Supporting Information for

- 2 Distinctive and functional pigment arrangements in Lhcp, a
- 3 prasinophyte-specific light-harvesting complex.

4 5

1

6 Soichiro Seki^{1,2,*}, Masato Kubota³, Nami Yamano^{4,5}, Eunchul Kim³,†, Asako Ishii³, Tomoko

7 Miyata^{6,7}, Hideaki Tanaka², Richard J. Cogdell⁸, Jing-Ping Zhang⁵, Keiichi Namba^{7,9}, Genji

Kurisu^{2,7,9}, Jun Minagawa³, and Ritsuko Fujii^{1,10,11,*}

8 9 10

*Corresponding authors. Soichiro Seki and Ritsuko Fujii.

1112

Email: s-seki@protein.osaka-u.ac.jp (SS), and ritsuko@omu.ac.jp (RF)

1314

This PDF file includes:

1516

17 Supporting information Text 1 to 3

18 Figures S1 to S10

19 Tables S1 to S3

20 SI References

21

Supporting Information Text 1. Structural identification of unidentified carotenoid.

The unidentified peak was collected from Lhcp purified with sucrose density gradient centrifugation. Pigments were extracted from lyophilized Lhcp, and purified using high-performance liquid chromatography (column, LiChrosorb Si-60, 10 ID x 250 mm; eluent, 15% (v/v) acetone in *n*-hexane) as described in Seki et al. 2022 [1]. The UV-Vis absorption and CD spectra in *n*-hexane at room temperature were recorded by U-1800 (Shimadzu, Kyoto, Japan) and J-720W (JASCO Corporation, Tokyo, Japan), respectively. ESI-MS was recorded with positive ion mode using AccuTOF LC-plus JMS-T100LP (JEOL, Tokyo, Japan).

ESI-MS represents all the predicted signals listed in the following Table, including Na-adduct ions, confirming the chemical formula of C₄₈H₆₈O₄. (See Fig. S4c)

Table. ESI-MS signals

m/z (Obs.)	m/z (Calc.)	Δ [mDa]	Δ [ppm]	lon
708.51194	708.51176	0.18	0.25	[M]·
709.51765	709.51512	2.53	3.57	[MH]⁺
710.52184	710.51847	3.37	4.74	$[MH_2]^{2+}$
731.50170	731.50153	0.17	0.23	[MNa] ·
732.50428	732.50488	-0.60	-0.82	[MHNa]⁺
733.50660	733.50824	-1.64	-2.24	[MH2Na]2+

Cryo-EM map shows the presence of a 3-acyloxy-5,6-epoxy ionone end group, allowing us to propose a structure of the carotenoid body as antheraxanthin B [(3S, 5S, 6R, 3'R)-5,6-epoxy-5,6-dihydro-β-β-carotene-3,3'-diol] ^[2]. The UV-VIS absorption (421.0, 444.6, and 473.7 nm with %III/II 71% in n-hexane) and circular dichroism (CD) profile (211 (+12), 231 (-16), 273 (+23), and 335 (-9) nm) were in good agreement with reported values ^[2-4]. The cryo-EM map also showed that the acyl group contains at least eight carbons. To fit the MS signal, we tentatively proposed a structure with a double bond at C2"=C3" position based on observed short-chain acyl ester substitutions of carotenoids seen in marine green algae ^[5]. Overall, the absolute chemical structure of Uid was determined to be (3S,5S,6R,3'R)-5,6-epoxy-5,6-dihydro-3'-hydroxy-3-(2-octenoyloxy)- β - β -carotene, and the alternative name for this compound is 3-(2-octenoyl)-antheraxanthin B. The cryo-EM map corroborates the cis configuration at C8'-C9' single bond, i.e., 8'-s-cis configuration.

(3S,5S,6R,3'R)-5,6-epoxy-5,6-dihydro-3'-hydroxy-3-(2-octenoyloxy)- β - β -carotene.

Available amount: ~0.005 mg. UV-VIS in nm: (n-hexane) 421, 445, 474, and %III/II = 71. CD in nm ($\Delta\epsilon$ in mdeg): (n-hexane) 211 (+12), 231 (-16), 273 (+23), and 335 (-9). ESI-MS, m/z = 708.51194 \pm 0.00018 [M⁺], C₄₈H₆₈O₄, m/z Calc. = 708.51176.

Figure. Chemical structure of 8'-s-cis form of 3-(2-octenoyl)-antheraxanthin B

Supporting Information Text 2: Excitonic coupling calculations and the constant for Dvp.

To estimate the excitonic coupling between chlorophyll molecules within and between monomers of the trimeric complex based on Amerongen and Grondelle 2001 ^[6], we implemented a custom Python script. The calculations account for the Mg-Mg distances as well as transition dipole moment vectors between chlorophylls, including Chl *a* (CLA), Chl *b* (CHL), and Dvp. For each pair of chlorophyll molecules, excitonic coupling values were calculated using the formula:

61

60

55

56

57

58

59

$$V = \frac{C \cdot \kappa}{R^3}$$

63

64 where:

- V is the excitonic coupling constant in cm⁻¹
- 66 κ is the orientation factor between the transition dipole moments of the two molecules
- R is the Mg-Mg distance between the two molecules in nanometers.
- C is a constant that equals (5.04 f₁² μ²)/ε_r in Amerongen and Grondelle 2001 ^[6]. The values depend on the types of chlorophylls involved (90 cm⁻¹ nm³ for CLA-CLA, 75 cm⁻¹ nm³ for CLA-CHL, and 63 cm⁻¹ nm³ for CHL-CHL). This constant correlates with the dipole strength ^[6]. Thus, we calculated the ratio of the molar extinction coefficients based on the absorption spectral intensities between

72 Chl *a* and Dvp ^[7] and determined the constant of CLA-Dvp as 64 cm⁻¹ nm³, that of CHL-Dvp as 54

 $73 cm^{-1} nm^3$.

For each chlorophyll pair, the transition dipole moments were derived from the atomic coordinates of the nitrogen atoms in the porphyrin ring (ND and NB for CLA and CHL; N9 and N21 for DVP). Calculations were performed for all intra-monomer and inter-monomer pairs, averaging the results over the three monomer-monomer interfaces in the trimer.

7778

74

75

Supporting Information Text 3. Parameters to calculate the electronic coupling based on dipole-dipole approximation.

Values of angles (θ_{AB} , θ_{A} , and θ_{B}) in degrees and a distance (R_{AB}) in Å between two dipoles (μ_{A} and μ_{B}) were measured using ChimeraX software based on the definitions given in the right figure.

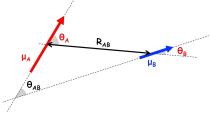
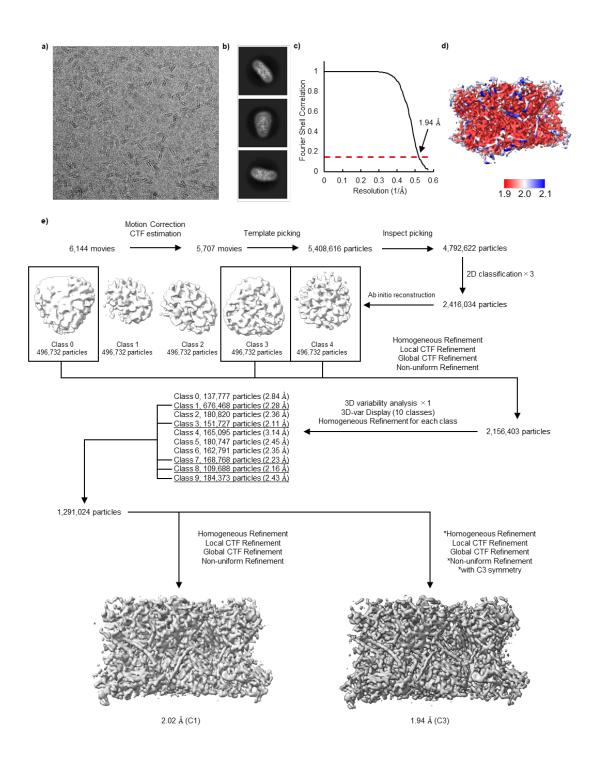
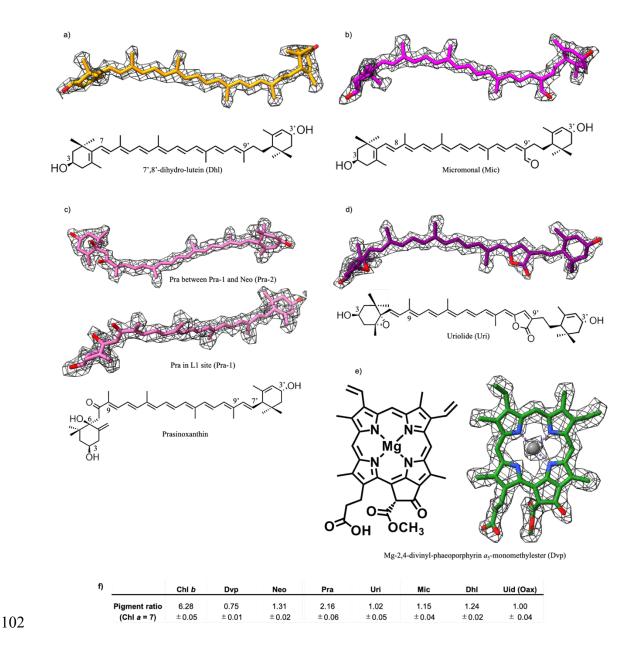
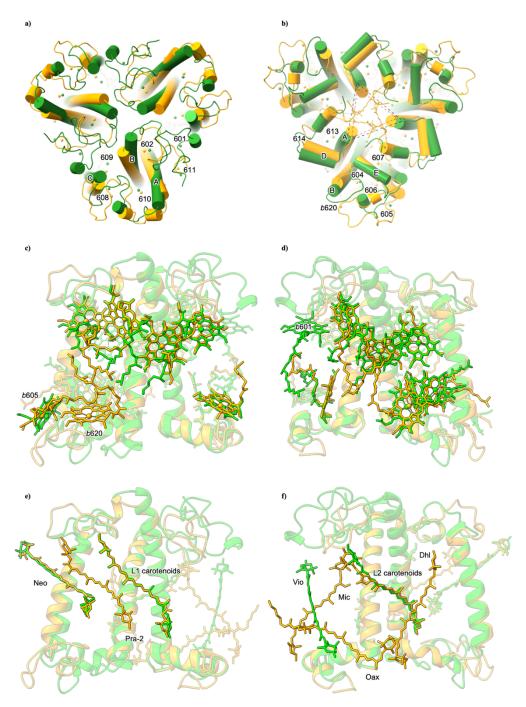



Table. Angles from 3D structure of Lhcp and calculated orientation factor and coupling.


dipole A	dipole B	$ heta_{AB}$	θ_A	θ_B	R _{AB}	κ ^{*1}	$V_{\rm DD}^{*2}$
Uri: C9→C9'	<i>b</i> 603: N _B →N _D	163	91	104	6.5	-0.97	-229
	a602: N_B → N_D	133	35	46	10.1	-2.40	-181
	<i>b</i> 607: N _B →N _D	44	148	20	15.1	3.11	58
Pra-1: C7'→C9	<i>a</i> 612: N _B →N _D	105	73	32	5.5	-0.99	475
	<i>a</i> 610: N _B →N _D	42	148	39	8.9	2.71	298
Mic: C8→C9'	<i>b</i> 614: N _B →N _D	116	114	154	8.2	-1.53	-175
	<i>a</i> 611: N _B →N _D	124	34	77	15.3	-1.13	-25
Pra-2: C9'→C13	<i>a</i> 608: N _B →N _D	62	21	98	14.3	0.85	128

^{*1} κ was calculated according to the equation, $\kappa = \cos\theta_{AB} - 3\cos\theta_{A}\cos\theta_{B}$.


 $^{^{*2}}$ V_{DD} in cm⁻¹ was calculated according to the equation, $V_{DD} = \frac{|\mu_A||\mu_B|\kappa}{4\pi\varepsilon_0R_{AB}^3}$, using the following transition dipole strengths ($|\mu|$): 4.6 D and 3.8 D for the Q_y transitions of Chl a and Chl b (based on the experimentally determined value in vacuum ^[8]), and 3.0 D for the S₁-S₀ transition of the carbonyl carotenoids (based on the reported value for the S₁-S₀ transition of peridinin ^[9]).

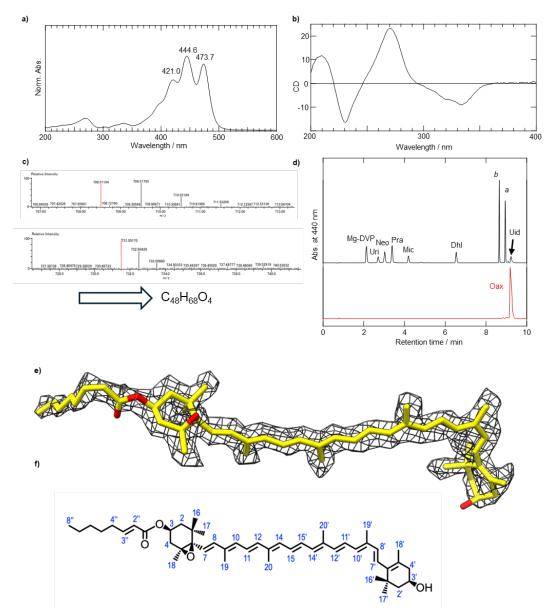

Fig. S1. Cryo-EM data processing procedure. Cryo-EM micrographs (a) and representative merged images (b) of Lhcp trimer were extracted. The resolution of the cryo-EM map was determined using an FSC value equal to 0.143 (c). Local resolution of the electron potential map with imposing C_3 symmetry (d). A detailed procedure for the construction of 3D data (e).

Fig. S2. Chemical structure and 3D-structure with electron potential map for unique pigments in Lhcp and the pigment composition in Lhcp. The structures of 7',8'-dihydrolutein (Dhl; a), micromonal (Mic; b), two prasinoxanthin molecules in different binding sites (Pra-1 and Pra-2; c), uriolide (Uri; d), and Mg-2,4-divinyl-phaeoporphyrin a_5 -monomethyl ester (Dvp; e) were shown. Pigment composition of Lhcp was shown as the relative number of molecules per 7 Chl a molecules, determined using ultra-performance liquid chromatography (f). Each mean value of three biological replicates was shown with standard errors. The structural models with the density were created using ChimeraX^[10].

Fig. S3. Superposed structure between spinach LHCII (1RWT, green) and Lhcp (orange) with highlighting helices (a, b), chlorophylls (c, d), and carotenoids (e, f). The views of trimer from stromal (a) and lumenal (c) planes, and views of a monomer from the peripheral side (c, e) and the internal side (d, f) were illustrated. Mg atoms of Chl molecules and Oax are displayed for clarity (a). Dotted line in (b) connects Gly-202 of LHCII (black) or Gln-203 of Lhcp (red) between adjacent monomers, representing an inward shift of helices A by approximately 3 Å. The structural models were created using ChimeraX^[10].

Fig. S4. Structural determination of a novel 3-octenoyloxy-8-s-*cis***-antheraxanthin B in Lhcp.** Absorption (a) and circular dichroism (CD; b) spectra of isolated Oax were measured in hexane. The high-resolution mass spectrometry (c) revealed three signals without and with Na † ion, indicating the chemical formula of $C_{48}H_{68}O_4$. The isolated Oax was analyzed by HPLC (d) and compared with the extract from Lhcp complex. Based on these results, the absolute structure was determined to be 3-octenoyl antheraxanthin B, although the position of the double bond in the octenoyl group is tentative (Supporting Information Text 1). The unusual 8'-s-*cis* configuration was determined based on the electron potential map.

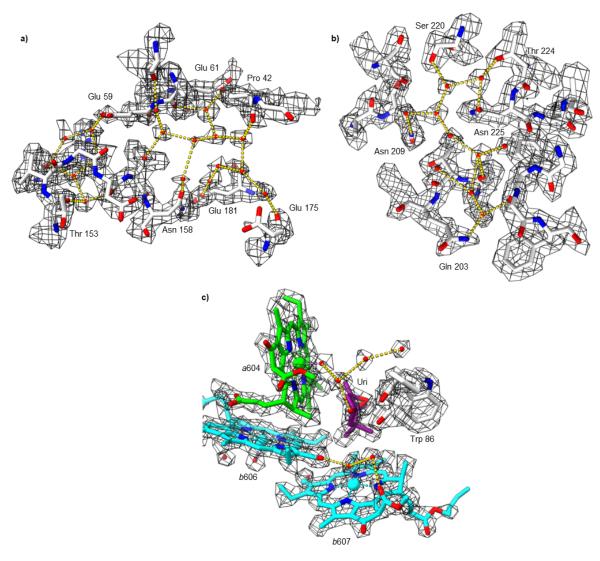


Fig. S5. The hydrogen bonded water clusters on the stromal (a) and lumenal (b and c) sides of Lhcp trimer.

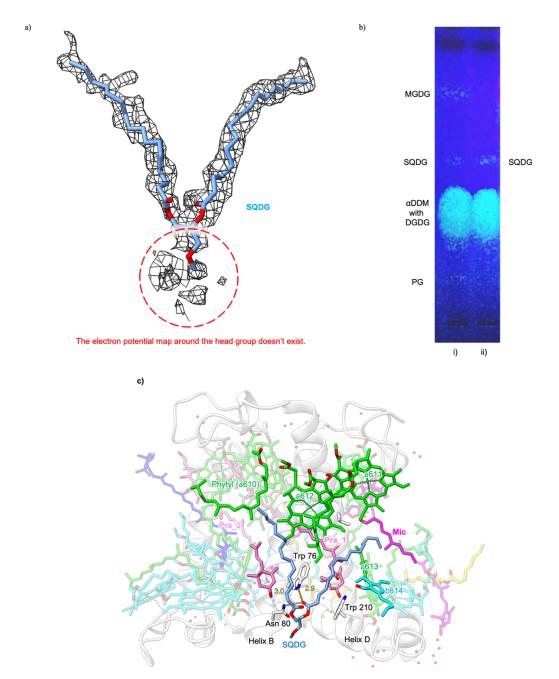
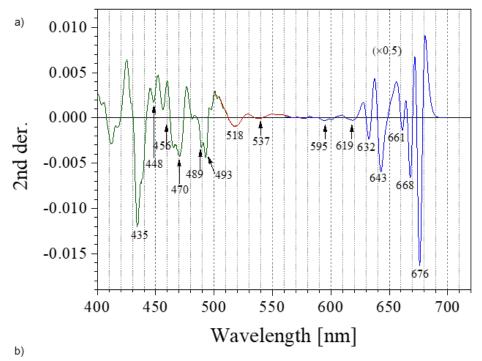



Fig. S6. Determination of SQDG molecule in Lhcp by electron potential map (a) and TLC (b), and stabilization of SQDG in Lhcp (c). Lipid compositions of Lhcp were analyzed using thin-layer chromatography (TLC) to compare the Lhcp trimer isolated using sucrose density gradient (i) with Lhcp trimer subsequently purified using anion exchange chromatography. A clear SQDG band was identified, and at the same time, the MGDG and PG bands disappeared. Two hydrogen bonds with residues Asn-80 and Trp-76 stabilize the acyl carbonyl of SQDG, and hydrophobic environments stabilize the hydrocarbon tails (c). MGDG, Monogalactosyl diacylglycerol; DGDG, Digalactosyl-diacylglycerol; SQDG, sulfoquinovosyl diacylglycerol; PG, phosphatidyl glycerol.

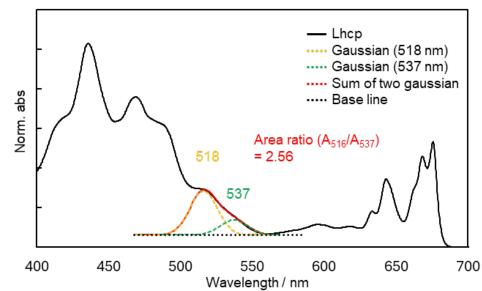


Fig. S7. Second derivative spectrum of the 77 K absorption spectrum (a) and simulation of the green light absorption cross section (b). The 77 K absorption spectrum was divided into three regions, indicated by green, red, and blue, and the second derivative spectrum of each region was calculated using Origin Pro 2023 software. The region indicated by the blue line was multiplied by 0.5. Simulation of the absorption cross section of the green region was performed manually using two Gaussian functions with peaks at 518 and 537 nm.

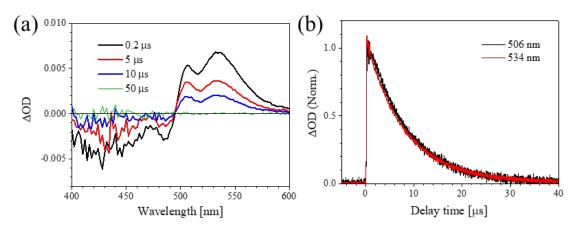


Fig. S8. Nano-second time-resolved absorption analysis of Lhcp trimer. Transient absorption spectra at selected delay time (a) and decay kinetics at 506 nm and 534 nm (b). Lhcp was excited at 672 nm, corresponding to the Q_y band of ChI a.

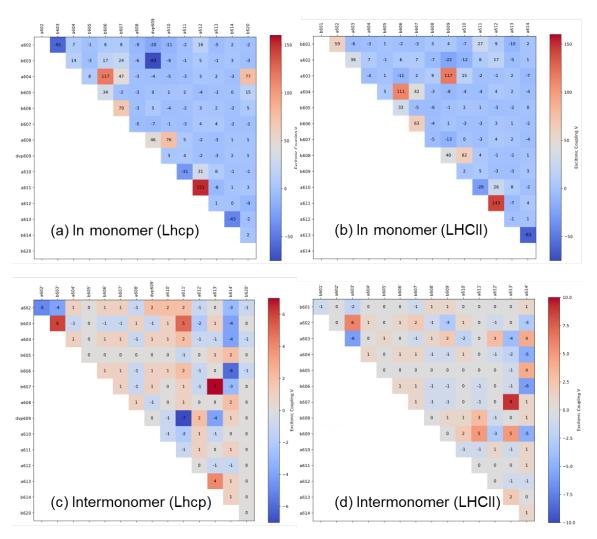
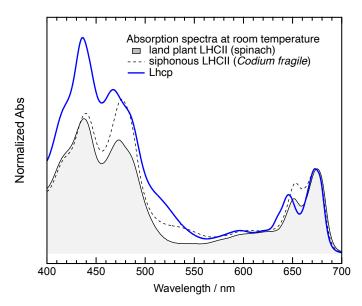



Fig. S9. Excitonic coupling lists of Lhcp and LHCII calculated using the equation described by Amerongen and Grondelle ^[6]. See Supplementary information 2 for the details.

Fig. S10. Comparison of absorption spectra. Land plant LHCII (*Spinacia oleracea*, filled with pale gray, adapted from Seki et al. 2024 [11] with some modifications), siphonous LHCII (*Codium fragile*, black broken line, adapted from Seki et al. 2022 [12] with some modifications), and Lhcp (blue thick solid line) normalized at the Q_y peak maxima were shown.

 Table S1. Cryo-EM data collection, refinement and validation statistics.

	Lhcp	
PDB	9UC6	
EMDB	EMD-64036	
Magnification	60,000	
Voltage (kV)	300	
Electron exposure (e-/Ų)	80	
Defocus range (nm)	700-2,200	
Pixel size (Å)	0.859	
Symmetry imposed	C3	
Initial particle images (no.)	5,408,616	
Final particle images (no.)	1,291,024	
Map resolution (Å)	1.94	
FSC threshold	0.143	
Refinement		
Initial model used (PDB code)	8HG5	
Model composition		
Non-hydrogen atoms	8379	
Protein residues	600	
Ligands	69	
R.m.s. deviations		
Bond lengths (Å)	0.010	
Bond angles (°)	1.698	
Validation		
MolProbity score	1.24	
Clashscore	4.67	
Rotamer outlier (%)	0.22	
Ramachandran plot		
Favored (%)	99.00	
Allowed (%)	1.00	
Disallowed (%)	0.00	

Table S2. Sequential comparison among several Lhcb or LhcbM proteins, Lhcp1 and Lhcp2. The Lhcb protein from *Spinacia oleracea* (SO-LHCII, PDB 1rwt), LhcbM proteins from *Codium fragile* (CF-Lhcbm11, PDB 7wlm), from *Bryopsis corticulans* (Cry-Lhcb1-3, PDB 8hlv and 8hpd), and Lhcp proteins from *Ostreococcus tauri* (Lhcp1 and Lhcp2, PDB 8hg5, 8hg6) were aligned based on the 3D structure. The amino acid numberings for SO-LHCII and Lhcp, as well as pigment-binding sites are also indicated.

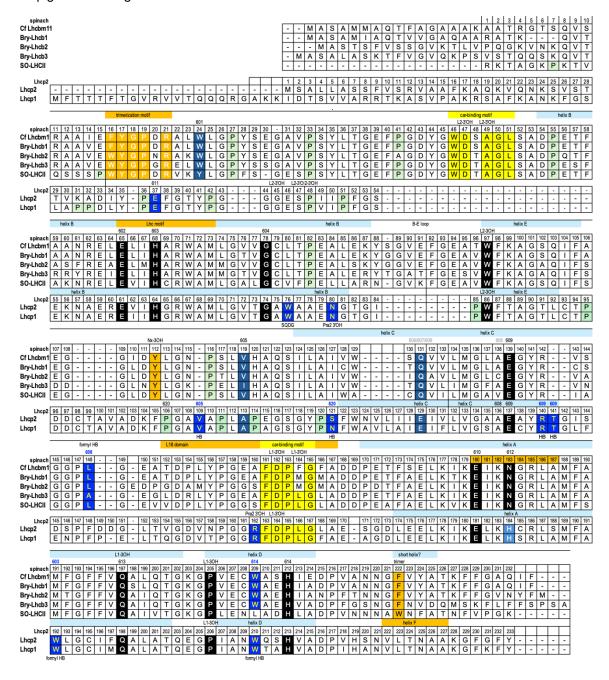


Table S3. Pigment composition differences between LHCII, previous Lhcp and this Lhcp with each axial ligand information. C=O indicates the carbonyl group from main chain.

	LHCII (1RWT)	Axial ligand	Lhcp (8HG4)	Lhcp (9UC6)	Axial ligand
601	b	C=O (Tyr 24)			
602	а	Glu 65	а	а	Glu 61
603	а	His 68	а	b	His 64
604	а	Water	а	а	Water
605	b	C=O (Val 119)	b	b	C=O (Leu 112)
606	b	Water	b	b	Water
607	b	Water	b	b	Water
608	b	Water	b	а	Water
609	b	Glu 139	Mg-DVP	Mg-DVP	Glu 137
610	а	Glu 180	а	а	Glu 181
611	а	PG	а	а	Glu 37
612	а	Asn 183	а	а	His 184
613	а	Gln 197	а	а	Gln 198
614	а	His 212	а	b	His 213
620			b	b	C=O (Pro 106)
L1	Lutein		Dihydrolutein	Prasinoxanthin	
L2	Lutein		Dihydrolutein	Uriolide	
N1	9'- <i>Cis</i> neoxanthin		9'-Cis neoxanthin	9'-Cis neoxanthin	
V1	Violaxanthin				
P2			Prasinoxanthin	Prasinoxanthin	
M1			Dihydrolutein	Micromonal	
D1			Dihydrolutein	Dihydrolutein	
01			Prasinoxanthin	3-Octenoyl-8'-s-cis antheraxantin B	

177 SI References

- 1. Seki, S., Yamano, Y., Oka, N., Kamei, Y. & Fujii, R. Discovery of a novel siphonaxanthin biosynthetic precursor in Codium fragile that accumulates only by exposure to blue-green light. *FEBS Lett* **596**, 1544–1555 (2022).
- 2. Britton, G., Liaaen-Jensen, S., Pfander, H. Eds. *Carotenoids Handbook*, (Springer Basel AG, 2004).
- 3. Buchecker, R. & Noack, K. "Circular Dichroism" in *Carotenoids Vol. 1B: Spectroscopy*,
 Britton, G., Liaaen-Jensen, S. & Pfander, H. Eds., (Birkhäuser Verlag, 1995), Chapter 3,
 pp. 63–116.
- Marki-Fischer, E., Buchecker, R. & Eugster, C. H. Absolute Configuration of
 Antheraxanthin, 'cis-Aritheraxanthin' and of the Stereoisomeric Mutatdxanthins. Helv.
 Chim. Acta 65 (7): 2198-2211 (1982).
- 5. Yoshii, Y., Takaichi, S., Maoka, T., Handa, S. & Inoue, I. Chacterization of two unique carotenoid fatty acid esters from *Pterosperma cristatum* (prasinophyceae, chlorophyta).

 J. Pjycol. **38** (2), 297-303 (2002).
- 6. Van Amerongen, H. & Van Grondelle, R. Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. *J. Phys. Chem. B* **105**, 604–617 (2001).
- 7. Jeffrey, S. W., Mantoura, R. F. C. & Bjornland, T. "Data for the identification of 47 key phytoplankton pigments" in *Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods*, Jeffrey, S. W., Mantoura, R. F. C. & Wright, S. W. Eds., (UNESCO Publishing, 1997), pp. 488–489.
- 8. Knox, R. S. Dipole and oscillator strengths of chromophores in solution, *Photochem.* Photobiol. **77**: 492–496 (2003).
- Krueger, B. P., Lampoura, S. S., van Stokkum, I. H.M., Papagiannakis, E., Salverda, J.
 M., Gradinaru, C. C., Rutkauskas, D.; Hiller, R. G., van Grondelle, R. "Energy transfer in the peridinin chlorophyll-a protein of *Amphidinium carterae* studied by polarized transient absorption and target analysis", *Biophys. J.* 80:2843-2855 (2001).
- 205
 10. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Daniel M Greenblatt, D. M.,
 206
 Meng, E. C. & Ferrin, T. E. UCSF Chimera A visualization system for exploratory
 207
 research and analysis. *J. Comput. Chem.* 25, 1605–1612 (2004).
- 208 11. Seki, S., Miyata, T., Norioka, N., Tanaka, H., Kurisu, G., Namba, K., Fujii, R. Structure-209 based validation of recombinant light-harvesting complex II. *PNAS Nexus* **3**, 405 (2024).
- 210
 12. Seki, S., Nakaniwa, T., Castro-Hartmann, P., Sader, K., Kawamoto, A., Tanaka, H., Qian,
 211
 P., Kurisu, G., Fujii, R. Structural insights into blue-green light utilization by marine green
 212
 algal light harvesting complex II at 2.78 Å. BBA Advances 2, 100064 (2022).