

Supplementary Information

3 **3.4 % solar-to-ammonia efficiency from nitrate using Fe single atomic catalyst**

4 **supported on MoS₂ nanosheets**

5 Ji Li,^{a,b} Yuan Zhang,^a Chao Liu,^c Lirong Zheng,^d Eddy Petit,^b Kun Qi,^b Yang Zhang,^b
6 Huali Wu,^b Wensen Wang,^b Antoine Tiberj,^e Xuechuan Wang,^a Manish Chhowalla,^f
7 Luc Lajaunie,^{g,h} Ruohan Yu,ⁱ Damien Voiry^{b,*}

⁸ *^aCollege of Bioresources and Materials Engineering, Shaanxi University of Science &*
⁹ *Technology, Xi'an 710021, PR China*

*¹⁰ Institut Europeen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM,
¹¹ CNRS, 34095 Montpellier Cedex 5, France*

¹² *^c Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and*
¹³ *Technology, Shaanxi University of Science and Technology, Xi'an 710021, PR China*

14 *^d Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, PR*
15 *China*

*16 ^eLaboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier,
17 34095, France*

18 *Department of Materials Science & Metallurgy, University of Cambridge, Cambridge,*
19 *UK*

20 *g Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química*
21 *Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N,*
22 *Puerto Real, 11510, Cádiz, Spain*

23 ^h Instituto Universitario de Investigación de Microscopía Electrónica y Materiales
24 (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N,
25 Puerto Real 11510, Cádiz, Spain

*26 ⁱ Nanostructure Research Centre (NRC), Wuhan University of Technology, Wuhan
27 430070, PR China*

28

²⁹ * Corresponding author: Damien. Voiry(damien.voiry@umontpellier.fr)

30 **Materials.**

31 Ammonium tetrathiomolybdate ($(\text{NH}_4)_2\text{MoS}_4$), iron(III) nitrate nonahydrate
32 ($\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$), DMF, salicylic acid (SA), ammonium sulfate ($(\text{NH}_4)_2\text{SO}_4$), sodium
33 citrate dehydrate, sodium nitroferricyanide dihydrate, sodium hypochlorite solution,
34 HNO_3 , HCl , KNO_3 , K^{15}NO_3 , and ^{15}N labeled ammonium chloride ($^{15}\text{NH}_4\text{Cl}$) were
35 purchased from Sigma-Aldrich (France). All the reagents were used as received without
36 further purification. The commercial carbon cloth (CC, HCP331N,) was purchased
37 from Shanghai Hesen Electric Co. (China). The water used throughout all experiments
38 was purified through a Millipore system.

39

40 **Synthesis of the MoS_2 catalysts**

41 **Preparation of Fe- MoS_2 .** MoS_2 doped with single atoms of Fe were grown using a
42 hydrothermal method using $(\text{NH}_4)_2\text{MoS}_4$ and $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ as precursors for MoS_2
43 and Fe respectively.^{1,2} The loading amount of Fe in Fe- MoS_2 was controlled by
44 adjusting the atomic ratio: Fe/Mo of the $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ and $(\text{NH}_4)_2\text{MoS}_4$ reagents.
45 Different ratio values in $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ and $(\text{NH}_4)_2\text{MoS}_4$ were investigated: 0/1,
46 0.025/1, 0.050/1, 0.075/1, to 0.100/1 and the corresponding single-atom catalysts were
47 referred to as Fe- MoS_2 -m where m presents the molar Fe/Mo ratio of the reagents. For
48 example, in the case of Fe- MoS_2 -75, 30.0 mg of $(\text{NH}_4)_2\text{MoS}_4$, and 3.5 mg of
49 $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ were dissolved into 25 mL of DMF. The mixtures were dispersed at
50 room temperature with the aid of ultrasounds for 10 min to achieve a homogeneous and
51 transparent red-brown solution. Then, the mixture solution was transferred into a 50
52 mL Teflon-lined autoclave. A carbon cloth (CC, 2 cm × 4 cm) was used to conduct
53 support for the nanosheets and was immersed in the DMF solution. The autoclave was

54 then sealed and maintained at 210 °C for 18 h in an oven. After cooling the reactor to
55 room temperature, Fe-MoS₂-75/CC was washed respectively by deionized water and
56 ethanol (3 × 50 mL) to remove unreacted precursors. The Fe-MoS₂-m samples were
57 dried at 70 °C overnight.

58 **Preparation of M-MoS₂ with M= Ni, Co, and Cu.** Co, Ni, Cu-MoS₂/CC, and
59 MoS₂/CC were prepared following the same procedure as for Fe-MoS₂. The molar ratio
60 of M/Mo was fixed to a value of 0.075/1 and Co(NO₃)₂·6H₂O, Ni(NO₃)₂·6H₂O,
61 Cu(NO₃)₂·3H₂O were used precursors of Co, Ni, and Cu respectively.

62 **Preparation of 2H-MoS₂ and defect-rich MoS₂ (d-MoS₂).** MoS₂ and defect-rich
63 MoS₂ (d-MoS₂) nanosheets were prepared following our already-reported strategy.^{3,4}
64 2H-MoS₂ was obtained by annealed the as-growth nanosheets (without Fe) under argon
65 (5.0, Linde) at 800 °C for 1 h (the ramping rate is 10 °C/min). d-MoS₂ was obtained by
66 further annealing 2H MoS₂ under Ar/H₂ (5% Varigon, Linde) under vacuum at 600 °C
67 for 30 min with a 10 °C/min ramping rate.

68 **Preparation of Cu and Cu₅₀Ni₅₀.** Cu and Cu₅₀Ni₅₀ were prepared by electrodeposition
69 according to a previously reported protocol.⁵ 20mM of CuSO₄ and 20mM of Ni(NO₃)₂
70 as precursors for the Cu and Ni. A gas diffusion layer (GDL, Fuel Cell Store) was used
71 as conducting support. Prior to depositing the catalysts, the GDL was treated with
72 sulfuric acid by sonication for 20 minutes. After acid treatment, the remaining acid was
73 rinsed with deionized water for 5 min three times, and the gas diffusion layer was dried
74 at room temperature.

75

76 **Catalyst characterizations**

77 **Physical characterizations.** A Hitachi S-4800 instrument was used for SEM and EDX
78 characterization. The morphology and crystalline structure of Fe-MoS₂ were further
79 characterized using FEI Talos F200X TEM. Aberration-corrected transmission electron
80 microscopy, including high-resolution (scanning) TEM imaging (HR-(S)TEM),
81 energy-dispersive X-ray spectroscopy (EDS) and spatially-resolved electron energy-
82 loss spectroscopy (SR-EELS), was performed using a FEI Titan Cubed Themis
83 microscope which was operated at 80 kV. The Themis is equipped with a double Cs
84 aberration corrector, a monochromator, an X-FEG gun, a super EDS detector, and an
85 Ultra High Resolution Energy Filter (Gatan Quantum ERS) which allows for working
86 in Dual-EELS mode. HR-STEM imaging was performed by using high-angle annular
87 dark-field (HAADF) and annular dark-field (ADF) detectors. SR-EELS spectra were
88 acquired with the monochromator excited allowing an energy resolution of 1.0 eV for
89 an energy dispersion of 0.25 eV/pixel. Powder XRD patterns were recorded using a
90 PANalytical X' pert Pro diffractometer with a Cu K α source ($\lambda = 0.154178$ nm). X-
91 ray photoelectron spectrum (XPS) was performed on a Thermo ESCALAB 250XI
92 using monochromatic Al K α radiation. All binding energies of the spectra were
93 corrected to the C1s peak at 284.6 eV. The Raman spectra were acquired using
94 an Invia Raman Microscope (Renishaw, United Kingdom) with an excitation of 633
95 nm. X-ray absorption spectra (XAS) at the Fe K-edges ($E_0=7200$ eV) were collected in
96 the fluorescence mode at the SAMBA beamline of the SOLEIL synchrotron radiation
97 facility. The ultraviolet-visible (UV-Vis) absorbance spectra were obtained on a
98 UV/Vis/NIR Jasco V570 spectrometer (Tokyo, Japan). Nuclear magnetic resonance
99 (NMR) spectroscopy was performed at 25 °C on a Bruker AVANCE III HD
100 spectrometer operating at a ¹H frequency of 600 MHz for isotope labeling experiments.

101 **Electrochemical measurements.** The electrochemical properties of the catalysts were

102 evaluated in three-electrode and two-electrode configurations using a PARSTAT MC
103 potentiostat (AMETEK Inc., USA). The measurements were performed using an H-
104 type reactor with two compartments separated by a Nafion® 117 membrane. Ag/AgCl
105 electrode with a glass frit was used as the reference electrode in the three-electrode
106 configuration, while a $1 \times 2 \text{ cm}^2$ carbon cloth modified with the MoS₂ catalyst and Pt
107 foil were used as the working electrode and counter electrode, respectively. The
108 electrolyte consisted in a 0.1 M of NaOH + 0.1 M Na₂SO₄ solution with 0.1 M of
109 NaNO₃. 100 mL of electrolyte was distributed to the cathode and anode compartment.
110 All potentials were referenced to the reversible hydrogen electrode (RHE) by the
111 equation:

112
$$E_{\text{RHE}} = E_{\text{Ag/AgCl}} + 0.197 + 0.059 \times \text{pH}.$$

113 Before the NO₃RR measurements, cyclic voltammetry (CV) was run for 30 cycles at a
114 scan rate of 100mV s⁻¹ from 1.023 to -0.997 V in order to activate and stabilize the
115 catalyst. The linear sweep voltammetry (LSV) curves were recorded at a scan rate of
116 20 mV s⁻¹ from 1.023 to -0.997 V vs. RHE. The catalytic performance of each catalyst
117 was then evaluated using LSV and chronoamperometry at increasing overpotentials for
118 1 h to determine the Faradaic efficiency (FE) for ammonia. AC impedance
119 measurements were performed in a 3-electrode configuration using a VSP potentiostat
120 (BioLogics, France) at an onset potential of -0.5 V vs. RHE. The frequency range was
121 set from 10 0000 Hz to 100 Hz with an AC voltage of 30 mV.

122 To evaluate the electrochemical specific area, the electrochemical double-layer
123 capacitance (C_{dl}) was determined in a potential window without the Faradaic process at
124 increasing scan rates from 20 to 140 mV s⁻¹.

125 **Solar cell testing.** The current-voltage characteristics of the solar panel were recorded

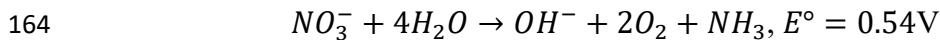
126 using a dual-source meter unit (Keithley Model 2401B). For the photovoltaic-
127 electrolysis experiments, a GaInAs/Ga(In)As/Ge triple-junction solar cell (HGSC-
128 A100B-2S, Hasunopto, China) was coupled to a 2-electrode H-type cell. A Xenon lamp
129 solar simulator (Oriel LS0106) equipped with a Schott K113 Tempax sunlight filter
130 (Praezisions Glas & Optik GmbH) was used to reproduce an AM1.5G illumination (100
131 mW cm⁻²). The current of the system was recorded using a PARSTAT MC potentiostat
132 in chronoamperometry mode with an applied potential of 0.001V. The optical power
133 was measured by an optical power meter (HP 81630, Agilent, USA).

134 **PV-electrolysis measurements.** The current-voltage characteristics of the solar panel
135 were recorded using a dual-source meter (Keithley Model 2401). For photocatalysis, a
136 solar panel (4V/350mA, Fuel Cell Store, USA) as a power source tandem with an H-
137 type cell to drive NO₃RR. The light source was a 450 W xenon lamp (Oriel) equipped
138 with a Schott K113 Tempax sunlight filter (Praezisions Glas & Optik GmbH) to match
139 the emission spectrum of the lamp to the AM1.5G standard. The current of the system
140 was recorded by chronoamperometry with applying an 0.001V of external bias for
141 different periods under chopped AM 1.5G illumination. The optical power of the sun
142 was measured by an optical power meter (HP 81630, Agilent, USA).

143 **Determination of the NH₃ concentration *via* colorimetry.** The colorimetric
144 determination of the concentration of NH₃ was carried out using UV-vis
145 spectrophotometry and the indophenol blue method.⁶ 200 μL aliquots of the electrolyte
146 were collected from the cathode chamber and mixed with 50 μL of 0.75 M NaClO ($\rho_{\text{Cl}} = 4-4.9$)/NaOH. 500 μL of 0.4 M salicylic acid/NaOH (0.32 M) and 50 μL of 1.0%
147 (w/w) Na₂[Fe(CN)₅NO]·2H₂O solutions were successively added. After 1 hour of
148 reaction, the concentration in ammonia was measured from the absorbance of the
149 solution at $\lambda = 660$ nm. The Beer-Lambert law combined with a calibration curve was
150

151 used to estimate the concentration of ammonia. The Faradaic efficiency and yield rate
152 in NH₃ were calculated using the following Equations 1 and 2:

153 $FE_{NH_3} = 8 \times F \times C_{NH_3} \times V / Q \times 100\% \quad (1)$


154 $R_{\text{Yield rate}} = (C_{NH_3} \times V) / (t \times S) \quad (2)$

155 where F is the Faraday's constant (C mol⁻¹), C_{NH_3} is the concentration of NH₃ in the
156 cathode chamber (M), Q is the total charge (C) passing the electrode (*i.e.* current times
157 electrolysis time, t (s)) is the electrolysis time, S (cm²) is the geometric area of the
158 working electrode.

159 **Estimation of the energetic efficiency (EE).** The half-cell energy conversion
160 efficiency for the production of NH₃ in the 3-electrode and 2-electrode configuration
161 was calculated from Equation 3:⁷

162 $EE_{NH_3} = E^\circ \times FE_{NH_3} / (1.23 - V_{\text{in}}) \quad (3)$

163 where E° is the standard potential of the reaction:

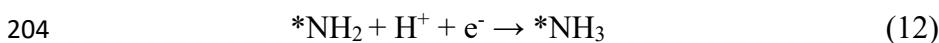
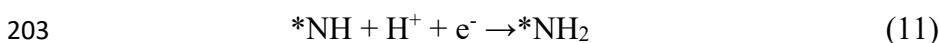
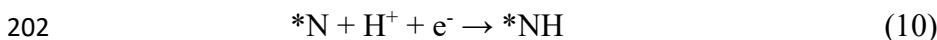
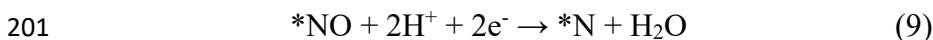
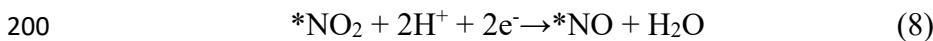
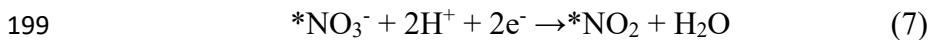
165 FE_{NH_3} is the faradaic efficiency for NH₃, and V_{in} is the applied voltage on the cell of
166 the 3 or 2-electrode configuration system.

167 **Electric power consumption estimation.** The electric power consumption (EPC) for
168 the 2-electrode configuration represents the amount of electric energy (typically
169 expressed in kWh) that is required for producing 1 kg of product, was calculated for
170 NO₃RR by Equation 4:⁸

171 $EPC = V_{\text{in}} \times n \times F / (FE \times M) \quad (4)$

172 where n is the number of transferred electrons (n = 8 for electrochemical reduction of

173 NO_3^- to NH_3), M is the molecular weight of NH_3 .







174 **Estimation of the solar-to-Ammonia (STA) conversion efficiency.** The solar-to-
175 ammonia conversion efficiency for the PV-driven electrolysis of nitrate was calculated
176 by equation 5:⁹

177
$$\text{STA} = (1.23 - E_{\text{NO}_3/\text{NH}_3}^\circ) \times I_{\text{op}} \times FE_{\text{NH}_3} / P_{\text{sun}} \quad (5)$$

178 where P_{sun} is the power of the sun (100 mW cm^{-2}), I_{op} is the current, $E_{\text{NO}_3/\text{NH}_3}^\circ$ is the
179 standard potential (0.69 V *vs.* RHE, pH = 14).⁵

180 **Computational details.** All the spin-polarized density functional theory (DFT)
181 calculations were implemented in the Vienna Ab-initio Simulation Package (VASP)
182 code with a projector augmented-wave (PAW) method.^{10,11} The exchange-correction
183 energy was described using a generalized gradient approximation (GGA) with a
184 Perdew–Burke–Ernzerhof (PBE) format. A plane-wave basis with a kinetic energy
185 cutoff of 520 eV was chosen to expand the electronic wave functions. For M-MoS₂
186 (with M=Fe, Co, Ni, and Cu) model, we chose a 4×4×1 supercell of monolayer MoS₂
187 with a 20 Å vacuum layer above the basal plane and then placed one M atom on Mo
188 topsite as previously described.¹² For MoS₂ M- MoS₂, the (100) surface of MoS₂ was
189 chosen as the active surface for catalysis because the basal plane was considered to be
190 chemically inert according to previous results from the literature. The (1010̄) edge (i.e
191 Mo-edge) was employed to simulate the NO₃RR performance on MoS₂ and Fe-doped
192 MoS₂. All the structures were allowed to fully relax to the ground state with the
193 convergence of the energy and the forces to 1.0×10^{-5} eV and 0.01 eV Å⁻¹. A 3 × 3 × 1
194 Γ-centered Monkhorst-Pack schemed *k*-mesh was used to sample the first Brillouin
195 zone. The DFT-D2 of Grimme was used for the long-range dispersion correction.¹³ To
196 evaluate the NO₃RR performance on each catalyst, the considered chemical reactions

197 can be summarized as shown below (Equations 6-12).

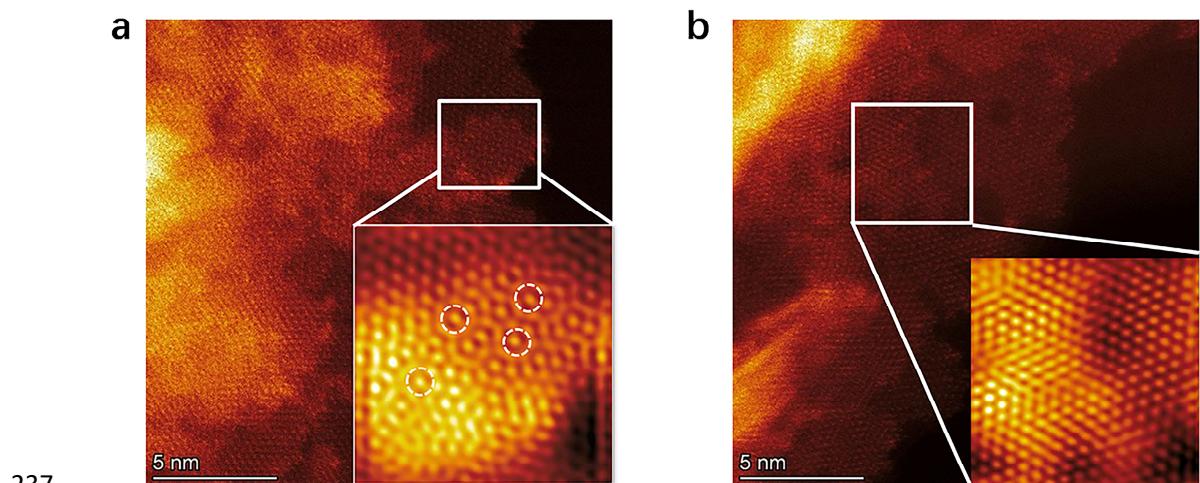
205 The Gibbs free energy change (ΔG) of the above-mentioned elementary steps was
206 calculated by Equation 13 based on the computational hydrogen electrode (CHE) model
207 proposed by Nørskov et al.¹⁴

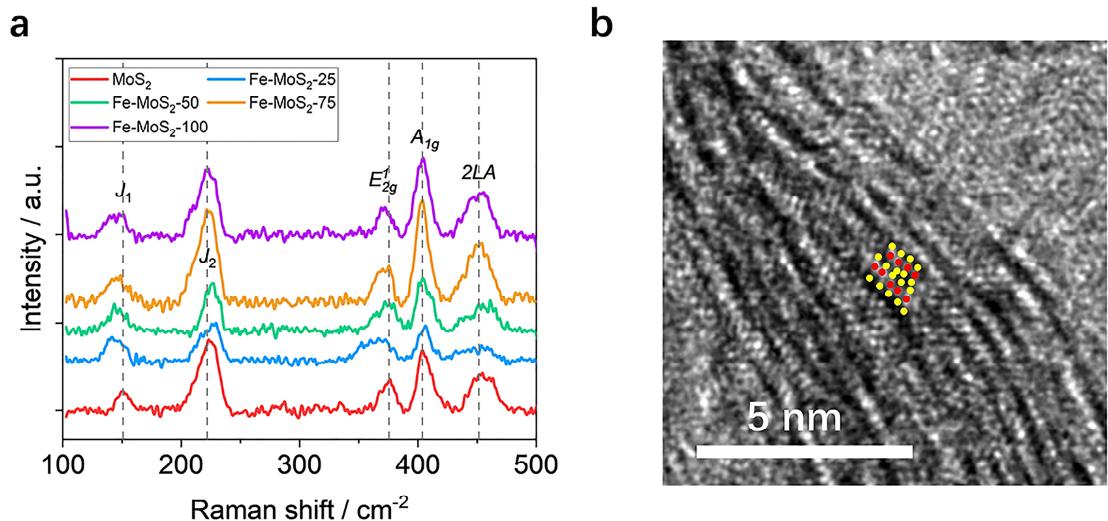
208
$$\Delta G = \Delta E + \Delta E_{\text{ZPE}} - T\Delta S \quad (13)$$

209 where ΔE is the energy difference before and after adsorption for each elementary step.
210 ΔE_{ZPE} and ΔS , respectively, the difference of the zero-point energy and the vibrational
211 entropy. All data are listed in Supplementary Table 4. T is the temperature (i.e 298.15
212 K).

213 XAS analysis

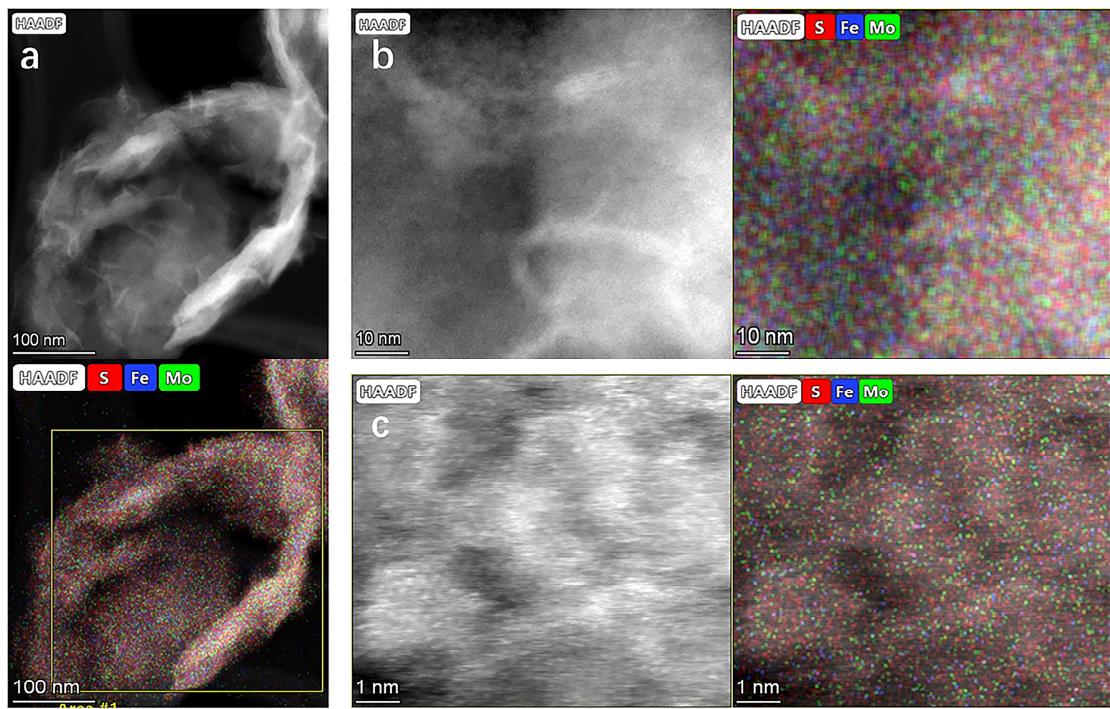
214 The acquired EXAFS data were processed according to the standard procedures using
215 the ATHENA module implemented in the IFEFFIT software packages.¹⁵ The k3-
216 weighted EXAFS spectra were obtained by subtracting the post-edge background from
217 the overall absorption and then normalizing for the edge-jump step. Subsequently, k3-
218 weighted $\chi(k)$ data of Fe K-edge were Fourier transformed to real (R) space using a
219 Hanning window ($dk=1.0 \text{ \AA}^{-1}$) to separate the EXAFS contributions from

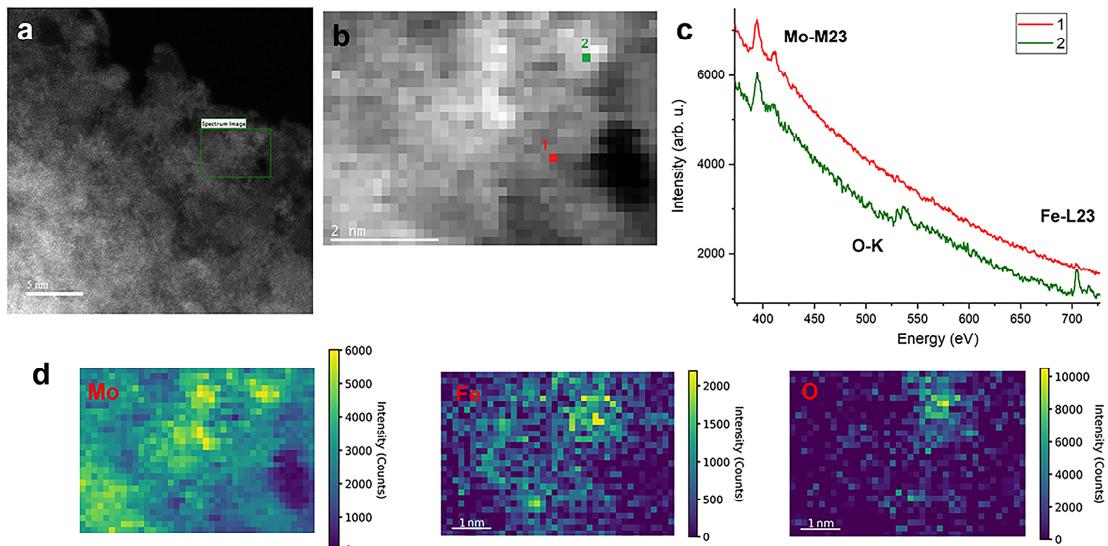

220 different coordination shells. To obtain the quantitative structural parameters around
221 central atoms, least-squares curve parameter fitting was performed using the
222 ARTEMIS module of IFEFFIT software packages.^{16,17}


223 **DFT analysis**

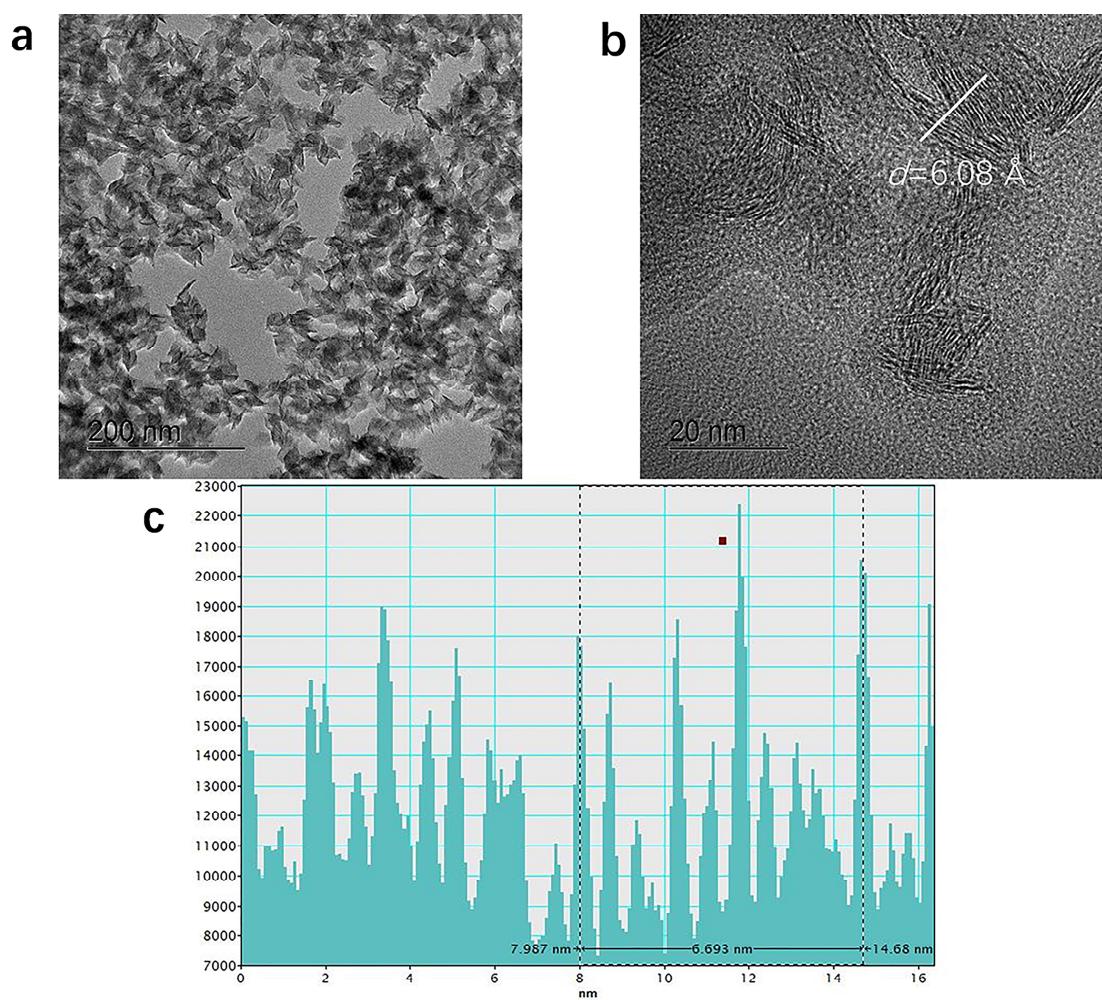
224 The BEP relation describes a law with a linear relationship between the adsorption
225 energy of reactant and the reaction energy barrier on the catalyst surface.^{18,19} The BEP
226 relation describes the relationship between the adsorption energy of the reactant and the
227 catalytic reaction energy barrier on the active sites, that is, the catalyst with strong
228 reactant adsorption has a low reaction energy barrier, but the product is difficult to
229 desorb. On the contrary, the reaction would be difficult to occur on the catalyst which
230 possesses weak adsorption for reactant, even though the product is facile to desorb from
231 the catalyst. Although it is essential nature for an excellent catalyst with
232 moderate adsorption energy. Here, the Fe-MoS₂ can powerfully reduce the reaction
233 energy barrier of the NO₃RR (i.e. *NO-->*N) due to the strongest adsorption for NO
234 among four SACs.

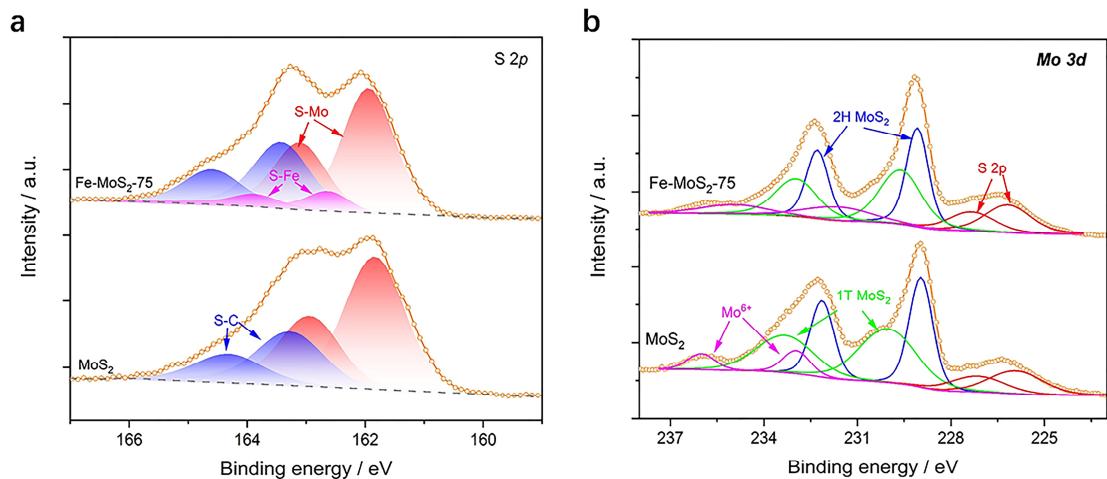
235


236 **Supplementary Figures**

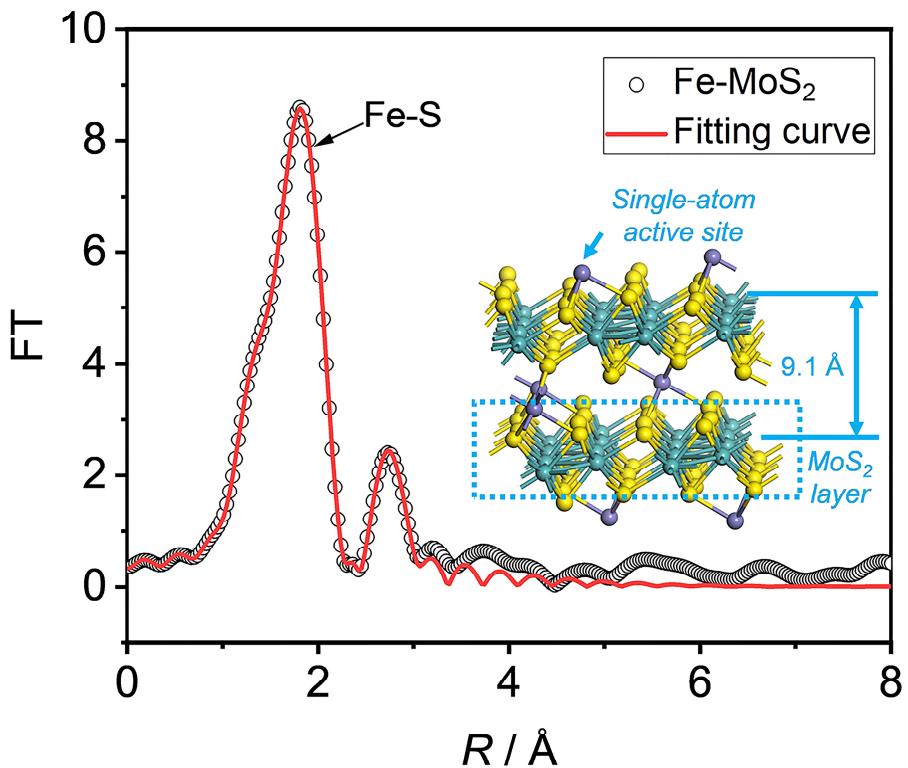


241

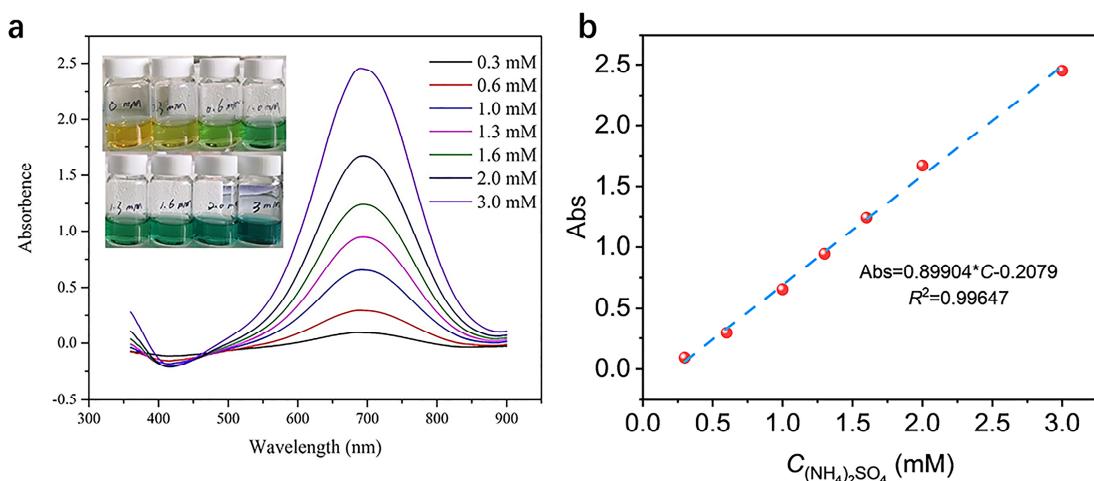

242 **Supplementary Figure 2.** **a**, Raman spectra of the Fe-MoS₂ and MoS₂ nanosheets. **b**,
243 HRTEM of Fe-MoS₂ nanosheets.


246 **Supplementary Figure 3.** High-angle annular dark-field imaging scanning
247 transmission electron microscopy (HAADF-STEM) image of Fe-MoS₂ nanosheets and
248 corresponding high-resolution TEM (HRTEM) – energy dispersive X-ray analyses
249 (EDX), scale bar = 100 nm (a), 10 nm (b), and 1nm (c).

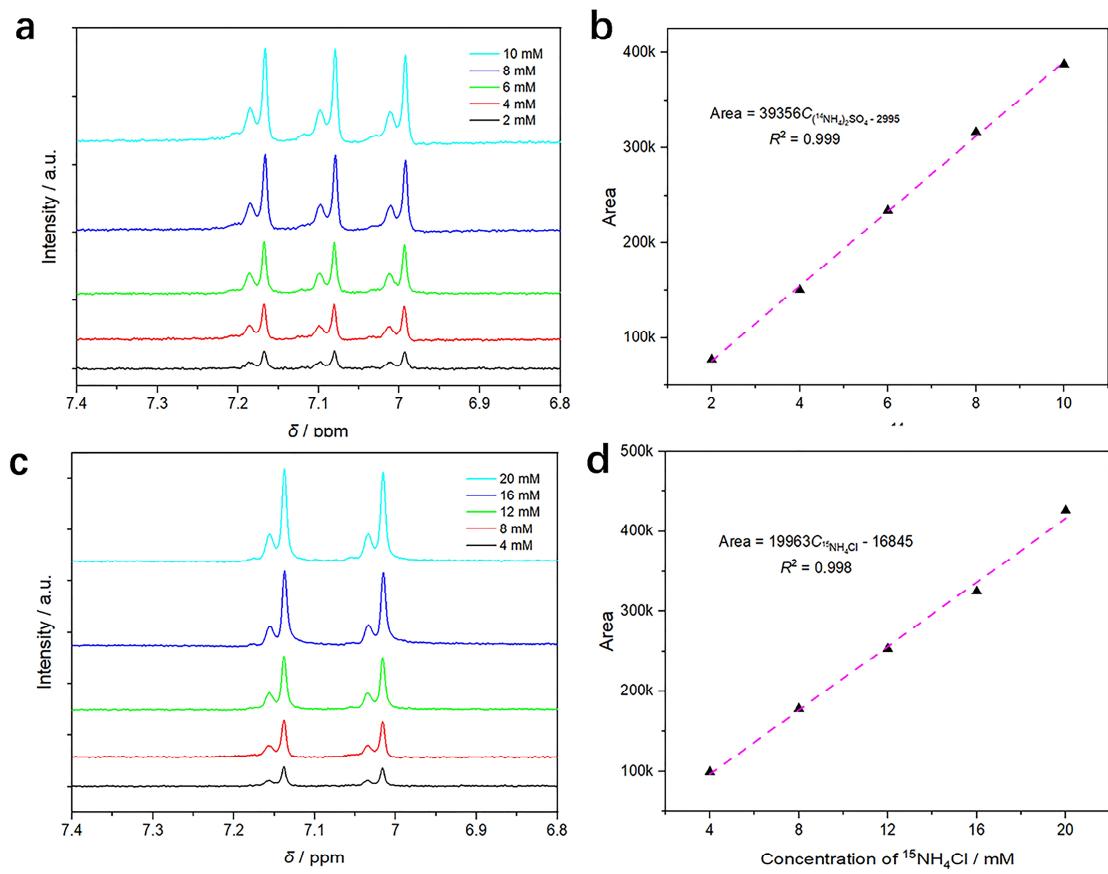
250
 251 **Supplementary Figure 4. EELS analysis of Fe-MoS₂.** **a**, ADF image. The green
 252 square highlights the area used to acquire the EELS spectrum image. **b**, ADF image
 253 acquired simultaneously as the EELS dataset. The green and red voxels highlight the
 254 areas used to extract the EELS spectra shown in **c**. **c**, Corresponding EELS spectra. **d**,
 255 Corresponding EELS chemical maps. The voxel size is below 0.16 nm.



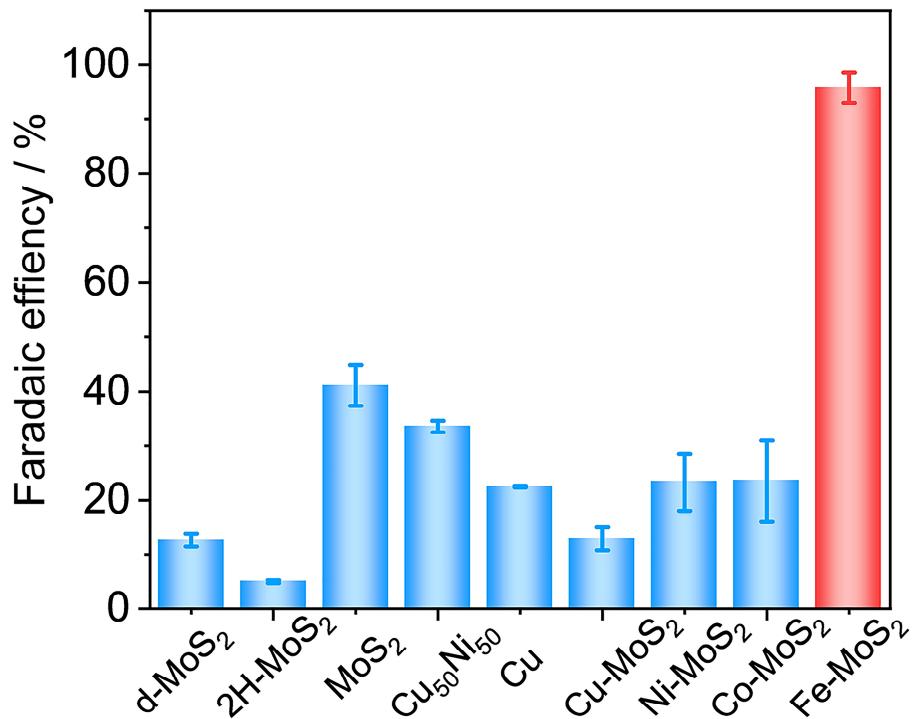
258 **Supplementary Figure 5.** TEM (a) and HRTEM (b) images of pristine MoS_2
 259 nanosheets, respectively. c, The line profiles across the pristine layers observed under
 260 HRTEM showing an average d-spacing of 6.08 Å.


261

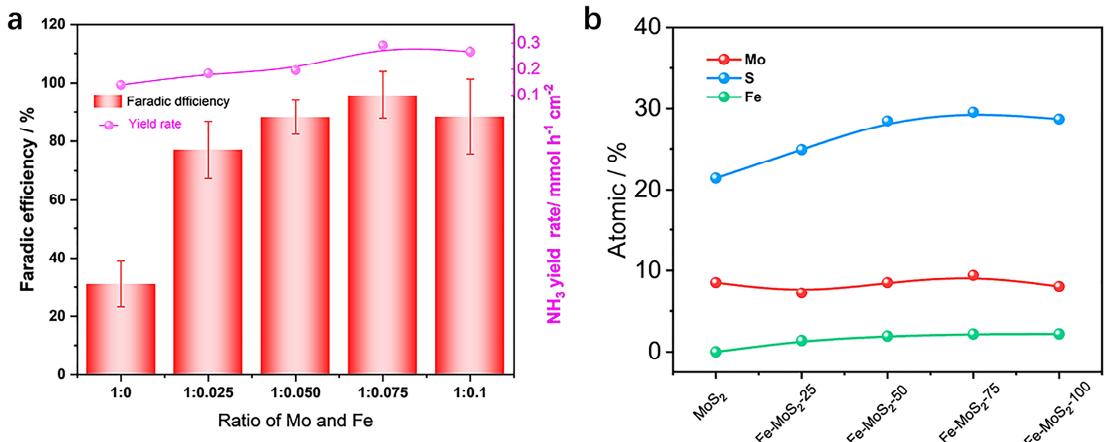
262 **Supplementary Figure 6.** X-ray photoelectron spectroscopy (XPS) spectra of S 2p (a),
 263 and Mo 3d (b) for MoS₂ and Fe-MoS₂ nanosheets.


264

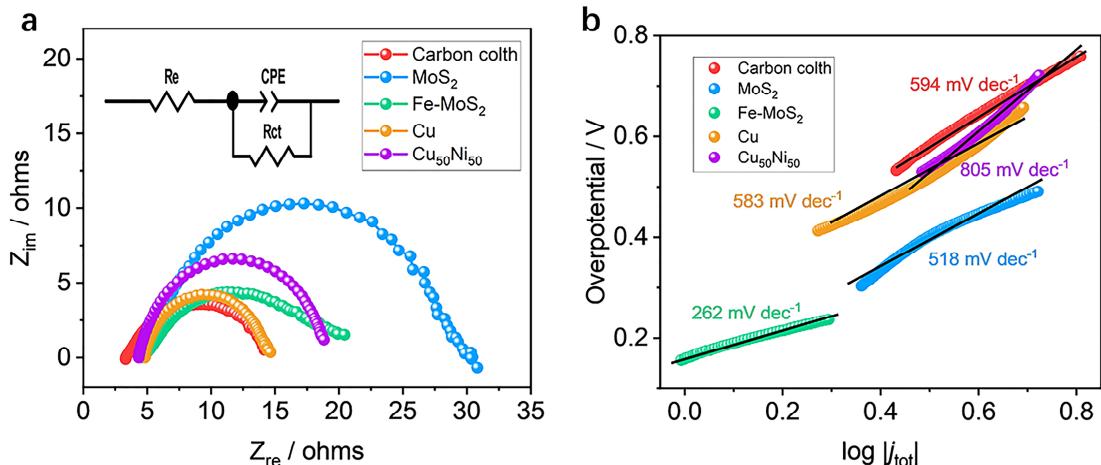
265 **Supplementary Figure 7.** Fitting results of Fe-MoS₂ nanosheets, inset its possible
266 structure.


Supplementary Figure 8. **a**, Photographe of the standard solutions used of the calibration curves presented in Supplementary Figure 8b and corresponding UV-visible absorption spectra. **b**, Calibration curve of NH_4^+ ions present in the standard solutions. The absorbance at 654.5 nm corresponding to the peak of the ammonia was measured to estimate the ammonia concentration in the solutions. The calibration curve showed a strictly linear relationship between absorbance and the NH_4^+ concentration over a large range of concentration from 0.3 to 3.0 mM. The ammonia concentration can be estimated using Equation 14:

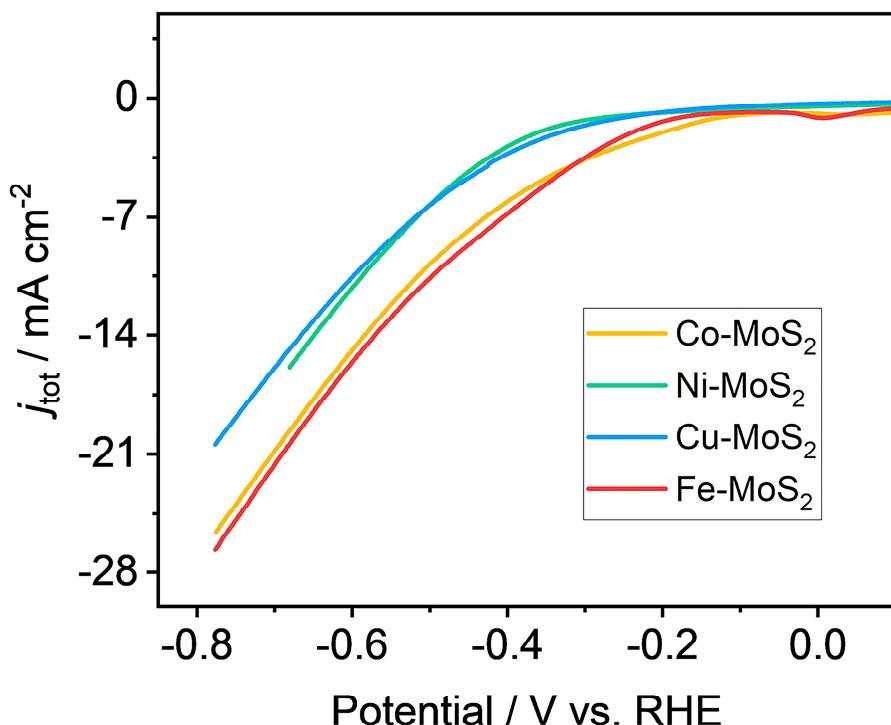
$$\text{Abs} = 0.089904 \times [\text{NH}_4^+] + 0.2079, R^2 = 0.99647 \quad (14)$$


279

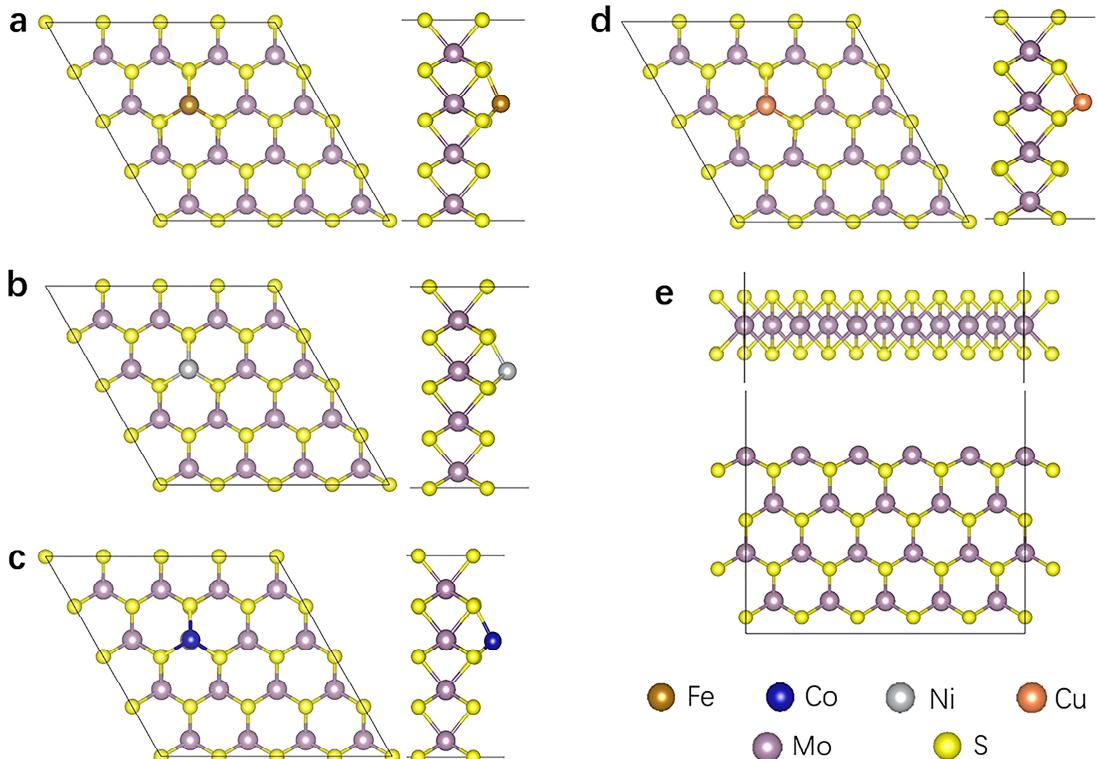
280 **Supplementary Figure 9.** **a**, ¹H-NMR spectra of $(^{14}\text{NH}_4)_2\text{SO}_4$ standard solution at
 281 increasing concentrations in the range of 2-10 mM. **b**, Corresponding calibration curve
 282 obtained from the integration of the NMR signals. **c**, ¹H-NMR spectra of $^{15}\text{NH}_4\text{Cl}$
 283 standard solution at increasing concentrations in the range of 2-10 mM. **d**,
 284 Corresponding calibration curve obtained from the integration of the NMR signals.


285

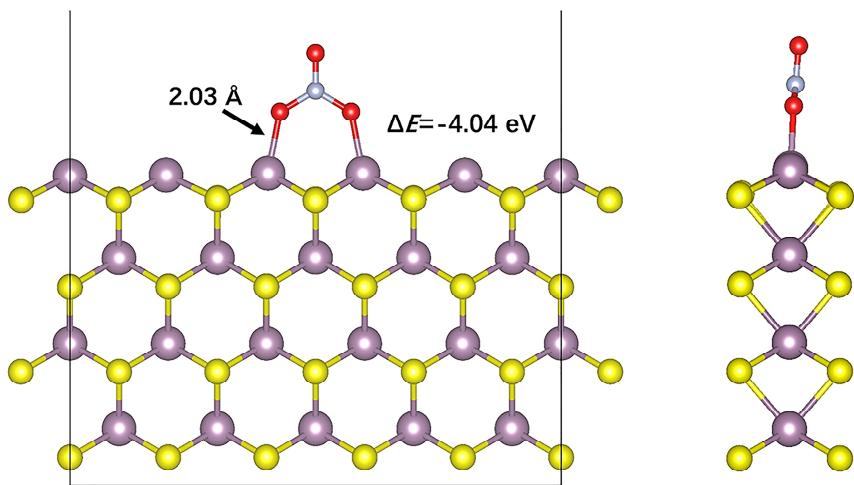
286 **Supplementary Figure 10. a**, The Faradaic efficiency of NH₃ of various catalysts
 287 under a potential of -0.48 V versus RHE. Among the tested catalysts, d-, 2H-, Co- and
 288 Ni-, and Cu-MoS₂ nanosheets exhibited catalytic activities for the reduction of NO₃⁻
 289 into NH₃ much lower than that of the Fe-MoS₂ nanosheets.


290

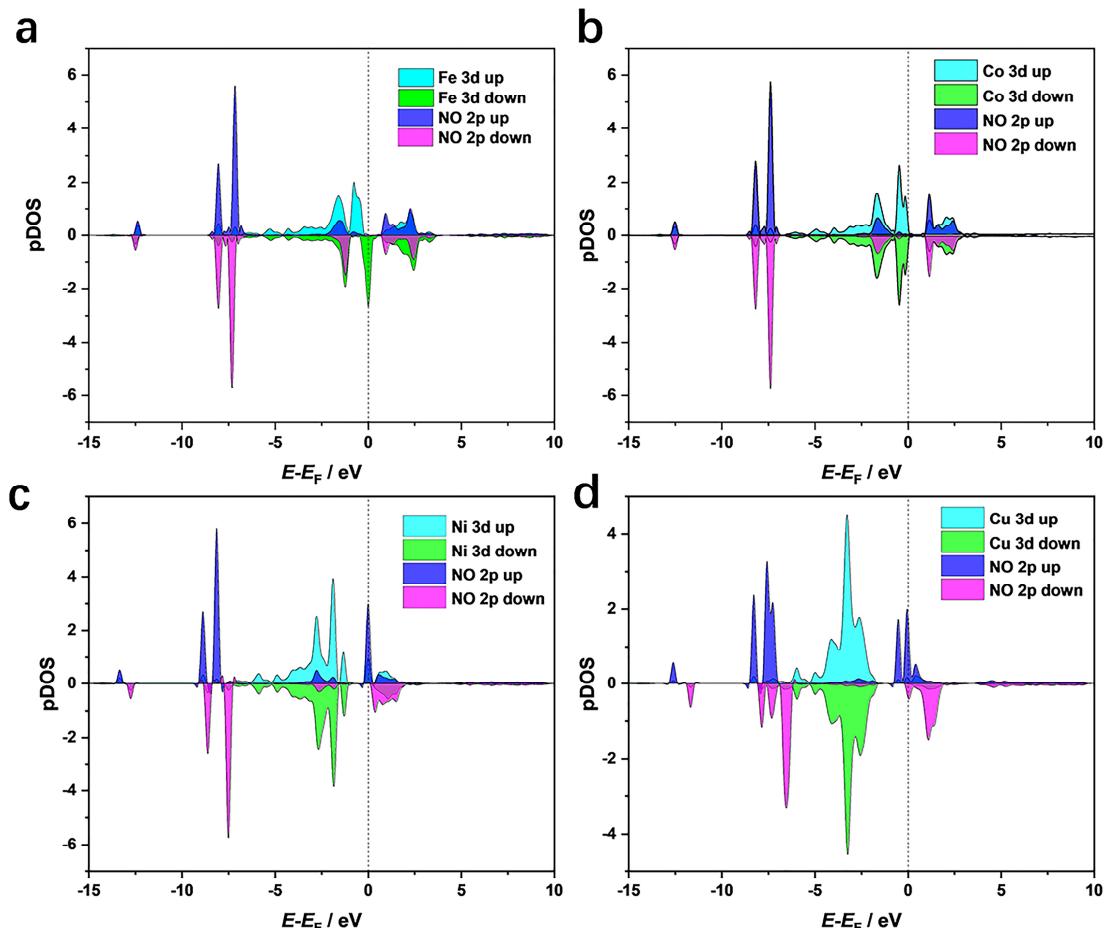
291 **Supplementary Figure 11. a,** Influence of the Mo/Fe molar ratio in the Fe-MoS₂-m
 292 catalysts on the Faradaic efficiency for ammonia. The measurements were carried out
 293 in a 0.1 M electrolyte solution at an applied potential of -0.48 V *versus* the reversible
 294 hydrogen electrode (vs. RHE). **b,** The atomic percentage of Fe-MoS₂-m catalysts
 295 determined by XPS.


296

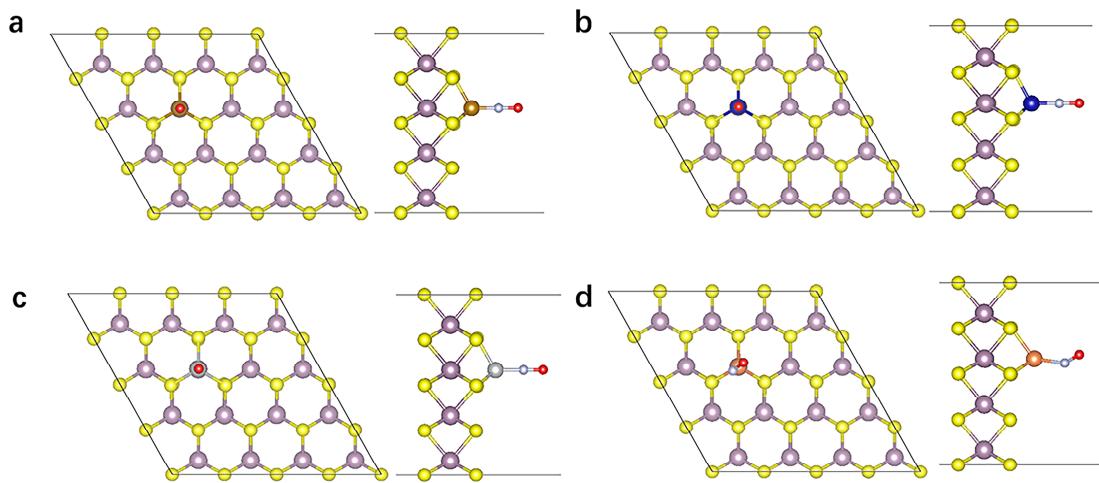
297 **Supplementary Figure 12. a,** Nyquist plots for Fe-MoS₂ nanosheets, MoS₂ nanosheets,
 298 Cu, Cu₅₀Ni₅₀, and carbon cloth. The EIS was performed at an onset potential of -0.5 V
 299 vs. RHE from 100 000 Hz and 100 Hz. **b,** Tafel plots of Fe-MoS₂ nanosheets for the
 300 NO₃RR, compared with MoS₂ nanosheets, Cu, Cu₅₀Ni₅₀, and carbon cloth.


301

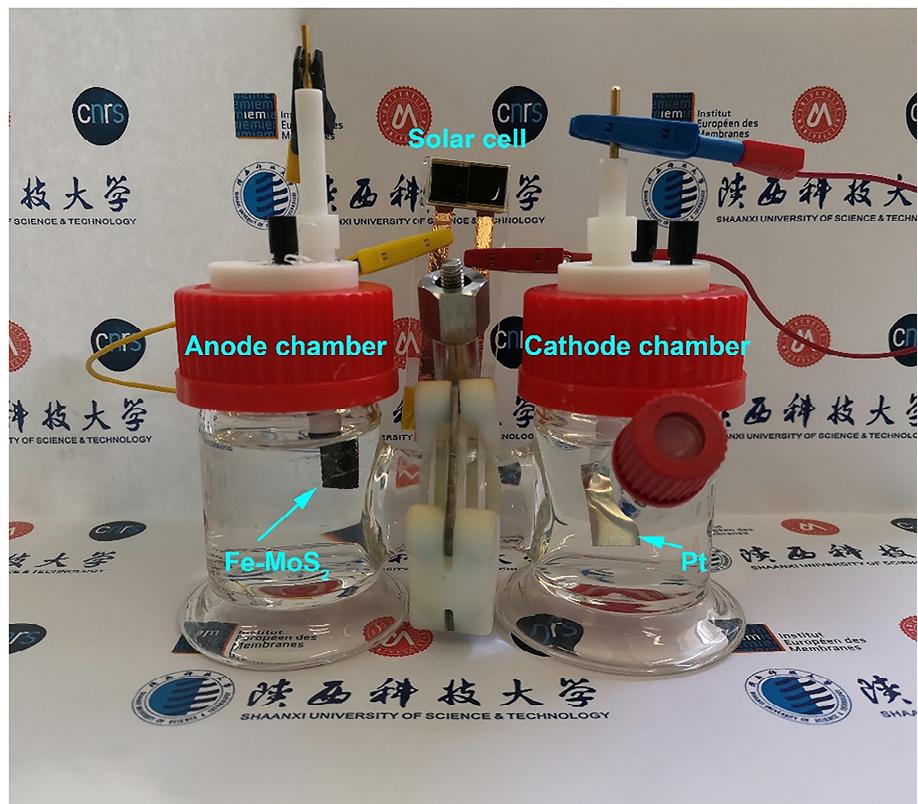
302 **Supplementary Figure 13.** Linear scanning voltammetry (LSV) curves for Co-MoS₂
303 (yellow), Ni-MoS₂ (green), and Cu-MoS₂ (blue), and Fe-MoS₂ nanosheets (red)
304 measured in the presence of 0.1 M NaNO₃ electrolyte.


305

306 **Supplementary Figure 14.** Top and side views of various transition metals supported
 307 on MoS₂ nanosheets (**a** Fe-MoS₂, **b** Ni-MoS₂, **c** Co-MoS₂, and **d** Cu-MoS₂). Pristine
 308 structure for MoS₂ is shown in (e). The color code used for the different elements is as
 309 follows: Fe (brown), Mo (violet), S (yellow), Co (blue), Cu (orange), and Ni (grey).


310

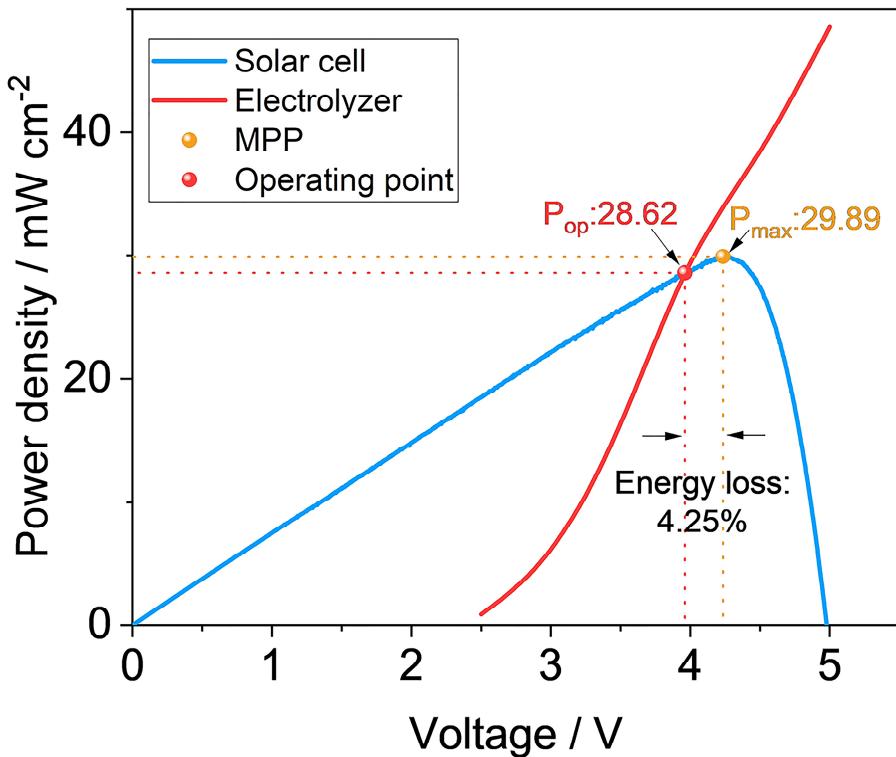
311 **Supplementary Figure 15.** Top and side views of the structure of NO_3^- adsorbed on
312 the edge of MoS_2 edge. The color code used of the different elements is as follows: Mo
313 (violet), S (yellow), O (red), N (light blue), respectively.



314

315 **Supplementary Figure 16.** Projected density of states (PDOS) of NO adsorbed on Fe-
 316 MoS₂ **(a)**, Co-MoS₂ **(b)**, Ni-MoS₂ **(c)**, and Cu-MoS₂ **(d)**, respectively. E_F stands for the
 317 Fermi level, referring to 0 eV.

318
319 **Supplementary Figure 17.** Top and side views of the structure of NO adsorbed on Fe-
320 MoS₂ (a), Co-MoS₂ (b), Ni-MoS₂ (c), and Cu-MoS₂ (d), respectively. The color code
321 used of the different elements is as follows: Fe (brown), Mo (violet), S (yellow), Co
322 (blue), Cu (orange), Ni (grey), N (light blue), and O (red), respectively.



323

324 **Supplementary Figure 18.** Photograph of the 2-electrode H-cell reactor for NO_3RR

325 using Fe-MoS_2 nanosheets and Pt as catalysts for the cathode and anode respectively.

326 The electrolysis reactor is coupled to the external PV-cell.

327

328 **Supplementary Figure 19.** The power density of InGaP/GaAs/Ge triple-junction solar
 329 cell (area: 2.0 cm^2) under AM 1.5G (100 mW cm^{-2}) (blue line); and the power density
 330 of the 2-electrode electrolyzer under different voltages (red line), in which the 2 cm^2
 331 of Fe-MoS₂ was used as working electrode.

332

333 **Supplementary Table 1.** Extended X-ray absorption fine structure (EXAFS) fitting
 334 parameters at the Fe K-edge for Fe-MoS₂.

Sample	Shell	N ^a	R (Å) ^b	σ ² (Å ² ·10 ⁻³) ^c	ΔE ₀ (eV) ^d	R factor (%)
Fe-MoS ₂	Fe-O	2.7	1.97	5.7	-1.5	
	Fe-S	3.5	2.25	5.8	-1.1	0.1
	Fe-O-Fe	0.9	3.02	8.0	-0.8	

335 ^a N: coordination numbers; ^b R: bond distance; ^c σ²: Debye-Waller factors; ^d ΔE₀: the
 336 inner potential correction. R factor: goodness of fit. S₀² was set as 0.85 for Fe-S, which
 337 was obtained from the experimental EXAFS fit of reference FeS by fixing S as the
 338 known crystallographic value.

339

340 **Supplementary Table 2.** Atomic percent of element (at%) obtained from XPS
 341 spectra of MoS₂ and Fe-MoS₂ nanosheets.

Sample	BE(eV) ^a			Atomic % ^b		
	Mo 3d	S 2p	Fe 2p	Mo 3d	S 2p	Fe 2p
MoS ₂	229.0/232.3	162.0/163.0	N.F ^c	8.51	21.45	0
Fe-MoS ₂ -25	229.0/232.2	161.9/163.3	708.3/721. 0	7.21	24.92	1.36
Fe-MoS ₂ -50	229.0/232.3	162.0/163.6	708.2/721. 0	8.52	28.44	1.89
Fe-MoS ₂ -75	229.1/232.3	162.0/163.2	708.3/721. 1	9.42	29.54	2.13
Fe-MoS ₂ -100	229.2/232.5	162.1/163.5	708.3/721. 1	8.03	28.67	2.14

342 ^a The binding energy (BE) was corrected for charging effects, using 284.6 eV as the
 343 carbon standard. ^b The atomic percentage determined by XPS spectra. ^c N.F means
 344 Not found
 345

346 **Supplementary Table 3.** The concentration of $^{14}\text{NH}_3$ and $^{15}\text{NH}_3$ detected by NMR
347 and UV using 0.5 M K $^{14}\text{NO}_3$ and 0.5 M K $^{15}\text{NO}_3$ as electrolyte after 4h reaction at -
348 0.48 V vs.RHE respectively.

Samples	NMR (mM)	UV	Average (mM)
$^{14}\text{NH}_3$	10.48	8.77	9.62 \pm 1.21
$^{15}\text{NH}_3$	5.68	6.52	6.10 \pm 0.59

349

350 **Supplementary Table 4.** Density functional theory (DFT) calculations of the
 351 electronic energies and the associated thermodynamic data associated with the
 352 successive steps for the NO_3RR .

Species	E_{DFT} (eV)	E_{ZPE} (eV)	TS (eV)	G (eV)
H_2O (l)	-14.22	0.57	0.57	-14.22
H_2 (g)	-6.96	0.27	0.11	-6.80
NO (g)	-12.28	0.12	0.13	-12.28

Fe-MoS₂

Species	E_{DFT} (eV)	E_{ZPE} (eV)	TS (eV)	G (eV)
slab	-355.01	--	--	-355.01
$^*\text{NO}_3^-$ ^a	-381.32	0.70	0.27	-380.89
$^{**}\text{NO}_3^-$ ^b	-382.83	0.71	0.28	-382.40
$^{**}\text{NO}_2$	-375.40	0.27	0.21	-375.34
$^{**}\text{NO}$	-370.38	0.20	0.15	-370.33
$^{**}\text{N}$	-362.54	0.08	0.07	-362.53
$^{**}\text{NH}$	-366.86	0.34	0.12	-366.64
$^{**}\text{NH}_2$	-371.57	0.64	0.16	-371.09
$^{**}\text{NH}_3$	-375.82	1.02	0.13	-374.94

Co-MoS₂

Species	E_{DFT} (eV)	E_{ZPE} (eV)	TS (eV)	G (eV)
slab	-354.56	--	--	-354.56
$^*\text{NO}_3^-$	-380.28	0.35	0.20	-380.13
$^{**}\text{NO}_3^-$	-382.02	0.40	0.22	-381.84
$^{**}\text{NO}_2$	-374.37	0.27	0.15	-374.25
$^{**}\text{NO}$	-369.70	0.20	0.09	-369.59

**N	-360.71	0.06	0.05	-360.69
**NH	-365.44	0.32	0.13	-365.25
**NH ₂	-370.57	0.65	0.14	-370.06
**NH ₃	-375.07	1.03	0.19	-374.23

Ni-MoS₂

Species	<i>E</i> _{DFT} (eV)	<i>E</i> _{ZPE} (eV)	TS (eV)	G (eV)
slab	-353.51	--	--	-353.51
*NO ₃ ⁻	-379.21	0.36	0.26	-379.11
** NO ₃ ⁻	-380.88	0.40	0.24	-380.73
**NO ₂	-373.02	0.27	0.22	-372.97
**NO	-367.47	0.17	0.13	-367.43
**N	-358.82	0.05	0.09	-358.87
**NH	-363.98	0.30	0.14	-363.82
**NH ₂	-369.19	0.66	0.13	-368.67
**NH ₃	-374.34	1.03	0.16	-373.48

Cu-MoS₂

Species	<i>E</i> _{DFT} (eV)	<i>E</i> _{ZPE} (eV)	TS (eV)	G (eV)
slab	-351.00	--	--	-351.00
*NO ₃ ⁻	-376.75	0.36	0.20	-376.59
** NO ₃ ⁻	-378.18	0.40	0.30	-378.08
**NO ₂	-371.51	0.25	0.20	-371.46
**NO	-364.51	0.15	0.09	-364.44
**N	-355.36	0.05	0.11	-355.42
**NH	-361.22	0.31	0.15	-361.07
**NH ₂	-367.34	0.65	0.16	-366.85

**NH ₃	-371.51	1.03	0.19	-370.67
-------------------	---------	------	------	---------

Species	MoS ₂			
	<i>E_{DFT}</i> (eV)	<i>E_{ZPE}</i> (eV)	TS (eV)	G (eV)
slab	-414.41	--	--	-414.41
*NO ₃ ⁻	-441.87	0.36	0.26	-441.78
**NO ₃ ⁻	-445.91	0.37	0.17	-445.72
**NO ₂	-436.91	0.25	0.16	-436.82
**NO	-430.85	0.17	0.10	-430.77
**N	-423.54	0.08	0.06	-423.52
**NH	-428.13	0.36	0.09	-427.86
**NH ₂	-431.84	0.66	0.13	-431.31
**NH ₃	-435.29	1.02	0.17	-434.44

353 ^a * represent physical adsorption;

354 ^b ** represent chemical adsorption.

355 **Supplementary Table 5.** Comparison of the NO_3RR performance with those from
356 other reported electrocatalysts.

Electrocatalyst	Onset potential (V vs. RHE)	Faradaic efficiency (%)	Yield rate	Ref.
Fe-MoS ₂	-0.20	$\sim 98 \pm 8.8\%$	0.03 mmol cm ⁻² h ⁻¹	This work
Cu/Cu ₂ O NWAs	-0.20	~95.8%	0.249 mmol cm ⁻² h ⁻¹	²⁰
Cu ₅₀ Ni ₅₀	~0.25	~99%	--	⁵
Copper–molecular solid catalyst	~0.23	~85.9%	0.025 mmol cm ⁻² h ⁻¹	²¹
Cu nanosheets	-0.15	99.7%	390.1 $\mu\text{g mg}_{\text{Cu}}^{-1} \text{h}^{-1}$	²²
Titanium	--	82%	--	²³

357

358

359

360

361

362

363 **Supplementary Table 6.** The $E_{\text{ads,NO}}$ on various single-atom catalysts.

Catalysts	$E^{**\text{NO}}$ (eV)	E_{slab} (eV)	E_{NO} (eV)	$\Delta E_{\text{ads,NO}}$ (eV)
Fe-MoS ₂	-370.38	-355.01	-12.28	-3.09
Co-MoS ₂	-369.70	-354.56	-12.28	-2.86
Ni-MoS ₂	-367.47	-353.51	-12.28	-1.68
Cu-MoS ₂	-364.51	-351.00	-12.28	-1.23

364

365 **Supplementary Table 7.** Comparison of the NO_3RR performance with those from
366 other reported photocatalysts.

Photocatalyst	Energy efficiency (%)	STA(%)	Yield rate	Ref.
Fe-MoS ₂	~21	~3.4 %	30 $\mu\text{mol cm}^{-2} \text{h}^{-1}$	This work
Pd-TiO ₂	--	--	26 $\mu\text{mol h}^{-1} \text{g}^{-1}$	²⁴
TiO ₂	--	--	17 $\mu\text{mol h}^{-1} \text{g}^{-1}$	²⁵
NU-1000 supported Fe	--	--	2.9 $\mu\text{mol h}^{-1} \text{g}^{-1}$	²⁶

367

368

369 **References**

370 1. Huang, L.-Z. et al. Single Fe atoms confined in two-dimensional MoS₂ for
371 sulfite activation: A biomimetic approach towards efficient radical generation.
372 *Appl. Catal. B Environ.* **268**, 118459 (2020).

373 2. Zhang, L. et al. Electrochemical Ammonia Synthesis via Nitrogen Reduction
374 Reaction on a MoS₂ Catalyst: Theoretical and Experimental Studies. *Adv.*
375 *Mater.* **30**, 1800191 (2018).

376 3. Yang, J. et al. Ultrahigh-current-density niobium disulfide catalysts for
377 hydrogen evolution. *Nat. Mater.* **18**, 1309–1314 (2019).

378 4. Li, L. et al. Role of sulfur vacancies and undercoordinated Mo regions in MoS₂
379 nanosheets toward the evolution of hydrogen. *ACS Nano* **13**, 6824–6834
380 (2019).

381 5. Wang, Y. et al. Enhanced Nitrate-to-Ammonia Activity on Copper–Nickel
382 Alloys via Tuning of Intermediate Adsorption. *J. Am. Chem. Soc.* **142**, 5702–
383 5708 (2020).

384 6. Zhu, D. et al. Photo-illuminated diamond as a solid-state source of solvated
385 electrons in water for nitrogen reduction. *Nat. Mater.* **12**, 836–841 (2013).

386 7. Gurudayal, G. et al. Efficient solar-driven electrochemical CO₂ reduction to
387 hydrocarbons and oxygenates. *Energy Environ. Sci.* **10**, 2222–2230 (2017).

388 8. Küngas, R. Review—Electrochemical CO₂ Reduction for CO Production:
389 Comparison of Low- and High-Temperature Electrolysis Technologies. *J.*
390 *Electrochem. Soc.* **167**, 044508 (2020).

391 9. Chen, Z. et al. Grain-Boundary-Rich Copper for Efficient Solar-Driven

392 Electrochemical CO₂ Reduction to Ethylene and Ethanol. *J. Am. Chem. Soc.*
393 **142**, 6878–6883 (2020).

394 10. Kresse, G. et al. Ab initio molecular dynamics for liquid metals. *Phys. Rev. B*
395 **47**, 558–561 (1993).

396 11. Kresse, G. et al. Ab initio molecular dynamics for open-shell transition metals.
397 *Phys. Rev. B* **48**, 13115–13118 (1993).

398 12. Yang, T. et al. High-throughput screening of transition metal single atom
399 catalysts anchored on molybdenum disulfide for nitrogen fixation. *Nano*
400 *Energy* **68**, 104304 (2020).

401 13. Grimme, S. Semiempirical GGA-type density functional constructed with a
402 long-range dispersion correction. *J. Comput. Chem.* **27**, 1787–1799 (2006).

403 14. Nørskov, J.K. et al. Origin of the overpotential for oxygen reduction at a fuel-
404 cell cathode. *J. Phys. Chem. B* **108**, 17886–17892 (2004).

405 15. Ravel, B. et al. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-
406 ray absorption spectroscopy using IFEFFIT. In *Journal of Synchrotron*
407 *Radiation* (International Union of Crystallography), pp. 537–541.

408 16. Koningsberger, D.C. et al. X-ray absorption: principles, applications,
409 techniques of EXAFS, SEXAFS, and XANES.(1988).

410 17. Rehr, J.J. et al. Theoretical approaches to x-ray absorption fine structure. *Rev.*
411 *Mod. Phys.* **72**, 621–654 (2000).

412 18. Bligaard, T. et al. The Brønsted-Evans-Polanyi relation and the volcano curve
413 in heterogeneous catalysis. *J. Catal.* **224**, 206–217 (2004).

414 19. Medford, A.J. et al. From the Sabatier principle to a predictive theory of
415 transition-metal heterogeneous catalysis. *J. Catal.* **328**, 36–42 (2015).

416 20. Wang, Y. et al. Unveiling the Activity Origin of a Copper-based Electrocatalyst
417 for Selective Nitrate Reduction to Ammonia. *Angew. Chemie Int. Ed.* **59**,
418 5350–5354 (2020).

419 21. Chen, G.-F. et al. Electrochemical reduction of nitrate to ammonia via direct
420 eight-electron transfer using a copper–molecular solid catalyst. *Nat. Energy* **5**,
421 605–613 (2020).

422 22. Fu, X. et al. Alternative route for electrochemical ammonia synthesis by
423 reduction of nitrate on copper nanosheets. *Appl. Mater. Today* (2020).

424 23. McEnaney, J.M. et al. Electrolyte engineering for efficient electrochemical
425 nitrate reduction to ammonia on a titanium electrode. *ACS Sustain. Chem. Eng.*
426 (2020).

427 24. Walls, J.M. et al. Microwave synthesised Pd–TiO₂ for photocatalytic ammonia
428 production. *RSC Adv.* **9**, 6387–6394 (2019).

429 25. Hirakawa, H. et al. Selective Nitrate-to-Ammonia Transformation on Surface
430 Defects of Titanium Dioxide Photocatalysts. *ACS Catal.* **7**, 3713–3720 (2017).

431 26. Choi, H. et al. Vapor-Phase Fabrication and Condensed-Phase Application of a
432 MOF-Node-Supported Iron Thiolate Photocatalyst for Nitrate Conversion to
433 Ammonium. *ACS Appl. Energy Mater.* **2**, 8695–8700 (2019).

434

435