
Supplementary Information for
Reconfigurable Digital RRAM Logic Enables In-situ

Pruning and Learning for Edge AI

Songqi Wang1,2,3
†
, Yue Zhang1,2

†
, Jia Chen4,5, Xinyuan Zhang1,3, Yi Li1, Ning Lin1, Yangu He1, Jichang

Yang1,3, Yingjie Yu5, Yi Li5, Zhongrui Wang1,2,4*, Xiaojuan Qi1*, and Han Wang1,3*

1Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong, China

2School of Microelectronics, Southern University of Science and Technology, Shenzhen, China.

3Center for Advanced Semiconductor and Integrated Circuit, The University of Hong Kong, Hong Kong, China

4ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park, Hong
Kong, China

5School of Optical and Electronic Information Huazhong University of Science and Technology, China

June 14, 2025

1

S1. Supplementary Figures

Oscilloscope
MSOX3104T

PYNQ controller Power supply
DP832

PCB platform
FPGA

ZCU102

a

BL

SL

WL
1.8V 1.8V

3.3V 3.3V

1.8V 1.2V 0.3V

2.7V

BL[n]
SL[n]

WL[m]

R1
V =

Vread
R R1

b
Electroforming ReadResetSet

DAC

B1500A B1500A

DAC

ADC

c

LDO
LDO

DAC

LDO

RRAM

D
ec

od
er

SR

D
ecoder

RR

RUOUT[63:0]

Chip

InverterLevel Shifter

PCB

FPGA ZCU102 PYNQ controller

FMC HPC

Power supply

GND 1.8V 3.3V 5V -5V

Oscilloscope

Figure 1: Experimental setup and RRAM operation scheme. a, Photograph of the
experimental setup, including two oscilloscopes (MSOX3104T) for signal monitoring, a PYNQ
controller for digital control, an FPGA (ZCU102) for interfacing with a custom PCB platform,
and two power supplies (DP832) for voltage regulation. b, Voltage waveform sequence for
RRAM electroforming, set, reset, and read operations. The applied voltages on the word
line (WL), bit line (BL), and source line (SL) are specified for each phase. c, Schematic of
the programming system. The PCB integrates DACs, switches, and a low dropout regulator
(LDO) to support different operational modes. During neural network training and inference,
only the LDO and switches are required to program the RRAM resistance state, significantly
reducing power consumption and hardware complexity. The resistance state is read through the
Rref Read and Reconfigurable Unit modules integrated within the chip, enabling efficient and
low-overhead resistance state retrieval. For experimental studies of RRAM array performance,
programming and characterization can be performed using on-board DACs and switches for fast
and coarse tuning. During read operations, a voltage is applied to the BL, and the resulting
current is converted into a voltage via a transimpedance amplifier (TIA) before being digitized
by the ADC to estimate the RRAM resistance state. For precise programming and high-
accuracy resistance measurement, an external B1500A unit provides fine-tuned voltage control.

2

150

300 0

511
0 31

WL=0.8V

WL=1.8V WL=1.5V

WL=1.2V

0 (μs)

C
on

du
ct

an
ce

 (μ
s)

300

0

WL Voltage(V)
0.8 0.81.92

0

511
0 31

0

511
0 31

0

511
0 31

b c

ed

f

Program and Verification Cycles

Initialization target
resistance state(trs)

Read cell resistance state(crs)
through RR and RU module

crs=trs?

Yes

Wait verification time

Read crs
through RR and RU module

Yes

Program success
Finish

No
Reset operation

No

set operation
VWL,VBL depend on trs

Reach limit?

Yes

Program failure

Replace the failure
cell with another cell

crs=trs?

No

a

g

8

6

4

2

10

1 3 5 7 92 4 6 8 10

C
ou

nt
 (×

10
3)

Figure 2: RRAM programming flowchart and characteristics. a, Programming and
verification flowchart for tuning each RRAM cell to a target resistance state (trs). The process
begins by reading the current resistance state (crs) through the Read Rref (RR) module and the
Reconfigurable Unit (RU) module and comparing it with the trs. If the states do not match, a
reset or set operation is applied depending on the deviation. This loop of read and verification
continues until the target state is achieved or the maximum allowed number of cycles is reached,
in which case the cell is marked as a failure and replaced. b–e, Conductance mapping of the
512 × 32 RRAM array under four different word-line (WL) voltages during programming to
the INT2 state: b, 1.8 V; c, 1.5 V; d, 1.2 V; e, 0.8 V. f, Global conductance distribution of
the array as a function of WL voltage. The WL voltage is swept from 0.8 V to 1.92 V in 0.02
V increments and then decreased back to 0.8 V with the same step size. g, Histogram showing
the number of program-and-verify cycles required for all cells in the array to reach the target
resistance state. The majority of cells reach the target within 1–2 cycles.

3

0 0000 111

For example: INT8

0 0 1 1 0 1 1

+

1 0 0 0 0 0 0 1 0 1 1 1 1 0 1

RRAM cell INT2

Shift & Adder

X ⊙ W ◎ K =

x0 w0,0 ◎ k0,0 x0 w0,n ◎ k0,n

xm wm,0◎ km,0 xm wm,n◎ km,n

Hadamard Product

Vector Matrix Multiplication

XT
 W ◎ K =

 xm wm,0◎ km,0 xm wm,n◎ km,n

Convolutional Operation

Column
Accumulate

Kernel Similarity

150

64

16
4

R
es

is
ta

nc
e

(K
Ω

)

10

1 10
10

1
0

01

1 00
10

1
0

10

0 01
11

1
0

01

1 00
00

0
0

100

0

20

40

60

80

R
es

is
ta

nc
e

(K
Ω

)

Euclidean Distance

1=
= ≠∑m n(W ,W) ()

n

h i i
i

d x y

2

1=
= −∑e m n(W ,W) ()

k

i i
i

d x y

Hamming Distance

3=hd
4=hd

5=hd

1 0

0 1

1 1

0 1

1 1

1 1

1 1

0 1

0 1

0 0

0 0

0 0

0 1

1 0

1 1

1 0

0 1

1 1

1 0

0 0

1 1

0 0

0 0

0 0

1 0

0 0

1 1

0 0

0 0

1 1

0 1

1 1

0 0

1 0

0 1

1 0
0 0

0 1

0 0

0 1

1 0

1 0

1 0

0 1

0 1

0 1

1 0

0 0

0 1 2 3 4 5 6 7∀ ∈ { , , , , , , , }j

()

()

6
1

0

6
1 1

0

1 2 2 0

2

7

72 1

−

=

− −

=


− ⋅ ⋅ =

− = 
 ⋅ + ⋅ =


∑

∑

[j] [j] []

[j] [j] []

() , if R

, if

j
i i i

j
i i

j j
i i i

j

y
x y

R P

R

R

= ∧[j] [[]P j] ji i ix y = ⊕[j] [[]R j] ji i ix y

∑ ∑

42425=2
ed

iX

ijW

1 0

0 1

1 0

1 1

0 0 1 1 0 1 1

0 0 1 1 0 1 1

Operation: XOR & AND

For example: Binary

Operation: XOR

For example: INT8

Operation: XOR & AND

Input: 7 0x [:]i

Store: 7 0y [:]j

13950=2
ed

2994=2
ed

a b

c

7 27× = = −x w , x , wi ij i ij

15 7 7[] [] []i ijoutput x w= ⊕

Figure 3: RRAM-based convolution operation and weight similarity. a, Convolu-
tion operation using signed 8-bit integer (INT8) inputs and weights. Each 2-bit segment
of the weight is stored in a single RRAM cell, with resistance values representing the en-
coded bits. Computation is performed using bitwise XOR and AND operations. For example,
given xi = 7 (00000111) and wij = −27 (10011011), the output sign bit is computed as
output[15] = xi[7] ⊕ wij[7]. The partial products are accumulated through a shift-and-adder
group to generate the final output. b, Weight similarity evaluation based on either Hamming
or Euclidean distance. For binary weights, the Hamming distance dh, computed via XOR, can
approximate the Euclidean distance de. For INT8 weights, XOR and AND operations are ap-
plied bitwise between two weight vectors xi and yi to compute xi − yi. The squared Euclidean
distance d2e is then derived from the bitwise logic values Pj = xj ∧yj and Rj = xj ⊕yj using the
provided formula. c, Ternary computation based on the Hadamard product and accumulation.
The element-wise operation X⊙W ⊚K is computed, followed by column-wise accumulation to
yield the result of ternary vector-matrix multiplication X⊤ ·W ⊚K, where ⊚ represents logical
operations such as NAND, AND, XOR, or OR.

4

2 2.7 10 100 1000
Delay Time (us)

0

25

50

75

100

Bi
t E

rro
r R

at
e

(%
)

PASS FAIL

a

GND

VDD

PRE
M1

M2 M3

M4 M5

OUT

leakage paths

b

Figure 4: Impact of leakage on compute accuracy. a, Schematic illustration of leakage
paths [1] in the precharge-compute structure. During the precharge phase, the signal line OUT
is pulled up to 1.8V through transistor M1. However, during the subsequent compute phase, if
the operation time is prolonged, charge on OUT can dissipate through leakage paths formed by
transistors M2-M5, leading to a voltage drop and resulting in incorrect computation outcomes.
b, Measured relationship between compute delay time and bit error rate (BER). When the delay
exceeds a critical threshold (∼2.7µs), leakage-induced charge loss leads to a rapid increase in
BER.

5

a

t-SNE component 1

t-S
N

E
co

m
po

ne
nt

 2

t-S
N

E
co

m
po

ne
nt

 2

t-S
N

E
co

m
po

ne
nt

 2

t-S
N

E
co

m
po

ne
nt

 2

t-SNE component 1t-SNE component 1t-SNE component 1

b c d
1

4
3
2

0
6

9
8
7

5
1

4
3
2

0
6

9
8
7

5

Figure 5: t-SNE visualization of unpruned networks. a, Feature distribution before
training in a CNN-based network, showing high inter-class overlap. b, Feature distribution after
training in the same CNN, with improved clustering and separability. c, Feature distribution
before training in a PointNet++ network for point cloud classification. d, Feature distribution
after training in PointNet++, exhibiting clear inter-class separation.

6

S2. Supplementary Tables

Table 1: Area and energy consumption breakdown by module.

WRC BSIC RRAM RR RU S & A ACC

Area
(mm2)

0.106 0.028 0.534 0.005 0.001 0.037 0.155

Energy
(pJ)

2690.400 68.682 0.576 34.001 22.056 269.12 907.136

Abbreviations: WRC – WL Driver & RU Controller; BSIC – BL/SL Driver Circuits & Input
Controller; RRAM – Resistive Random-Access Memory Array; RR – Rref Read module; RU –
Reconfigurable Unit; S & A – Shift and Adder Group; ACC – Accumulator.

Note. The reported energy consumption values correspond to the operation involving parallel
64-bit AND computations across the system, including the subsequent shift and accumulation
processes required for final result generation.

7

Table 2: Architecture of the VGG16-based model (Task 1) and PointNet++ model (Task 2).

Layer VGG16-based model PointNet++ model

1 BinaryConv2d(1, 32,

kernel size=3, padding=1)

→ ReLU → MaxPool2d(2)

SA1: in channels=Cin, mlp=[64,

64, 128], group all=False

2 BinaryConv2d(32, 64,

kernel size=3, padding=1)

→ ReLU → MaxPool2d(2)

SA2: in channels=131, mlp=[128,

128, 256], group all=False

3 BinaryConv2d(64, 32,

kernel size=3, padding=1)

→ ReLU

SA3: in channels=259, mlp=[256,

512, 1024], group all=True

4 Flatten to vector of size 32

× 7 × 7

Flatten to vector of size 1024

5 Linear(1568, 10) for

classification

Linear(1024, 512, bias=False) →
BN(512) → ReLU → Dropout(0.5)

6 – Linear(512, 256, bias=False) →
BN(256) → ReLU → Dropout(0.5)

7 – Linear(256, num classes) for

classification

Note. The complete implementation of both models is available at:
https://github.com/wangsongq/Dynamic-Kernel-Pruning.git

8

https://github.com/wangsongq/Dynamic-Kernel-Pruning.git

S3. Supplementary Notes

Note1. Computational Cost Estimation

The term ”Ops.” refers to the number of multiply-accumulate operations (MACs) required
during a single forward inference. For different layer types, the computations are estimated as
follows:

Convolutional Layer

Ops. = 2× Cin × Cout × kh × kw ×Hout ×Wout, (1)

where Cin and Cout denote the number of input and output channels, kh and kw denote the
kernel height and width, and Hout,Wout denote the output feature map dimensions. The factor
2 accounts for both multiplication and accumulation.

Fully Connected Layer

Ops. = 2× wh × ww, (2)

where wh and ww denote the height and width of the weight matrix in the linear layer.

NVIDIA GeForce RTX 4090

To establish a quantitative energy-efficiency baseline for conventional digital accelerators, we
estimate the per-operation and per-bit energy consumption of the NVIDIA GeForce RTX 4090
when executing INT8 operations. According to publicly available data from LLM Tracker
and TechPowerUp, the peak INT8 tensor compute performance of the RTX 4090 reaches
660.6 TOPS (dense), with a power draw of 450 W under full load. The resulting energy
cost per INT8 operation is given by:

Energy per Operation =
Power Draw

Peak INT8 Performance
=

450 W

660.6× 1012 Ops/s
= 0.6812 pJ/op (3)

Our system

To evaluate the energy efficiency of our proposed system in a realistic serial multiplication
architecture, we model the full execution of a multiplication and accumulation across 32 parallel
column units.

The overall power consumption of the system, accounting for WL/SR driver (134.52 mW),
bit-line decoder (3.4341 mW), RRAM array (0.0288 mW), read units (1.6992 mW), reconfig-
urable units (1.104 mW), shift-and-adder units (13.456 mW), and accumulators (45.3568 mW),
amounts to 199.60 mW. The average energy consumption per operation is thus:

Energy per operation =
199.60 mW× 22.5 ns

64
= 70.17 pJ/OP (4)

To provide a normalized comparison with modern digital platforms, we scale the energy con-
sumption based on voltage and frequency using standard dynamic power scaling laws. Specif-
ically, assuming a 0.8 V supply and a clock frequency of 1.8 GHz (typical for modern GPUs),
we apply:

Scaled Energy = 70.17 pJ ·
(
0.8

3.3

)2

·
(
100 MHz

1.8 GHz

)
≈ 0.229 pJ/OP = 0.229 pJ/OP (5)

9

https://llm-tracker.info/GPU-Comparison
https://www.techpowerup.com/gpu-specs/geforce-rtx-4090.c3889

Note that this estimation excludes process technology scaling (e.g., from 180 nm to 7 nm)
and is thus conservative.

10

References

[1] Bonan Yan, Jeng-Long Hsu, Pang-Cheng Yu, Chia-Chi Lee, Yaojun Zhang, Wenshuo Yue,
Guoqiang Mei, Yuchao Yang, Yue Yang, Hai Li, et al. A 1.041-mb/mm 2 27.38-tops/w
signed-int8 dynamic-logic-based adc-less sram compute-in-memory macro in 28nm with re-
configurable bitwise operation for ai and embedded applications. In 2022 IEEE International
Solid-State Circuits Conference (ISSCC), volume 65, pages 188–190. IEEE, 2022.

11

