the energy constraint. But, since p itself is not a simple matrix
but one defined by additional constraints, we need to view it as a general matrix subject to the additional unit trace
Trp = 1, hermiticity pf = p, and non-negativity p > 0 constraints. Since hermiticity can be handled by imposing
it directly on p and non-negativity can be checked after an optimum is found, this just amounts to the requirement
of imposing a unit trace. Hence, we can proceed by imposing just two constraints using the method of Lagrange
multipliers.

We begin with the functional:

S=—-kpTrplogp—a(Trp—1)—kpf(TrpH — E) (S9)

When p obeys both constraints, this functional is the entropy. A natural solution is Boltzmann’s equal a priori
probabilities, the mixed state p of all states with TrpH = F, i.e.

p(E) = g0a(H — F) (S10)

where Q@ = Trda(H — E) and da is a regularized delta-function of the Hamiltonian matrix H minus E with an energy
width or cutoff A.

An alternative solution, which avoids a singular distribution, is to change variables from energy F to temperature
T via a Legendre transformation

F=FE—-TS=TrpH + kT Trplogp+Ta(Trp—1), (S11)

where we set the Lagrange multiplier 8 = 1/kgT. Taking the derivative with respect to complex variable p;;, with
pji = pj; treated as a separate variable, we obtain

F
0 =TrFE;;H + kT Tr E;;log p + kBTTrpaa

logp+TaTr E;; S12
Ipij Pij ’ (512)

where E;; = 0p/0p;; is the matrix with matrix element ij equal to one, i.e. (E;;);; = 1, and all others zero. To make
sense of this expression, we need to work out the derivative of log p.
Defining the log of p using a Taylor series

logp:log(IJr(pr)):pflf%(p71)2+é(p71)3+..., (S13)

the derivative is

logp = Ez‘j—%(Eij(P—I)Jr(P—I)Ez‘j)JF (Eij(p =D+ (p = DEij(p—1)+ (p = I)’Eyj) + ... (S14)

w|

0
Opij

Multiplying this expression by p, taking the trace, and exploiting the cyclic property of the trace, we arrive at

0
Trpa —log p = Tr pEy; (I-(p—D+((p-1>%-..). (S15)

plj

Recognizing this as a geometric series we see it simplifies to

Tr p@i- .
i

1 _
logp = TrpEijm =TrpE;jp ' =Tr By (S16)
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Hence, we obtain

oF
Opij

Now performing the trace leaves us with the matrix equation

oF

Tp‘- = Hji + kBT(logp)ji + (kB + a)T(SZ-j =0 (818)
i

H+kpTlogp+ (kg +)TT =0 (S19)

with solution p = %e’ﬁH with Z = e~ (#5347 chosen to satisfy Trp = 1. In this way, we see that the maximum
entropy principle is a derivation of statistical mechanics from a quantum information theory principle.

4. MEASUREMENT-INDUCED PHASE TRANSITION
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FIG. S2. Purification in monitored circuits a, Four layers of a monitored circuit (top), commonly used to study
measurement-induced phase transition (MIPT), consisting of random 2-qubit unitaries (blue rectangles) and interspersed mea-
surement gates (red squares) inserted with some measurement probability p. b, The purification phase diagram of a random
Clifford model with the maximally mixed initial state. Below the critical point (p < p.), the purification time diverges with
the system size, whereas, for p > p., the maximally mixed state purifies at constant time.

The viewpoint of coding transition has been valuable to understanding measurement-induced phase transitions
(MIPT) [43, 44]. MIPT arises due to a dynamical interplay between unitary gates vs. projective measurements,
resulting in an entanglement phase transition from a volume law to an area law scaling of the entanglement entropy
[39-42]. Furthermore, these transitions are also reflected in the divergence of purification time for a mixed initial
state. This is a coding transition, as the purification signifies that the system no longer carries information about the
initially entangled reference [43, 44]. While all states ultimately purify under monitored dynamics, they can reliably
transmit quantum information for exponentially long timescales relative to system size. This phenomenon is captured
in the system’s coherent information, a key measure of its capacity to carry quantum information [50]. While the
coding transition provides an alternative perspective to MIPT, observing it experimentally is still challenging due to
the exponential sampling complexity of post-selection [78-80]. Nevertheless, identifying coding transitions by viewing
the measurement-driven circuit as a noisy quantum channel generically doesn’t require post-selection.

A typical circuit used to observe MIPT is shown in Fig. S2a (top), which consists of a “brickwork” circuit of two-
qubit unitaries from, for instance, random Clifford ensemble interspersed with single-qubit measurements in the Z-
basis. Starting from a pure state, the probability of measurement p, continuously drives the steady-state entanglement
entropy from a volume-law to an area-law scaling [39—41]. However, one can also start from a mixed state, for instance,
the maximally mixed state, resulting from an initial entanglement of the system S with a reference R. Although for
any p > 0, the system purifies at exponentially long times, the purification time exhibits two distinct behaviors. Above
a critical measurement probability p., the purification time is constant, whereas it sharply diverges with respect to
the system size for p > p. (bottom). The p. for the purification phase transition has been found to be the same as p,.
for MIPT [43]. The purification transition is a “coding transition” because the system transitions from transmitting
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FIG. S3. Coherent information along gy = 0. Coherent information of a, the maximally mixed code and b, the Zs source
along the line g = 0. Fort both the codes I. vanishes at the multicritical point (¢z,qu) = (0.5,0).

finite quantum information via the maximally mixed state to transmitting zero quantum information. The coherent
information I. = S(p's) — S(prs) reflects the ability of an initial state prg to transmit quantum information through
a channel £.

Our work examines the coherent information by passing various states through the channel £. The maximum
coherent information defines the channel capacity, see Eq. (1). The trajectories generated by the quantum channel,
which is often expressed in an operator-sum representation with Kraus operators, are quantitatively different from
those produced by the original channel. A given channel can have many Kraus representations, so the procedure
for generating trajectories is not unique if we take the channel as the fundamental dynamical law. For instance, a
N-qubit depolarization channel can be defined as a sum over either Pauli, Clifford or the Haar-random unitaries as
long as they form a 1-design. At a trajectory level, the entanglement phase transition for the Haar-random case has a
higher p. compared to the Clifford case. However, there is no transition in the entanglement phase in the Pauli case.

5. ANALYTICAL STUDY OF THE TRICRITICAL POINT

In this section, we analytically study the coherent information for the two types of sources in the coding regions
near the tricritical point located at (¢z,qu) = (1/2,0). By restricting our analysis to the axis gy = 0, the Open
Random Unitary Model (ORUM) simplifies to a pure dephasing channel, rendering the spectrum of the output
density matrices analytically tractable. We explicitly derive the coherent information I.(¢qz) for both the symmetry-
respecting maximally-mixed source and the symmetry-breaking Zs source. Explicit derivation of coherent information
via statistical mechanics mapping for more sophisticated QEC codes subject to various other noise models can be
found in Refs [81-83]. Our derivation demonstrates that both quantities vanish at the critical threshold ¢z = 1/2
and, crucially, that the channel capacity remains infinitely differentiable along this trajectory, showing the continuous
nature of the zero-capacity critical point observed in the numerical optimization.

5.A. Coherent Information of the maximally mixed code along qu =0

Consider a single qubit in the maximally mixed state p; = I/2. We purify this state with a reference qubit R into
the Bell state in the X-basis:

©) s = % (5 s + 1-)r 1-)s) - (520)

The single-qubit dephasing channel M applies the Pauli-Z operator with probability p = ¢/2. In the X-basis, the Z
operator acts as a bit-flip: Z|+) = |-) and Z|—) = |+). The action of the channel on the system qubit maps the
initial state |®T) 54 to the orthogonal state |¥¥) .-

1

(I®2)[0%) = 7 () r1=)s +12)R1H)s) =¥7) g (S21)
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Thus, the output joint state is a classical mixture of these two orthogonal Bell states:
Prs = (1—az) [®7) (®F| + ¢z [¥F) (¥F]. (S22)

Since |®T) and |[¥T) are orthogonal, the von Neumann entropy is simply the Shannon entropy of the mixing proba-
bilities:

S(Prs) = H (¢z) = —qzlogyaz — (1 — qz)logy (1 — qz) . (S23)

The reduced state of the system remains maximally mixed, ply = I/2, with entropy S(ps) = 1. The single-qubit
coherent information is therefore 1 — H(gz). For the full system of n qubits, the result is:

I(gz) =n[l - H (¢z)]. (S24)

We show the plot for I./n in Fig. S3a

5.B. Coherent information of the Z: source along qu =0

The coherent information of the ORUM channel for the Zs source at qy = 0 can be computed analytically by
determining the exact spectrum of the output density matrix. We consider the Zs source state:

[0z, s = %(|++-~-+>Rs+|——---—>Rs>- (525)

Tracing out the reference system R yields the mixed system state:

pras = 5 (o) (bl = =) (== o). (526)

1
2

Here, we consider the gy = 0 caase, so a code p passes through n-uses of the single-qubit channel

pr=M(p)=(1-qz)p+qzZpZ. (S27)
After n-uses, we obtain
pr=M"p) =" (1-42)""(a2)">_ Zg,pZg,, (S28)
k=0 By

where the inner sum runs over all (Z) error configurations Ej consisting of Pauli-Z operators acting on k qubits. We

define the probability weight for a weight-k error as:

Bk, q) = (1—q2)" " (42)". (529)

To find the spectrum of p’, we analyze the action of the errors on the code basis states. Recall that the Pauli-Z
operator flips the X-basis states: Z |[+) = |—) and Z|—) = |+). Let x € {+, —}" denote a basis string in the X-basis.

e When a weight-k error Zg, acts on the term |+---+4) (+--- 4|, it generates a state |xj) (xi| where the string
X1, has exactly k£ minus signs.

e When a weight-j error Zg, acts on the term |—---—) (—---—|, it generates a state |x;> <x;| where the string
x’; has j plus signs (and thus n — j minus signs).

The output density matrix p’ is diagonal in this {|x)} basis. Consider a specific basis state |x) containing k minus
signs. This state is populated by two sources:

1. From the |+ - --+4) branch: via an error of weight k. This occurs with probability 33(k, ).

2. From the |—---—) branch: via an error of weight n — k. This occurs with probability %ﬂ(n —k,qz).
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Thus, the eigenvalues of p’Z% g depend only on the Hamming weight % of the basis state:

1

Ak = 3 (B(k,qz) +B(n—k,qz)). (S30)

Since there are (:) such states for each weight k, the von Neumann entropy is:

S s) = — Z ( )Ak loga (M)

_ _Z < ) B(k,qz) g(n— k,qz) log, (5(797(12) +§(n - kaQZ)) . (S31)

Next, we calculate the joint entropy S(p7, pg). Since the reference + system states |+---+) and |----—) are
orthogonal, they effectively label the two branches. The channel action does not mix these branches in the joint
basis. The joint density matrix is block diagonal, equivalent to a classical mixture of the two error distributions. The
eigenvalues are simply % B(k,q) (occurring twice for each k, once for each branch). However, since we sum over the
full distribution which is normalized, this simplifies to the Shannon entropy of the error distribution:

S(o, 1) Z( ) B(k, az) loga Bk, 42)) = H(B). (s32)
2

Finally, the coherent information I. = S(p7, 5) — S(p7, ps) is given explicitly by:

az) = Y- (1) [900.a2) o Bk a2) ~ Mlogs M. (539
k=0

We plot this expression in Fig. S3b, where we can see that I for the Zs source vanishes sharply at the critical point. In
Fig. S3a, we saw that the coherent information of the maximally mixed state vanishes smoothly at the critical point.
Indeed, all three phases, namely, the Z, source coding phase, the maximally-mixed coding phase, and the no-coding
phase, all meet together at this critical point; hence, it is a tri-critical point. Furthermore, in the limit of infinitely
many uses, the maximally-mixed code maximizes the coherent information infinitesimally close to the critical point,
so the channel capacity is also given by Fig. S3, an infinitely differentiable function.
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