
Supplemental: Hybrid classical-quantum

computation of heat diffusion in multilayer

materials

Sasan Moradi

Center for medical physics and biomedical engineering, Medical
university of Vienna, Währinger Straße, Vienna, 1090, Vienna, Austria.

Corresponding author(s). E-mail(s): sassan.moradi@gmail.com;

The math and details are in support of the main text for ”Hybrid classical-quantum
computation of heat diffusion in multilayer materials”

Appendix A Nondimensionalization of heat
diffusion equation

Consider the dimensional diffusion equation,

∂Ui

∂t
= Di

∂2Ui

∂x2
(A1)

using standard non-dimensionalisation, let

t = t0t
∗, Ui = U0U

∗
i , x = Lx∗ (A2)

t0 is the typical time scale, U0 is the typical temperature, and L is the typical
length. Substituting these into Eq. A1, we have

∂U∗
i

∂t∗
= Di

t0
L2

∂2U∗
i

∂x∗2 (A3)

1

However since Di is a function of space, this must be done carefully. Let Di = DmaxD
∗
i

where Dmax is the largest diffusivity, such that 0 ≤ D∗
i ≤ 1 and t0 = L2

Dmax

∂U∗
i

∂t∗
= D∗

i

∂2U∗
i

∂x∗2 (A4)

Appendix B Matrix-Vector multiplication

We first start with small size matrix 4× 4 and vector 4× 1. Let’s begin by performing
the following matrix-vector multiplication for 4× 4 matrix and 4× 1 vector

A =

[
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

]
(B5)

and b =


b1
b2
b3
b4

. Let’s begin by introducing the following definitions:

A⃗1 = (a11, a12, a13, a14)

A⃗2 = (a21, a22, a23, a24)

A⃗3 = (a31, a32, a33, a34)

A⃗4 = (a41, a42, a43, a44)

(B6)

This allows us to express the matrix-vector multiplication as

Ab =


A1.b
A2.b
A3.b
A4.b

 =


a11b1 + a12b2 + a13b3 + a14b4
a21b1 + a22b2 + a23b3 + a24b4
a31b1 + a32b2 + a33b3 + a34b4
a41b1 + a42b2 + a43b3 + a44b4

 (B7)

For each row, we can define the following states

|A1⟩ = a11 |00⟩+ a12 |01⟩+ a13 |10⟩+ a14 |11⟩ ,
4∑

j=1

|a1j |2 = 1

|A2⟩ = a21 |00⟩+ a22 |01⟩+ a23 |10⟩+ a24 |11⟩ ,
4∑

j=1

|a2j |2 = 1

|A3⟩ = a31 |00⟩+ a32 |01⟩+ a33 |10⟩+ a34 |11⟩ ,
4∑

j=1

|a3j |2 = 1

|A4⟩ = a41 |00⟩+ a42 |01⟩+ a43 |10⟩+ a44 |11⟩ ,
4∑

j=1

|a4j |2 = 1

|b⟩ = b1 |00⟩+ b2 |01⟩+ b3 |10⟩+ b4 |11⟩ ,
4∑

i=1

|bi|2 = 1

(B8)

2

|0⟩ H X X H

|0⟩

A

H

|0⟩ H

|0⟩
b

|0⟩

Fig. B1 Hadamard Test quantum circuit to generate the matrix-vector multiplications, where matrix
is a 4×4 and vector is a 4×1. H is a Hadammard gate and X gate is PauliX gate. The lower quantum
wires carries the register qubits, the upper wires are the ancilla qubits. If the ancilla registers are
measured, the probabilities of measuring ancilla qubits give the values of matrix-vector multiplication
as given in Eq. B14.

Then we have the whole matrix as a state vector

|A⟩ = 1

2
(|00⟩ |A1⟩+ |01⟩ |A2⟩+ |10⟩ |A3⟩+ |11⟩ |A4⟩ , (B9)

If you have a 4× 4 matrix and a 4× 1 vector, you must redefine the vector |b⟩ to have
a size of 4× 4 in order to design the quantum circuit for matrix-vector multiplication.
This can be represented as

∣∣b〉 =
1

2
(|00⟩ |b⟩+ |01⟩ |b⟩+ |10⟩ |b⟩+ |11⟩ |b⟩), (B10)

The next step is to generate the following quantum state using a Hadamard Test
quantum circuit, as illustrated in Figure. B1

|Φ⟩ = 1

2
|0⟩ (|A⟩+

∣∣b̄〉) + 1

2
|1⟩ (|A⟩ −

∣∣b̄〉), (B11)

By inserting Eqs. B9 and B10 in Eq. B11, we derive Eq. B12

|Φ⟩ =1

4
|0⟩ (|00⟩ (|A1⟩+ |b⟩) + |01⟩ (|A2⟩+ |b⟩)

+ |10⟩ (|A3⟩+ |b⟩) + |11⟩ (|A4⟩+ |b⟩))

+
1

4
|1⟩ (|00⟩ (|A1⟩ − |b⟩) + |01⟩ (|A2⟩ − |b⟩)

+ |10⟩ (|A3⟩ − |b⟩) + |11⟩ (|A4⟩ − |b⟩))

, (B12)

3

H X

H X H X

A1 A2 A3 A4

Fig. B2 Quantum circuit to generate the matrix A given in Eq. B9. A1, A2, A3, and A4 are row
vectors that are normalized and then encoded using the divide and conquer approach in this reference
[1].

If matrix A and vector b are real-valued, the probability of measuring the basis states
|000⟩, |001⟩, |010⟩, and |011⟩ for the first three qubits can be determined by

Pr(|000⟩) = 1

8
(1 + ⟨A1|b⟩)

Pr(|001⟩) = 1

8
(1 + ⟨A2|b⟩)

Pr(|010⟩) = 1

8
(1 + ⟨A3|b⟩)

Pr(|011⟩) = 1

8
(1 + ⟨A4|b⟩)

, (B13)

Using Eq.B13, the inner product ⟨A|b⟩ can be obtained

⟨A1|b⟩ = 8Pr(|000⟩)− 1

⟨A2|b⟩ = 8Pr(|001⟩)− 1

⟨A3|b⟩ = 8Pr(|010⟩)− 1

⟨A4|b⟩ = 8Pr(|011⟩)− 1,

(B14)

The values of probabilities in Eq. B14 can be obtained using a quantum simulator or
from a NISQ quantum machine.

Appendix C Divide and Conquer loading an
N × N matrix and an N × 1 vector

Basically we encode the matrix elements by the calculation of rotation angles, the
creation of a binary tree (Btree) and traversing the Btree in preorder strategy to
arrange the set of quantum gates (X(NOT) gate, CNOT , controlled Hadamard, and
controlled rotation Ry).

For this, we implement recursion, an approach of divide and conquer strategy to
obtain the rotation angles. The root and leaves of the tree are represented by a data
structure, containing an arbitrary data value, a level of depth and the subsequent

4

|0⟩ H X

|0⟩ A1 A2

Fig. C3 Quantum circuit for encoding matrix A2×2. The quantum state representing the matrix
A2×2 is |A12⟩ = 1√

2
(|0⟩ |A1⟩+ |1⟩ |A2⟩)

branches. The tree is filled recursively for as many elements as available in the passed
row vector of the matrix. In our case this is 2Nx − 1 locations. The preorder traverse
is defined as a type of tree traversal that follows the Root-Left-Right policy. The root
node of the subtree is visited first, then the left subtree and at last the right subtree
is traversed. The preorder traverse is also recursive. The arguments are: the quantum
circuit which is going to be built, the current node inside the binary tree pointed to,
the offset index (qubit index) to the lowest significant quantum bit (usually 1), the
index of the vector of angles inside the vector field, the data structure which stores
the calculated angles. To encode a matrix AN×N , where N is a big number, we begin
with designing the simplest quantum circuit for encoding the matrix A2×2 as depicted
in Fig. C3.

For instance, to encode

A4×4 =


A1

A2

A3

A4


, first, we divide the input into two sub-matrices

A12 =

[
A1

A2

]
and

A34 =

[
A3

A4

]
, where

A4×4 =

[
A12

A34

]
. The first matrix A12 includes rows A1 and A2 and the second matrix A34 includes
rows A3 and A4

|A4×4⟩ =
1

2
(|0⟩ |A12⟩+ |1⟩ |A34⟩) (C15)

A4×4(A1234) is the root of the tree and A12 and A34 are the left leaf and the right
leaf of the tree, respectively. Fig. C5 shows the quantum circuit for the encoding
A4×4. With the same procedure, we can encode a matrix AN×N . First, we divide the
input matrix into two matrices. The first matrix contains the first N/2 rows, while
the second matrix includes the next N/2 rows of the matrix. This division process
continues until each leaf contains a matrix with only two rows and N columns. The

5

depth of the tree is log2(N)−1, the number of edges are N/4(N/4+1) and the number
of leaves are N/2. If AN×N is a sparse matrix with s as the number of nonzero values
and s << N , then we need log2(s) number of qubits to encode the nonzero values and
n = log2(N) qubits for addressing the edges [1], while for a dense matrix AN×N , 2n
qubits are utilized for encoding. For a sparse vector with s nonzero values, s− 2 two-
qubit gates and s − 1 single-qubits gates are required. Therefore, the computational
cost of encoding an s-sparse matrix N × N has an order O(sN), while the order for
an N ×N dense matrix is at the best case O(N2).

A1234

A12

A1 A2

A34

A3 A4

|0⟩

|0⟩ |1⟩

|1⟩

|0⟩ |1⟩

Fig. C4 A binary tree with roots and leaves. The main root is a matrix A1234 (A4×4) and its leaves
are matrices A12 and A34. Each of which has two rows and four columns. The matrix A12 is encoded
by using the quantum circuit in Fig. C3. By replacing A1 with A3 and A2 with A4 in Fig. C3, the
matrix A34 is also encoded. Finally, the quantum circuit in Fig. C5 encodes the A4×4. The preorder
traversal follows the Root-Left-Right policy. At first the root will be visited, i.e. node A1234. After
this, traverse in the left subtree. Now the root of the left subtree is visited i.e., node A12 is visited.
Again the left subtree of node A12 is traversed and the root of that subtree i.e., node A1 is visited.
There is no subtree of A1 and the left subtree of node A12 is visited. So now the right subtree of
node A12 will be traversed and the root of that subtree i.e., node A2 will be visited. The left subtree
of node A1234 is visited. So now the right subtree of node A1234 will be traversed and the root node
i.e., node A34 is visited. Now the left subtree of node A34 is traversed and the root of that subtree
i.e., node A3 is visited. There is no subtree of A3 and the left subtree of node A34 is visited. So the
right subtree will be traversed and the root of the subtree i.e., node A4 will be visited. After that
there is no node that is not yet traversed. So the traversal ends.

For encoding an N ×1 vector, we used the encoding approach implemented in this
reference [2].

Appendix D Flowchart for simulation of heat
diffusion in 1D

Basically, creating the quantum circuit for matrix-vector multiplication involves
arranging quantum gates in a specific order. This arrangement can be done either
manually, by sequentially placing gates, or algorithmically, by looping through qubits
and positioning gates with well-defined behaviors. Before generating any quantum
circuits, first, the sparse diffusion matrix is prepared by introducing the diffusion coef-
ficients and constructing the main diagonal and side diagonals. The initial vector with

6

H X

H X H X

A1 A2 A3 A4

Fig. C5 Quantum circuit to generate the matrix A1234 which is a 4 × 4 matrix. The quantum
state representing the matrix A4×4 is |A1234⟩ = 1

2
(|0⟩ |A12⟩ + |1⟩ |A34⟩) = 1

2
(|00⟩ |A1⟩ + |01⟩ |A2⟩ +

|10⟩ |A3⟩+ |11⟩ |A4⟩).

its starting intensity is also prepared classically. Then the rotation angles for encoding
the matrix A into quantum space are approximated, but this is done for a single time
step. Since the result vector, or U(t)(= b), changes with each iteration, normalization
and the calculation of angles for the rotation gates will be performed in each iteration.
Each result vector serving as the input for the next iteration. When solving the heat
equation in quantum space, we typically begin with an initial quantum state of zero
and iterate through the discretized location points. The number of qubits required to
define the size of the quantum circuit and the quantum state are calculated based on
the number of location points.

The quantum circuit for MVM is the Hadamard test. First a Hadamard gate (H)
is applied on the first ancilla qubit, then the sparse diffusion matrix A is encoded (see
Appendix C). Next an X gate as part of the Hadamard test is applied. The vector
U(t) does not require as many qubits as the matrix for encoding. The vector must
be encoded in a higher dimensional Hilbert space. This is done by applying H gates
on the ancilla qubits that are not used for the encoding U(t). The application of X
gate uncomputes the first ancilla qubit. The Hadamard Test circuit concludes with
the application of the H† gate. H† = H holds in the case of qubits. By measuring
the log(N) + 1 ancilla qubits, the measurement probabilities in different basis states
yield the elements of the matrix-vector multiplication (MVM). The output vector is
U(t + ∆t). Fig. D6 in Appendix B shows the flowchart for simulating heat diffusion
in 1D space.

References

[1] Park, D.K., Petruccione, F., Rhee, J.-K.K.: Circuit-based quantum random access
memory for classical data. Scientific Reports 9(1), 3949 (2019) https://doi.org/10.
1038/s41598-019-40439-3

[2] Araujo, I.F., Park, D.K., Petruccione, F., Silva, A.J.: A divide-and-conquer algo-
rithm for quantum state preparation. Scientific Reports 11, 6329 (2021) https:
//doi.org/10.1038/s41598-021-85474-1

7

https://doi.org/10.1038/s41598-019-40439-3
https://doi.org/10.1038/s41598-019-40439-3
https://doi.org/10.1038/s41598-021-85474-1
https://doi.org/10.1038/s41598-021-85474-1

Prepare matrix A and vector U(t = 0)

Iteration i < Nt?

Initialize qubits

Build the Hadamard Test

Run the quantum circuit

Measure the quantum state

Find probabilities, update U(t)

Plot the chart

Yes

Next Iteration

No

Fig. D6 Flowchart for simulation of heat diffusion in 1D. It illustrates the iterative process for
matrix preparation, quantum circuit execution, and result analysis. First, the tridiagonal matrix A
and the vector representing the heat source U(t) at t = 0 are prepared in a classical computer. Then
the rotation angles are calculated using the divide and conquer algorithm [1]. At the next step, the
iteration is started. Inside the loop, the quantum circuit for the multiplication of matrix A with vector

U(t = 0) is designed. The qubits are initialized at |0⟩⊗(2n+1). Then the sequence of Hadamard, Ry

rotation, and X gates are applied. This quantum circuit is the Hadamard Test. The quantum circuit
runs to prepare the quantum state. The quantum state is measured on the first log2N + 1 qubits.
Finally, the probabilities of measurement are approximated. The outcomes of the probabilities of
measurement are the new vector U(t) at t = ∆t. The new vector U(t) must be normalized with a
classical computer. The iteration process continues i = Nt − 1 times. For i = Nt, the iteration is
terminated and the chart is plotted.

8

	Nondimensionalization of heat diffusion equation
	Matrix-Vector multiplication
	Divide and Conquer loading an N N matrix and an N 1 vector
	Flowchart for simulation of heat diffusion in 1D

