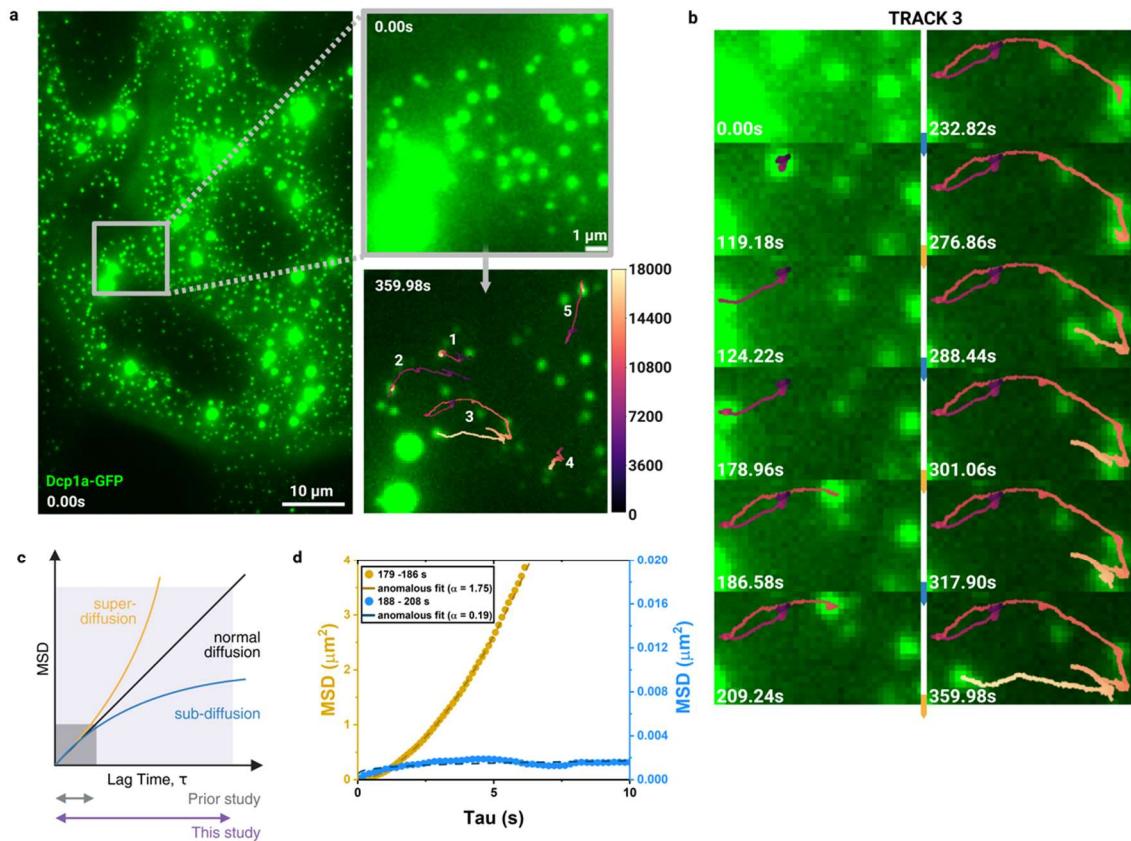


Supplementary Information

ER tethering and active transport govern condensate diffusion during hyperosmotic stress

Bisal Halder^{1,2#}, Guoming Gao^{1,3#}, Armin Ahnoud¹, Shelby Stakenas^{1,2}, Emily R. Sumrall¹ and Nils G. Walter^{1,2*}


¹Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA

²Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA

³Current Address: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA

#These authors contributed equally to this work

*Correspondence: nwalter@umich.edu

Fig. S1 | Dual-mode dynamics of hyperosmotic phase separation (HOPS) condensates reproduced under 50 Hz imaging frequency.

a | Representative images of U2OS cells expressing eGFP-labeled DCP1A under hyperosmotic stress conditions. Enlarged views emphasize trajectories of hyperosmotic stress-induced HOPS condensates, where individual particle locations throughout a trajectory are colored by frame number. **b** | Time-lapse zoomed-in images of a representative HOPS condensate trajectory (#3 shown in a), showing both predominant sub diffusion and the occasional super diffusion. **c** | The mean squared displacement (MSD) as a function of lag time (τ) demonstrates the ability of extended time scales to differentiate between various diffusion modes. **d** | Comparison of MSD- τ curves between the sub-diffusive portions and the super diffusion portions of the same set of HOPS condensate trajectories.

Table S1 | Theoretical and experimentally determined diffusion coefficient of HOPS condensate and GEM particles from four representative particles each

	Radius (nm)	Theoretical D ($\mu\text{m}^2/\text{s}$)	Experimental D ($\mu\text{m}^2/\text{s}$)
HOPS Particle #1	80.84	0.0394	0.000232
HOPS Particle #2	186.70	0.0170	0.000189
HOPS Particle #3	272.16	0.0117	0.000319
HOPS Particle #4	313.11	0.0101	0.000118
GEM Particle #1	40	0.0797	0.136530
GEM Particle #2	40	0.0797	0.017967
GEM Particle #3	40	0.0797	0.022489
GEM Particle #4	40	0.0797	0.014519