Supporting Information

Synergistic light management and interface engineering of

SnO₂ for scalable, high-performance air-processed

perovskite solar cells

Bowen Li^{1, 6}, Yiming Liu^{1, 6}, Ziwei Zheng^{2, 6}, Yequan Xiao^{1*}, Chunxiang Lan³, Tian Zhang³, Li Guan⁴, Peng Xiang¹, Rui Guo², Yingying Shi³, Miaomiao Zeng³, Kunyuan Zheng¹, Pengfei Liu¹, Hao Xiong¹, Yiteng Tu¹, Jing Guo^{2, 5*}, Xiong Li^{2, 3*} and Xinyu Tan^{1*}.

- ¹ Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, College of Materials Science and Engineering, College of Electrical Engineering & New Energy, China Three Gorges University Yichang, Hubei 443002, P. R. China.
- ² School of Physics and Optoelectronic Engineering, Hainan University, Haikou, 570228, P. R. China
- ³ Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
- Department of Physics Science and Technology, Hebei University, Baoding, 071000,
 P. R. China
- ⁵ Center for Advanced Studies in Precision Instruments, Hainan University, Haikou, 570228, P. R. China
- ⁶ These authors contributed equally: Bowen Li, Yiming Liu, Ziwei Zheng.

*Corresponding authors:

Email: <u>xiaoyequan@ctgu.edu.cn</u>(Yequan Xiao); <u>guojing@hainanu.edu.cn(</u>Jing Guo);

xiongli@hust.edu.cn (Xiong Li); tanxin@ctgu.edu.cn (Xinyu Tan).

Methods

Chemicals

The SnO₂ nanoparticle precursor (tin (IV) oxide, 15% in H₂O colloidal dispersion), L-histidine (His) and L-Histidine monohydrate monohydrochloride (His-HCl·H₂O) were purchased from Alfa Aesar. DI water, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), chlorobenzene (CB), isopropanol (IPA), acetonitrile (ACN) and benzotrifluoride (TFMB) were purchased from Thermo Fisher. Lead iodide (PbI₂), lead chloride (PbCl₂), cesium Iodide (CsI), formamidinium iodide (FAI), methylammonium chloride (MACl), 4-tertbutylpyridine (tBP), bis (triflfluoromethane) sulfonamide lithium salt (Li-TFSI), and(2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) were purchased from Advanced Election Technology Co,. Ltd. (China). 4-Methoxyphenethylammonium Iodide (p-MeOPEAI) was purchased from Xi'an Polymer Light Technology Corp (China). Au pellets were purchased from Liaoning Huite Optoelectronic Technology Co., Ltd.

Fabrication of NC-SnO₂ layer

The ITO substrate was cleaned by sonicating in Hellmanex solution, DI water, EtOH, and IPA for 15 min each. The NC-SnO₂ (4.4mg mL⁻¹; pH \approx 7.5) precursor was prepared by mixing 528 µL of His-HCl·H₂O solution in water (10mg ml⁻¹), 472 µL of H₂O, 200 µL of SnO₂ nanoparticle precursor. Regarding 4.0 mg mL⁻¹ and 4.8 mg mL⁻¹ NC-SnO₂, the His-HCl·H₂O aqueous solution was adjusted to 480 µL and 576 µL, and the corresponding H₂O was adjusted to 520 µL and 424 µL respectively, the SnO₂ nanoparticle precursor was maintained at 200 µL. The precursor should be stirred well for at least 2 hours before use. The NC-SnO₂ precursor was deposited via spin coating at 5000 rpm for 30 seconds (3000 rpm ramp). In particular, we recommend loading the fresh NC-SnO₂ precursor into a syringe equipped with a 0.22 µm PTFE filter, spreading the precursor directly on the ITO glass via the syringe and then spin coating. The

ITO/SnO₂ substrate was annealed in an ambient environment (RH \approx 35%) at 150 °C for 30 min and oxygen plasma treated.

For the conventional ETL, SnO_2 nanocrystal colloidal solution was using diluted SnO_2 nanoparticle solution (SnO_2 nanoparticle precursor:DI water = 1:5). The other preparation procedures were consistent with the NC- SnO_2 layer.

Device fabrication

Before spin coating the perovskite, we transferred the ITO/SnO₂ substrate to a humidity-controlled air environment (RH≤5%). We used an FA_{0.95}Cs_{0.05}PbI₃ perovskite composition with excess PbI₂ and PbCl₂ stoichiometry (3 mol% and 6 mol%), the perovskite solution was prepared by mixing 1.442 M PbI₂, 0.084 M PbCl₂,1.33 M FAI, 0.07 M CsI and 0.42 M MACl in DMF:DMSO=4:1. The perovskite solution was deposited via spin coating at 4500 rpm for 25 seconds (1500 rpm ramp). At 17 s, 150 μ L of mixed antisolvent (CB:TFMB = 95:5) was deposited onto the substrate. Next, the substrate with wet perovskite film was quickly transferred to RH≈35% air for annealing at 150°C for 20min. For the 2D perovskite passivation, 40 µL of p-MeOPEAI (2mg/mL in IPA) was deposited at 5000 rpm for 30 sec and annealed at 100 °C for 5 min. The hole transporting layer (HTL) was deposited by preparing the HTL solution according to the Li-TFSI doped Spiro-OMeTAD. Conventionally, 72.3 mg of Spiro-OMeTAD, 17.5 μL Li-TFSI stock solution (520 mg Li-TFSI in 1 mL ACN), 28.8 μL tBP were added in 1 ml of CB. The HTL solution was spin-coated at 4000 rpm for 30 sec with a ramp of 2000 rpm/sec. The p-MeOPEAI and HTL solution deposition were performed in an air environment with a humidity of≤5%. The Au electrode (80 nm) was deposited by thermal evaporation.

Module fabrication

The perovskite solar module consisted of six perovskite sub-cells connected in series on a 6 cm \times 6 cm substrate. Between each sub-cell, P1 line was laser-scribed (20 W, 1064 nm, 30 kHz) with a width of \sim 100 μ m. The ETL, perovskite and HTL were prepared with the same process as used for cell fabrication. After depositing the ETL,

perovskite layer and HTL, P2 line with a width $\sim 100~\mu m$ was laser-scribed. Finally, a gold electrode with a thickness of 80 nm was deposited by thermal evaporation, and etched by mechanical scribing (P3, width $\sim 100~\mu m$) to form the typical series-connection of PSMs 1,2 .

Device Characterization

Current density-voltage (J-V) curves were recorded using a solar simulator (Newport, Oriel Class AAA, 91195A) and a source meter (Keithley 2400). The illumination was set to AM1.5G and calibrated to 100 mW/cm² using a calibrated silicon reference cell. The step voltage was 10 mV. The active area was controlled by using a dark mask with a defined aperture. External Quantum Efficiency (EQE) is measured using a lab-built system with a monochromator, 150W Xenon-arc lamp (model 66902), an mHz-kHz Chopper Controller (model 75160), and a Merlin lock-in detector (model 70105) from Newport Optical Instruments U.S.A. Before each measurement, the system is calibrated with a Si photodiode from Thorlabs (FDS1010) under 300-900 nm wavelength. Experimental data is then acquired with an interval wavelength of 5 nm and a time delay of 100 ms. The operational stability tests were carried out at the maximum power point (MPP) for the unencapsulated cells under AM 1.5G 1 sun continuous illumination in nitrogen (N2) atmosphere which was produced by a LED-lamp-based solar simulator. The surface temperature of cells was controlled to be 30±3 °C. The bias at the MPP was calculated and applied automatically. The light intensity was calibrated by a standard silicon reference cell from Newport.

Grazing Incidence Wide Angle X-ray Scattering (GIWAXS)

The GIWAXS measurements were performed at BL03HB beamline of the Shanghai Synchrotron Radiation Facility (SSRF). X-ray with a wavelength of 1.238 Å was utilized for incident-angle-depending measurements, and the incident angle was fixed at 0.2° and 0.6° .

Dynamic Light Scattering (DLS) measurement

The particle size information of SnO₂, His-SnO₂ and NC-SnO₂ precursors after sufficient stirring was tested using a DLS particle size analyzer (Malvern; Zetasizer Nano ZS).

Scanning Electron Microscopy (SEM)

SEM images were recorded using a Nova Nano SEM 450 FP2053/45 in the HUST. Optoelectronic micro&nano fabrication and characterizing facility.

AFM and c-AFM measurements

The ω_0 resonance frequency and spring constant of the AFM probe are approximately 75 kHz and 2.8 N m⁻¹. For the c-AFM mode, it is based on the contact mode. At the same time, a 500 mV bias is applied, the sample stage is grounded, and the current passes through the probe and the feedback loop to form a current graph.

Optical index (n, k value) measurements

The measurements of refractive index (n value) and extinction coefficient (k value) were recorded using a Ellipsometer (RC2, J. A. WOOLLAM) in the HUST. Optoelectronic micro&nano fabrication and characterizing facility, and the thickness of the film was calibrated by cross-sectional SEM and step profiler.

Reflectivity measurement

The reflectivity of Glass/ITO/SnO₂, His-SnO₂ or NC-SnO₂/PVSK was measured using a UV/Vis/NIR Spectrophotometer (PerkinElmer; Lambda 1050+) in the HUST. Optoelectronic micro&nano fabrication and characterizing facility, with glass on the incident side, and the average transmittance under the AM1.5G spectrum was calculated.

The average transmittance in the wavelength range λ_1 - λ_2 and visible light can be calculated by the following equation ³⁻⁵:

$$\overline{T}_{(\lambda_1 - \lambda_2)} = \frac{\int_{\lambda_1}^{\lambda_2} \tau(\lambda) I_{AM.1.5G}(\lambda) d\lambda}{\int_{\lambda_1}^{\lambda_2} I_{AM.1.5G}(\lambda) d\lambda},\tag{1}$$

$$\overline{T}_{VIS} = \frac{\int_{400nm}^{800nm} \tau(\lambda) I_{AM.1.5G}(\lambda) d\lambda}{\int_{400nm}^{800nm} I_{AM.1.5G}(\lambda) d\lambda},$$
(2)

here, $\overline{T}_{(\lambda_1-\lambda_2)}$ is the transmittance of sample, a weighted average value. λ is the wavelength. $\tau(\lambda)$ is the transmittance of sample. $I_{\text{AM.1.5}}(\lambda)$ represents the solar illumination of the AM 1.5 spectrum. $d\lambda$ is wavelength interval. $\overline{T}_{\text{VIS}}$ is the average visible light transmittance.

The average solar reflectance (\overline{R}_{Solar}) is defined as shown in equation (3):

$$\overline{R}_{Solar} = \frac{\int_{0.3\,\mu m}^{2.5\,\mu m} I_{Solar}(\lambda) R(\lambda) d\lambda}{\int_{0.3\,\mu m}^{2.5\,\mu m} I_{Solar}(\lambda) d\lambda},\tag{3}$$

where λ is the solar wavelength, $I_{Solar}(\lambda)$ is the normalized ASTM G173 global solar spectrum, and $R(\lambda)$ is the sample's spectral reflectance. Similarly, the thermal emittance $\bar{\epsilon}_{(\lambda_1-\lambda_2)}$ is defined as shown in equation (4):

$$\overline{\varepsilon}_{(\lambda_1 - \lambda_2)} = \frac{\int_{\lambda_1}^{\lambda_2} I_{bb}(T, \lambda) \overline{\varepsilon}(T, \lambda) d\lambda}{\int_{\lambda_1}^{\lambda_2} I_{bb}(T, \lambda) d\lambda},\tag{4}$$

where $\bar{\varepsilon}(T,\lambda)$ is the sample's spectral emittance and $I_{bb}(T,\lambda) = \frac{2c^2h}{\lambda^5} \frac{1}{e^{\frac{\hbar c}{\lambda k_B T}} - 1}$ is indicating the solar intensity of the blackbody at the temperature T^6 .

Fourier transform infrared (FTIR)

Infrared absorption spectra of the samples were collected using an FT-IR Spectrometer (VERTEX 80v, Bruker) with a collimated UltraScan interferometer, collecting spectra at a spectral resolution of 0.06 cm-1.

XPS and UPS measurements

X-ray photoelectron spectra (XPS) and ultraviolet photoelectron spectra (UPS) measurements were carried out on a Thermo-Fisher ESCALab 250Xi system with a monochromatized Al K α (for XPS mode) under the pressure of 5.0×10-7 Pa.

Kelvin probe force microscopy (KPFM) measurement

Kelvin probe force microscopy (KPFM) measurements were conducted using an atomic force microscopy measurement system (Flex-Mount, Nanosurf).

Photoluminescence (PL) spectroscopy measurement

PL spectra were collected thought a Raman spectrometer (LabRAM HR Evolution, France) under an excitation of 532 nm.

TPV and TPC measurements

TPV and TPC measurements were performed as follows: the devices were illuminated with a laser pulses (532 nm, 100 mJ, 6 ns width from an Nd:YAG laser), and then the decay of signals was collected through a 1 GHz Agilent digital oscilloscope (DSO-X3102A) with the input impedance of 1 M Ω /50 Ω .

The Space-Charge-Limited Current (SCLC) measurements

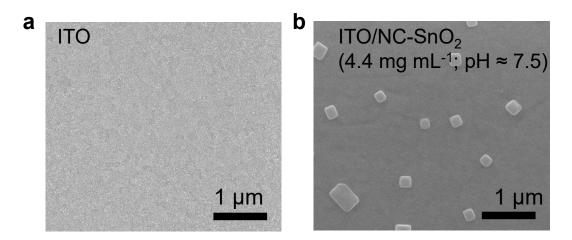
The SCLC devices were fabricated with the structure of $ITO/SnO_2/PVSK/PC_{61}BM/C_{60}/BCP/Ag$ and measured under dark at room temperature with Keithley 2400 Source Meter.

TRPL and TRPL mapping measurements

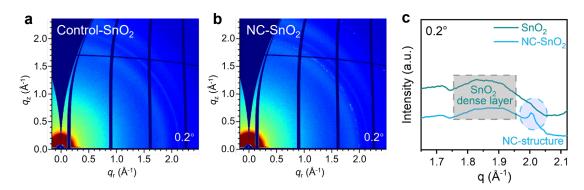
The images were obtained using a mercury lamp (U-LH100HG, Olympus) as excitation after passing through a 460 to 490 nm band-pass filter. The excitation intensity under 100x objective was estimated to be 1.3~13.0 W cm⁻². The signals passed through a 520 nm long-pass filter before collected by a CCD camera (Tucsen, TCH-1.4CICE) and a spectrometer (Renishaw inVia) ⁷. The TRPL was normalized and then fitted by a bi-exponential decay function to unveil the carrier transport and recombination dynamics. The color scale bar of TRPL mapping shows the average carrier lifetime.

Transient absorption (TA) spectroscopy measurement

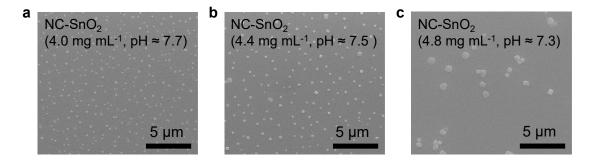
Transient absorption (TA) spectroscopy was performed on a pump probe system (Helios, Ultrafast System LLC). The pulse beam was excited by a Ti:sapphire regenerative amplifier (Legend Elite-1K-HE) and a Nd:YLF laser (EvolutIon 30) pumped. The PVSK films deposited on SnO₂, His-SnO₂ or NC-SnO₂ substrate were excited by a 400 nm laser pulse at the low fluence of $0.6 \,\mu J \, cm^{-2}$ to avoid the exciton-exciton and exciton-charge annihilation effects. Data were processed into pseudocolor TAS plots and normalized photobleaching kinetic traces. The normalized photobleaching kinetic traces are fitted with a triple exponential function to obtain the average lifetime of the entire electron quenching process (τ_{ave})

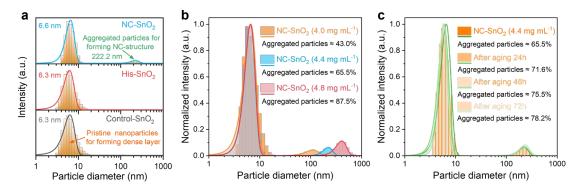

(Finite-difference time-domain) FDTD method

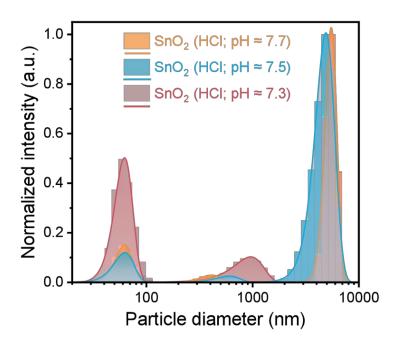
Compared with other numerical methods, the FDTD can be easy to calculate the distribution of electromagnetic field of arbitrary material and structure ^{8,9}. So FDTD method ¹⁰ is employed to simulate the optical behaviors of near-light-side layer stacks (ITO/SnO₂ or NC-SnO₂/PVSK). In order to implement the present simulations, the refractive indices (*n*, *k*) of the materials are required. Optical constants of commonly used materials (Glass and ITO) are cited from the reported measurements ^{11,12}. The refractive index (*n*) and extinction coefficient (*k*) for SnO₂, His-SnO₂, NC-SnO₂ and PVSK (FA_{0.95}MA_{0.05}PbI₃) are plotted in Fig. 2(b). It is worth noting that the *n* and *k* value parameters of NC-SnO₂ in the FDTD simulation are those of His-SnO₂, because the existence of the NC-structure will affect the measurement of the n and k values of the layer by the ellipsometer. This is to avoid the effect of the NC-structure on light being considered twice. In terms of setting the boundary conditions, we use periodic boundary conditions on the x-axis and y-axis and perfectly matched layers on the z-axis. The detailed FDTD simulation parameter settings are listed in Table S1.

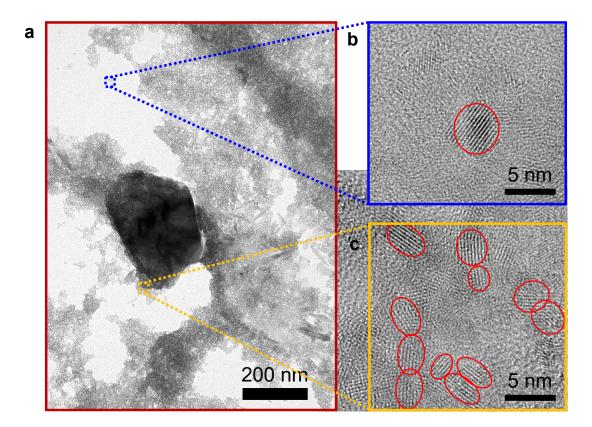

Computational method

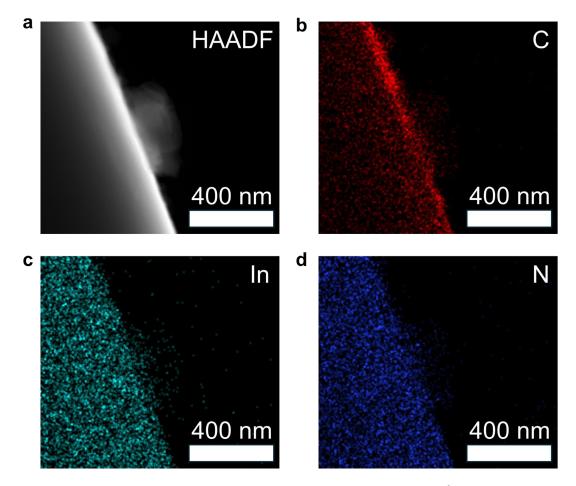
In this work, all density functional theory (DFT) calculations were performed using the Projection Enhanced Wave (PAW) method, as described in the VASP code

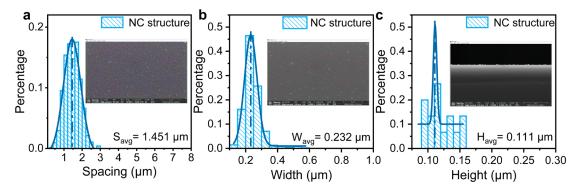

 13 . All structural relaxation and electronic properties were calculated using the Perdew Burke Ernzerhof (PBE) exchange-correlation function 14 . Both the FAPbI₃ (001) surface and SnO₂ (110) surface were constructed with 15 Å-thick vacuum layer to avoid interactions with the periodic slabs, and the $3\times3\times1$ and $2\times2\times1$ k-point meshes in the Brillouin zone were used for optimization of the two structures, respectively. The cutoff energy of 500 eV and the electron energy convergence standard of 1×10^{-5} eV were used as calculation parameters.

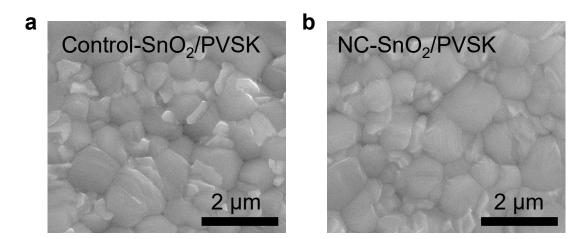

Supplementary Fig. 1 | Top-view SEM images of the ITO substrate (**a**) and NC-SnO₂ film (**b**), where the NC-SnO₂ film was fabricated from a precursor solution (pH ≈ 7.5) containing 4.4 mg mL⁻¹ of His-HCl·H₂O.

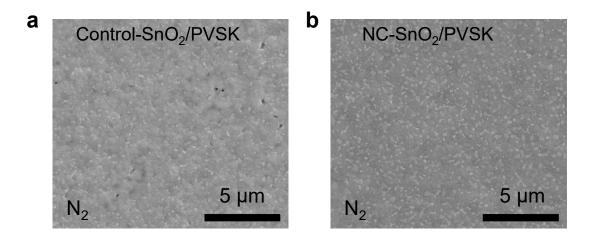

Supplementary Fig. 2 | **GIWAXS characterization of SnO₂ films at a 0.2° incident angle. a,** 2D GIWAXS spectra of control-SnO₂ film. **b,** 2D GIWAXS spectra of NC-SnO₂ film. **c,** 1D GIWAXS profiles for control-SnO₂ and NC-SnO₂ films.

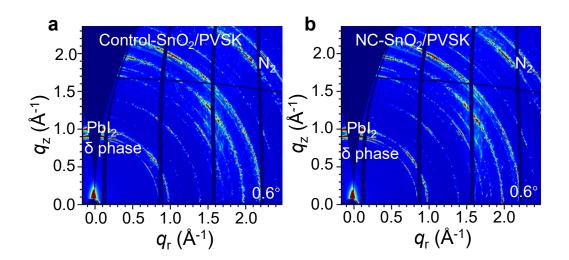

Supplementary Fig. 3 | Top-view SEM images of NC-SnO₂ films prepared from precursor solutions with varying His-HCl·H₂O additive concentrations. a, Additive concentration of 4.0 mg mL⁻¹, corresponding to a solution pH of approximately 7.7. b, Additive concentration of 4.4 mg mL⁻¹ (pH \approx 7.5). c, Additive concentration of 4.8 mg mL⁻¹ (pH \approx 7.3).

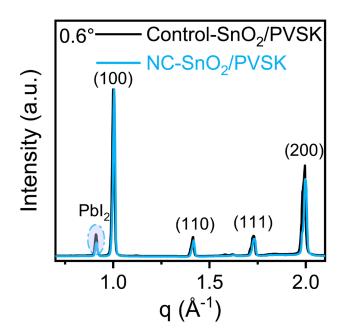

Supplementary Fig. 4 | DLS analysis of SnO₂ colloidal dispersions. a, The compared particle size distributions for control-SnO₂, His-SnO₂ and NC-SnO₂ colloid dispersion. The bar chart represents the experimentally measured DLS spectra, while the curve corresponds to the Gaussian-fitted normal distribution. b, DLS spectra of NC-SnO₂ colloidal dispersions at His-HCl·H₂O additive concentrations. The number of aggregated particles increases with the additive concentration (corresponding to a decrease in pH), indicating the pH-dependent aggregation behavior. c, DLS spectra of NC-SnO₂ colloidal dispersions at the optimal additive concentration (4.4 mg mL⁻¹) as a function of aging time. With increasing aging time, both the number and size of aggregated particles show a slight increase, but the overall effect remains negligible, indicating that the impact of aging time can be ignored.

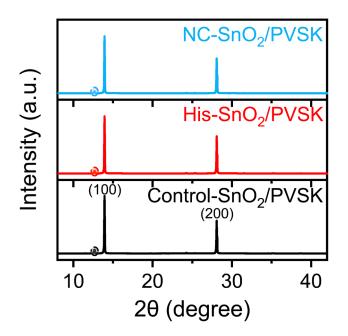

Supplementary Fig. 5 | DLS analysis of SnO₂ colloidal dispersions with pH adjustment by HCl alone. The compared particle size distributions for commercial SnO₂ colloidal dispersions adjusted to target pH using HCl. The bar chart represents the experimentally measured DLS spectra, while the curve corresponds to the Gaussian-fitted normal distribution.

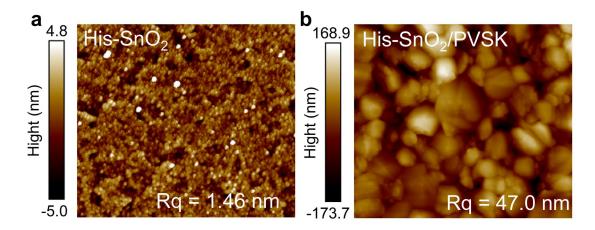

Supplementary Fig. 6 | TEM image of NC-SnO₂ precursor aqueous solution distributed on the copper grid. a, TEM image at the 200 nm scale showing both small SnO₂ nanoparticles and aggregated clusters. b, c, High-resolution TEM images of selected regions. Well-dispersed areas reveal small SnO₂ nanoparticles (b), while significant particle agglomeration is observed at the boundaries of large clusters (c).

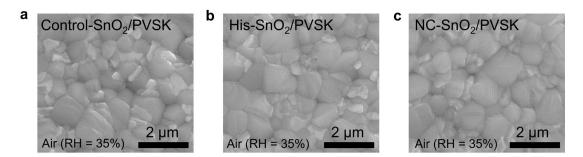

Supplementary Fig. 7 | **Selected area of HAADF-STEM image** of NC-SnO₂ on ITO (a) and the corresponding STEM-EELS maps of C (b), In (c), N (d) signals. Due to the low content of carboxyl and amino groups in NC-SnO₂ after annealing process, these functional groups could not be directly identified by EELS mapping. The uniform distribution patterns of C and N signals are attributed to instrumental noise. To confirm the presence of carboxyl and amino groups in the NC-SnO₂ films, Fourier-transform infrared (FTIR) spectroscopy was performed, as shown in **Fig. 3a–d**.

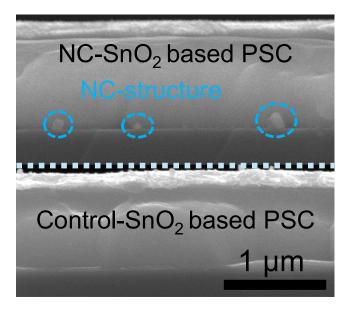

Supplementary Fig. 8 | Statistical diagram of NC morphology from SEM images. a, Average spacing. b, Average width. c, Average height. The scale bar represents 1 μm .

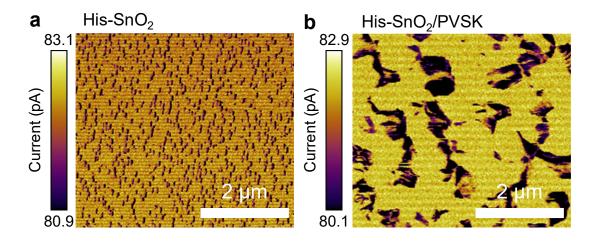

Supplementary Fig. 9 | SEM images of the air-processed PVSKs grown on the control-SnO $_2$ (a) and NC-SnO $_2$ (b).

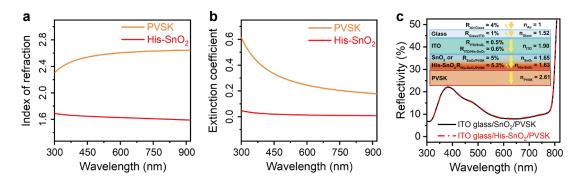

Supplementary Fig. 10 | SEM images of the N_2 -processed PVSKs grown on the control-SnO $_2$ (a) and NC-SnO $_2$ (b).

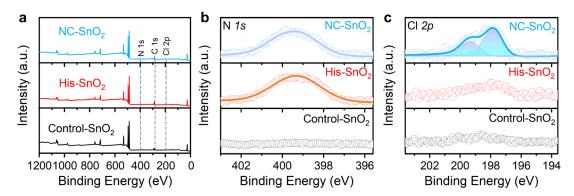

Supplementary Fig. 11 | GIWAXS patterns of the N_2 -processed PVSKs grown on the control-SnO₂ (a) and the NC-SnO₂ (b) under N_2 . The diffraction angle is 0.6° .

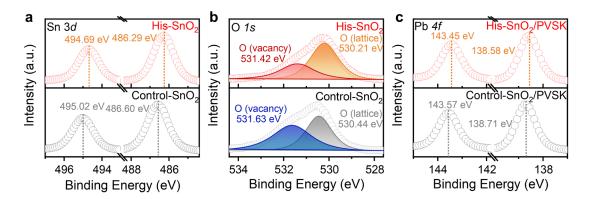

Supplementary Fig. 12 | 1D GIWAXS profiles for air-processed PVSKs grown on control- SnO_2 and $NC-SnO_2$. The diffraction angle is 0.6° .

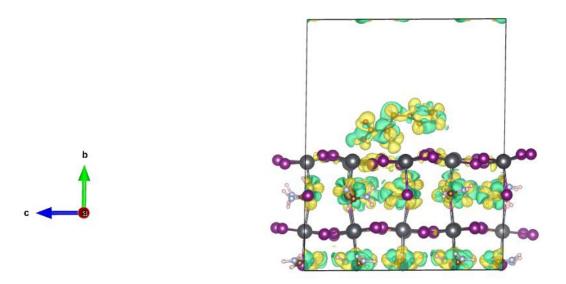

Supplementary Fig. 13 \mid XRD patterns of air-processed PVSKs deposited on control-SnO₂, His-SnO₂ and NC-SnO₂.

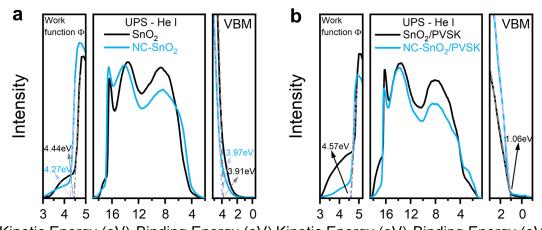

Supplementary Fig. 14 | **AFM images of** the His-SnO₂ (**a**), and the His-SnO₂/PVSK (**b**).

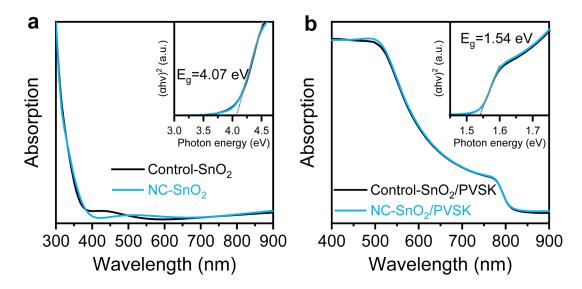

Supplementary Fig. 15 | SEM images of the PVSK films grown on the control-SnO₂ (a), His-SnO₂ (b) and NC-SnO₂ (c) under Air (RH=35%). The scale is 2 um.


Supplementary Fig. 16 | Cross-sectional SEM of the PVSK films deposited on the control- SnO_2 and NC- SnO_2 films. The scale is 1 um.

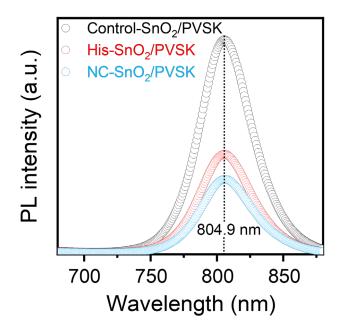

Supplementary Fig. 17 | c-AFM images of the His-SnO $_2$ (a), His-SnO $_2$ /PVSK (b).


Supplementary Fig. 18 | The optical analysis of His-SnO₂ and PVSK. a, Refractive index (n) of the His-SnO₂ and PVSK. b, Extinction coefficient (k) of the His-SnO₂ and PVSK. c, Reflectance of interfaces under control-SnO₂ and His-SnO₂. The reflectivity (R) between the interfaces of each layer in ITO/SnO₂/PVSK devices, calculated based on n and k, are shown in the inset of c.

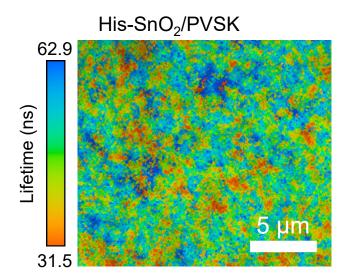

Supplementary Fig. 19 | **XPS spectra for SnO₂ samples. a,** XPS survey spectra of control-SnO₂, His-SnO₂ and NC-SnO₂ films. Charging shift compensation was made for both curves using C 1s at 284.8 eV as the reference. Compared with control-SnO₂ sample, the His-SnO₂ and NC-SnO₂ sample clearly revealed peaks from N and Cl, in addition to those from Sn, O, and C. **b,** N 1s XPS spectra for control-SnO₂, His-SnO₂ and NC-SnO₂ films. **c,** Cl 2*p* XPS spectra of control-SnO₂, His-SnO₂ and NC-SnO₂ films. The NC-SnO₂ film exhibits a higher content of Cl derived from HCl compared to control-SnO₂, His-SnO₂ films.


Supplementary Fig. 20 | Comparison of XPS core-level spectra for control-SnO₂ and His-SnO₂ films. a, Sn 3d XPS spectra. b, O 1s XPS spectra. c, Pb 4f XPS spectra of PVSK films on the control-SnO₂ and His-SnO₂ films. His-SnO₂ and NC-SnO₂ share identical functional groups, resulting in similar effects on the passivation of defects in SnO₂ and PVSK.

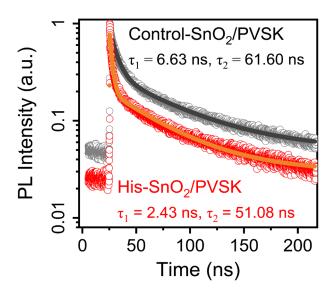
Supplementary Fig. 21 | The charge density difference of PVSK films with Pb_I antisite defect. where purple, grey, blue, brown, and pink spheres represent I, Pb, N, C, and H atoms, respectively.

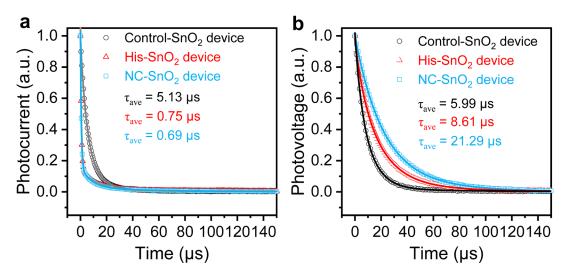


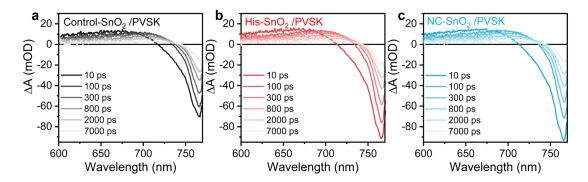
Kinetic Energy (eV) Binding Energy (eV) Kinetic Energy (eV) Binding Energy (eV) **Supplementary Fig. 22** | **UPS spectra** (using the He-I line with photon energy of 21.22 eV) corresponding to the secondary electron onset region (WF, work function) and valence band region (VBM, valence band minimum) of SnO₂ and NC-SnO₂ films (a), SnO₂/PVSK and NC-SnO₂/PVSK (b).

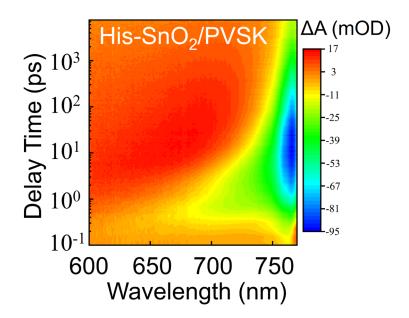


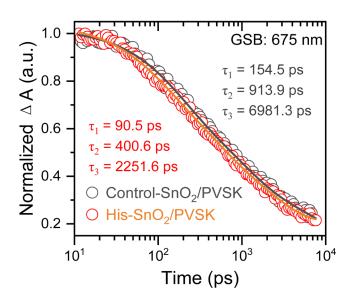
Supplementary Fig. 23 | Optical absorption properties of SnO₂ and SnO₂/PVSK.

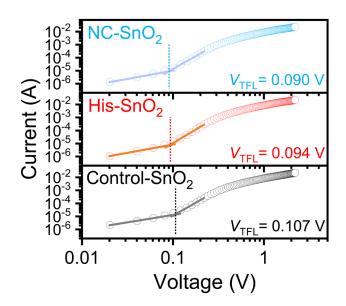

a, UV-vis absorption spectra and the corresponding tauc plots (inset) of the control- SnO_2 and NC- SnO_2 . **b,** UV-vis absorption spectra and the corresponding tauc plots (inset) for PVSK films deposited on control- SnO_2 and NC- SnO_2 . α , absorption coefficient; h, Planck's constant; v, photon's frequency. The dotted lines show the extrapolation of the linear portion of the absorption edges.

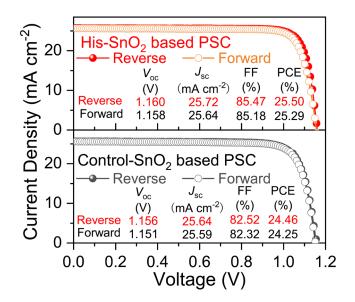

Supplementary Fig. 24 | PL spectra of the PVSK films deposited on control- SnO_2 , His- SnO_2 and NC- SnO_2 . The reduced emission peak (~ 805 nm) intensity near the bandgap confirms the improvement in electron extraction and transport at the bottom interface.

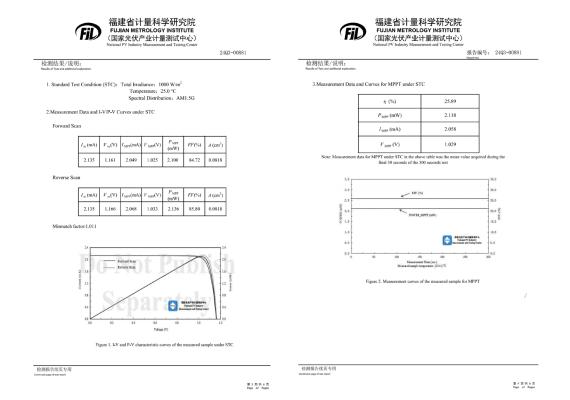

Supplementary Fig. 25 \mid TRPL mapping of the PVSK film on His-SnO₂.

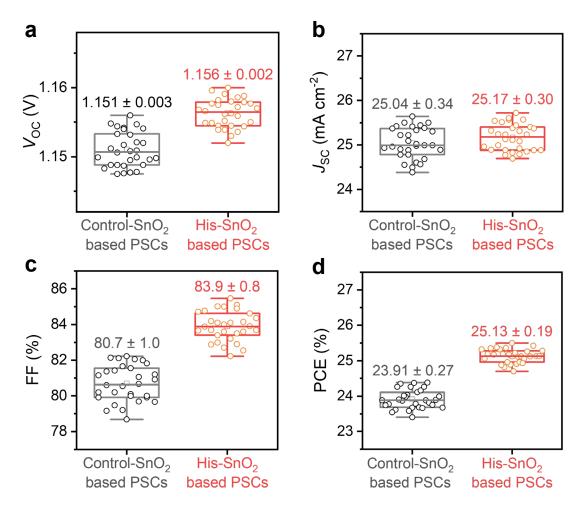

Supplementary Fig. 26 | Comparison of TRPL decay curves for the PVSK films on the control- SnO_2 and His- SnO_2 . The decrease in carrier lifetime suggests faster electron extraction and transport at the bottom interface.


Supplementary Fig. 27 | **TPC and TPV curves for SnO₂ ETL-based PSCs. a**, TPC curves of control-SnO₂, His- SnO₂ and NC- SnO₂ ETL-based PSCs. **b**, TPV curves of control-SnO₂, His- SnO₂ and NC- SnO₂ ETL-based PSCs.


Supplementary Fig. 28 | **Transient TA spectra** of control-SnO₂/PVSK (**a**), His-SnO₂/PVSK (**b**) and NC-SnO₂/PVSK (**c**) excited by 400 nm pump pulse.


Supplementary Fig. 29 | The pseudocolor TAS plots of the PVSK films on His-SnO $_2$.


Supplementary Fig. 30 | Comparison of Normalized photobleaching kinetic traces measured at 765 nm for the PVSK films on control- SnO_2 and $His-SnO_2$. The decrease in carrier lifetime suggests faster electron extraction and transport at the $His-SnO_2/PVSK$ interface.


Supplementary Fig. 31 | Dark $\emph{I-V}$ curves of the electron-only devices based on the control-SnO₂, His- SnO₂ and NC- SnO₂

Supplementary Fig. 32 | Comparison of J-V curves and photovoltaic parameters for champion cell (ITO/Control-SnO₂ and His-SnO₂/FA_{0.95}Cs_{0.05}PbI₃/p-MeOPEAI/Spiro-OMeTAD/Au).

Supplementary Fig. 33 | Certification of the NC-SnO₂ ETL-based PSC efficiency certified by the NPVM at the Fujian Metrology Institute. The efficiency was measured with a mask of 0.0818 cm^2 aperture area, achieving an I_{SC} of 2.135 mA, V_{OC} of 1.166 V, FF of 85.80% and PCE of 26.11% under reverse scan. The PCE of the maximum power point tracking within 300 seconds was 25.89%.

Supplementary Fig. 34 | Comparison of photovoltaic parameter distribution statistics for 30 devices based on control-SnO₂ and His-SnO₂ ETLs, including $V_{\rm OC}(\mathbf{a})$, $J_{\rm SC}(\mathbf{b})$, FF (c) and PCE (d).

Supplementary Table $1\mid FDTD$ simulation parameters of the near-light-side layer stacks.

Parameter category	Parameter name	Parameter setting		
	ITO	540nm		
	Control-SnO ₂	25nm		
structure	$NC-SnO_2$	25nm		
	NC structures	Supplementary Fig.8		
	PVSK	600nm		
	Mesh accuracy	2		
	Mesh type	Auto non-uniform		
	Mesh refinement	Conformal variant 1		
FDTD simulation region	PML type	Uniaxial anisotropic PML		
settings	Time step dt stability factor	0.99 (unitless)		
_	Time step dt	0.0087 fs		
	Minimum mesh step	0.25 nm		
	Simulation time	3000 fs		
	Source shape	Plane wave		
	Amplitude	1 (Normalized)		
	Phase	0°		
	Polarization angle	0°		
Plane wave source	Plane wave type	Bloch/periodic		
settings	Time domain pulse type	Broad band		
	Time domain frequency	666.21 THz		
	Pulse length	1.99 fs		
	Offset	5.66 fs		
	Band width	666.21 THz		

Supplementary Table 2 | The fitted delays lifetimes of TA kinetics.

Sample	A ₁ (%)	τ ₁ (ps)	A ₂ (%)	τ ₂ (ps)	A ₃ (%)	τ ₃ (ps)
Glass/ITO/control-SnO ₂ /PVSK	31.38	154.46	32.92	913.87	23.22	6981.27
Glass/ITO/His-SnO ₂ /PVSK	23.57	90.54	27.64	400.56	32.14	2251.62
Glass/ITO/NC-SnO ₂ /PVSK	29.88	79.94	27.11	387.84	28.97	2157.39

Supplementary Table $3 \mid$ Summary of recently reported air-prepared and light management PSCs.

Reported air-prepared PSCs						
Year	RH (%)	Perovskites	Types	PCE (%)	Area (cm ²)	Ref.
2021	~40	Cs _{0.01} FA _{0.94} MA _{0.05} PbI _{2.85}	n-i-p	22.06	0.09	15
2023	~40	FA _x MA _{1-x} PbI ₃	n-i-p	22.40	0.09	16
2023	30±5	$FA_xMA_{1-x}PbI_3$	n-i-p	23.30	/	17
2023	30~40	FAPbI ₃	n-i-p	24.00	0.09	18
2023	30~85	$FA_xMA_{1-x}PbI_3$	n-i-p	25.03	0.08	19
2024	20~30	$FA_xMA_{1-x}PbI_3$	n-i-p	24.16	0.09	20
2024	/	$FA_xMA_{1-x}PbI_3$	n-i-p	24.63	/	21
2024	20~60	FAPbI ₃	n-i-p	24.70	0.09	22
2024	20~50	FAPbI ₃	n-i-p	25.08	0.04	23
2024	~30	$MA_{0.7}FA_{0.3}PbI_3$	p-i-n	25.10	0.0684	24
2024	/	FAPbI ₃	n-i-p	24.42	/	25
2024	/	$\begin{array}{c} (FA_{0.95}Cs_{0.05})_{0.98}Rb_{0.02}Pb \\ (Br_{0.03}Cl_{0.06}I_{2.91}) \end{array}$	n-i-p	25.13	/	26
2024	15~25	$Cs_{1-x}(FAMA)_xPb(I_xBr_{1-x})_3$	n-i-p	25.18	0.09	27
2024	35~50	$Cs_{1-x}(FAMA)_xPb(I_xBr_{1-x})_3$	p-i-n	25.11	0.06	28
2025	~60	$Cs_{1-x}(FAMA)_xPb(I_xBr_{1-x})_3$	p-i-n	25.20	0.046	29
2025	20~40	FAPbI ₃	p-i-n	25.05	0.09	30
2025	20~80	Rb _{1-x} (FAMA) _x Pb(I _x Br _{1-x}) ₃	n-i-p	25.10	0.0805	31
2025	30-40	MA _{0.7} FA _{0.3} PbI ₃	p-i-n	26.00	0.08	32
2025	~35	$FA_{0.95}Cs_{0.05}PbI_3$	n-i-p	26.22	0.0557	This work

Reported light management PSCs					
Year	Optimization Perovskite		PCE (%)	Ref.	
2015	Perovskite thickness	MAPbI ₃	16.5	33	
2019	Perovskite thickness	MAPbI ₃	18.4	34	
2019	Texturing PTAA	MAPbI ₃	20.8	35	
2021	Perovskite thickness	FAPbI ₃	25.59	36	
2023	Texturing substrates	$Cs_{0.05}MA_{0.1}FA_{0.85}PbI_{3}\\$	25.3	37	
2024	Additional antireflection	FAPbI ₃	23.83	5	
2025	Texturing substrates	$Cs_{1-x}(FAMA)_xPb(I_xBr_{1-x})_3$	26.4	38	
2025	Texturing SnO ₂	FA _{0.95} Cs _{0.05} PbI ₃	26.22	This work	

Reference

- Deng, Y. et al. Defect compensation in formamidinium—caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat. Energy 6, 633-641 (2021).
- 2. Park, N.-G. & Zhu, K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. *Nat. Rev. Mater.* **5**, 333-350 (2020).
- 3. Zhang, X. et al. Low-cost and large-scale producible biomimetic radiative cooling glass with multiband radiative regulation performance. Adv. Opt. Mater. 10, 2202031 (2022).
- 4. Zhou, Z., Wang, X., Ma, Y., Hu, B. & Zhou, J. Transparent polymer coatings for energy-efficient daytime window cooling. *Cell Rep. Phys. Sci.* **1**, 100231 (2020).
- 5. Dai, Q. *et al.* Highly reliable anti-reflection radiative cooling glass applicable to thermal management of solar cells. *Chem. Eng. J.* **498**, 155768 (2024).
- Yang, Z. & Zhang, J. Bioinspired radiative cooling structure with randomly stacked fibers for efficient all-day passive cooling. ACS Appl. Mater. Interfaces 13, 43387-43395 (2021).
- 7. Li, Z. *et al.* Beyond the phase segregation: probing the irreversible phase reconstruction of mixed-halide perovskites. *Adv. Sci.* **9**, e2103948 (2022).
- 8. Tiguntseva, E. *et al.* Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces. *Nanoscale* **9**, 12486-12493 (2017).
- 9. Yin, J. *et al.* Light absorption enhancement by embedding submicron scattering TiO₂ nanoparticles in perovskite solar cells. *RSC Adv.* **6**, 24596-24602 (2016).
- 10. FDTD solutions. https://www.lumerical.com (2025).
- 11. Xing, G. *et al.* Low-temperature solution-processed wavelength-tunable perovskites for lasing. *Nat. Mater.* **13**, 476-480 (2014).
- 12. Ball, J. M. *et al.* Optical properties and limiting photocurrent of thin-film perovskite solar cells. *Energy Environ. Sci.* **8**, 602-609 (2015).
- 13. Blochl, P. E. Projector augmented-wave method. *Phys. Rev. B: Condens. Matter.* **50**,

- 17953-17979 (1994).
- 14. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **78**, 1396-1396 (1997).
- 15. Jung, K. et al. Ambient-air fabrication of stable mixed cation perovskite planar solar cells with efficiencies exceeding 22% using a synergistic mixed antisolvent with complementary properties. Nano Energy 89, 106387 (2021).
- Zhang, W. et al. Multiple roles of negative thermal expansion material for highperformance fully-air processed perovskite solar cells. Chem. Eng. J. 457, 141216 (2023).
- 17. Zeng, Q. *et al.* Tailoring particle size of PbI₂ towards efficient perovskite solar cells under ambient air conditions. *Chem. Commun.* **59**, 5269-5272 (2023).
- 18. Du, Y. *et al.* Crystallization control based on the regulation of solvent-perovskite coordination for high-performance ambient printable FAPbI₃ perovskite solar cells. *Adv. Mater.* **36**, e2307583 (2024).
- 19. Yan, L. *et al.* Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt. *Nat. Energy* **8**, 1158-1167 (2023).
- 20. Tian, C. *et al.* Anion-stabilized precursor inks toward efficient and reproducible air-processed perovskite solar cells. *Adv. Energy Mater.* **14**, 2303666 (2024).
- Liu, B. et al. Polydentate ligand reinforced chelating to stabilize buried interface toward high-performance perovskite solar cells. Angew. Chem. Int. Ed. 63, e202317185 (2024).
- 22. Zou, Y. *et al.* A crystal capping layer for formation of black-phase FAPbI₃ perovskite in humid air. *Science* **385**, 161-167 (2024).
- 23. Shi, X. et al. Air-Processed perovskite solar cells with >25% efficiency and high stability enabled by crystallization modulation and holistic passivation. Adv. Mater. 36, e2402785 (2024).
- 24. Wang, S. *et al.* Lead-chelating intermediate for air-processed phase-pure FAPbI₃ perovskite solar cells. *Angew. Chem. Int. Ed.* **136**, e202407192 (2024).
- 25. Zhou, Q. et al. Managing photons and carriers by multisite chiral molecules

- achieving high-performance perovskite solar cells fabricated in ambient air. *Nano Energy* **124**, 109512 (2024).
- Yang, H. et al. Iodide management and oriented crystallization modulation for highperformance all-air processed perovskite solar cells. Adv. Mater. 36, e2411721 (2024).
- 27. Tian, C. *et al.* Air-processed efficient perovskite solar cells with full lifecycle management. *Adv. Mater.* **37**, e2411982 (2025).
- 28. Meng, H. *et al.* Inhibition of halide oxidation and deprotonation of organic cations with dimethylammonium formate for air-processed p-i-n perovskite solar cells. *Nat. Energy* **9**, 536-547 (2024).
- 29. Xu, L. *et al.* In situ cation exchange enables air-processed inverted perovskite solar cells with over 25% efficiency and enhanced stability. *Angew. Chem. Int. Ed.*, e202503702(2025).
- 30. Wu, G. *et al.* Two-step inverted perovskite solar cells with >25% efficiency fabricated in ambient air. *Adv. Energy Mater.*, 2500830, (2025).
- 31. Zhang, Y. *et al.* Solvent environment engineering for reliable fabrication of perovskite solar cells in air with a wide humidity range. *Adv. Energy Mater.*, 2500156 (2025).
- 32. Liu, T. *et al.* Efficient perovskite solar modules enabled by a UV-stable and high-conductivity hole transport material. *Sci. Adv.* **11**, eadu3493, (2025).
- 33. Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. *Nat. Photon.* **9**, 106-112 (2014).
- 34. Liu, Y. *et al.* Efficiency of MAPbI₃-based planar solar cell analyzed by its thickness-dependent exciton formation, morphology, and crystallinity. *ACS Appl. Mater. Interfaces* **11**, 14810-14820 (2019).
- 35. Xu, C. Y. *et al.* Coordinated optical matching of a texture interface made from demixing blended polymers for high-performance inverted perovskite solar cells. *ACS Nano* **14**, 196-203 (2020).
- 36. Jeong, J. *et al.* Pseudo-halide anion engineering for alpha-FAPbI₃ perovskite solar cells. *Nature* **592**, 381-385 (2021).

- 37. Park, S. M. *et al.* Low-loss contacts on textured substrates for inverted perovskite solar cells. *Nature* **624**, 289-294 (2023).
- 38. Ge, Y. *et al.* Suppressing wide-angle light loss and non-radiative recombination for efficient perovskite solar cells. *Nat. Photon.* **19**, 170-177 (2025).