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Abstract

Fluid mechanics is a cornerstone of science and engineering, such as spacecraft,
submersibles, and biomedicine, which are important to understand and optimize,
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involving four key tasks throughout history: prediction, parameter identification,
design, and control. Although each task has made significant strides individu-
ally, current approaches remain fragmented; existing models are limited to their
specific domains and lack the capability to generalize across different tasks. To
overcome this issue while utilizing the correlation between tasks to improve the
performance on each task, we propose FluidZero, a unified deep generative
model to tackle all these tasks using one single model. FluidZero is encouraged by
the success of large foundation models in several domains, inspiring it possible to
develop a unified fluid model capable of handling all these tasks. The key advan-
tage of FluidZero is that it facilitates cross-modal and cross-task interactions
on diverse data, enabling effective physical principle learning and significantly
enhancing performance on all tasks across a wide range of fluid scenarios. We eval-
uate FluidZero across multiple datasets, including simulation data and real-world
measured data obtained through Particle Image Velocimetry (PIV). Moreover,
the designed foil is directly transferred to real-world experiments through 3D
printing. Notably, FluidZero shows remarkable generalization capabilities in all
scenarios, achieving superior performance even in out-of-distribution (OOD) sit-
uations and real-world applications. By integrating diverse fluid system tasks
across varied scenarios into a unified model, FluidZero demonstrates the rev-
olutionary impact of generative Artificial Intelligence (AI) approaches in fluid
mechanics, opening new avenues for the adoption of integrated fluid system
understanding and optimization throughout scientific and engineering domains.

Keywords: Cross-task model, Fluid mechanics, Generative model, Fluid-structure
interaction

1 Introduction

Fluid mechanics is a cornerstone of science and engineering, underpinning a vast array1

of critical applications across diverse domains. It enables space exploration through2

aerodynamic optimization of spacecraft like SpaceX’s Dragon [1, 2], advances deep-sea3

research via the propulsion and stability design of submersibles such as the Deepsea4

Challenger [3, 4], and informs precision biomedical flow prediction and optimiza-5

tion for cardiovascular treatments [5–7]. These applications span a wide spectrum6

of tasks—from predicting unsteady flow dynamics to optimizing designs and con-7

trols—where understanding and manipulating fluid behavior is essential for ensuring8

reliability, efficiency, and safety. As such, fluid mechanics is not only a foundational dis-9

cipline but also a cross-cutting enabler of progress in transportation, energy, medicine,10

and environmental systems.11

Historically, fluid mechanics has been studied since the 17th century by pioneer-12

ing scientists such as Newton, Bernoulli, Euler, et al. Building on several centuries13

of progress, in the 21st century, Artificial Intelligence (AI) is rapidly making inroads14

in fluid mechanics research with the development of AI, which is an unprecedented15

change [8]. Brunton et al. [8] reviews the AI methods to model fluid dynamic systems16

for prediction, identify hidden parameters or latent system dynamics for understand-17

ing, optimize flow for design, and control fluid behavior through action planning. It18
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shows that the above four tasks, prediction, identification, design, and control, are19

fundamentally important parts of fluid system research. Each brings together a large20

amount of work. Among them, many researchers focus on accurately simulating and21

predicting fluid system evolution [9–11], others investigate system identification to22

infer classifications or parameters of fluid systems from observational data [10, 12–18],23

some concentrate on optimizing the design of structures within fluid systems [19–22],24

while others dedicate their efforts to developing flow control strategies [23–29]. While25

each task has made significant strides individually, current approaches remain frag-26

mented, requiring distinct architectures, training data, and optimization schemes for27

each scenario. Existing models are limited to their specific domains and lack the capa-28

bility to generalize across different tasks. In light of this, we therefore raise a pivotal29

question in fluid systems.30

Can a single AI model tackle all these tasks in fluid systems?31

Addressing this question represents a fundamental shift in how we conceptualize32

and operationalize fluid systems. These four tasks are not independent as they form33

an interdependent workflow in both simulation and real-world applications. A unified34

model could dramatically reduce redundancy, lower repetitive development costs, and35

streamline the entire modeling-to-optimizing pipeline [30, 31]. Moreover, the shared36

physical principles underlying all four tasks suggest the possibility of cross-task knowl-37

edge transfer, potentially leading to improved generalization and performance [32]. For38

example, prediction capabilities are fundamental and can provide more information39

to effective design and control [32, 33].40

This vision is increasingly supported by breakthroughs in large foundation mod-41

els trained on vast and diverse datasets [31, 34–44]. In natural language processing,42

models like BERT [34], GPT [35], and DeepSeek [36] have demonstrated strong gen-43

eralization across diverse linguistic tasks. In the vision, CLIP [45] shows impressive44

zero-shot transfer capabilities. More importantly for scientific domains, models such45

as the Nature Language Model (NLM) [39] exhibit cross-disciplinary abilities span-46

ning proteins, chemistry, and materials. WeatherGFM [31] integrates several tasks47

within the prediction range, such as super-resolution, cross-modal inference, and tem-48

poral forecasting, into a single framework. Such a paradigm shift in AI development,49

using a single generalizable framework rather than developing small specialized mod-50

els for each scenario, offers promising new perspectives for fluid system research. The51

core insight of these foundation models is that expressive architectures trained on52

diverse data develop generalizable capabilities that transfer across problems. For fluid53

systems, which naturally involve multiple modalities (e.g., fluid fields, boundary condi-54

tions, physical parameters, forces, and control actions), this shift presents a promising55

opportunity to move beyond task-specific tools and toward unified, general-purpose56

modeling.57

Despite this promise, no prior work has successfully unified the four canonical tasks58

in fluid systems. Two major challenges stand in the way: (1) the nonlinear complexity59

of the Navier–Stokes equations (NSE), one of the most difficult unsolved problems60

in mathematical physics [46]; and (2) the heterogeneous modalities required for each61

task—ranging from high-dimensional fields for prediction, to physical parameters, to62

design geometries, to action sequences in control—making joint learning technically63

nontrivial.64
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To address these challenges, we propose FluidZero, a unified generative model65

that unifies all these tasks as a multimodal conditional probabilistic generation task,66

shown in Fig. 1. Rather than designing separate models for prediction, parameter67

identification, design, and control, FluidZero casts each as the inference of missing68

modalities, such as fluid fields, parameters, boundaries, or control actions, conditioned69

on known ones. Built on a diffusion model backbone, FluidZero learns to transform70

noise into structured outputs through a denoising process [47], effectively modeling the71

nonlinear, high-dimensional distributions inherent to fluid dynamics [33, 48]. In partic-72

ular, FluidZero has three main features. (1) It employs modality-specific encoders to73

convert different types and dimensions of modalities into latent token representations,74

enabling effective cross-modal fusion. The design allows FluidZero to handle diverse75

types and numbers of multimodal data. (2) It adopts a diffusion process to learn prob-76

abilistic distributions rather than deterministic mappings. The probabilistic modeling77

approach enables the model to capture the inherent stochasticity of fluid dynamics78

and generate diverse yet physically reasonable solutions. (3) It randomly masks the79

unknown modalities to simulate various task situations in training, enabling the model80

to learn to complete unknown modalities. The training strategy enables cross-task81

knowledge transfer and multiplies task generalization, allowing the model to learn fun-82

damental physical principles of fluid dynamics rather than direct mappings between83

data. Through comprehensive experiments spanning diverse simulations, real-world84

measurements, and multiple out-of-distribution (OOD) scenarios, we demonstrate that85

FluidZero achieves superior performance across all tasks. Notably, we demonstrate86

the practical applicability of FluidZero through the successful transfer of the designed87

foil to real-world scenarios and show remarkable generalization on real-world measure-88

ment data, even for OOD cases, which bridge the gap between numerical methods and89

practical engineering applications.90

2 Results91

In this section, we first introduce the datasets and environments (2.1) to provide the92

foundation for subsequent training and evaluations. We then systematically demon-93

strate the performance of a single FluidZero model across multiple important tasks94

through a series of comprehensive experiments, including prediction (2.2), parameter95

identification (2.3), design (2.4), and control (2.5). We further validate the flexibil-96

ity of our unified model by examining various task combinations (2.6), demonstrating97

FluidZero’s ability to integrate multiple tasks seamlessly. Finally, we examine OOD98

scenarios (2.7) to validate the generalization capability and robustness of FluidZero,99

demonstrating that it maintains superior performance even when faced with previously100

unseen data distributions.101
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Fig. 1 Schematic illustration of the proposed FluidZero. The sub-figure (a) illustrates our
proposed FluidZero that unifies multiple tasks in fluid systems, including prediction, parameter iden-
tification, design, and control, into a conditional probabilistic generation task. FluidZero, based on
the diffusion model and transformer architecture, generates unknown modalities using known modal-
ities as conditions. It starts from Gaussian noise and gradually denoises to generate solutions for
various tasks. The sub-figure (b) illustrates the framework of FluidZero. Firstly, different modalities
are encoded to the token level using modality-specific encoders, and then different positional embed-
ding methods are utilized. The purpose is to map modalities of different dimensions to tokens with
the same dimension, allowing for information distillation at the token level between different modali-
ties. Then, tokens enter the transformer, which consists of two main components: spatial-multimodal
attention and temporal attention. These parts are leveraged to capture spatial correlations and modal
fusion, as well as learn temporal evolution features. After several iterations, the corresponding modal-
ities are output through modality-specific decoders.
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Fig. 2 Results of the prediction task. (a) The average relative L2 error between the predicted
value and the ground truth, with each radar chart containing FluidZero and four baselines. Each
radar chart contains results for a fluid scenario. Each scenario contains velocities in two directions
(u, v) and pressure (p) fields. The fluid states {ut}Tt=0

of the experimental data in (d) includes
velocities fields in two directions (u, v). From the figure, it can be seen that FluidZero has the
smallest innermost area, indicating the smallest error in all scenarios compared to all baselines. (b,c)
The following visualizations contain the ground truth, predicted values, and error between them in
50 time steps (height represents the timeline). In the main text, we present the velocity states in
the x-direction of a simulation sample and an experimental data sample. For more visualizations
and tables, please refer to Supplementary Materials G. The figures demonstrate that the proposed
method FluidZerooutperforms the baselines with significantly fewer errors. The videos of prediction
on simulation data and measurement are available in the link 1 and link 2, respectively.

6

https://drive.google.com/file/d/1UZna5sZ1Ss-GAIfYRf3awSt6qa0L8z_d/view?usp=drive_link
https://drive.google.com/file/d/1wy3T0_JKlntSMQq-VOfzp1rHyCLbu1ne/view?usp=drive_link


2.1 Datasets and Environments102

To evaluate FluidZero’s performance across diverse fluid systems, we utilize two types103

of datasets: simulation data and real-world experimental measurements.104

For simulation, we employ Lily-pad [49, 50], an immersed boundary method-based105

CFD solver for the incompressible Navier-Stokes equation as Equation 1,106



















∇ · u = 0, x ∈ Ω, t ∈ [0, T ], (continuity equation)
∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u + f , (momentum equation)

u(x, 0) = u0(x), x ∈ Ω, (initial condition)

B[u](x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ], (boundary condition)

(1)

where u is the fluid vector field, t is time, ∇ is the gradient operator, p is pressure,107

Re is the Reynolds number (Re), f represents external body forces, u0 is the initial108

fluid field, B[u](x, t) = 0 is the boundary conditions, Ω is the computational domain,109

∂Ω denotes the boundary of the domain, and [0, T ] is the time interval of interest.110

Lily-pad has been extensively validated in the prediction and control of machine111

learning studies [32, 51, 52]. To thoroughly assess FluidZero’s generalization ability112

across various fluid systems, we generate four simulation datasets with the following113

configurations. Single Cylinder: flow around a single cylinder with randomly varying114

Re and cylinder diameters. Single Foil: flow around a foil with different Re, chord115

lengths, angles of attack, and thickness profiles. Double Cylinders: flow around116

two cylinders with different Re, cylinder diameters, and relative positions between117

the structures. Double Foils: Flow around a combined two foils with randomized118

parameters for both structures and their relative positioning. In all configurations, the119

simulation parameters (Re, geometric characteristics, actions, and relative positions of120

multiple structures) are randomly sampled within physically relevant ranges to ensure121

comprehensive coverage of possible fluid behaviors.122

For experimental measurements, to validate FluidZero’s capability to transfer to123

real-world conditions, we also collect experimental data using Particle Image Velocime-124

try (PIV) [53, 54]. The technique allows us to measure actual fluid velocity fields.125

The experimental setup was designed to correspond to the single cylinder scenario126

where the cylinder is fixed while the inflow velocities and Re are varying. The detail127

of experimental measurements is introduced in Section 4.5.128

These configurations and scenarios are ubiquitous in both natural and engineering129

contexts. In nature, the cylinder configuration mirrors water flow around plant stems130

and rocks in ocean and river [55, 56]. The foil scenario represents bird and insect131

wings during flight [57, 58]. Multiple structure configurations simulate fish swimming132

in schools [59], birds flying in formation [60], or plant clusters responding to flow133

[55]. In engineering applications, these configurations are fundamental to wind turbine134

placement in wind farms [61], foil design [62], building aerodynamics in urban settings135

[63], and offshore structure stability [64].136
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2.2 Prediction137

The prediction task involves forecasting future fluid states based on initial conditions,138

system parameters, and external forces. Accurate fluid system prediction is the cor-139

nerstone of all fluid mechanics applications, providing essential insights for engineering140

design, control systems, and scientific understanding [65]. We herein demonstrate the141

capability of the FluidZero for the prediction of fluid systems. Specifically, we treat142

the known modalities as condition information for the diffusion model as illustrated143

in Equation 2. By conditioning the generative process on these modalities, FluidZero144

learns to sample physically reasonable future states that are consistent with the ini-145

tial conditions and governing physics. We conduct comprehensive experiments using146

FluidZero and baseline methods across all datasets, including both simulation and147

experimental measurement data. The baseline methods, experimental results, and148

analysis are described in the following paragraphs.149

Task Formulation: The prediction task can be formulated as a mapping function:150

fpred : {u0, C
0
L, C

0
D, η,S, at}Tt=0 7→ {ut}Tt=1, (2)

where the goal is to predict the future fluid states (ut) over a time horizon T , given151

the initial conditions (u0 ∈ {ut}Tt=0), initial force coefficients (C0
L, C

0
D), parameters152

(η), boundary shape (S), and control actions (at) over a time horizon T .153

To compare the performance of FluidZero with existing methods, we provide two154

baseline models trained on a separate dataset for individual prediction tasks, namely,155

the U-Net [66] and Fourier Neural Operator (FNO) [67]. There are two other base-156

line methods that complete the ablation studies on the training dataset and training157

manner. The diffusion model (Diffusion) trained on a separate dataset is used to158

compare the effectiveness of training with diverse datasets and training with a single159

dataset, while the Transformer is trained by using supervised learning instead of the160

diffusion model training manner. Please note that the model frameworks of these two161

baselines are completely consistent with FluidZero, providing a fair comparison. The162

introduction of the baseline methods is in Supplementary Material F.163

Quantitative results and visualizations are presented in Figure 2 comparing Flu-164

idZero’s predictions against baseline methods. The experimental results in Figure165

2(a) demonstrate that FluidZero consistently outperforms specialized baseline meth-166

ods across all datasets. The average relative error decreases by 37.3%, 37.1%, 45.0%,167

and 35.9% compared to the best baseline, respectively. Notably, for experimental168

data, FluidZero achieves the remarkable result that is reduced by 41.9% compared169

to the error of the best baseline, as shown in Figure 2(d). The results demonstrate170

the model’s exceptional ability to generalize to noisy experimental measurements that171

inherently differ from clean simulation data. Moreover, the ablation studies (com-172

pared to Diffusion) indicate that training with diverse datasets yields significantly173

better results compared to training on a single dataset. We attribute this improve-174

ment to the model’s exposure to varied data distributions during training (similar175

to how GPT models benefit from diverse textual data), which facilitates the learn-176

ing of fundamental fluid dynamics principles rather than superficial dataset-specific177
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FluidZero

BP

(b)

(c)

(d)

(a)

(e)

(f)

Fig. 3 Results of parameter identification and design tasks. (a) The bar chart contains the
average relative L2 error of parameter identification, including FluidZero and three baselines, and
it can be seen that bars of FluidZero have the lowest error. (b) The violin plot of lift-to-drag ratio
statistics across different methods for design, illustrating the statistical median values and variance
for BP, Diffusion, Transformer, and FluidZero. Sub-figure (c) and (d) provide flow field visualizations
of the design task at the final timestep alongside their corresponding experimental photographs for
the best performing BP sample and FluidZero sample (they are located in the same Re), respectively.
Sub-figure (e) displays the temporal evolution of lift-to-drag ratios for the above two samples in
simulation, while sub-figure (f) shows the corresponding experimental measurement curves in the
circulating water tank. For the other experimental measurement and their lift-to-drag ratios, please
refer to Supplementary Material G.2. Results demonstrate that foil shapes designed by FluidZero
consistently achieve higher lift-to-drag ratios not only in simulations but also when transferred to
real-world testing environments, validating the sim-to-real transferability. The videos of design in the
simulation and experimental measurement are available in the link.

patterns. Additionally, our ablation studies on training manners (compared to Trans-178

former) reveal the significant advantages of diffusion models over supervised learning179

manners. While supervised learning directly maps inputs to deterministic outputs,180

diffusion models learn the underlying probabilistic distribution of the data, allowing181

them to capture the inherent stochasticity of fluid dynamics and generate diverse yet182

physically reasonable predictions.183
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2.3 Parameter Identification184

As a key component of system identification, parameter identification tackles the185

inverse problem of recovering the governing physical parameters of the fluid from186

observed behavior [68, 69]. Precisely estimating quantities such as the Reynolds num-187

ber from data is pivotal for understanding fluid systems, enabling reliable flow-pattern188

classification and rigorous validation of theoretical models [14, 16, 17, 70]. The task is189

typically challenging due to the complex, nonlinear relationship between fluid behavior190

and underlying physical parameters. We herein demonstrate the capability of Flu-191

idZero for identifying key physical parameters in fluid systems. Specifically, FluidZero192

takes as input a sequence of fluid states (velocity and pressure fields) and bound-193

ary conditions (structure geometry), and infers the Re as illustrated in Equation 3.194

We conduct comprehensive experiments across our four simulation datasets by using195

FluidZero and three baselines.196

Task Formulation: The parameter identification task can be expressed as an197

inverse problem:198

fpi : {ut,S, at, C
t
L, C

t
D}Tt=0 7→ η, (3)

where the goal is to infer the paratmeter Re (η) from observed fluid states (ut), forces199

(Ct
L, C

t
D), control actions (at), and boundary shape (S) over a time horizon T .200

We employ three baselines: a backpropagation-based method (BP) that optimizes201

parameters by minimizing the difference between observed and predicted fluid states,202

the Diffusion trained on a single dataset, and the Transformer. The results across all203

datasets are presented in Figure 3(a). It demonstrates that FluidZero significantly out-204

performs baseline methods, achieving consistently lower parameter estimation error205

across all scenarios. Quantitatively, FluidZero achieves relative L2 errors of 0.050,206

0.062, 0.188, and 0.166 for four datasets, respectively, representing improvements of207

85.8%, 88.1%, 2.1%, and 2.9% over the best baseline methods. Importantly, Flu-208

idZero demonstrates superior stability and robustness, as evidenced by its consistently209

small error bars (variance less than 0.0048). In contrast, baselines exhibit much larger210

variance, with BP showing high uncertainty (standard deviations up to 0.4533 for Dou-211

ble Cylinders) and Transformer displaying significant inconsistency (with error bars212

exceeding 0.5490 for Double Cylinders). Our ablation studies reveal that training with213

diverse datasets substantially improves parameter identification accuracy compared214

to single-dataset training, suggesting that exposure to varied flow regimes helps the215

model build a more comprehensive understanding of how physical parameters manifest216

in observable flow patterns.217

2.4 Design218

Foil design represents one of the most challenging and impactful applications of fluid219

mechanics in engineering [32]. The goal of optimizing designed boundaries to achieve220

specific performance objectives has traditionally required extensive computational221

resources and expert knowledge [71, 72]. We herein demonstrate the capability of Flu-222

idZero for efficiently designing foil shapes to maximize fluid dynamic performance.223

Specifically, our design task focuses on generating optimal foil boundaries that max-224

imize the lift-to-drag ratio under given flow conditions as illustrated in Equation 4.225

10



Compared to other tasks, the design problem presents a unique challenge as it oper-226

ates with minimal initial information, FluidZero generates high-performance shape227

designs conditioned solely on the Re, without access to initial fluid states or exist-228

ing boundary conditions. The sparse conditioning scenario tests the model’s ability229

to leverage its learned understanding of fluid-structure interactions to directly pro-230

pose optimized boundaries. In implementation, FluidZero employs the guided diffusion231

method [73] to steer the generative process toward boundaries with higher lift-to-drag232

ratios. By incorporating performance objectives into the sampling process, we enable233

FluidZero to balance between the exploitation of known high-performance boundaries234

and the exploration of novel design possibilities. We generate foils simultaneously using235

FluidZero and baselines with 50 Reynolds numbers as conditions. Although the perfor-236

mance of the best foil generated condition on one Re may also be best at other different237

Re, different Re validate the stochasticity of the model, thereby demonstrating its238

robustness. The baselines and analysis of results in both simulation and real-world239

transfer are described in the following paragraphs.240

Task Formulation:241

The design task can be formulated as an optimization problem:242

S∗ = argmaxSJ (S, η), (4)

where the goal is to generate the optimal boundary shape (S∗) that maximums the243

objective function (J ) under given parameters (η). For example, if the objective is244

to design the foil with the maximum lift-to-drag ratio, the objective function can be245

defined as J = CL

CD

(maximizing the lift-to-drag ratio).246

To evaluate the design capability of FluidZero, we compare the results of FluidZero247

against several baseline models. The primary baseline is a backpropagation-based248

method [74] (BP) that combines a pre-trained variational auto-encoder (VAE) [75] for249

foil representation with a U-Net [66] mapping boundaries to forces, allowing gradient-250

based optimization of foil shapes. Additional baselines for ablation studies include251

the Diffusion trained only on the single foil dataset and the Transformer trained via252

supervised learning instead of the diffusion framework.253

The results comparing the lift-to-drag ratios of designed foils are presented in254

Figure 3(b), while Figure 3(c,d) visualizes both the generated foil boundaries and255

their corresponding flow fields. Statistical analysis of the lift-to-drag ratio distribu-256

tions reveals that FluidZero achieves the most superior and consistent performance,257

with a median lift-to-drag ratio of approximately 2 and a tighter distribution. In con-258

trast, baseline methods show significantly inferior performance: BP exhibits a wide259

distribution centered around 0, Diffusion shows moderate performance with a median260

around 0.5 but substantial scatter, and Transformer demonstrates the poorest perfor-261

mance with a median near -2 and limited range (-2.5 to 1.5). For the mean and max262

values, please refer to Table 13 in Supplementary Material G.3. The results demon-263

strate that FluidZero consistently generates foil designs with superior fluid dynamic264

performance compared to baselines across various Re conditions. A particularly note-265

worthy finding is that FluidZero generated designs with lift-to-drag ratios significantly266

higher than those found in the training dataset, where the average lift-to-drag ratios267

are close to zero (minimum and maximum thickness-to-chord ratios are 0.3 and 0.6,268
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respectively). It indicates that FluidZero effectively explores and discovers regions of269

the design space beyond those in the training data, demonstrating true optimization270

rather than simple imitation of existing designs. Furthermore, our ablation studies271

reveal that training with diverse datasets significantly enhances the model’s design272

capabilities compared to training on a single dataset. To our knowledge, we are the273

first to demonstrate and quantify this beneficial effect of data diversity specifically for274

fluid system design tasks. The finding suggests that exposure to varied flow scenar-275

ios helps the model develop a more comprehensive understanding of how boundary276

modifications affect fluid behavior across different boundaries.277

To validate the real-world applicability of FluidZero’s designs, we 3D print the278

top-2 best-designed foils of both baseline and FluidZero and test them in a circulating279

water tank experiment at multiple Reynolds numbers1. The experiment setup is intro-280

duced in Section 4.5. These experimental tests confirm that designed foils of FluidZero281

transferred to experimental fluid environments have superiorly measured lift-to-drag282

ratios as shown in Figure 3(f). The successful transfer from computational design to283

physical implementation demonstrates the practical value of FluidZero for real-world284

engineering applications.285

2.5 Control286

Planning and control of fluid systems represents one of the most challenging yet287

promising frontiers in engineering, with applications ranging from aircraft foil control288

to marine vessel and platform stabilization [52, 76]. Compared to static design prob-289

lems, control requires both the predictive understanding of fluid behavior and strategic290

decision-making. We herein present and analyze the results of FluidZero for plan-291

ning the actions of structures in fluid environments to achieve specific performance292

objectives alongside baseline comparisons.293

Task Formulation:294

The control task can be expressed as a decision-making problem:295

{a∗t }Tt=0 = argmax{at}T

t=0
J ({at}Tt=0,u0,S, η), (5)

where the goal is to generate control actions (at) that maximizes objective functions296

(J ) (e.g., drag minimization, lift maximization, or lift-to-drag ratio maximization)297

based on the initial condition (u0), boundary shape (S), and parameters η.298

To evaluate the versatility of project, we implement and evaluate control strategies299

across all simulation environments, with a particular focus on varying control objec-300

tives. Specifically, we examine three distinct control objectives: drag minimization and301

lift maximization for both single cylinder and double cylinders configurations, and lift-302

to-drag ratio maximization for both single foil and double foils. The diversity of control303

objectives evaluates FluidZero’s ability to learn general control principles rather than304

objective-specific strategies. FluidZero takes the initial fluid state, boundary condi-305

tion, initial position, and Re as inputs, along with the given control objective. Then,306

FluidZero conditionally generates appropriate control actions, like angular velocity,307

1To accommodate the requirements of numerical solver and experimental equipment, all numerical
simulations and experimental measurements are conducted in liquid, considering hydrodynamic effects.
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Fig. 4 Results of the control task. The figure presents a comprehensive comparison of control
performance across multiple methods for different fluid dynamics scenarios. The visualization includes
both quantitative bar charts (a-f) and heatmaps (g-l) for single cylinder (a,b,g,h), double cylin-
ders (d,e,j,k), single foil (c,i), double foils (f,l) configurations. The methods compared include BC,
BPPO, MPC, SAC, diffusion model, and transformer, alongside our proposed FluidZero. The objec-
tives in control include maximum lift (a,d,g,j), minimum drag (b,e,h,k), and maximum lift-to-drag
ratios (c,f,i,l) across different flow configurations. The heatmaps reveal the temporal evolution of
control effectiveness, while the bar charts quantify the average performance values. FluidZero consis-
tently demonstrates superior performance across all scenarios. These results validate the effectiveness
of our unified conditional generation approach for fluid system control tasks, outperforming both
traditional control methods and other learning-based approaches. Moreover, they also demonstrate
for the first time that training control strategies on diverse datasets can significantly improve per-
formance compared to training on a single dataset in fluid systems. The videos of control results are
available in the link.

to control the fluid system. We evaluate FluidZero against several existing baselines,308

including conventional Model Predictive Control (MPC) [77], Behavior Cloning (BC)309

13

https://drive.google.com/file/d/1UPrD9lzkfLaW47QeI-AA3mfWAsuvOSxg/view?usp=drive_link


[78], and widely-used Reinforcement Learning algorithms, including Behavior Proxi-310

mal Policy Optimization (BPPO) [79] and Soft Actor-Critic (SAC) [80]. For ablation311

studies, we also include two additional baselines: the Diffusion trained on individual312

datasets and the Transformer trained via supervised learning instead of the diffusion313

framework.314

Quantitative control performances and visualizations for representative evaluation315

cases are presented in Figure 4. The results demonstrate that FluidZero achieves316

superior control performance compared to specialized algorithms across all scenarios317

and control objectives. For lift maximization, our controlled strategies achieve 48.43%318

higher lift coefficients in the double cylinders scenario, while for lift-to-drag ratio319

maximization tasks, FluidZero discovers control strategies that achieve the largest320

lift-to-drag ratio, which is 22.87% more than the best baseline method in the single321

foil scenario. What is particularly notable is FluidZero’s ability to generalize across322

different control objectives without requiring objective-specific training or tuning.323

2.6 Task Compositions324

The superior performance of FluidZero across scenarios and tasks compared to all325

baselines—achieved with a single model—demonstrates its generalization to unify326

diverse tasks. This generalization capability is achieved through unifying tasks into a327

probabilistic generation task and training on diverse datasets for multiple tasks. How-328

ever, beyond this fundamental advantage, we explore the model’s flexibility by testing329

on various task compositions. These experiments, conducted on the single foil sce-330

nario, showcase the unique capabilities enabled by FluidZero. We investigate two task331

compositions.332

Task Formulation: The task composition involves combining multiple tasks333

sequentially. For example:334

Parameter identification and control:335

fcomp1 : {ut,S, C
t
L, C

t
D, at}Tt=0 7→ η

J7→ {a∗t }Tt=0, (6)

where at is the action in the data sample, while a∗t is the generated action given the336

objective J .337

Parameter identification and design:338

fcomp2 : {ut,S, C
t
L, C

t
D, at}Tt=0 7→ η

J7→ S∗, (7)

where S is the boundary shape in the data sample, while S∗ is the generated shape339

given the objective J .340

First, we evaluate FluidZero’s ability to perform sequential parameter identification341

and control in scenarios where Re is unknown. In this workflow, FluidZero first infers342

Re from fluid states, then uses this identified parameter as a condition for generating343

control actions. Results presented in Figure 5(a, left) demonstrate that FluidZero344

still achieves impressive lift-to-drag ratios while performance shows a modest decrease345

compared to scenarios with known parameters. The capability is particularly valuable346

for real-world applications where exact flow parameters may be unknown or uncertain,347
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allowing for adaptive control based on observed fluid behavior. Second, we evaluate the348

composition of parameter identification and design tasks under conditions of unknown349

Re. Similar to the above scenario, FluidZero first infers Re from fluid states and then350

generates optimized foil designs based on the identified parameter. As shown in Figure351

5(a, right), the combined method maintains strong design performance, demonstrating352

FluidZero’s robustness and flexibility.353

These combined task experiments demonstrate the remarkable flexibility and354

robustness of FluidZero, enabling novel workflows that leverage the complementary355

capabilities of different fluid system tasks.356

2.7 Evaluation in OOD Scenarios357

In the utilization of the model, out-of-distribution (OOD) scenarios are often encoun-358

tered, which differ significantly from the training distribution. Here, we illustrate the359

performance of FluidZero in various OOD scenarios, including the prediction of unseen360

fluid fields and control under substantially higher parameter (Re) configurations for361

extrapolation, showing that our model captures the underlying physical principles362

governing fluid dynamics, which enables superior performance.363

Firstly, in training, the dataset only includes scenarios of cylinders and foils, but364

for unseen scenes such as the square, FluidZero still generalizes and achieves better365

results than baselines, which is reduced by 14.9% compared to the relative error of the366

best baseline, as shown in Figure 5(c,d). Secondly, we validate FluidZero’s generaliza-367

tion capabilities to unseen flow parameters by extending control tests for single foil368

configurations to substantially higher Re as shown in Figure 5(b). While our training369

data encompassed Re in the range of 5,000-10,000, FluidZero successfully generalizes370

control strategies to fluid systems with Re between 10,000-100,000. This remarkable371

OOD generalization significantly expands the practical applicability of our approach,372

demonstrating its ability to transfer learned control principles to flow parameters well373

beyond those encountered during training.374

We attribute the OOD generalization capability to FluidZero’s cross-modal and375

cross-task learning paradigm, which enables the model to learn fundamental physical376

principles underlying fluid dynamics rather than memorizing dataset-specific patterns.377

The unified model facilitates this knowledge transfer by creating shared representa-378

tions that capture the invariant physics across different tasks and boundaries. Through379

simultaneous training on diverse tasks across multiple boundary configurations, Flu-380

idZero develops an understanding of the universal relationships between fluid physics,381

boundary conditions, and system responses.382

3 Discussion383

This work introduces one single model that masters diverse tasks in fluid systems384

called FluidZero, unifying prediction, parameter identification, design, and control into385

a probabilistic generation task for complementing missing modalities of each task. We386

demonstrate through comprehensive experiments that FluidZero achieves better per-387

formance than all baseline methods in diverse scenarios. In addition to the Section388

2 shows that FluidZero achieves consistent superior performance over baselines in all389
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Fig. 5 The figure demonstrates FluidZero’s generalization capabilities to OOD scenarios and task
compositions. The bar chart (a) presents a comprehensive performance comparison of the best control
baseline (Diffusion) and FluidZero on two compositions of multi-task (CMT): parameter identification
and control (left group), and parameter identification and design (right group). The y-axis represents
the average lift-to-drag ratios. The results show that when it comes to inferring parameters first,
although FluidZero may have a slight decrease in performance, it is still better than the best baseline
that knows all the information. The results highlight the critical advantage of our unified model: when
physical parameters are unknown, FluidZero can leverage its parameter identification capabilities
to first infer these parameters and then subsequently perform downstream tasks such as control
or design, enabling effective performance even in scenarios with incomplete information. Sub-figure
(b) compares lift-to-drag ratio performance across large Reynolds number range (10,000-100,000)
for FluidZero versus the Diffusion (the best baseline in the control task), despite being trained only
on Reynolds numbers between 5,000-10,000. FluidZero consistently maintains superior performance
across all tested Reynolds numbers, with a significant performance gap compared to the baseline.
The radar chart (c) is the relative L2 error of the square configuration, including the velocities in
two directions and pressure fields. The visualization (d) compares predictions of the velocity field
in the x-direction for the square, a configuration entirely absent from the training. Predictions of
FluidZero remarkably close to the ground truth. The results demonstrate FluidZero’s strong capability
to transfer learned fluid dynamics principles to both novel configurations and flow regimes well beyond
those encountered during training, significantly enhancing its practical applicability.

tasks, various insights can be obtained from different tasks because each task has390

its own characteristics and challenges. (1) Training on diverse datasets significantly391

improves performance. Because training with a large amount of diverse data can cap-392

ture shared principles, which may be commonly present in fluid systems, the insight393

is reflected in the results of all tasks, especially we attribute the success of OOD394

scenarios to this reason. (2) Through cross-task learning, the generalization of the395

model is improved, and the insight is illustrated in the results of design and control396

tasks compared to the task-specialized baselines. For example, the performance of the397

designed foil is better than that of the dataset and the generalization of control within398

OOD scenarios. We attribute it to the insight brought to the design and control by399
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learning other tasks, such as prediction. (3) The unified task model can flexibly com-400

bine different tasks to solve the problem of missing modalities, such as not knowing401

fluid parameters in design and control tasks. Such a model avoids developing many402

task-specialized models and reduces the cost of repetitive development.403

Our proposed FluidZero will have a wide-ranging impact on the fluid mechanics404

community. The development of FluidZero marks a significant advancement toward405

unified understanding and optimization of fluid systems. By integrating diverse tasks406

within a unified probabilistic model, this approach eliminates the need for special-407

ized models while improving performance through cross-task knowledge transfer. It408

streamlines research workflows and enables seamless integration of fluid mechanics409

tasks, demonstrating considerable potential across various applications. For example,410

FluidZero demonstrates the potential for the comprehensive spacecraft development411

workflow, from initial flow modeling around complex geometries, through aerodynamic412

design optimization of control surfaces, to flight control [81, 82]. Similarly, for underwa-413

ter submersibles, the unified model will seamlessly integrate hydrodynamic modeling of414

turbulent wake flows, hull shape optimization for drag reduction, and control strategies415

for varying mission requirements [83–85]. Beyond the above applications, FluidZero416

will extend to critical biomedical domains where it can simultaneously predict blood417

flow patterns, identify patient-specific cardiovascular parameters, and optimize vessel418

geometries for surgical planning [86–88]. Moreover, FluidZero also demonstrates the419

remarkable potential for comprehensive structural analysis and design workflows in420

the domain of material mechanics. For instance, in semiconductor manufacturing, Flu-421

idZero will predict thermal stress distributions and defect formation in silicon wafers,422

identify material parameters such as elastic moduli and thermal expansion coeffi-423

cients, and optimize chip packaging designs for thermal management and mechanical424

reliability [89–91].425

Although FluidZero shows promise through extensive experiments, there are sev-426

eral exciting directions for future expansion by integrating complementary approaches.427

(1) The model can be significantly enhanced by incorporating much more diverse train-428

ing data across different scenarios to develop a foundation model for fluid mechanics429

[43, 44]. FluidZero has demonstrated that diverse data is helpful for the generalization430

of tasks and OOD scenarios. Scaling up with significantly more data spanning broader431

scenarios beyond cylinders, foils, and simple geometries is expected to achieve better432

generalization at scale. It potentially creates a universal fluid mechanics foundation433

model capable of handling arbitrary configurations. (2) The control framework can be434

further advanced by integrating closed-loop feedback mechanisms, combining asyn-435

chronous denoising algorithms [92] to achieve efficient real-time feedback control that436

adapts to dynamic environmental changes and system uncertainties. (3) The unified437

model presents opportunities for integration with large language models (LLMs) to438

enable language-to-task capabilities, building upon existing works [93–96] that com-439

bines LLMs with prediction tasks. This integration will allow users to specify complex440

fluid mechanics tasks through natural language descriptions, automatically translat-441

ing high-level objectives into specific modeling, identification, design, or control tasks442

within the FluidZero.443
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4 Methods444

We herein introduce the method of the proposed FluidZero, including an overview,445

architecture, training, and sampling methods. After that, the experiment setup446

and evaluation metrics are briefly described. More details can be found in the447

Supplementary Material C, D, and E.448

4.1 Overview of FluidZero449

As we mentioned in the previous discussion, one of the important features of Flu-450

idZero is the provision of specific encoders for modalities with different dimensions,451

which are encoded into latent token representations. These tokens, along with posi-452

tion embeddings, are then input into the Transformer, which utilizes the multi-level453

attention mechanism to learn the patterns of modalities, spatial distribution, and tem-454

poral evaluation. The diagram of the architecture is shown in Figure 1(b). With the455

above multi-task compatible neural network architecture, the training method plays a456

critical role since FluidZero requires leveraging diverse training data to achieve strong457

generalization performance across different tasks and scenarios. The training employs458

a diffusion model framework using balanced sampling to ensure that the model has459

uniform exposure to features of diverse data. Moreover, we apply task-masked opti-460

mization and randomly mask modalities to simulate different task situations, which461

facilitates cross-task knowledge transfer, enabling the model to learn fundamental462

physical principles and generalize across multiple tasks. After training, FluidZero per-463

forms inference by conditionally sampling from Gaussian noise using task-specific464

known modalities to generate corresponding solutions.465

4.2 Model Architecture for Multimodal Fusion466

The motivation behind the model architecture is to enable unified representation and467

processing of spatial, temporal, and scalar modalities while handling variable num-468

bers of physical structures within a single model. In general, the main component469

of the architecture is the Transformer [97] that captures the relationships between470

modalities, spatial and temporal, through attention mechanisms to integrate multi-471

modalities flexibly and model heterogeneous physical variable data for fluid systems472

as shown in Figure 1(b). Specifically, the model applies modality-specific encoders to473

transfer different modalities into latent token representations tailored to their modal474

characteristics. Then, they are processed by the Transformer architecture unifiedly.475

The encoders for each modality are further described below, including spatial-temporal476

fluid states, point clouds representing boundaries, sequential variables like actions and477

forces, and scalar parameters.478

Spatial-temporal fluid state u are two-dimensional fluid fields containing mul-479

tiple time steps, generally including velocity fields in two directions and a pressure480

field. The encoder divides the state at each time step into patches, after which each481

patch is embedded into a token:482

zstatet := Fpatch(ut) + estatet , t ∈ {1, . . . , T}, (8)
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where Fpatch denotes the patch embedding function and estatet are positional embed-483

dings for grid coordinates. By doing this, the fluid state is converted into tokenized484

representations suitable for the Transformer to learn while preserving its spatial485

locality.486

The boundary shape S is generally represented as point clouds with the coor-487

dinates of each point. In order to uniformly represent structures with different shapes488

and quantities, we first convert the point cloud into the form of Signed Distance Func-489

tion (SDF) [98] that provides an implicit representation of surfaces of shape, used to490

describe the shortest distance from a point in an image to a surface, and then divide491

the SDF image into patches and embed them as tokens:492

z
bdy
t := Fpatch(St) + e

bdy
t , t ∈ {1, . . . , T}, (9)

where e
bdy
t are positional embeddings.493

Sequential variables (CD, CL, a) are treated as time-series vectors with length494

T . The dimensions of these sequential variables depend on the number of structures495

in fluid systems. For instance, when there is a foil in a fluid system, there will be a496

set of sequential variables (CD, CL, a), and if there are two foils, there will be two sets497

of them. We apply the encoder with the Fourier transform to abstract the globally498

periodic features and then nonlinear layers to capture the key features. The above499

transformation is mathematically reflected in equation 10, which not only allows for500

the fusion of tokens from different modalities but also makes the model scalable as501

the Transformer can handle any number of tokens, which means that the number of502

structures in the fluid system can be expanded to more quantities.503

z
seq
t := concat

({

Fnl

(

FFFT(sit)
)})

+ e
seq
t ,

t ∈ {1, . . . ,T}, s ∈ {CD, CL, a}, i ∈ {1, . . . , Imax},
(10)

where Fnl and FFFT denotes nonlinear layers and Fourier transform, concat refers504

to concatenation along the token number dimension, eseqt are position embedding for505

sequence variables, Imax is the number of structures and s represent variables among506

CD, CL, and a.507

Scalar parameters η in fluid systems are another modality, like Re that deter-508

mines the similarity of fluid systems. We apply the encoder with the same architecture509

as the sequential variables to embed scalar parameters, but their tokens do not change510

over time and are consistent in a fluid system as shown in equation 11:511

zscl := concat({Fnl(FFFT(ηn))}) + escl, n ∈ {1, . . . , N}, (11)

where N is the number of parameters and escl is the positional embedding.512

After converting all modalities to tokens, within each time step t, spatial tokens513

(zstate and zbdy) and non-spatial tokens (zseq and zscl) are concatenated into Zt ∈514

R
(Nspat+Nnon-spat)×d, where d is the hidden dimension of tokens. Then, the spatial-515

multimodal multi-head self-attention (MSA) [97] is calculated across all spatial tokens516

and tokens of different modalities for every time step t ∈ {1, ..., T} to capture the spa-517

tial features and enable cross-modal fusion. After that, in order to maintain temporal518
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correlation and learn features of fluid system evolution, we further calculate temporal519

MSA within a horizon when completing spatial-multimodal attention and fusion of520

different modalities at each iteration. After Transformer processing with an iterative521

multi-level attention mechanism, tokens of fluid state and shape are decoded to recon-522

struct the original dimension by unpatchifying. Finally, tokens of sequential variables523

and scalar variables are processed through the nonlinear layer and converted back to524

the original space using the inverse Fourier transform.525

4.3 Model Training for Estimating the Conditional526

Distribution for Different Tasks527

Based on the above architecture, FluidZero is trained using the diffusion model frame-528

work, where the fundamental goal is to train a denoiser to reverse the noise adding529

process. Its advantages have been mentioned in Section 1. The diffusion model operates530

by gradually corrupting clean data with noise over a series of diffusion steps and then531

learning to recover the clean data from the noise [47]. Essentially, the diffusion model532

learns a conditional probabilistic distribution, where the conditions in FluidZero are533

known modalities in different tasks.534

The forward diffusion process is defined by a Markov chain. Given a clean535

data sample x0, which is a set of all modalities of fluid systems, the Gaussian noise536

is gradually added to x0 with the increase of diffusion steps K. At step k, the noisy537

sample xk is obtained from xk−1 as follows:538

q(xk|xk−1) = N (xk;
√

1 − βkxk−1, βkI), (12)

where βk ∈ (0, 1) is the variance schedule at step k, and I is the identity matrix.539

According to the derivation of Ho et al. [47], we can directly sample xk from x0:540

q(xk|x0) = N (xk;
√
ᾱkx0, (1 − ᾱk)I), (13)

where ᾱk =
∏k

i=1(1 − βk).541

The reverse denoising process aims to learn a denoiser ϵθ(xk, k, c) that pre-542

dicts the noise added at step k in the forward process, where θ represents the model543

parameters and c is the condition information.544

In implementation, we train FluidZero on all diverse datasets, including single545

cylinder, single foil, double cylinders, double foils, and PIV data as introduced in546

Section 2.1. These datasets have different numbers of trajectories. To balance the con-547

tributions of different datasets during training, we adopt a custom balanced batch548

sampling strategy. The strategy first calculates the effective sample count of each549

dataset, then generates proportionate batches, and finally applies weighted random550

sampling. By doing so, it ensures that the model has uniform exposure to features551

of diverse scenarios, which improves generalization and prevents overfitting. Further-552

more, we systematically mask different combinations of modalities to create incomplete553

input situations that reflect different task requirements. The method forces the model554

to learn underlying physical relationships rather than direct mappings between inputs555
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and labels, as the model must infer missing information based on available modali-556

ties and physical consistency. By training on various incomplete situations, the model557

develops robust inference capabilities and learns to capture invariant physical prin-558

ciples governing fluid dynamics, ultimately achieving better generalization across559

different tasks.560

The training process is divided into pre-training and fine-tuning stages. We conduct561

pre-training on approximately 120,000 simulation data trajectories. In the pre-training562

stage, FluidZero is optimized to learn the dynamics and intrinsic physical principles563

of fluid systems. After pre-training, FluidZero can achieve tasks such as prediction,564

parameter identification, and control. Furthermore, FluidZero is fine-tuned by a few565

training epochs to improve generalization, including using a fixed foil simulation566

dataset to learn how to design a better foil and a real measured PIV dataset with567

noise to generalize to real-world applications. In both stages, the training objective is568

to minimize the denoising loss in the context of the diffusion model. The denoising569

loss is based on the difference between the predicted noise ϵθ(xk, k, c) and the true570

noise ϵk at each step k. Specifically, the loss function is:571

Ldenoise = Eq(xk|x0)

[

∥ϵθ(xk, k, c) − ϵk∥2
]

. (14)

This denoising loss is applied across all modalities to optimize the model to learn572

the reverse denoising process. The comprehensive pre-training and fine-tuning enable573

FluidZero to effectively learn and perform in diverse tasks and scenarios of fluid574

systems.575

4.4 Sampling Solutions for Each Task from the Single Model576

In the inference, we sample solutions for all tasks from the conditional probabilistic577

distribution using the single model FluidZero. To accelerate sampling, we use the578

Denoising Diffusion Implicit Models (DDIM) [99], which enhances sampling efficiency579

while preserving generation quality.580

Specifically, we impose different conditions that are known modalities in the task581

to generate the corresponding solution by sampling from Gaussian noise. (1) The con-582

ditions for prediction are consistent with those utilized during the training. Modalities583

given for prediction are initial condition u0, initial forces C0
L and C0

D, parameters η,584

action a: c = {u0, C
0
L, C

0
D, η,S, at}Tt=0 as shown in Equation 2. (2) The conditions for585

parameter identification are c = {ut,S, at, C
t
L, C

t
D}Tt=0 as shown in Equation 3. (3) For586

the design task, the given modalities are parameters η, which is less than others. There-587

fore, we also attach the additional guided strategy during the sampling process, which588

transforms the sampling process into an optimization process as: argmaxS[J (η,S)].589

By doing it in design, FluidZero balances between the exploitation of known high-590

performance boundaries and the exploration of novel design possibilities. (4) For the591

control task, the given modalities are initial condition u0, initial boundary shape S,592

parameters η as shown in Equation 5. The conditions of {Ct
L, C

t
D}Tt=0 are adjusted593

according to the optimization objective. The details of the sampling can be found594

in Supplementary Material E. By tailoring conditioning variables and integrating595

guidance, the single model efficiently performs diverse tasks in fluid systems.596
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4.5 Experiment Setup for Measurements of Fluid Systems597

We conduct laboratory experiments in the circulating water tank to validate Flu-598

idZero’s ability to transfer to real-world scenarios as demonstrated in Section 2.2599

and 2.4. The circulating water tank is an important equipment for conducting inflow600

experiments in fluid mechanics. Our equipment can design accurate inflow velocities,601

which reduce the disturbance caused by the backflow using flow straighteners and602

honeycombs, effectively ensuring uniform flow conditions for precise measurements.603

For the prediction task, we collect fluid field data using PIV. As mentioned before,604

the flow around a cylinder is a classic problem in fluid systems with widely-used appli-605

cations. We set Re between 350 and 1250 by changing the incoming flow velocity,606

which includes both fully laminar and transition states to turbulence. The flow field607

changes in this range are complex, posing a challenge for the model’s OOD general-608

ization. The PIV technique can be used to obtain the complete fluid state, and we set609

the observing window at the wake of the cylinder to better capture its wake character-610

istics. The measured fluid states exhibit characteristics analogous to simulation data,611

including overlapping Re regimes while extending to both lower and higher Reynolds612

values in numerous instances. These experimental datasets feature fixed cylinder con-613

figurations and lack pressure information while introducing observation noise, which614

provides an ideal benchmark for evaluating the model’s generalization capabilities615

when confronted with realistic data.616

For the design task, to verify the ability of FluidZero to transfer to real-world617

scenarios, we 3D print the designed foil and measure the lift-to-drag ratio using the NI618

DAQ-USB6218 with a ME-K3D40 three-axis force sensor in the circulating water tank.619

In laboratory experiments, we select the top-2 best foil shapes from FluidZero and620

the baseline BP, and measure the hydrodynamic performance at multiple Reynolds621

numbers. The shape and angle of attack of 3D printed foils are consistent with the622

generated boundary.623

4.6 Evaluation Metrics624

To rigorously evaluate the performance of the unified model across diverse tasks, we625

define distinct evaluation metrics tailored to the specific objectives of each task. These626

metrics are mathematically formalized as follows.627

The evaluation metric for the prediction task is the relative L2 error, which mea-628

sures the relative error between the predicted values and ground truth values, defined629

as:630

L(û,u) =
∥û− u∥2
∥u∥2 , (15)

where u represents the ground truth value, û is the predicted value. The metric ensures631

accurate evaluation of predictions by emphasizing relative magnitude discrepancies.632

The relative L2 error is also employed for the parameter identification task. Moreover,633

the evaluation metrics for the design and control task depend on the specific objective634

functions, including minimizing drag, maximizing lift, and maximizing the lift-to-drag635

ratio. They use the mean values of drag mean(CD), lift mean(CL) and lift-to-drag636

ratio mean( CL

CD

) to evaluate, respectively.637
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