

1 Gaze Patterns During Mental Imagery Reflect Part-Based Generation

2 Enea J. Weber¹ & Fred W. Mast¹

3 ¹ Institute of Psychology, Universität Bern

4 Author Note

5 Add complete departmental affiliations for each author here. Each new line herein
6 must be indented, like this line. Enter author note here.

7 Correspondence concerning this article should be addressed to Enea J. Weber,
8 Fabrikstrasse 8 - 3012 Bern. E-mail: enea.weber@unibe.ch

9 Gaze Patterns During Mental Imagery Reflect Part-Based Generation

10 The Supplementary material contains additional information about the main article.

11 **S1. Stimuli used (Experiment 1 and 2)**

12 Pictures of indoor and outdoor scenes were selected from the FIGRIM (Bylinskii et
13 al., 2015) and LaMem (Khosla et al., 2015) databases. Selected pictures had high
14 memorability scores (>60) to ensure consistency in the difficulty to imagine the pictures
15 within each category. Abstract art pictures were retrieved from the internet and analyzed
16 with ResMem, which is a validated machine learning model for predicting the intrinsic
17 memorability of an image (Davis & Bainbridge, 2023). Again, only pictures with high
18 memorability scores within the prior sample were used for the experiment. None of the
19 selected pictures contained any faces or text. Since many pictures were only available with
20 a low resolution, they were upscaled using the Photo AI software (Topaz Labs, version
21 3.0.3) to fit the screen with good resolution.

22 Next, a pretest ($n = 18$) was conducted online using PsytoolKit (Stoet, 2010, 2017)
23 with all selected pictures. Participants had to both visually inspect and imagine each
24 image for 10 sec and indicate how difficult it was to visually imagine it from 1 (very easy)
25 to 7 (very difficult). All stimuli were presented in a randomized order. After the pretest
26 was completed, responses were analyzed with R (R Core Team, 2023) and Rstudio
27 (RStudio Team, 2020). Low and high percentiles (0.25, 0.75) were calculated within each
28 category. Scores that were lower or higher than those percentiles, were excluded to ensure
29 consistency within each category. Both the mean and median were used for those
30 computations and compared. To get exactly 15 pictures per category, we further excluded
31 those that deviated the most from each category's mean.

32 **S2. Statistical models (Experiment 1)**

33 The following section reports the coefficients of all models for Experiment 1, along
 34 with their corresponding model formulas. The posterior predictive checks of the models
 35 present in the main article are also reported here. Models for other gaze patterns can also
 36 be found in this section.

37 **S2.1. AOI model**

38 We predicted the percentage of fixation per quadrant in imagery by the percentage in
 39 the respective quadrant during perception and by the phase (GCW or AS) and the
 40 interaction between the two using the following formula:

41 `per_imagery/100 ~ 1 + fixations in AOI * phase + AOI + (1 | Participant) + (1 | Stimulus)`

42 We added the AOI as a predictor to control for systematic biases towards any AOI
 43 and used a zero-one-inflated beta regression to fit the data. Fitted coefficients are in table
 44 1. The posterior predictive check can be found in Figure 1

45 **S2.2. MultiMatch models**

46 All MultiMatch models were fitted with Beta regressions, as the similarity scores all
 47 lie between 0 and 100.

48 **S2.2.1 Vector similarity models.** We predicted the vector similarity using the
 49 following formula:

50 `Vector ~ comparison * StimType + (1 | Participant) + (1 | Stimulus)`

51 The fitted coefficients are in table 2. The posterior predictive check can be found in
 52 Figure 2

53 **S2.2.2 Direction similarity models.** We predicted the direction similarity using
54 the following formula:

55 `Direction ~ comparison * StimType + (1 | Participant) + (1 | Stimulus)`

56 The fitted coefficients are in table 3. The posterior predictive check can be found in
57 Figure 3

58 **S2.2.3 Length similarity models.** We predicted the length similarity using the
59 following formula:

60 `Length ~ comparison * StimType + (1 | Participant) + (1 | Stimulus)`

61 The fitted coefficients are in table 4. The posterior predictive check can be found in
62 Figure 4

63 **S2.2.4 Position similarity models.** We predicted the position similarity using
64 the following formula:

65 `Position ~ comparison * StimType + (1 | Participant) + (1 | Stimulus)`

66 The fitted coefficients are in table 5. The posterior predictive check can be found in
67 Figure 5.

68 **S2.2.5 Duration similarity models.** We predicted the position similarity using
69 the following formula:

70 `Duration ~ comparison * StimType + (1 | Participant) + (1 | Stimulus)`

71 The fitted coefficients are in table 6. The posterior predictive check can be found in
72 Figure 6.

73 **S2.3. RQA models**

74 All RQA models were fitted with zero-one-inflated Beta (ZOIB) regressions, because
75 all values were between 0 and 1 included, and we wanted to account for values being
76 exactly 0 and exactly 1. The zero-one inflation (zoi) and the precision (phi) distributional
77 parameters were included in the models because these distribution parameters varied
78 greatly between the different experimental phases. Not including them leads to bad fits.
79 Outcome variables were divided by 100 to make the values compatible with the ZOIB
80 regressions.

81 **S2.3.1 Recurrence.** We predicted the recurrence values using the following model
82 formula:

83 $\text{Recurrence}/100 \sim 1 + \text{Phase} * \text{StimType} + \text{FixationDispersion} + (1 + \text{Phase} | \text{Participant}) +$
84 $\text{zoi} \sim \text{Phase}$
85 $\text{phi} \sim \text{Phase}$

86 The fitted coefficients are in table 7. The posterior predictive check can be found in
87 Figure 7.

88 **S2.3.2 Determinism.** We predicted the determinism values using the following
89 model formula:

90 $\text{Determinism}/100 \sim 1 + \text{Phase} * \text{StimType} + \text{FixationDispersion} + (1 + \text{Phase} | \text{Participant})$
91 $\text{zoi} \sim \text{Phase}$
92 $\text{phi} \sim \text{Phase}$

93 The fitted coefficients are in table 8. The posterior predictive check can be found in
94 Figure 8.

95 **S2.3.3. Laminarity.** We predicted the determinism values using the following

96 model formula:

```
97 Laminarity/100 ~ 1 + Phase * StimType + FixationDispersion + (1 + Phase | Participant) +
98 zoi ~ Phase
99 phi ~ Phase
```

100 The fitted coefficients are in table 9. The posterior predictive check can be found in

101 Figure 9.

102 **S2.3.4. Center of Recurrence Mass (CORM).** We predicted the CORM

103 values using the following model formula:

```
104 CORM/100 ~ 1 + Phase * StimType + FixationDispersion + (1 + Phase | Participant) + (1 |
105 zoi ~ Phase
106 phi ~ Phase
```

107 The fitted coefficients are in table 10.

108 **S2.4. Gaze models**

109 **S2.4.1. Number of fixations.** We predicted the number of fixations in a

110 poisson-regression using the following model formula:

```
111 NumFixations ~ Phase * StimType + (1 + StimType | Participant) + (1 | Stimulus)
```

112 The fitted coefficients are in table 11.

113 **S2.4.2. Fixation durations.** We predicted the median duration of fixations in a

114 lognormal regression using the following model formula:

```
115 MedianDuration ~ Phase * StimType + (1 + StimType | Participant) + (1 | Stimulus)
```

116 The fitted coefficients are in table 12.

117 **S2.4.3. Fixation spread.** We predicted the spread of fixations in a lognormal

118 regression using the following model formula:

119 `FixationDispersion + 1e-06 ~ Phase * StimType + (1 + StimType | Participant) + (1 | Stim`

120 A small value was added for the 8 out of 13217 trials where the spread was 0 (due to

121 a single fixation recorded during imagery), since lognormal regressions require values

122 greater than 0. The fitted coefficients are in table 13.

123 **S3. Statistical models (Experiment 2)**

124 The following section reports the coefficients of all models for experiment 2, along

125 with their corresponding model formulas. Models are presented in the same order as they

126 appear in the Results section of the main article. The posterior predictive checks of the

127 models present in the main article are also reported here. Models for other gaze patterns

128 can also be found in this section.

129 **S3.1. AOI model**

130 We predicted the percentage of fixation per quadrant in imagery by the percentage in

131 the respective quadrant during perception and by the phase (GCW or AS) and the

132 interaction between the two using the following formula:

133 `per_imagery/100 ~ 1 + fixations in AOI * phase + AOI + (1 | Participant) + (1 | Stimulus`

134 We added the AOI as a predictor to control for systematic biases towards any AOI

135 and used a zero-one-inflated beta regression to fit the data. Fitted coefficients are in table

136 14. The posterior predictive check can be found in Figure 10.

137 **S3.2. MultiMatch models**

138 All MultiMatch models were fitted with Beta regressions, as the similarity scores all
139 lie between 0 and 100.

140 **S3.2.1. Vector similarity models.** We predicted the vector similarity using the
141 following formula:

142 `Vector ~ comparison * StimType + (1 | Participant) + (1 | Stimulus)`

143 The fitted coefficients are in table 15. The posterior predictive check can be found in
144 Figure 11.

145 **S3.2.2. Direction similarity models.** We predicted the direction similarity using
146 the following formula:

147 `Direction ~ comparison * StimType + (1 | Participant) + (1 | Stimulus)`

148 The fitted coefficients are in table 16. The posterior predictive check can be found in
149 Figure 12.

150 **S3.2.3. Length similarity models.** We predicted the length similarity using the
151 following formula:

152 `Length ~ comparison * StimType + (1 | Participant) + (1 | Stimulus)`

153 The fitted coefficients are in table 17. The posterior predictive check can be found in
154 Figure 13.

155 **S3.2.4 Position similarity models.** We predicted the position similarity using
156 the following formula:

157 `Position ~ comparison * StimType + (1 | Participant) + (1 | Stimulus)`

158 The fitted coefficients are in table 18. The posterior predictive check can be found in
159 Figure 14.

¹⁶⁰ **S3.2.5 Duration similarity models.** We predicted the position similarity using

¹⁶¹ the following formula:

¹⁶² Duration ~ comparison * StimType + (1 | Participant) + (1 | Stimulus)

¹⁶³ The fitted coefficients are in table 19. The posterior predictive check can be found in

¹⁶⁴ Figure 15.

¹⁶⁵ **S3.3. RQA models**

¹⁶⁶ All RQA models were fitted with zero-one-inflated Beta (ZOIB) regressions, because

¹⁶⁷ all values were between 0 and 1 included, and we wanted to account for values being

¹⁶⁸ exactly 0 and exactly 1. The zero-one inflation (zoi) and the precision (phi) distributional

¹⁶⁹ parameters were included in the models because these distribution parameters varied

¹⁷⁰ greatly between the different experimental phases. Not including them leads to bad fits.

¹⁷¹ Outcome variables were divided by 100 to make the values compatible with the ZOIB

¹⁷² regressions.

¹⁷³ **S3.3.1. Recurrence.** We predicted the recurrence values using the following model

¹⁷⁴ formula:

¹⁷⁵ Recurrence/100 ~ 1 + Phase * StimType + FixationDispersion + (1 + Phase | Participant) +

¹⁷⁶ zoi ~ Phase

¹⁷⁷ phi ~ Phase

¹⁷⁸ The fitted coefficients are in table 20. The posterior predictive check can be found in

¹⁷⁹ Figure 16.

¹⁸⁰ **S3.3.2. Determinism.** We predicted the determinism values using the following

¹⁸¹ model formula:

182 Determinism/100 ~ 1 + Phase * StimType + FixationDispersion + (1 + Phase | Participant)
 183 zoi ~ Phase
 184 phi ~ Phase

185 The fitted coefficients are in table 21. The posterior predictive check can be found in
 186 Figure 17.

187 **S3.3.3. Laminarity.** We predicted the determinism values using the following
 188 model formula:

189 Laminarity/100 ~ 1 + Phase * StimType + FixationDispersion + (1 + Phase | Participant) +
 190 zoi ~ Phase
 191 phi ~ Phase

192 The fitted coefficients are in table 22. The posterior predictive check can be found in
 193 Figure 18.

194 **S3.3.4. Center of Recurrence Mass (CORM).** We predicted the CORM
 195 values using the following model formula:

196 CORM/100 ~ 1 + Phase * StimType + FixationDispersion + (1 + Phase | Participant) + (1 |
 197 zoi ~ Phase
 198 phi ~ Phase

199 The fitted coefficients are in table 23.

200 **S3.4. Gaze models**

201 **S3.4.1. Number of fixations.** We predicted the number of fixations in a
 202 poisson-regression using the following model formula:

203 NumFixations ~ Phase * StimType + (1 + StimType | Participant) + (1 | Stimulus)

204 The fitted coefficients are in table 24.

205 **S3.4.2. Fixation durations.** We predicted the median duration of fixations in a

206 lognormal regression using the following model formula:

207 `MedianDuration ~ Phase * StimType + (1 + StimType | Participant) + (1 | Stimulus)`

208 The fitted coefficients are in table 25.

209 **S3.4.3. Fixation spread.** We predicted the spread of fixations in a lognormal

210 regression using the following model formula:

211 `FixationDispersion + 1e-06 ~ Phase * StimType + (1 + StimType | Participant) + (1 | Stimulus)`

212 A small value was added for the few trials where the spread was 0 (due to a single

213 fixation recorded during imagery), since lognormal regressions require values greater than

214 0. The fitted coefficients are in table 26.

215 **S3.4. Bayesian pairwise comparisons**

216 To test for differences between the three mental imagery (MI) conditions, following

217 free perception (FP), gaze-contingent window (GCW), and artificial scotoma (AS), we

218 conducted Bayesian pairwise comparisons. Specifically, we tested:

219 **MI-GCW vs. MI-FP**

220

221 **MI-AS vs. MI-FP**

222

223 **MI-AS vs. MI-GCW**

224 These comparisons were performed separately for both determinism and laminarity,

225 based on the posterior samples from the fitted Bayesian models (det_exp2 and lam_exp2).

226 Pairwise comparisons between MI conditions were conducted using the `hypothesis()`

227 function in `brms`. The resulting estimates and 95% credible intervals are reported in

228 Tables 27 (determinism) and 28 (laminarity).

229 **S4. Probe accuracy and vividness ratings Experiment 1**

230 **S4.1. Probe Accuracy (Experiment 1)**

231 A summary about the accuracy in answering the probe questions can be found in

232 Table 29.

233 **S4.2. Vividness ratings (Experiment 1)**

234 A summary of the trial-wise vividness ratings can be found in Table 30.

235 **S5. Probe accuracy and vividness ratings Experiment 2**

236 **S5.1. Probe accuracy (Experiment 2)**

237 A summary about the accuracy in answering the probe questions can be found in

238 Table 31.

239 **S5.2. Vividness ratings (Experiment 2)**

240 A summary of the trial-wise vividness ratings can be found in Table 32.

241 **S6. Sample information**

242 This section shows descriptive statistics of questionnaires and tasks completed by our

243 participants for both Experiments. The questionnaires and tasks were collected for

244 exploratory purposes.

245 **S6.1. Experiment 1**

246 **S6.1.1 VVIQ (Experiment 1).** We assessed the Vividness of Visual Imagery
247 Questionnaire 2 (VVIQ 2, Marks, 1995), which assesses individual abilities to generate
248 vivid mental images. An overview of the distribution can be found in Figure 19. The
249 average VVIQ score accross all participants in Experiment 1 was 3.46 (out of 5).

250 **S6.1.2 OSIVQ (Experiment 1).** We assessed the Object-Spatial Imagery and
251 Verbal Questionnaire (OSIVQ, Blazhenkova & Kozhevnikov, 2009), which asses individual
252 cognitive styles for imagery. The mean scores from all participants for each factor are
253 illustrated in Figure 20, and for a summary table, check Table 33.

254 **S6.1.3 Mental Rotation (Experiment 1).** We assessed mental rotation
255 performance with Vanderberg's task (Vandenberg & Kuse, 1978). The distribution from
256 total scores are illustrated in Figure 21. The average total score across all participants is
257 22.31.

258 **S6.1.4 Working Memory (Experiment 1).** We assessed Working Memory with
259 an N-Back task coded in MATLAB. The n-back task consisted of 2 training blocks (2 and
260 3-n-back), followed by 6 experimental blocks. Each block consisted of 20 trials. During the
261 task, a circle appeared every 4 sec on a random position on a 3x3 grid, and participants
262 had to press “yes” or “no” whether the circle appeared on the same position as n steps
263 before. Each block had exactly 5 correct trials (i.e. where the correct answer was “yes”) to
264 ensure consistent difficulty between participants. The task always started with the 2-n-back
265 condition, and the difficulty varied depending on the percentage of correct responses in
266 each block. If the block accuracy was 70% or below, the n level decreased by one, but not
267 below 2-n-back. If the block accuracy was 90% or above, the n level increased by one, and
268 remained unchanged if the accuracy was between the two thresholds. The average score
269 across all participants was 2.88. The distribution of these scores can be found in Figure 22

270 **S6.2. Experiment 2**

271 **S6.2.1 VVIQ (Experiment 2).** We assessed the Vividness of Visual Imagery
272 Questionnaire 3 (VVIQ 2, Marks, 1995), which assesses individual abilities to generate
273 vivid mental images. An overview of the distribution can be found in Figure 23. The
274 average VVIQ score across all participants in Experiment 1 was 3.48 (out of 5).

275 **S6.2.2 OSIVQ (Experiment 2).** We assessed the Object-Spatial Imagery and
276 Verbal Questionnaire (OSIVQ, Blazhenkova & Kozhevnikov, 2009), which assess individual
277 cognitive styles for imagery. The mean scores from all participants for each factor are
278 illustrated in Figure 24, and for a summary table, check Table 34.

279 **S6.2.3 Mental Rotation (Experiment 2).** We assessed mental rotation
280 performance with Vandenberg's task (Vandenberg & Kuse, 1978). The distribution from
281 total scores are illustrated in Figure 25. The average total score across all participants is
282 24.1.

283 **S6.2.4 Working Memory (Experiment 2).** We assessed Working Memory with
284 an N-Back task coded in MATLAB. The scores for each participant were defined as
285 n-level reached in the final block, weighted by each participant's accuracy in that block
286 (e.g., 90% correct). The average score across all participants was 3.13. The distribution of
287 these scores can be found in Figure 26

288 **S7. Eye-tracking data check**

289 We investigated gaze patterns from each participant in relation to other participants,
290 to detect outliers in gaze behavior and potential technical problems.

291 **S7.1 Experiment 1**

292 **Participants that were excluded and reason:**

293 • g17: too much time where the eye-tracker was not tracking

294 • g21: very few and extremely long fixations

295 • g41: very few and long fixations

296 Plots showing gaze patterns from each participant in relation to other participants

297 can be found in *experiment_1/analyses/Participant_Plots.pdf*

298 **S7.2 Experiment 2**

299 **Participants that were excluded and reason:**

300 • vp11: excluded because the eye-tracker did not work

301 • vp14: short fixations, and many fixations outside the screen

302 • vp27: excluded because of eye-tracking calibration issues

303 • vp45: excluded because of aphantasia

304 • vp54: very few, very long fixations

305 Plots showing gaze patterns from each participant in relation to other participants

306 can be found in *experiment_2/analyses/Participant_Plots.pdf*

307 **Acknowledgements**

308 We thank Lorena Di Matteo, Luca Panico and Noam Sedemund for their help during
309 data collection.

310 This research was supported by the Swiss National Science Foundation, grant no.
311 100014_214940 (PI: FWM).

312 **References**

313 Blazhenkova, O., & Kozhevnikov, M. (2009). The new object–spatial–verbal cognitive
314 style model: Theory and measurement. *Applied Cognitive Psychology*, 23(5), 638–663.
315 <https://doi.org/10.1002/acp.1473>

316 Bylinskii, Z., Isola, P., Bainbridge, C., Torralba, A., & Oliva, A. (2015). Intrinsic and
317 extrinsic effects on image memorability. *Vision Research*, 116, 165–178.
318 <https://doi.org/10.1016/j.visres.2015.03.005>

319 Davis, T. M., & Bainbridge, W. A. (2023). Memory for artwork is predictable.
320 *Proceedings of the National Academy of Sciences*, 120(28), e2302389120.
321 <https://doi.org/10.1073/pnas.2302389120>

322 Khosla, A., Raju, A. S., Torralba, A., & Oliva, A. (2015). Understanding and
323 predicting image memorability at a large scale. In *Proceedings of the IEEE International
324 Conference on Computer Vision (ICCV)* (pp. 2390–2398).
325 https://openaccess.thecvf.com/content_iccv_2015/html/Khosla_Understanding_and_Predicting_ICCV_2015_paper.html

327 Marks, D. F. (1995). New directions for mental imagery research. *Journal of Mental
328 Imagery*, 19(3–4), 153–167.

329 R Core Team. (2023). *R: A language and environment for statistical computing*
330 [Software]. R Foundation for Statistical Computing. <https://www.R-project.org/>

331 RStudio Team. (2020). *RStudio: Integrated development environment for R*
332 [Software]. RStudio, PBC. <https://www.rstudio.com/>

333 Stoet, G. (2010). PsyToolkit: A software package for programming psychological
334 experiments using Linux. *Behavior Research Methods*, 42(4), 1096–1104.
335 <https://doi.org/10.3758/BRM.42.4.1096>

336 Stoet, G. (2017). PsyToolkit: A novel web-based method for running online

337 questionnaires and reaction-time experiments. *Teaching of Psychology*, 44(1), 24–31.

338 <https://doi.org/10.1177/0098628316677643>

339 Topaz Labs. (n.d.). *Topaz Labs* (Version 3.0.3) [Software].

340 <https://www.topazlabs.com>

341 Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of

342 three-dimensional spatial visualization. *Perceptual and Motor Skills*, 47(2), 599–604.

343 <https://doi.org/10.2466/pms.1978.47.2.599>

Table 1

predictors	estimate	lower CI	upper CI
Intercept	-0.99	-1.03	-0.94
fixations in AOI	0.02	0.02	0.02
phase_GCW	0.04	-0.02	0.10
phase_AS	0.03	-0.03	0.08
AOI 2	-0.16	-0.18	-0.13
AOI 3	-0.69	-0.72	-0.66
AOI 4	-0.74	-0.77	-0.71
fixations in AOI : GCW	0.00	0.00	0.00
fixations in AOI : AS	0.00	0.00	0.00

Table 2

predictors	estimate	lower CI	upper CI
Intercept	2.98	2.90	3.05
Comparison_FP - GCW	0.14	0.12	0.17
Comparison_FP - AS	-0.15	-0.18	-0.13
Comparison_Imagery - GCW	0.35	0.32	0.38
Comparison_Imagery - AS	-0.24	-0.26	-0.22
StimType_Indoor	0.11	0.06	0.16
StimType_Outdoor	0.03	-0.02	0.08
Comparison_FP - GCW : StimType_Indoor	-0.01	-0.04	0.03
Comparison_FP - AS : StimType_Indoor	-0.05	-0.08	-0.02
Comparison_Imagery - GCW : StimType_Indoor	-0.05	-0.09	-0.01
Comparison_Imagery - AS : StimType_Indoor	-0.05	-0.08	-0.02
Comparison_FP - GCW : StimType_Outdoor	0.03	-0.01	0.06
Comparison_FP - AS : StimType_Outdoor	-0.03	-0.06	0.00
Comparison_Imagery - GCW : StimType_Outdoor	-0.02	-0.06	0.02
Comparison_Imagery - AS : StimType_Outdoor	-0.08	-0.11	-0.04

Table 3

predictors	estimate	lower CI	upper CI
Intercept	1.21	1.15	1.28
Comparison_FP - GCW	0.12	0.09	0.15
Comparison_FP - AS	0.14	0.11	0.17
Comparison_Imagery - GCW	0.08	0.05	0.12
Comparison_Imagery - AS	-0.02	-0.05	0.01
StimType_Indoor	-0.03	-0.10	0.03
StimType_Outdoor	0.06	-0.01	0.13
Comparison_FP - GCW : StimType_Indoor	0.01	-0.04	0.05
Comparison_FP - AS : StimType_Indoor	-0.04	-0.08	0.01
Comparison_Imagery - GCW : StimType_Indoor	0.04	0.00	0.09
Comparison_Imagery - AS : StimType_Indoor	0.04	0.00	0.09
Comparison_FP - GCW : StimType_Outdoor	0.08	0.04	0.13
Comparison_FP - AS : StimType_Outdoor	0.08	0.04	0.13
Comparison_Imagery - GCW : StimType_Outdoor	0.05	0.01	0.10
Comparison_Imagery - AS : StimType_Outdoor	0.04	0.00	0.09

Table 4

predictors	estimate	lower CI	upper CI
Intercept	2.70	2.61	2.78
Comparison_FP - GCW	0.31	0.28	0.34
Comparison_FP - AS	-0.01	-0.04	0.02
Comparison_Imagery - GCW	0.43	0.40	0.47
Comparison_Imagery - AS	-0.31	-0.34	-0.28
StimType_Indoor	0.12	0.06	0.19
StimType_Outdoor	0.02	-0.04	0.09
Comparison_FP - GCW : StimType_Indoor	-0.05	-0.09	0.00
Comparison_FP - AS : StimType_Indoor	-0.11	-0.16	-0.07
Comparison_Imagery - GCW : StimType_Indoor	-0.06	-0.11	-0.01
Comparison_Imagery - AS : StimType_Indoor	-0.06	-0.10	-0.02
Comparison_FP - GCW : StimType_Outdoor	0.01	-0.04	0.05
Comparison_FP - AS : StimType_Outdoor	-0.09	-0.13	-0.05
Comparison_Imagery - GCW : StimType_Outdoor	-0.04	-0.08	0.01
Comparison_Imagery - AS : StimType_Outdoor	-0.10	-0.14	-0.06

Table 5

predictors	estimate	lower CI	upper CI
Intercept	1.49	1.43	1.54
Comparison_FP - GCW	-0.22	-0.24	-0.19
Comparison_FP - AS	-0.07	-0.10	-0.04
Comparison_Imagery - GCW	-0.26	-0.28	-0.23
Comparison_Imagery - AS	-0.08	-0.11	-0.05
StimType_Indoor	-0.13	-0.18	-0.07
StimType_Outdoor	-0.01	-0.07	0.05
Comparison_FP - GCW : StimType_Indoor	0.14	0.10	0.18
Comparison_FP - AS : StimType_Indoor	0.02	-0.02	0.06
Comparison_Imagery - GCW : StimType_Indoor	0.15	0.11	0.19
Comparison_Imagery - AS : StimType_Indoor	0.05	0.01	0.09
Comparison_FP - GCW : StimType_Outdoor	0.02	-0.02	0.06
Comparison_FP - AS : StimType_Outdoor	0.00	-0.04	0.04
Comparison_Imagery - GCW : StimType_Outdoor	0.01	-0.03	0.05
Comparison_Imagery - AS : StimType_Outdoor	0.01	-0.03	0.05

Table 6

predictors	estimate	lower CI	upper CI
Intercept	0.01	-0.08	0.10
Comparison_FP - GCW	0.65	0.61	0.69
Comparison_FP - AS	0.53	0.49	0.58
Comparison_Imagery - GCW	-0.01	-0.06	0.03
Comparison_Imagery - AS	-0.04	-0.08	0.00
StimType_Indoor	-0.06	-0.11	-0.02
StimType_Outdoor	-0.03	-0.07	0.01
Comparison_FP - GCW : StimType_Indoor	0.07	0.01	0.14
Comparison_FP - AS : StimType_Indoor	-0.01	-0.07	0.05
Comparison_Imagery - GCW : StimType_Indoor	0.04	-0.01	0.10
Comparison_Imagery - AS : StimType_Indoor	0.03	-0.03	0.09
Comparison_FP - GCW : StimType_Outdoor	0.04	-0.03	0.10
Comparison_FP - AS : StimType_Outdoor	0.02	-0.04	0.08
Comparison_Imagery - GCW : StimType_Outdoor	0.00	-0.06	0.06
Comparison_Imagery - AS : StimType_Outdoor	-0.02	-0.08	0.04

Table 7

predictors	estimate	lower CI	upper CI
Intercept	-0.81	-0.89	-0.74
phi_Intercept	4.41	4.37	4.46
zoi_Intercept	-11.50	-19.70	-7.63
Phase_Imagery	0.86	0.69	1.03
Phase_GCW	-0.49	-0.54	-0.44
Phase_AS	-0.23	-0.31	-0.16
StimType_Indoor	0.13	0.06	0.20
StimType_Outdoor	-0.01	-0.09	0.06
Fixation Dispersion	0.00	0.00	0.00
Phase_Imagery : StimType_Indoor	-0.26	-0.31	-0.20
Phase_GCW : StimType_Indoor	0.05	0.01	0.08
Phase_AS : StimType_Indoor	0.01	-0.04	0.06
Phase_Imagery : StimType_Outdoor	-0.02	-0.08	0.04
Phase_GCW : StimType_Outdoor	0.14	0.10	0.18
Phase_AS : StimType_Outdoor	0.05	0.00	0.10
phi_Imagery	-2.15	-2.21	-2.09
phi_GCW	1.27	1.20	1.35
phi_AS	-0.04	-0.12	0.03
zoi_Imagery	7.85	3.97	16.10
zoi_GCW	-2.40	-19.60	8.67
zoi_AS	5.86	1.90	14.20

Table 8

predictors	estimate	lower CI	upper CI
Intercept	0.25	0.13	0.37
phi_Intercept	2.55	2.51	2.59
zoi_Intercept	-6.45	-7.24	-5.78
Phase_Imagery	0.73	0.55	0.91
Phase_GCW	0.46	0.34	0.58
Phase_AS	-0.38	-0.48	-0.27
StimType_Indoor	0.34	0.26	0.41
StimType_Outdoor	0.08	0.00	0.15
Fixation Dispersion	0.00	0.00	0.00
Phase_Imagery : StimType_Indoor	-0.32	-0.39	-0.26
Phase_GCW : StimType_Indoor	-0.10	-0.17	-0.04
Phase_AS : StimType_Indoor	-0.06	-0.14	0.01
Phase_Imagery : StimType_Outdoor	-0.09	-0.15	-0.02
Phase_GCW : StimType_Outdoor	0.01	-0.05	0.08
Phase_AS : StimType_Outdoor	0.02	-0.06	0.09
phi_Imagery	-0.62	-0.68	-0.56
phi_GCW	0.23	0.15	0.30
phi_AS	0.08	0.01	0.15
zoi_Imagery	2.86	2.16	3.67
zoi_GCW	-0.71	-2.55	0.75
zoi_AS	2.80	2.06	3.64

Table 9

predictors	estimate	lower CI	upper CI
Intercept	0.57	0.45	0.69
phi_Intercept	2.62	2.58	2.66
zoi_Intercept	-6.81	-7.78	-6.02
Phase_Imagery	0.37	0.22	0.53
Phase_GCW	0.01	-0.08	0.11
Phase_AS	-0.78	-0.89	-0.68
StimType_Indoor	0.46	0.37	0.55
StimType_Outdoor	0.09	0.00	0.18
Fixation Dispersion	0.00	0.00	0.00
Phase_Imagery : StimType_Indoor	-0.47	-0.54	-0.41
Phase_GCW : StimType_Indoor	-0.14	-0.20	-0.08
Phase_AS : StimType_Indoor	-0.28	-0.36	-0.21
Phase_Imagery : StimType_Outdoor	-0.13	-0.19	-0.07
Phase_GCW : StimType_Outdoor	0.08	0.02	0.14
Phase_AS : StimType_Outdoor	-0.19	-0.27	-0.11
phi_Imagery	-0.28	-0.34	-0.22
phi_GCW	0.57	0.50	0.64
phi_AS	-0.04	-0.12	0.03
zoi_Imagery	2.77	1.95	3.77
zoi_GCW	-1.20	-3.97	0.82
zoi_AS	3.22	2.37	4.21

Table 10

predictors	estimate	lower CI	upper CI
Intercept	-0.61	-0.66	-0.56
phi_Intercept	4.20	4.16	4.24
zoi_Intercept	-6.44	-7.26	-5.77
Phase_Imagery	-0.10	-0.14	-0.05
Phase_GCW	-0.06	-0.12	0.01
Phase_AS	0.13	0.09	0.18
StimType_Indoor	-0.05	-0.08	-0.01
StimType_Outdoor	-0.01	-0.05	0.02
Fixation Dispersion	0.00	0.00	0.00
Phase_Imagery : StimType_Indoor	0.00	-0.03	0.03
Phase_GCW : StimType_Indoor	0.00	-0.04	0.04
Phase_AS : StimType_Indoor	0.02	-0.02	0.05
Phase_Imagery : StimType_Outdoor	0.00	-0.03	0.03
Phase_GCW : StimType_Outdoor	0.06	0.02	0.10
Phase_AS : StimType_Outdoor	0.02	-0.01	0.06
phi_Imagery	-0.39	-0.46	-0.33
phi_GCW	-0.50	-0.57	-0.42
phi_AS	0.07	-0.01	0.14
zoi_Imagery	2.67	1.96	3.51
zoi_GCW	-0.71	-2.58	0.80
zoi_AS	2.77	2.04	3.63

Table 11

predictors	estimate	lower CI	upper CI
Intercept	3.93	3.88	3.98
Phase_Imagery	-0.58	-0.59	-0.57
Phase_GCW	0.15	0.14	0.16
Phase_AS	-0.07	-0.08	-0.05
StimType_Indoor	0.04	0.01	0.06
StimType_Outdoor	0.00	-0.02	0.02
Phase_Imagery : StimType_Indoor	-0.03	-0.04	-0.01
Phase_GCW : StimType_Indoor	-0.05	-0.07	-0.04
Phase_AS : StimType_Indoor	-0.08	-0.10	-0.06
Phase_Imagery : StimType_Outdoor	-0.01	-0.02	0.01
GCW : StimType_Outdoor	0.02	0.00	0.03
Phase_AS : StimType_Outdoor	0.00	-0.02	0.02

Table 12

predictors	estimate	lower CI	upper CI
Intercept	5.60	5.54	5.65
Phase_Imagery	0.52	0.50	0.54
Phase_GCW	-0.11	-0.14	-0.08
Phase_AS	0.05	0.02	0.08
StimType_Indoor	-0.03	-0.06	-0.01
StimType_Outdoor	0.01	-0.01	0.04
Phase_Imagery : StimType_Indoor	0.06	0.03	0.09
Phase_GCW : StimType_Indoor	0.04	0.00	0.08
Phase_AS : StimType_Indoor	0.08	0.04	0.12
Phase_Imagery : StimType_Outdoor	0.03	0.00	0.06
GCW : StimType_Outdoor	-0.04	-0.08	0.00
Phase_AS : StimType_Outdoor	-0.02	-0.06	0.02

Table 13

predictors	estimate	lower CI	upper CI
Intercept	5.86	5.76	5.97
Phase_Imagery	-0.81	-0.86	-0.76
Phase_GCW	0.24	0.18	0.30
Phase_AS	0.05	-0.01	0.11
StimType_Indoor	0.15	0.08	0.23
StimType_Outdoor	0.03	-0.05	0.10
Phase_Imagery : StimType_Indoor	-0.03	-0.10	0.04
Phase_GCW : StimType_Indoor	-0.16	-0.24	-0.08
Phase_AS : StimType_Indoor	-0.09	-0.18	-0.01
Phase_Imagery : StimType_Outdoor	0.01	-0.06	0.08
GCW : StimType_Outdoor	0.00	-0.09	0.08
Phase_AS : StimType_Outdoor	0.00	-0.08	0.09

Table 14

predictors	estimate	lower CI	upper CI
Intercept	-1.32	-1.42	-1.22
fixations in AOI	0.02	0.02	0.03
phase_GCW	0.05	-0.08	0.18
phase_AS	0.03	-0.09	0.15
AOI 2	0.06	0.01	0.11
AOI 3	-0.42	-0.48	-0.36
AOI 4	-0.45	-0.51	-0.38
fixations in AOI : GCW	0.00	-0.01	0.00
fixations in AOI : AS	0.00	-0.01	0.00

Table 15

predictors	estimate	lower CI	upper CI
Intercept	2.89	2.82	2.96
Comparison_Imagery - GCW	0.46	0.42	0.51
Comparison_Imagery - AS	-0.19	-0.23	-0.15
StimType_Indoor	0.14	0.09	0.18
StimType_Outdoor	0.03	-0.02	0.07
Comparison_Imagery - GCW : StimType_Indoor	-0.04	-0.11	0.03
Comparison_Imagery - AS : StimType_Indoor	-0.09	-0.15	-0.03
Comparison_Imagery - GCW : StimType_Outdoor	-0.02	-0.09	0.05
Comparison_Imagery - AS : StimType_Outdoor	-0.11	-0.17	-0.05

Table 16

predictors	estimate	lower CI	upper CI
Intercept	1.29	1.22	1.36
Comparison_Imagery - GCW	0.14	0.08	0.21
Comparison_Imagery - AS	-0.02	-0.08	0.05
StimType_Indoor	-0.07	-0.13	-0.01
StimType_Outdoor	0.07	0.01	0.13
Comparison_Imagery - GCW : StimType_Indoor	0.12	0.03	0.21
Comparison_Imagery - AS : StimType_Indoor	0.08	-0.01	0.17
Comparison_Imagery - GCW : StimType_Outdoor	0.08	-0.01	0.17
Comparison_Imagery - AS : StimType_Outdoor	0.00	-0.09	0.09

Table 17

predictors	estimate	lower CI	upper CI
Intercept	2.58	2.48	2.68
Comparison_Imagery - GCW	0.57	0.50	0.64
Comparison_Imagery - AS	-0.23	-0.28	-0.17
StimType_Indoor	0.16	0.10	0.22
StimType_Outdoor	0.03	-0.03	0.09
Comparison_Imagery - GCW : StimType_Indoor	-0.06	-0.15	0.04
Comparison_Imagery - AS : StimType_Indoor	-0.15	-0.23	-0.07
Comparison_Imagery - GCW : StimType_Outdoor	-0.07	-0.17	0.02
Comparison_Imagery - AS : StimType_Outdoor	-0.18	-0.26	-0.10

Table 18

predictors	estimate	lower CI	upper CI
Intercept	1.48	1.43	1.53
Comparison_Imagery - GCW	-0.29	-0.34	-0.24
Comparison_Imagery - AS	-0.10	-0.15	-0.06
StimType_Indoor	-0.12	-0.16	-0.07
StimType_Outdoor	-0.06	-0.11	-0.01
Comparison_Imagery - GCW : StimType_Indoor	0.15	0.08	0.21
Comparison_Imagery - AS : StimType_Indoor	0.03	-0.03	0.10
Comparison_Imagery - GCW : StimType_Outdoor	0.10	0.03	0.16
Comparison_Imagery - AS : StimType_Outdoor	0.07	0.00	0.14

Table 19

predictors	estimate	lower CI	upper CI
Intercept	-0.07	-0.19	0.05
Comparison_Imagery - GCW	0.07	0.00	0.15
Comparison_Imagery - AS	0.05	-0.03	0.13
StimType_Indoor	0.06	-0.02	0.14
StimType_Outdoor	0.10	0.02	0.18
Comparison_Imagery - GCW : StimType_Indoor	-0.09	-0.20	0.02
Comparison_Imagery - AS : StimType_Indoor	-0.14	-0.25	-0.03
Comparison_Imagery - GCW : StimType_Outdoor	-0.15	-0.26	-0.04
Comparison_Imagery - AS : StimType_Outdoor	-0.16	-0.27	-0.04

Table 20

predictors	estimate	lower CI	upper CI
Intercept	-1.11	-1.23	-0.99
phi_Intercept	4.91	4.80	5.01
zoi_Intercept	-12.90	-29.30	-6.33
Phase_MI_FP	1.11	0.91	1.31
Phase_MI_GCW	1.07	0.84	1.30
Phase_MI_AS	1.05	0.80	1.30
Phase_GCW	-0.35	-0.49	-0.21
Phase_AS	0.02	-0.13	0.16
StimType_Indoor	0.21	0.07	0.35
StimType_Outdoor	0.00	-0.15	0.14
Fixation Dispersion	0.00	0.00	0.00
Phase_MI_FP : StimType_Indoor	-0.32	-0.45	-0.20
Phase_MI_GCW : StimType_Indoor	-0.30	-0.53	-0.08
Phase_MI_AS : StimType_Indoor	-0.15	-0.37	0.08
Phase_GCW : StimType_Indoor	-0.08	-0.28	0.12
Phase_AS : StimType_Indoor	-0.16	-0.36	0.03
Phase_MI_FP : StimType_Outdoor	-0.15	-0.27	-0.02
Phase_MI_GCW : StimType_Outdoor	0.04	-0.18	0.26
Phase_MI_AS : StimType_Outdoor	0.11	-0.11	0.34
Phase_GCW : StimType_Outdoor	0.07	-0.13	0.26
Phase_AS : StimType_Outdoor	-0.05	-0.24	0.15
phi_MI_FP	-2.49	-2.64	-2.34
phi_MI_GCW	-2.54	-2.69	-2.38
phi_MI_AS	-2.61	-2.76	-2.45
phi_GCW	1.37	1.22	1.52
phi_AS	0.06	-0.09	0.21
zoi_MI_FP	9.38	2.84	25.80

Table 21

predictors	estimate	lower CI	upper CI
Intercept	0.05	-0.12	0.22
phi_Intercept	2.75	2.65	2.85
zoi_Intercept	-6.10	-7.84	-4.83
Phase_MI_FP	0.97	0.76	1.17
Phase_MI_GCW	1.02	0.78	1.27
Phase_MI_AS	0.92	0.66	1.19
Phase_GCW	0.76	0.56	0.95
Phase_AS	0.11	-0.06	0.29
StimType_Indoor	0.59	0.42	0.75
StimType_Outdoor	0.22	0.06	0.40
Fixation Dispersion	0.00	0.00	0.00
Phase_MI_FP : StimType_Indoor	-0.58	-0.74	-0.43
Phase_MI_GCW : StimType_Indoor	-0.63	-0.88	-0.39
Phase_MI_AS : StimType_Indoor	-0.36	-0.61	-0.11
Phase_GCW : StimType_Indoor	-0.34	-0.57	-0.10
Phase_AS : StimType_Indoor	-0.42	-0.65	-0.18
Phase_MI_FP : StimType_Outdoor	-0.35	-0.51	-0.20
Phase_MI_GCW : StimType_Outdoor	-0.24	-0.48	0.01
Phase_MI_AS : StimType_Outdoor	-0.09	-0.34	0.15
Phase_GCW : StimType_Outdoor	-0.27	-0.50	-0.04
Phase_AS : StimType_Outdoor	-0.29	-0.52	-0.05
phi_MI_FP	-0.65	-0.80	-0.50
phi_MI_GCW	-0.55	-0.69	-0.40
phi_MI_AS	-0.57	-0.72	-0.42
phi_GCW	0.21	0.06	0.36
phi_AS	0.26	0.11	0.40
zoi_MI_FP	2.32	0.95	4.12

Table 22

predictors	estimate	lower CI	upper CI
Intercept	0.42	0.24	0.60
phi_Intercept	2.68	2.58	2.79
zoi_Intercept	-6.94	-9.60	-5.23
Phase_MI_FP	0.62	0.44	0.81
Phase_MI_GCW	0.70	0.46	0.93
Phase_MI_AS	0.60	0.36	0.84
Phase_GCW	0.42	0.22	0.62
Phase_AS	-0.53	-0.75	-0.31
StimType_Indoor	0.70	0.53	0.88
StimType_Outdoor	0.19	0.02	0.37
Fixation Dispersion	0.00	0.00	0.00
Phase_MI_FP : StimType_Indoor	-0.72	-0.86	-0.58
Phase_MI_GCW : StimType_Indoor	-0.76	-1.01	-0.52
Phase_MI_AS : StimType_Indoor	-0.54	-0.79	-0.30
Phase_GCW : StimType_Indoor	-0.47	-0.71	-0.23
Phase_AS : StimType_Indoor	-0.61	-0.85	-0.37
Phase_MI_FP : StimType_Outdoor	-0.30	-0.44	-0.16
Phase_MI_GCW : StimType_Outdoor	-0.22	-0.47	0.03
Phase_MI_AS : StimType_Outdoor	-0.17	-0.42	0.08
Phase_GCW : StimType_Outdoor	-0.16	-0.40	0.08
Phase_AS : StimType_Outdoor	-0.45	-0.71	-0.20
phi_MI_FP	-0.11	-0.27	0.04
phi_MI_GCW	-0.07	-0.22	0.08
phi_MI_AS	-0.04	-0.19	0.11
phi_GCW	0.79	0.64	0.94
phi_AS	0.23	0.08	0.37
zoi_MI_FP	2.79	0.96	5.53

Table 23

predictors	estimate	lower CI	upper CI
Intercept	-0.51	-0.57	-0.44
phi_Intercept	4.53	4.43	4.64
zoi_Intercept	-6.10	-7.81	-4.88
Phase_MI_FP	-0.08	-0.15	-0.02
Phase_MI_GCW	-0.16	-0.24	-0.08
Phase_MI_AS	-0.12	-0.20	-0.04
Phase_GCW	0.08	0.00	0.16
Phase_AS	0.10	0.02	0.17
StimType_Indoor	-0.04	-0.11	0.03
StimType_Outdoor	-0.02	-0.09	0.05
Fixation Dispersion	0.00	0.00	0.00
Phase_MI_FP : StimType_Indoor	-0.01	-0.08	0.05
Phase_MI_GCW : StimType_Indoor	0.01	-0.09	0.11
Phase_MI_AS : StimType_Indoor	0.01	-0.09	0.11
Phase_GCW : StimType_Indoor	-0.16	-0.26	-0.07
Phase_AS : StimType_Indoor	0.01	-0.09	0.10
Phase_MI_FP : StimType_Outdoor	-0.02	-0.09	0.04
Phase_MI_GCW : StimType_Outdoor	0.03	-0.07	0.13
Phase_MI_AS : StimType_Outdoor	0.01	-0.09	0.11
Phase_GCW : StimType_Outdoor	0.03	-0.07	0.12
Phase_AS : StimType_Outdoor	-0.02	-0.11	0.08
phi_MI_FP	-0.48	-0.63	-0.33
phi_MI_GCW	-0.49	-0.64	-0.34
phi_MI_AS	-0.28	-0.44	-0.13
phi_GCW	-0.38	-0.53	-0.22
phi_AS	0.11	-0.04	0.26
zoi_MI_FP	2.19	0.85	3.95

Table 24

predictors	estimate	lower CI	upper CI
Intercept	4.05	4.00	4.10
Phase_MI_FP	-0.67	-0.77	-0.57
Phase_MI_GCW	-0.55	-0.65	-0.46
Phase_MI_AS	-0.68	-0.80	-0.57
Phase_GCW	0.16	0.10	0.21
Phase_AS	0.01	-0.04	0.07
StimType_Indoor	0.03	-0.01	0.06
StimType_Outdoor	-0.02	-0.06	0.02
Phase_MI_FP : StimType_Indoor	0.01	-0.02	0.05
Phase_MI_GCW : StimType_Indoor	-0.04	-0.10	0.01
Phase_MI_AS : StimType_Indoor	-0.03	-0.09	0.02
Phase_GCW : StimType_Indoor	-0.04	-0.09	0.01
Phase_AS : StimType_Indoor	-0.03	-0.08	0.02
Phase_MI_FP : StimType_Outdoor	0.05	0.01	0.09
Phase_MI_GCW : StimType_Outdoor	-0.02	-0.08	0.03
Phase_MI_AS : StimType_Outdoor	0.02	-0.04	0.07
Phase_GCW : StimType_Outdoor	0.05	0.00	0.10
Phase_AS : StimType_Outdoor	0.05	-0.01	0.10

Table 25

predictors	estimate	lower CI	upper CI
Intercept	5.49	5.45	5.53
Phase_MI_FP	0.58	0.49	0.68
Phase_MI_GCW	0.46	0.37	0.56
Phase_MI_AS	0.56	0.46	0.67
Phase_GCW	-0.09	-0.14	-0.04
Phase_AS	-0.02	-0.08	0.03
StimType_Indoor	-0.01	-0.06	0.03
StimType_Outdoor	0.04	-0.01	0.08
Phase_MI_FP : StimType_Indoor	0.00	-0.05	0.06
Phase_MI_GCW : StimType_Indoor	0.05	-0.01	0.12
Phase_MI_AS : StimType_Indoor	0.09	0.03	0.16
Phase_GCW : StimType_Indoor	0.02	-0.05	0.08
Phase_AS : StimType_Indoor	0.01	-0.06	0.07
Phase_MI_FP : StimType_Outdoor	-0.06	-0.12	0.00
Phase_MI_GCW : StimType_Outdoor	0.02	-0.04	0.08
Phase_MI_AS : StimType_Outdoor	0.02	-0.05	0.08
Phase_GCW : StimType_Outdoor	-0.07	-0.13	0.00
Phase_AS : StimType_Outdoor	-0.06	-0.13	0.00

Table 26

predictors	estimate	lower CI	upper CI
Intercept	5.91	5.78	6.03
Phase_MI_FP	-0.95	-1.15	-0.76
Phase_MI_GCW	-0.87	-1.09	-0.66
Phase_MI_AS	-1.06	-1.36	-0.78
Phase_GCW	0.28	0.11	0.45
Phase_AS	0.11	-0.06	0.28
StimType_Indoor	0.14	-0.02	0.31
StimType_Outdoor	0.07	-0.10	0.23
Phase_MI_FP : StimType_Indoor	0.00	-0.18	0.19
Phase_MI_GCW : StimType_Indoor	-0.03	-0.27	0.21
Phase_MI_AS : StimType_Indoor	0.00	-0.24	0.23
Phase_GCW : StimType_Indoor	-0.14	-0.38	0.10
Phase_AS : StimType_Indoor	-0.10	-0.34	0.14
Phase_MI_FP : StimType_Outdoor	0.04	-0.14	0.22
Phase_MI_GCW : StimType_Outdoor	-0.09	-0.33	0.16
Phase_MI_AS : StimType_Outdoor	-0.21	-0.45	0.03
Phase_GCW : StimType_Outdoor	-0.09	-0.34	0.15
Phase_AS : StimType_Outdoor	-0.07	-0.30	0.17

Table 27

term	estimate	lower.CI	upper.CI
(PhaseMI_GCW-PhaseMI_FP) = 0	0.05	-0.15	0.26
(PhaseMI_Scotoma-PhaseMI_FP) = 0	-0.05	-0.26	0.16
(PhaseMI_Scotoma-PhaseMI_GCW) = 0	-0.10	-0.31	0.11

Table 28

term	estimate	lower.CI	upper.CI
(PhaseMI_GCW-PhaseMI_FP) = 0	0.07	-0.12	0.27
(PhaseMI_Scotoma-PhaseMI_FP) = 0	-0.02	-0.22	0.17
(PhaseMI_Scotoma-PhaseMI_GCW) = 0	-0.10	-0.29	0.09

Table 29

Mean (SD) accuracy of probe responses by stimulus type and condition.

stim_type	condition	mean_accuracy	sd_accuracy
abstract	GCW	0.59	0.49
abstract	rGCW	0.75	0.44
indoor	GCW	0.79	0.40
indoor	rGCW	0.74	0.44
outdoor	GCW	0.69	0.46
outdoor	rGCW	0.61	0.49
Overall		0.70	0.46

Table 30

Mean (SD) vividness ratings by stimulus type and condition.

stim_type	condition	mean_vividness	sd_vividness
abstract	GCW	3.04	1.21
abstract	rGCW	3.00	1.13
indoor	GCW	4.64	1.12
indoor	rGCW	4.47	1.13
outdoor	GCW	4.73	1.12
outdoor	rGCW	4.58	1.13
Overall		4.07	1.36

Table 31

Mean (SD) accuracy of probe responses by stimulus type and condition.

stim_type	condition	mean_accuracy	sd_accuracy
abstract	FP	0.67	0.47
abstract	GCW	0.65	0.48
abstract	Scotoma	0.70	0.46
indoor	FP	0.76	0.43
indoor	GCW	0.53	0.50
indoor	Scotoma	0.64	0.48
outdoor	FP	0.57	0.50
outdoor	GCW	0.81	0.39
outdoor	Scotoma	0.28	0.45
Overall		0.62	0.48

Table 32

Mean (SD) vividness ratings by stimulus type and condition.

stim_type	condition	mean_vividness	sd_vividness
abstract	FP	2.91	1.19
abstract	GCW	2.31	1.20
abstract	Scotoma	3.13	1.22
indoor	FP	4.90	1.28
indoor	GCW	4.17	1.18
indoor	Scotoma	4.83	1.26
outdoor	FP	4.68	1.29
outdoor	GCW	4.52	1.20
outdoor	Scotoma	4.52	1.31
Overall		3.99	1.53

Table 33

Factor	Mean
Object	3.25
Spatial	2.55
Verbal	3.04

Table 34

Factor	Mean
Object	3.14
Spatial	2.70
Verbal	3.11

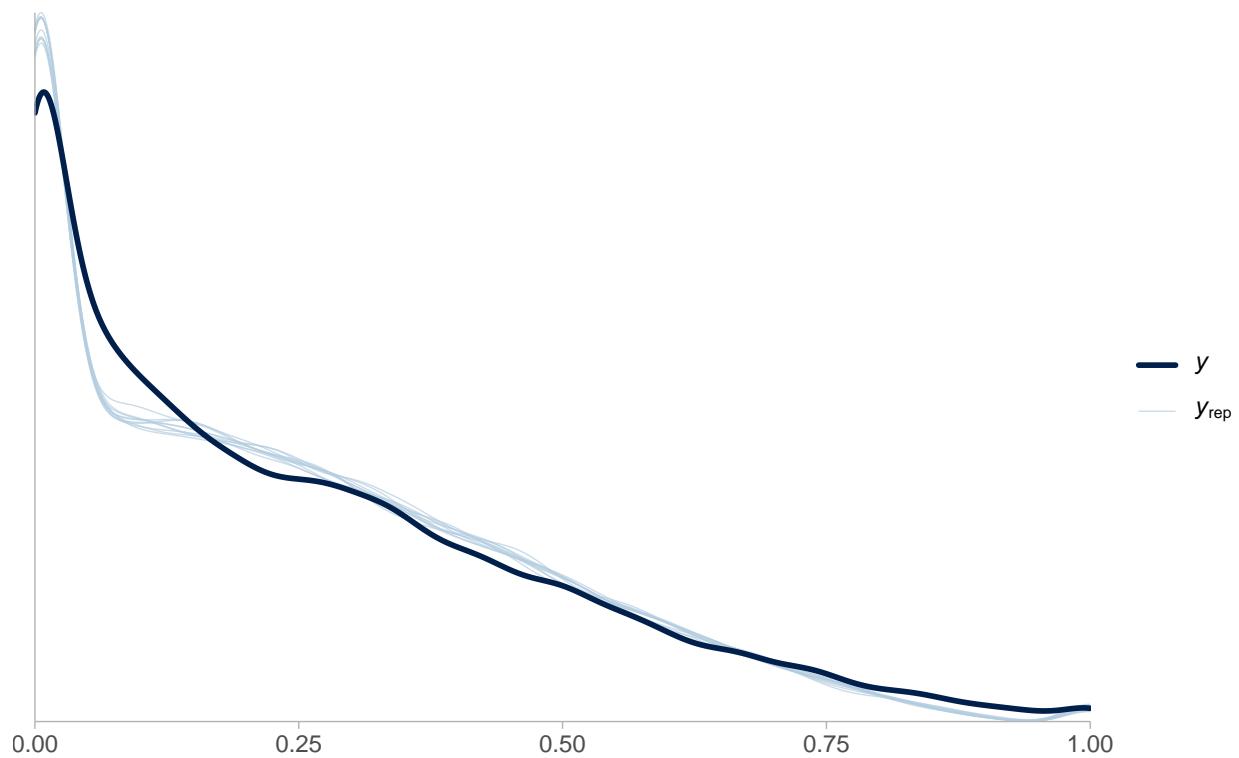


Figure 1

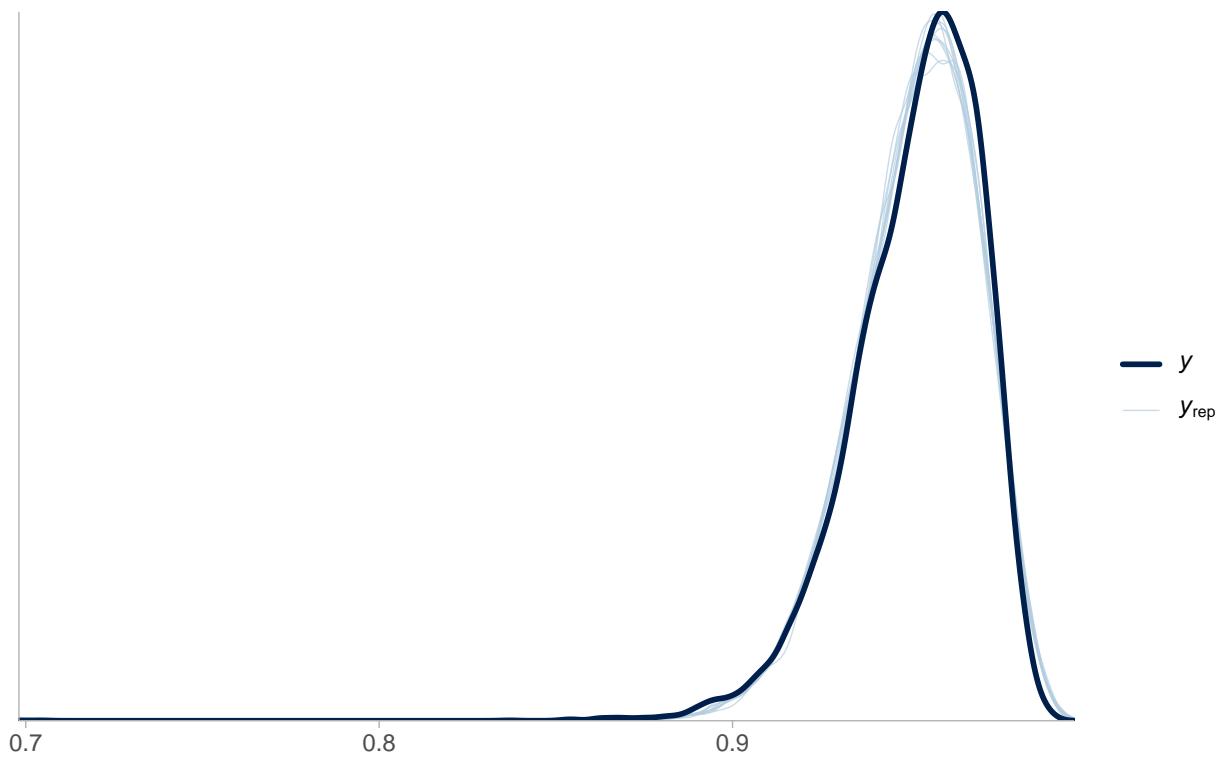


Figure 2

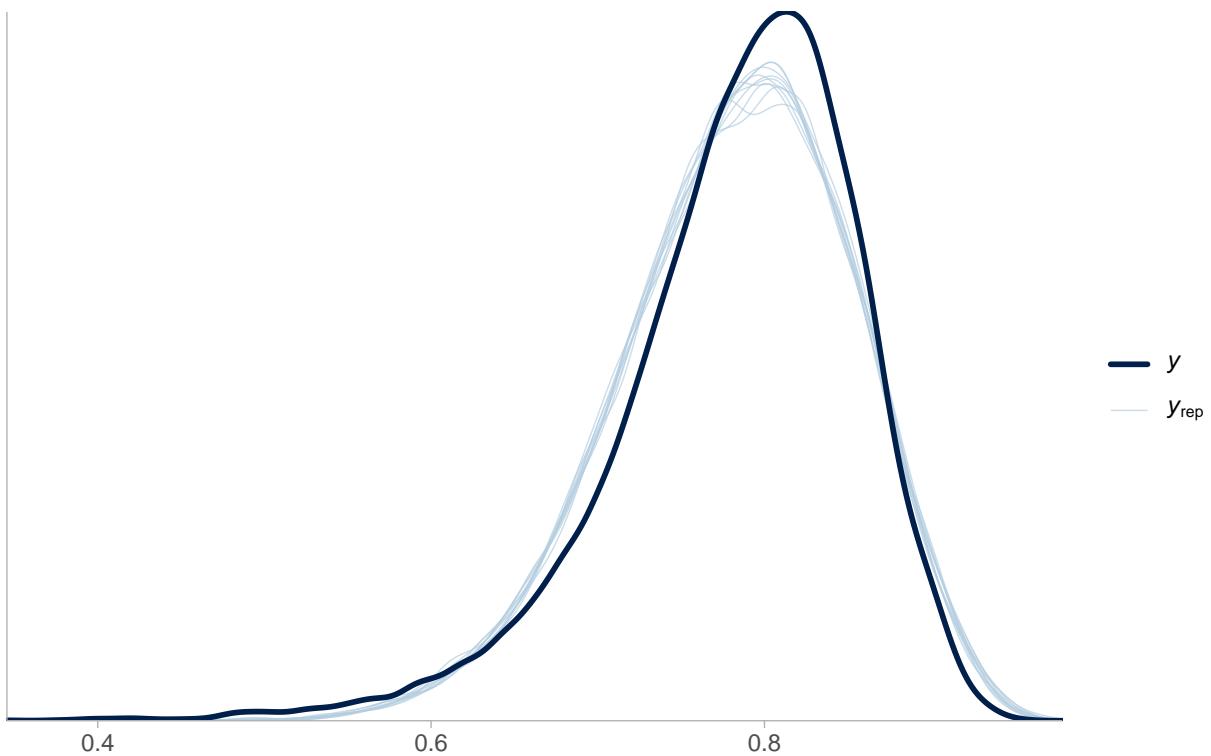


Figure 3

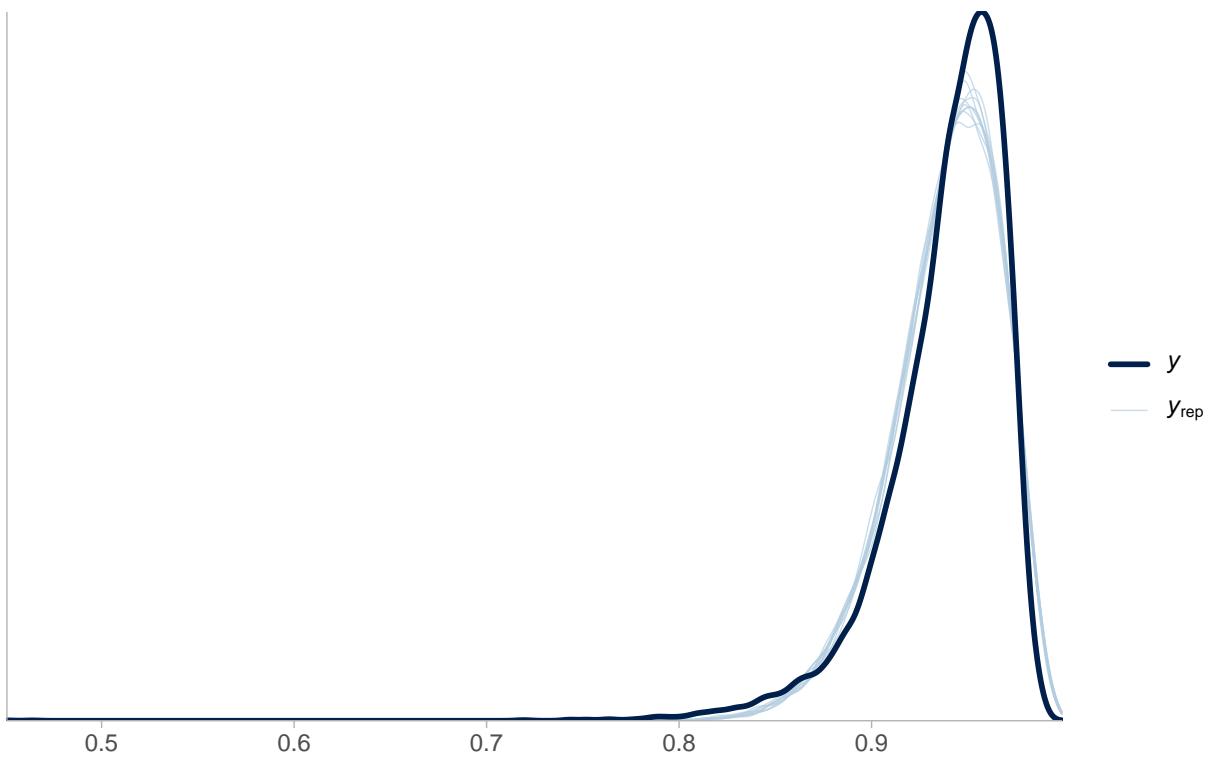


Figure 4

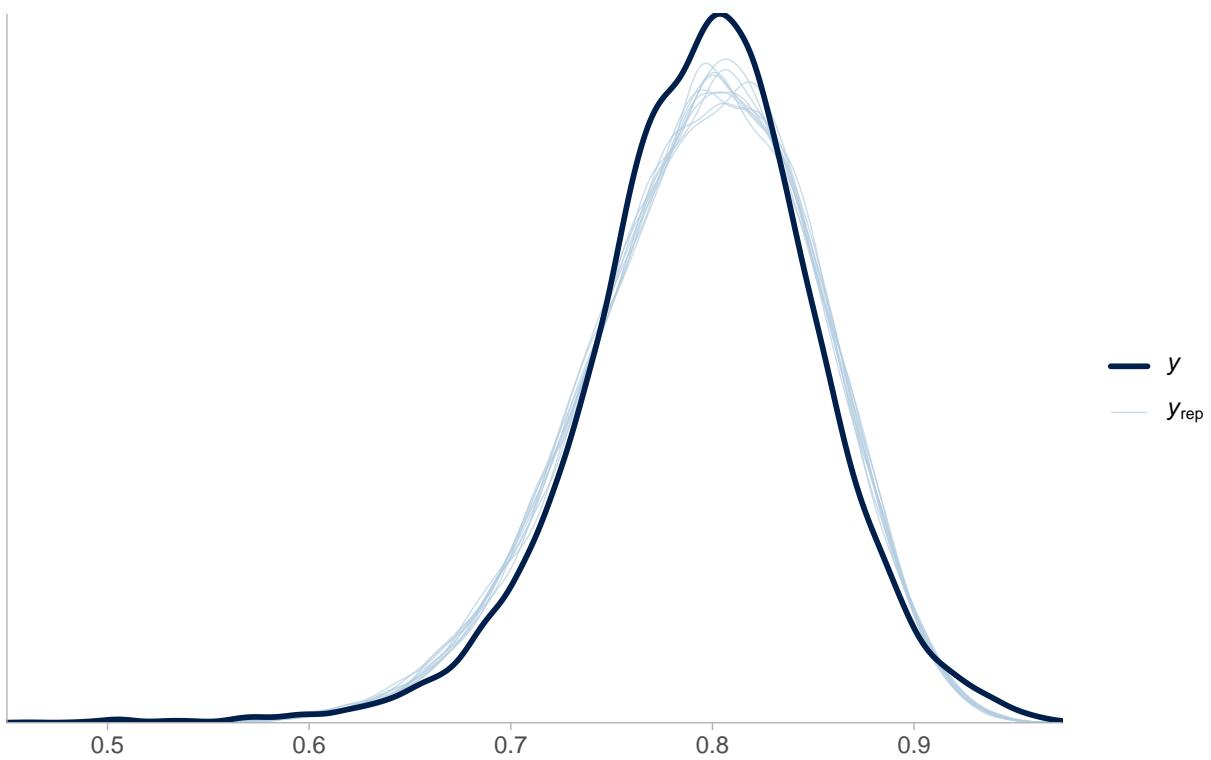


Figure 5

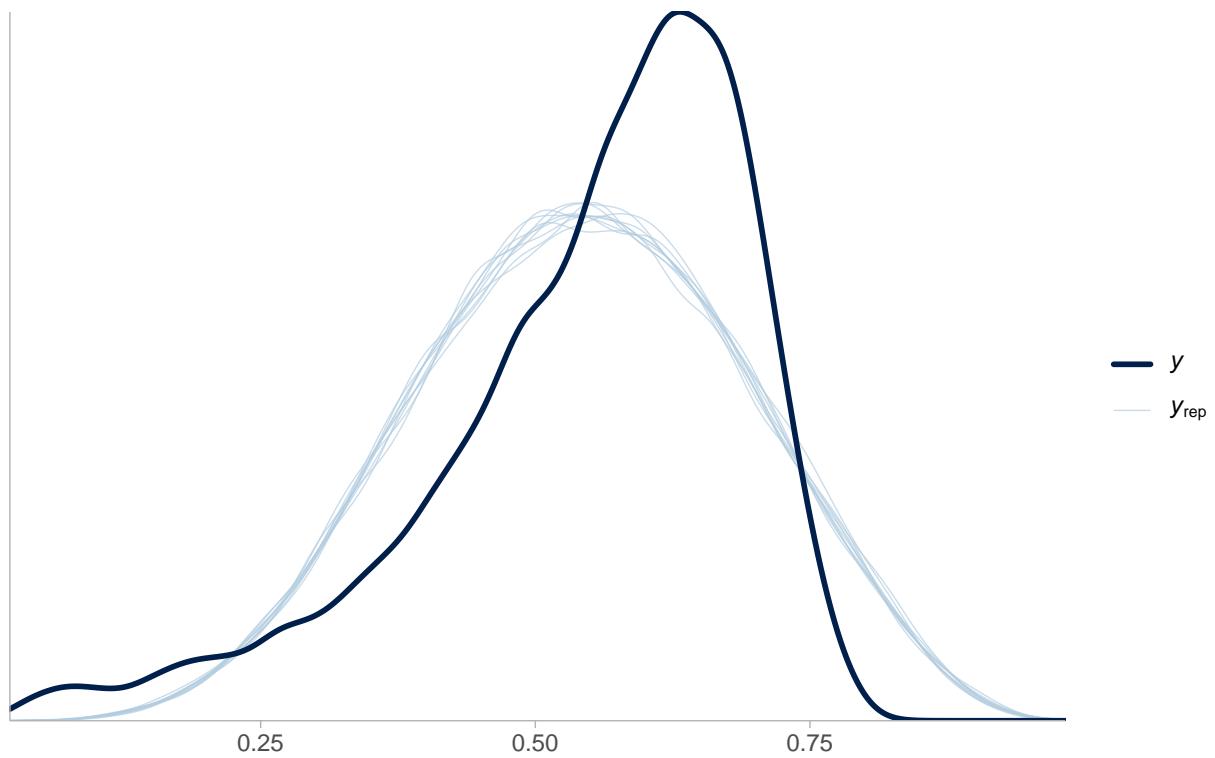


Figure 6

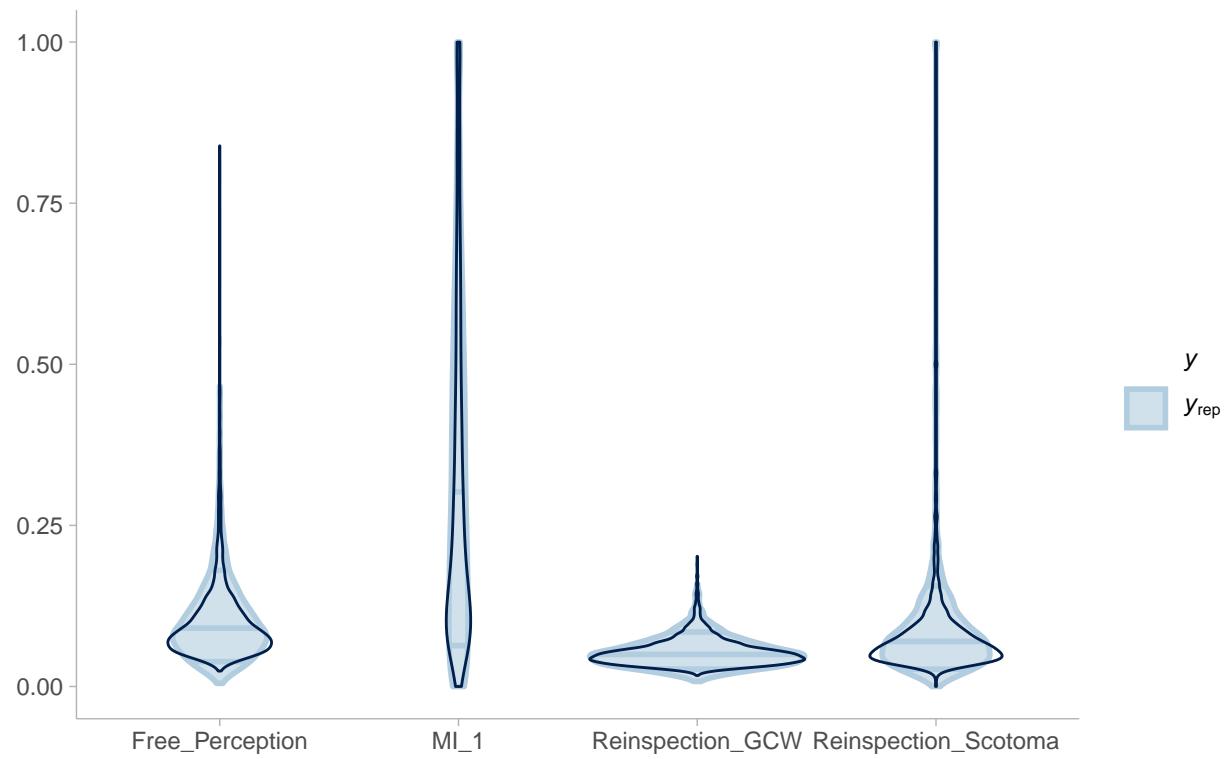


Figure 7

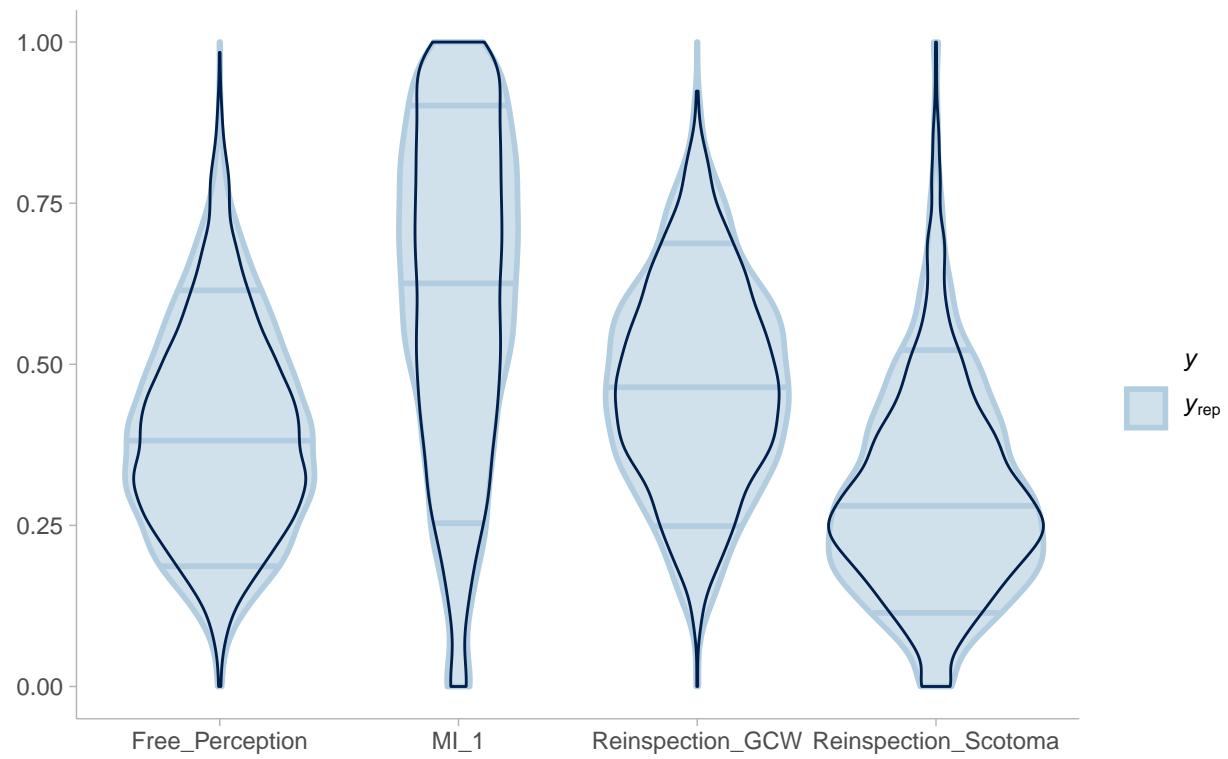


Figure 8

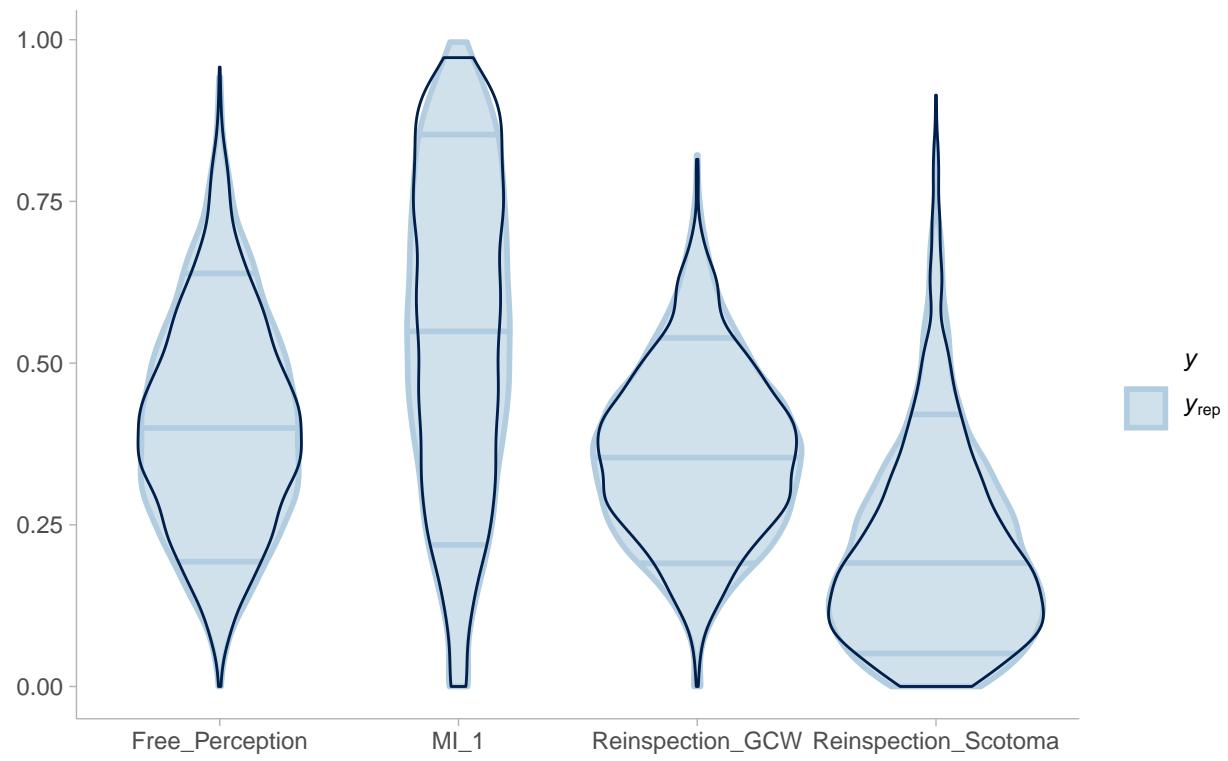


Figure 9

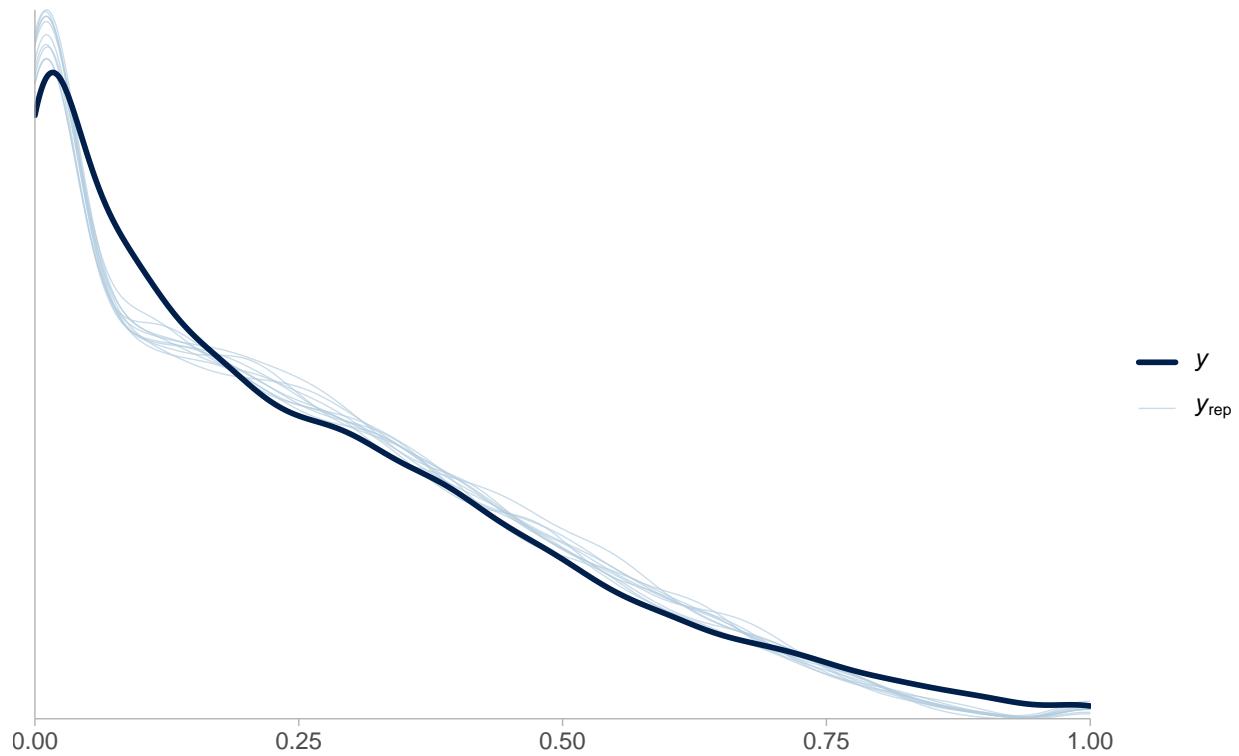


Figure 10

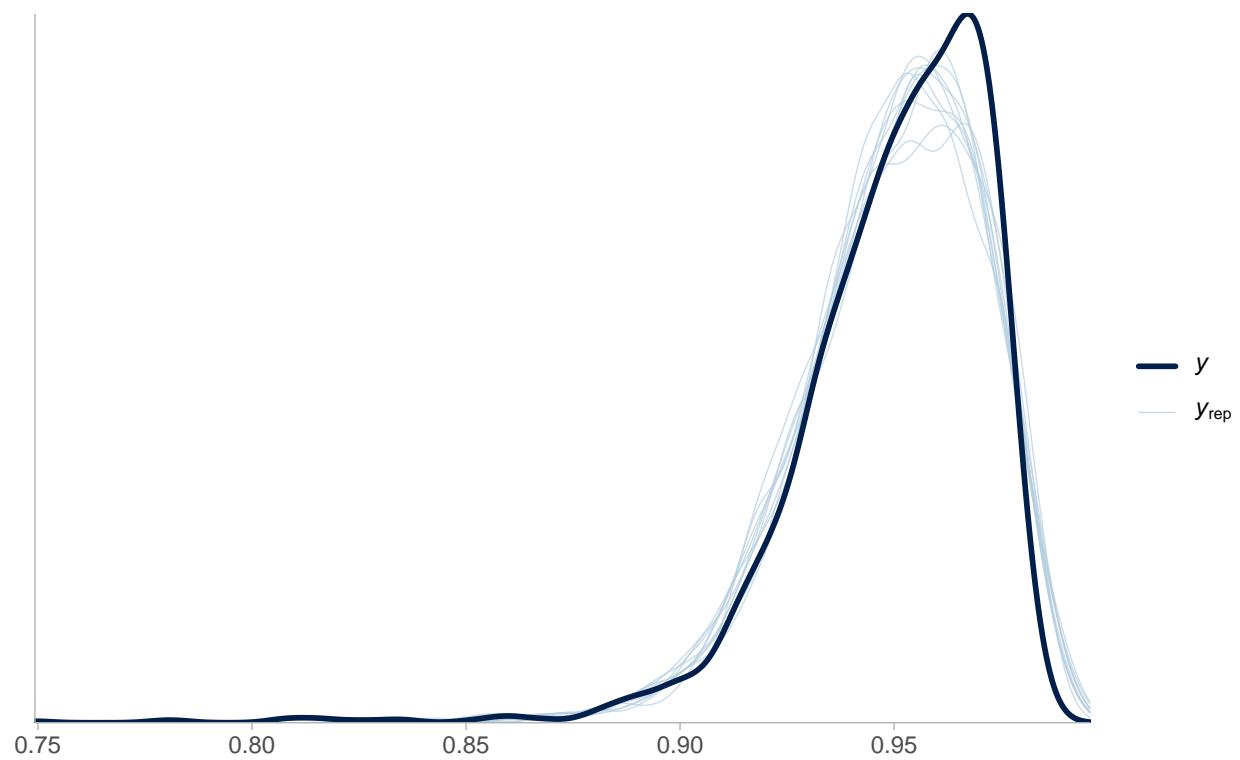


Figure 11

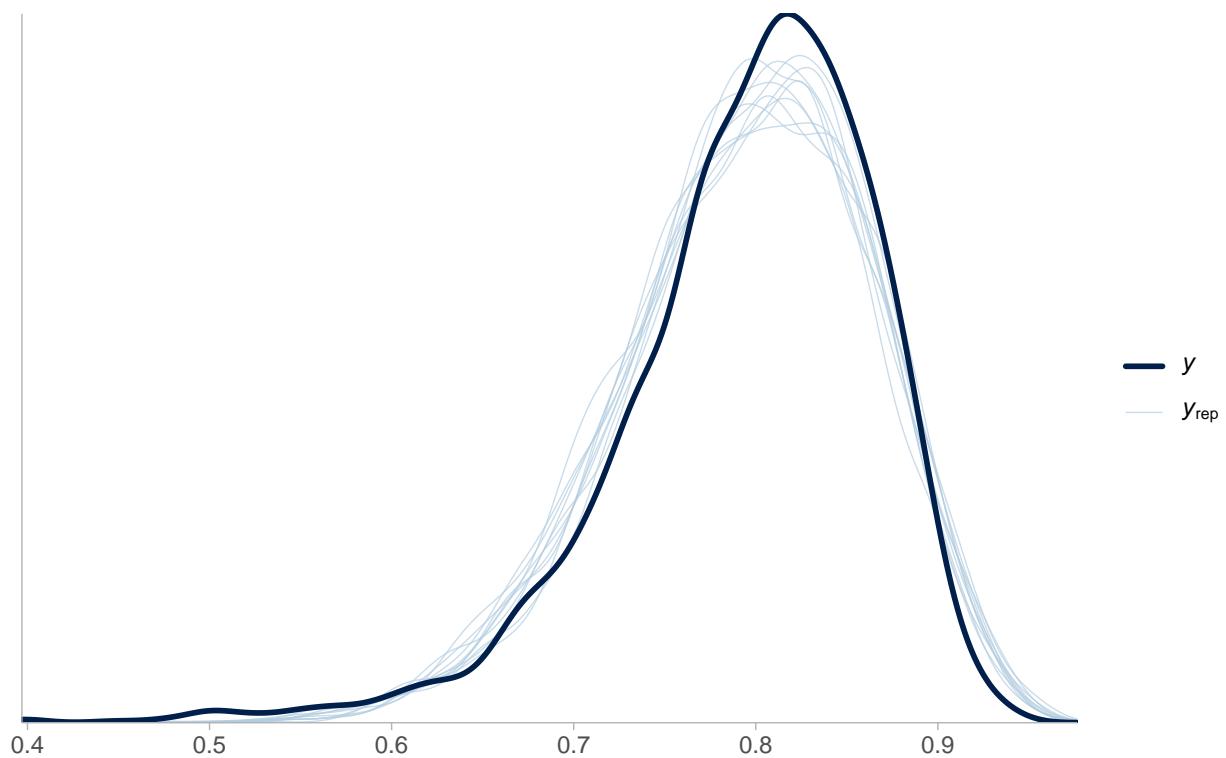


Figure 12

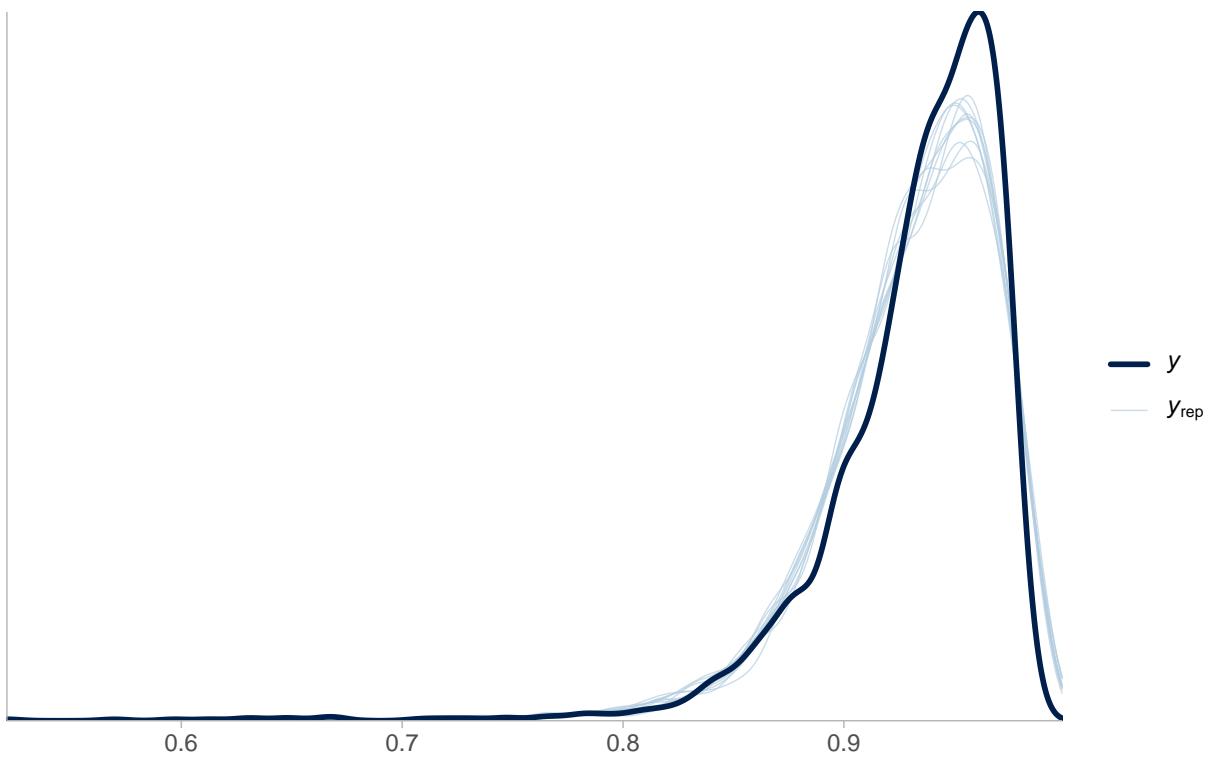


Figure 13

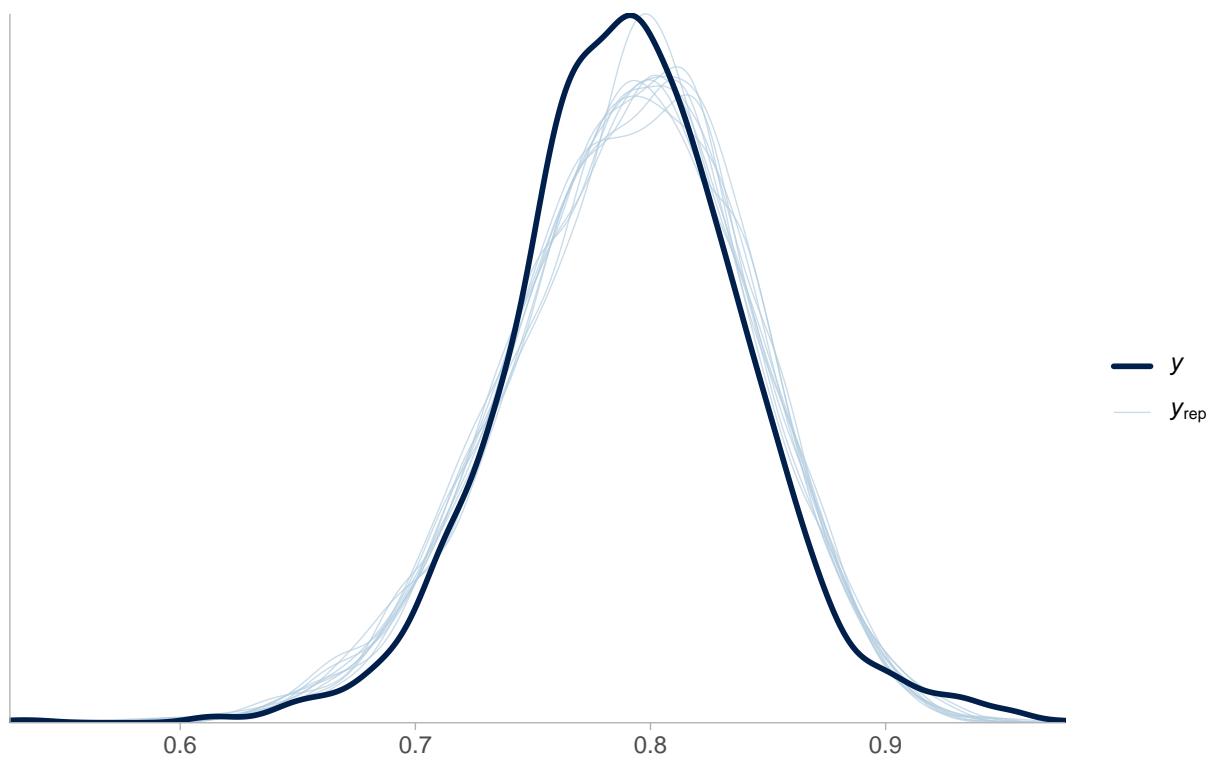


Figure 14

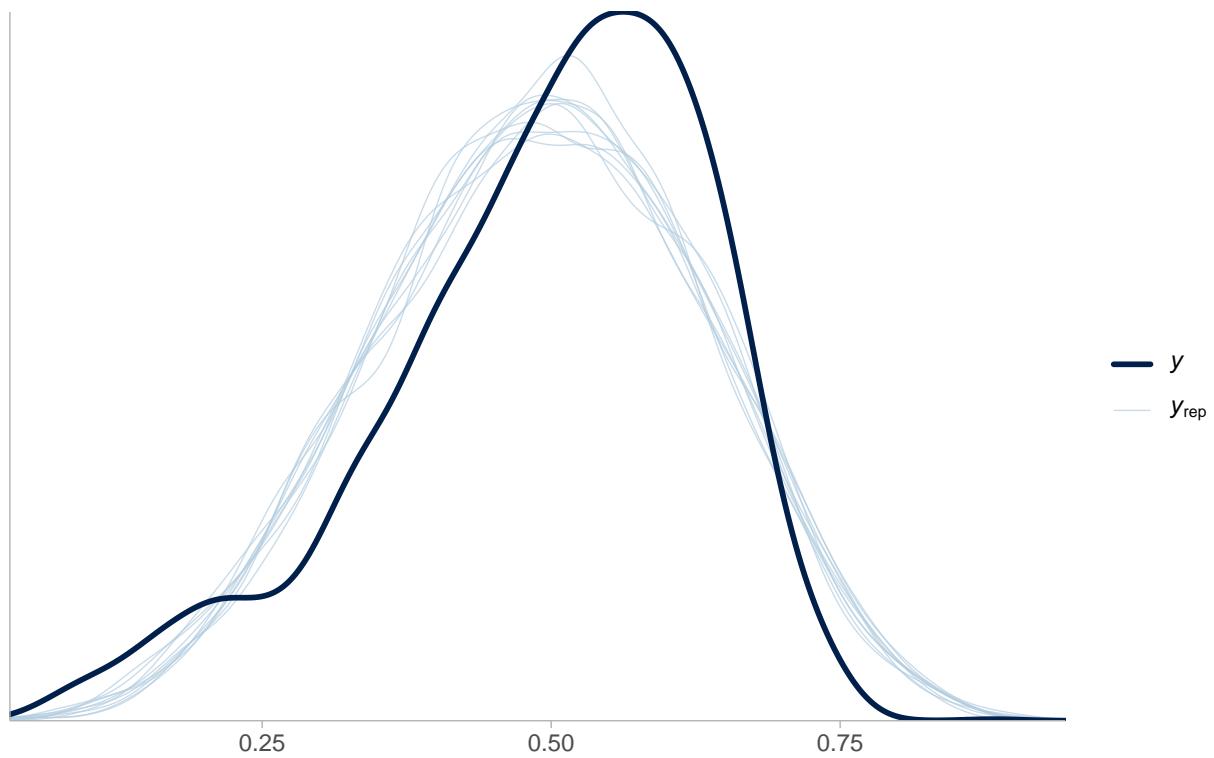


Figure 15

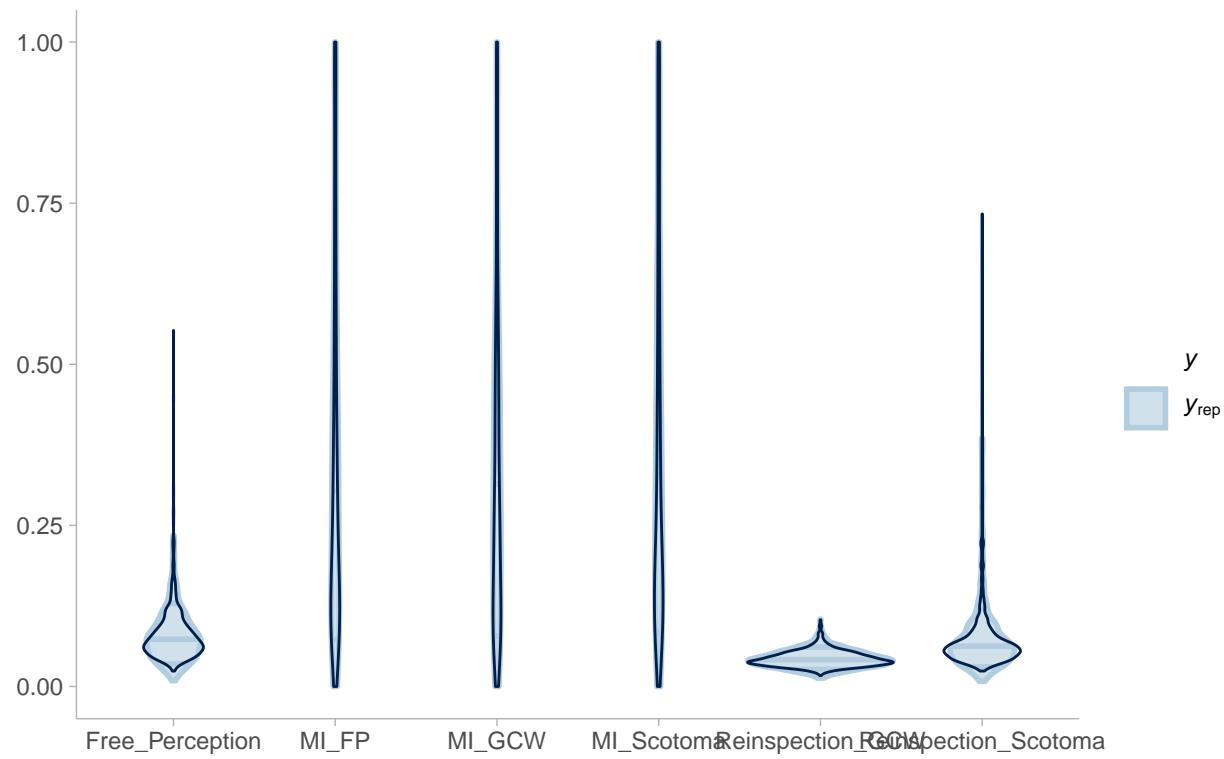


Figure 16

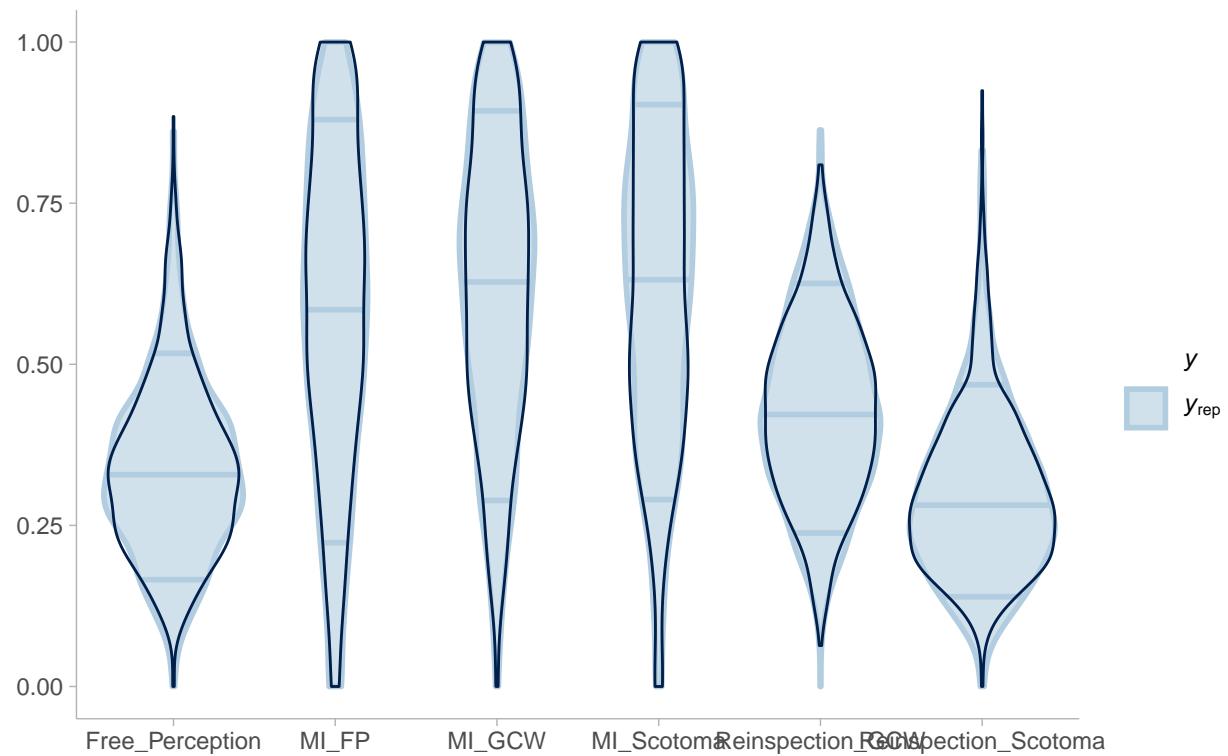


Figure 17

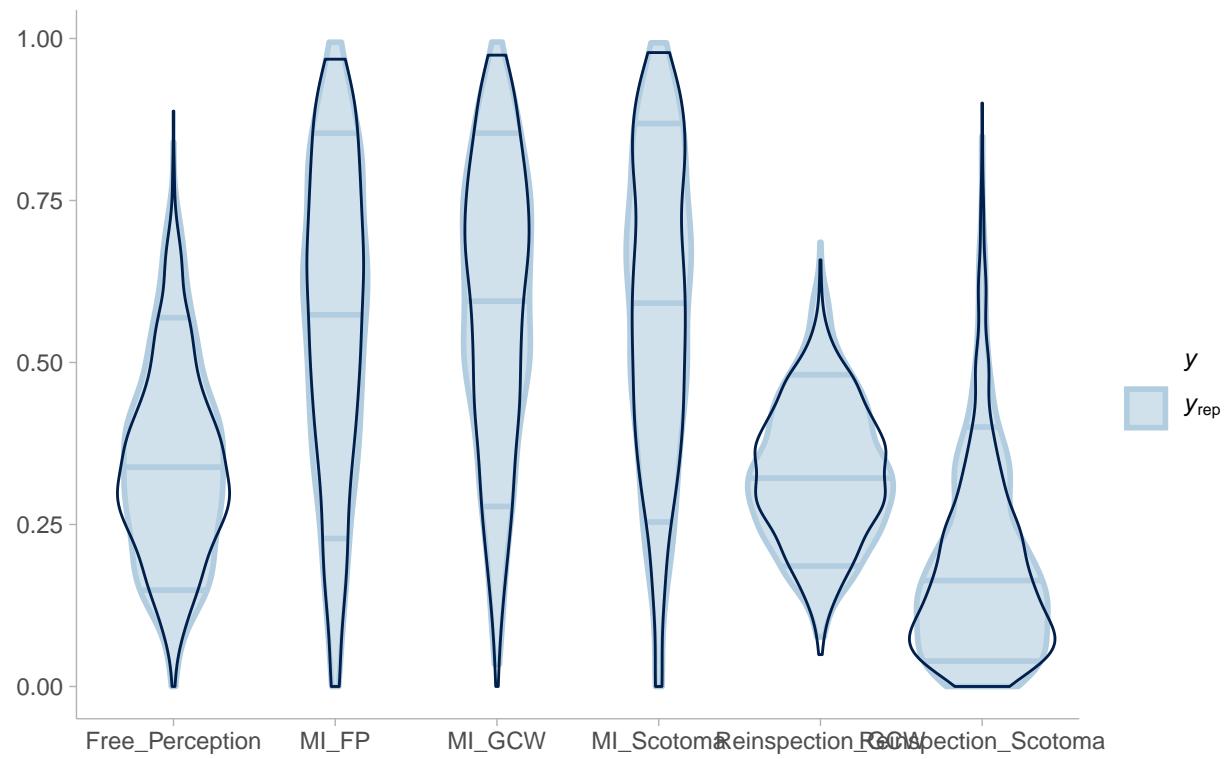


Figure 18

VVIQ Score Distributions (exp 1)

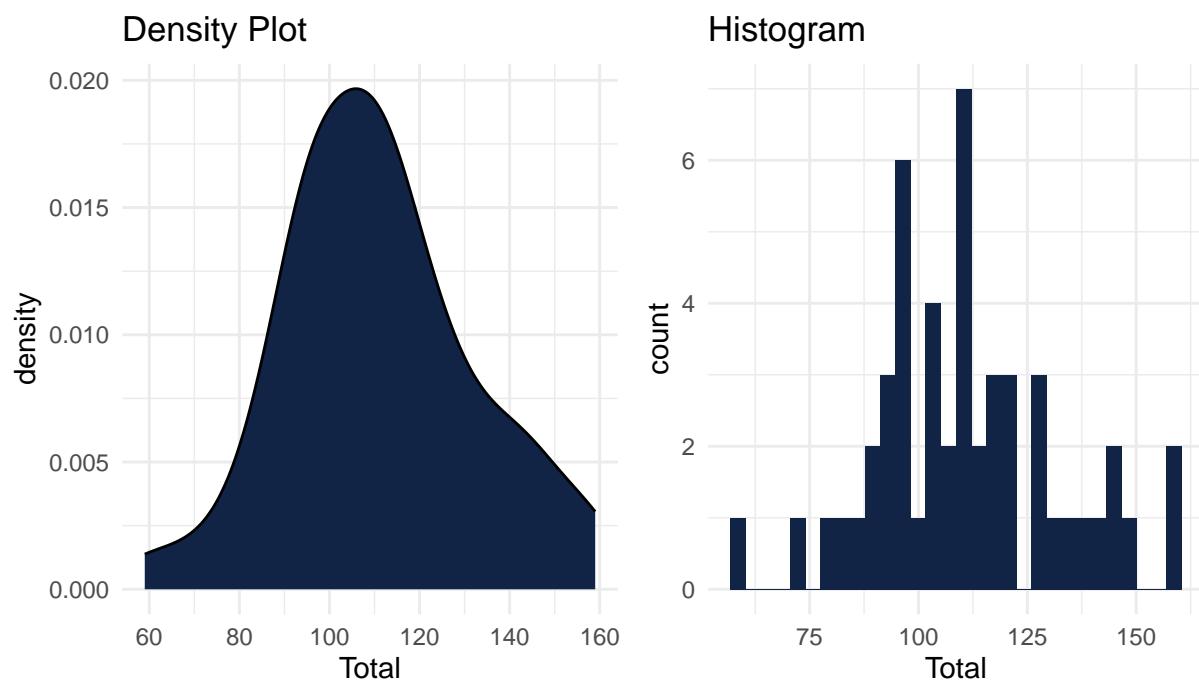
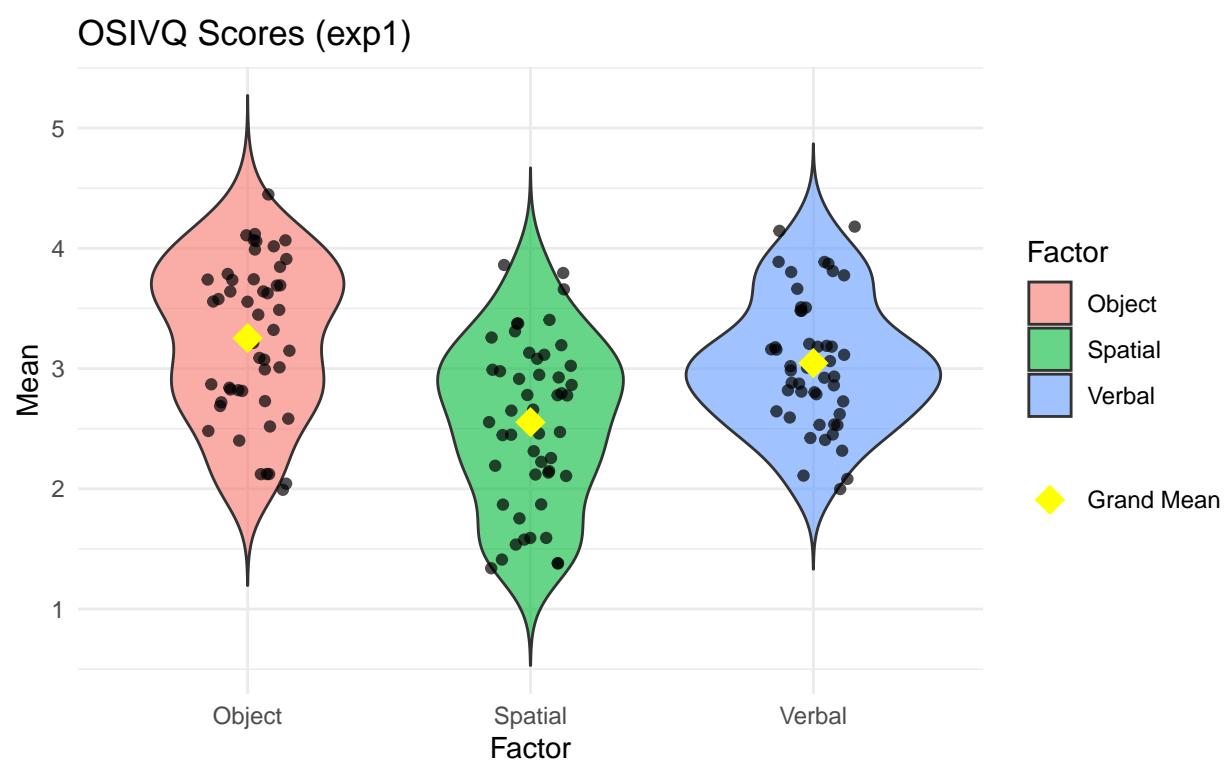



Figure 19

Mental Rotation Score Distributions (exp 1)

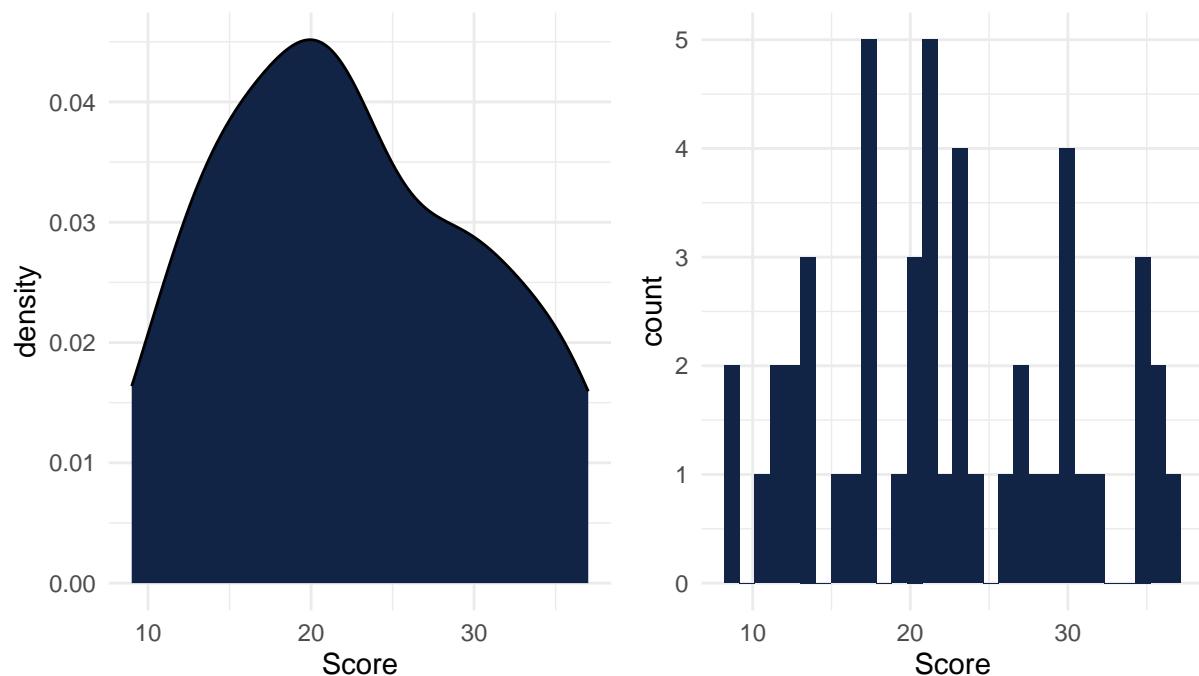


Figure 21

Working Memory Score Distributions (exp 1)

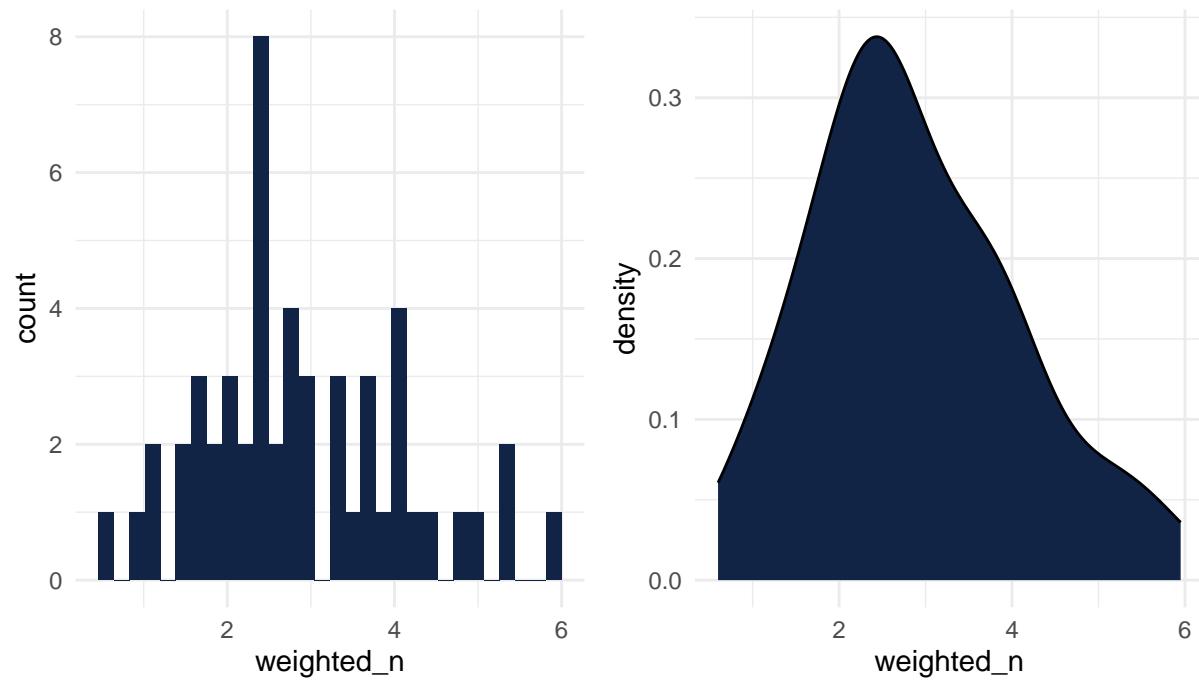


Figure 22

VVIQ Score Distributions (exp 2)

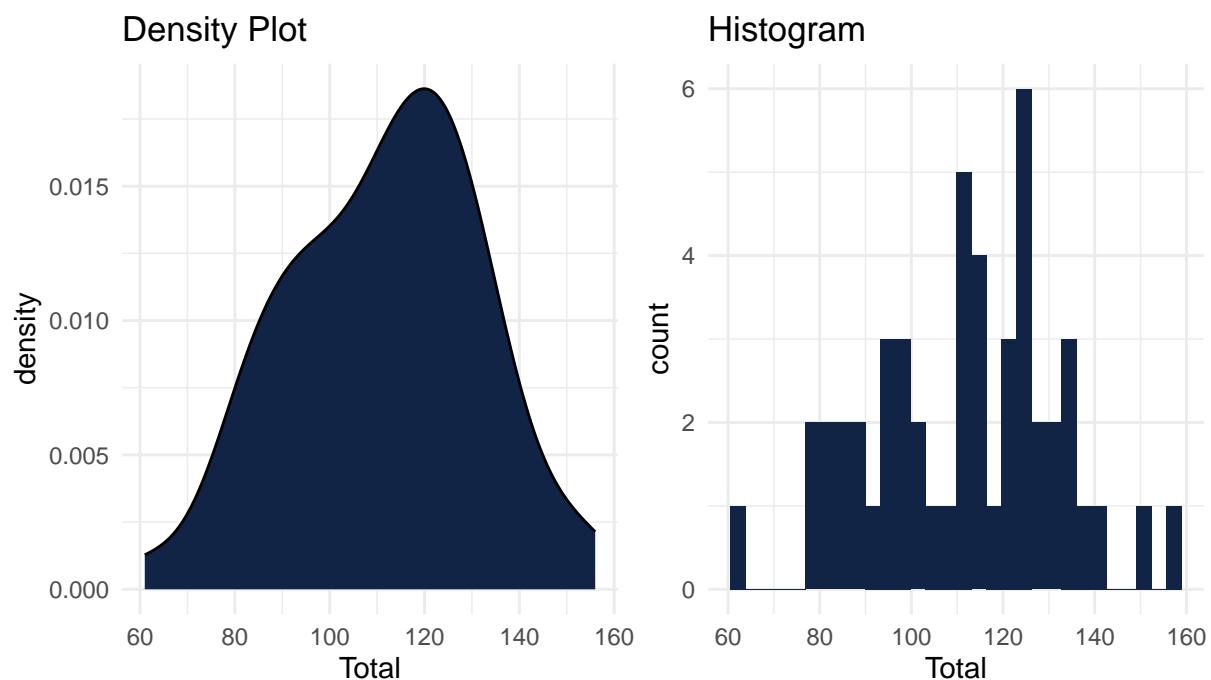


Figure 23

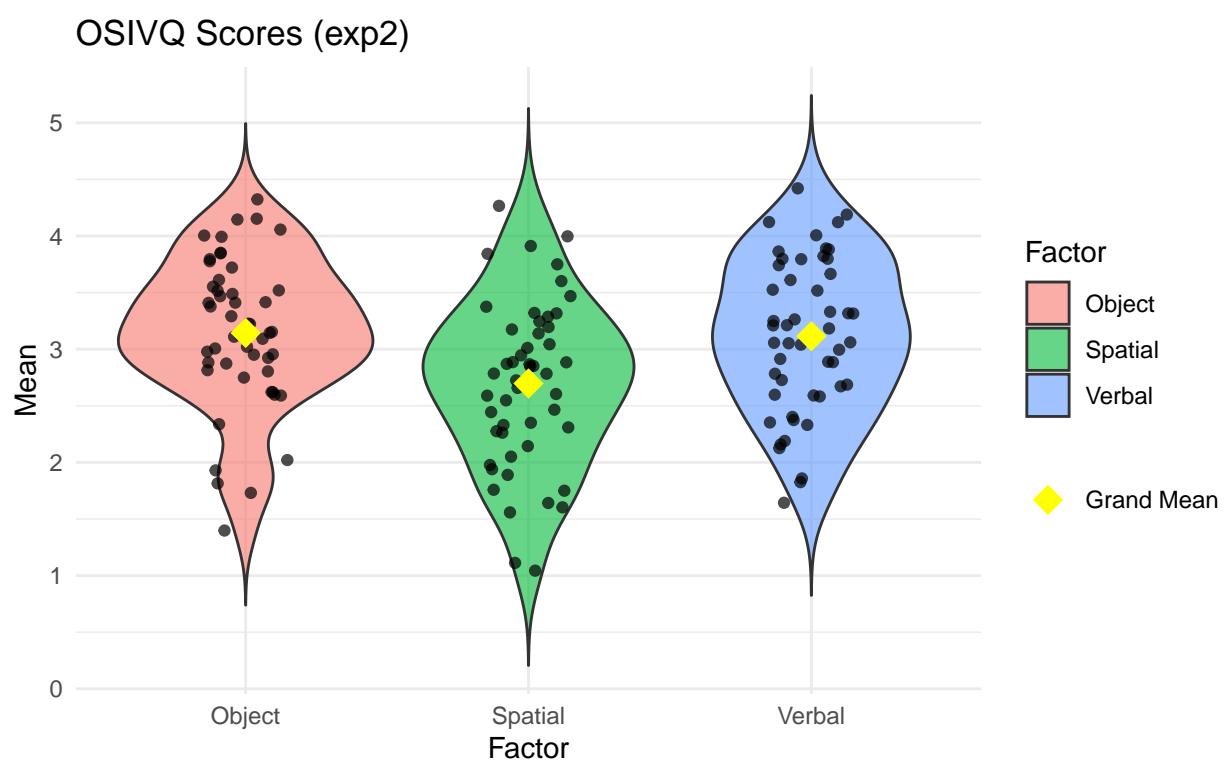


Figure 24

Mental Rotation Score Distributions (exp 2)

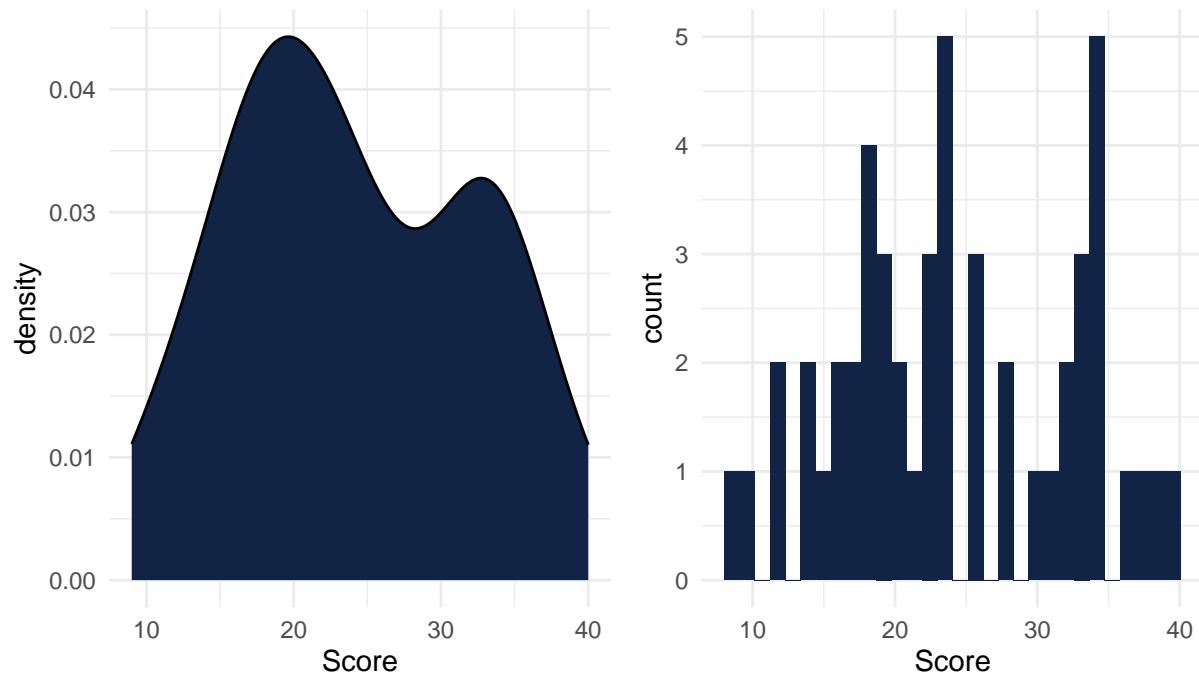


Figure 25

Working Memory Score Distributions (exp 2)

Figure 26