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Supplementary Table S1: Table of Acronyms

Acronym Definition
QUBO Quadratic Binary Unconstrained Optimization
NP Nondeterministic Polynomial
IM Ising Machine
PO Parametric Oscillator
AFS Analog Floquet Solver
CMOS Complementary Metal-Oxide Semiconductor
D Dimension, in higher-order spin-solvers
Xp Resonant cavity pump mode
x® Type of nonlinearity
Wy Pump frequency driving the pump mode
X Signal mode
w,/2 Oscillation frequency of the signal mode parametrically down converted from
Wp
J Coupling matrix
i Index of the i*" spin
j Index of the j" spin
Jij Coupling strength between the it" and j*" spins
0y, 0 i*" and j** spin-states
Hising Ising Hamiltonian
Kp Loss-rate of the pump mode
K Loss-rate of the signal mode
7 Amplitude or gain saturation coefficient
T Small-signal gain parameter
y Resonant mode
g Linear coupling between x and y
r Loss-rate of the resonant mode

Natural angular frequency of the signal mode
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Wy, Natural angular frequency of the resonant mode
n Separation index of Floquet harmonics
M Separation index of Floquet harmonics
A, Amplitude coefficient of the nt"* Floquet harmonic of the x mode
B, Amplitude coefficient of the nt" Floquet harmonic of the y mode
bn Relative phase shift of the n‘"* Floquet harmonic
U Separation frequency between adjacent Floquet harmonic
N Number of spins in a coupled system
X; Signal mode of the i"* spin
K; Loss-rate of the signal mode
Ji Linear coupling between the i" x and y modes
I Loss-rate of the i*" resonant mode
F, Cost Function describing the dynamics of coupled Floquet nodes
n Interaction, or coupling, term in F.
Ain Amplitude coefficient of the nt" Floquet harmonic of the i*" x mode
Pin Phase of the nt" Floquet harmonic of the i*" signal mode
i Separation frequency between adjacent Floquet harmonic of the i*" x mode
A; Amplitude coefficient of the 15¢ Floquet harmonic of the i*" x mode
No Static component of 7(t)
14 Modulated component of 1(t)
o, Extracted and binarized phase of the i*" spin
1 Normalized interaction term of F,
G Coupling between x and x,, modes
Kex Extra-cavity mode loss-rate
Xin Pump strength exciting the x,, and x modes
X Amplitude solution form of x
0 Phase solution form of x
Fpo Cost Function describing the dynamics of coupled POs
Mpo Interaction term in Fp,
Bin Amplitude coefficient of the nt"* Floquet harmonic of the i*" resonant mode (y)
B; Amplitude coefficient of the 15¢ Floquet harmonic of the i*" signal mode (y)
by, — by, Phase difference between the x and y modes
fs Sampling rate used to track the solutions identified by the AFS
Hyin The average of H,,;, over, in this case, 100 runs




I. Analytical Studies of Systems via Coupled Mode Theory

A. Parametric Oscillators and their Coupled Systems

In this section, we address the dynamics of the nonlinear systems presented in the main manuscript.
We begin with the model of a single PO, which will be the fundamental backbone for all following

analysis in the main manuscript and supplementary material. POs, which consists of modes x,, and

x mediated by the y®) nonlinear process, can be described with a system of two equations, Eq.

(S.1a) and Eq. (S.1b) [1], [2]:

K .
Xy = — (71’ + iwp) Xp — IGX% + \[KepXine P, (S.1a)
K
i= — (E + iu)x) x — iG x"x,, (S.1b)

This system is such that when x,, is driven with a pump signal (w,) with strength x;, and incurring
a loss-rate \/K,,, x is indirectly excited at w,/2 through parametric down-conversion via the
intramode coupling G. Under the assumption that Kk, > k (k, being the loss-rate of x,, and k

being the loss-rate of x), the mode x,, can be adiabatically eliminated under a rotating frame of
.Wp in

x = xe "2 " and x — xe~+ to produce a single equation, Eq. (52).

. K *
X = —(§+r1|x|2)x+r2x . (5.2)

Through this adiabatic elimination, the nonlinear parameters linking x and x,, take the form of

2|G|? 2G\/KexXin

= andr, = (being r; the gain saturation coefficient and r, the small-signal gain

Kp
parameter) [1]. POs are regarded as highly effective candidates for use as macroscopic spins in
Ising Machines due to their inherent phase bistability, which is achieved following the activation
of their period-doubling regime following a bifurcation [3], [4], [5], [6], [7], [8], [9]. To understand
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the conditions via which this bistability appears, we can re-express Eq. (S. 2) at steady state after

changing the form of x to Xe ~%® and constraining 8 = 0, [2].

K
0= — (E +iB,+ 711 X2) X 41X, (S.3)

When r, > g, we can obtain a solution to Eq. (S.3) as Xy, = ’rzr—; [2]. For reference, Fig. 1(b)
1

in the main manuscript illustrates the frequency spectrum of the x mode of a PO after undergoing

a period doubling bifurcation when driven with r, > g A collective of POs can then be coupled

together with a coupling strength J; ; (such that J; ; = J; ;) between the i" and j*" POs to create a
PO-based IM. In this regard, POs with a phase solution 8 = 0 can represent a “spin-up” in the
Ising Model while those with a 8 = m represent a “spin-down”. Such a coupled system of N
coupled POs can be modelled using temporal coupled mode theory with a system of equations

taking the familiar form, shown in Eq. (5.4) :
N
. K *
X, = —(§+ rllxilz)xl- +ryx; — Z]i'jxj' (S.4)
j

Following the same procedure as shown in the main manuscript to determine F, it is relatively
straightforward to construct Fp, (x4, X1, X33, ..., Xy XN ), @ cost function for the PO-based IM, as

shown in Eq. (S.5) [10], [11]:

N N
K T T 1
Fro = ) [Flul? + Shual* =2 (x? +x%)] +5 ) % (5.5)
i i,j



oF . oF : e : : : .
Fpo obeys —= ; 9 = x,and — . ; 9 = x?.To verify this relation, we differentiate Fp,, with respect
i i

to x; and x;, and we achieve the results seen in Eq. (S. 6a) and Eq. (S. 6b).

0Fpo K 0x;
_ 2 * . _ . L
- o o X —rylx|“x; + mx; —igy; _Z]i,jxj =X = o0 (S.6a)
j
d0Fpp K 0x;
_ * 2 % . * ko ek 13
~Gx = 7% —rlx2xf + rox; —igyi — Z]i'jxj = i = — (S.6b)
j
. 9 . . 9Fpo . . . .
These conditions ensure that % = —2YV| x,|? (meaning that (F;t’ 2 is negative semi-definite

OF 0x; OF 0x]
dx; ot dx; ot

. . ] o .
throughout the trajectories of x; ), as %z >N ] = YN[xr %, + x%x: ] .

Furthermore, it can be shown that at the steady state or fixed point of the system (where all X, =

dFpo

0), —-

= 0. Such conditions permit to treat Fp, as a Lyapunov function since it is thus bounded

from below by 0 [4].

As can be seen in Eq. (S.5), two processes contribute to the minimization of Fp,; namely, self-
sustaining oscillations of each PO and the collective dynamics between POs [11]. The interaction

term describing the collective dynamics of a PO-based IM can be expressed as: 1pp =

1 . : . . o
EZQ’ j XiJi jx;. Note that this term bears significant resemblance to the Ising Hamiltonian, Hgpg =

1 . )
- ’lV j 0iJi,joj; in fact, when all the POs’ amplitudes are equal, 7pg X Hygpng, as x; can be treated

as A;o0;, where A; represents the amplitude of x;. Furthermore, under such conditions, the
minimization of 1p, directly corresponds to the minimization of Hjg,, as obtained through
gradient descent [12]. Yet, while such a reliance on gradient descent optimization offers PO-based
IMs unique computational advantages compared to von Neumann computers when solving QUBO
problems, PO-based IMs suffer from an intrinsic susceptibility to become trapped in sub-optimal

solutions corresponding to local minima without any recourses to escape [4].
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B. The Nonlinear Dynamics of Floquet Nodes and their Coupled Systems
In this section, we undertake a more thorough derivation of % and more generally describe the

AFS’s computational dynamics by assuming periodic envelopes for both the x and y modes

[x(t) = 32 _ o Ay () e+ dn(®) and y(t) = ¥ _ B, (t)e!™Ht+0n(®)] Particularly, we show

F; . . . . . o
that a—FtC is negative semi-definite despite the activation of the Floquet state.

OFc _ , _9Fc _ .. _0Fc_
L R

First, we begin by revisiting the properties of F., namely: —

and ——= = y*. Egs. (S.7a) - (S.7d), below, show these relations in more explicit forms:

F
y;
oF K .. . _ 0x
B (’)x.g = Tk — 1y lx; |22 + roxf —igy; — z]i,jxj =N = a_tl (S.7a)
: .
j
~SL = = 2x — A+ nr - igyi - ) Ju = %= 2k (S.75)
; .
j
oF, r . . 0y
L
aF, r. .. . o0y
— 3y, = _Eyi —igx; = y' = atl (5.7d)
L

. . oF . .. OFc 0x; OFc 0x}
Now it can be observed that the computation of a_tc requires determining YV a—;a—t‘ a_xfa_tl
4 i

9Fc 3y &aﬁ], which can be re-expressed as Eq. (S. 8).

dy; ot dy; ot

N N
aF * e . o ok o 3k e . o %k . .
- _Z[x'l X+ X2+ 9 Y+ vl = _ZZ[IxLIZ +yl?1 <0 (5.8)
i i
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Next, we endeavor to express | X,|2 + | ¥,]? in their periodic forms to understand the implications

of the activation of the Floquet states on the minimization of F.. In this regard, owing to the
rotational frame x — xe_%, we can express x; = A;cos (ut + ¢;) and y; = —iB;sin (ut + ¢;),
as is done in the main manuscript. Like before, we retain only the first Floquet harmonics since
we treat A; 1 » Y- A;n and By > Y-, B;,, (note that the two modes operate in quadrature
owing to dispersive coupling mediated by ig, with a constant phase difference of §)~ To visualize
the mode amplitudes and confirm that our assumptions are reasonable, we numerically extracted

time and frequency domain decompositions of both x; and y;, as well as their phase difference

with respect to frequency, as seen in Fig. S1.

Consequently, we can explicitly formulate |x,|2, as seen in Eq. (S.9):

_ [Aicos(ut + ¢;) — A, (1) sin(ut + ¢;)] *

|%,1% = %2 = ., ) . (5.9)
[4,"cos(ut + ¢;) — A;" (1) sin(ut + ¢;)]
which simplifies to Eq. (5.10):
. 12 .
A cos? (ut + ¢ + 1417 (W) ?sin? (ut + ¢)
2= 1 (5.10)
- E(Al Ai + AlAi )(.u) SIH(Z(HI + ¢1))
In a similar fashion, we can express |y,|? as Eq. (S.11):
L2 .
|B sin®(ut + ) + IBil* (W) cos® (ut + ¢,)
Iy |? = (5.11)

+ % (B."B; + B,B;") (W) sin(2(ut + ¢,))

Additionally, we assume that the amplitude terms, 4; and B;, vary on a time-scale much larger

than the oscillation period i Henceforth, using the slow-envelope approximation, we can set A, =



uA;, Ar = pA;, B, = uB;, and B; = uB; to express Eqs. (S.10) and (S.11) as Egs. (S.12a) and

(5.12b), as seen below [13], [14]:
%12 = |4,|°[1 - sin(2(ut + ¢,)] (5.12a)

2 = |B°[1 + sin(2(ut + ¢)] (5.12b)

Furthermore, these forms of |x,|? and |y,|? permit to express % as Eq. (5.13):

oF;

N
== —zz (4 + B + (I8 - |4]") sin(2Gut + ¢0)] <0 (5.13)

In the limit where y, ¢; — 0 (being the conditions for the period-doubling regime), a—Ftc simplifies
to =2 YV [|Al|2 + |Bl|2] and n simplifies to %Zi,j[Ai]i'jAj], so the system’s modulations vanish.
In other words, n exactly matches 1p(, so the system minimizes its energy as if it were a PO-based
IM. Thus, the AFS implements a gradient descent optimization when driven in the period-doubling
regime [3], [6], [7], [15].

On the other hand, when the AFS is driven such that its POs exhibit activated Floquet states, 1,
(equal to i ?;j []i,in,lAj,l cos (ZMt + (¢i,1 + ¢j,1))]) is endowed with a modulation of
frequency 2u, which is twice the characteristic Floquet exponent describing the modulation
frequency of the modes x and y. In this regard, we have plotted in Fig. S2 the normalized
frequency spectra of 1 and the normalized frequency spectra of a randomly selected mode

amplitude x; for the AFS computation conducted in Fig. 2(a) and Fig. 2(c). As can be seen, the

mode x; only contains various Floquet harmonics evenly spaced by ¢, which has been numerically

determined to have a value of 0.00285 %. On the other hand, the spectrum of 1 features a strong



peak at DC, representing the energy minimization process arbitrated via gradient descent or 7,
while its second largest frequency peak occurs at 0.0057 %, representing the modulation process

at 2y appearing in 1.
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Figure S1 a) Frequency domain spectra of x; and y; when driven with r, = 0.7k. b) Time
domain waveforms of x; and y; that demonstrates the different solution forms of the two modes.

¢) The phase difference between x; and y; across a range of frequencies normalized by %. As can
be seen, the modes are separated with a phase of g throughout the entire spectrum due to the
dispersive coupling between x; and y; mediated by g.
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Figure S2 Frequency spectrum of 7 for the 20-node 3-regular graph solved in the main manuscript,
as well as the frequency spectrum of an amplitude mode x;. Both quantities are normalized such
that their highest peak corresponds to a value of 0 dB.



II. Solution Identification

A. Analog and Digital Hamiltonians

In this section, we expound the nuances between 1 and 1p¢ and Hig;y . Specifically, we focus on
the relationship between the minimization of a spin-solver’s interaction term and the minimization
of the Ising Hamiltonian to show how the analog nature of the AFS can help it reach the ground

state of Hys;nq Whereas the analog nature of PO-based IMs can harm their ability to determine the

ground state of Higjng.

1 and 1py, which map to the interaction term in the systems’ cost functions, consider each node’s
continuous amplitude dynamics rather than just the discretized spin state, . Furthermore,
interactions between nodes i and j are governed not only by their coupling term J; ;, but also by
the relative difference in amplitude between the spins, which is commonly referred to as amplitude
heterogeneity [16]. On the other hand, the Ising Hamiltonian, Hygp, g4, deals only with discretized
spin states in {+1, —1} and is completely agnostic to heterogeneous amplitudes, as intended in the

Ising Model.

While IMs are meant to minimize a QUBO problem mapped to Hg;p,g, they instead minimize their
continuous or analog interaction term (7 or 17p,), which dynamically embeds an uncontrolled
distortion of the mapped QUBO problem due to the system’s heterogeneous amplitudes. As such,
the minimization of 1p, in PO-based IMs can lead to suboptimal solutions to the problem graph
mapped by Hysng When the heterogeneity between amplitudes is sufficiently large (as 17po no
longer properly maps to Hjgng) [3]. Yet, proper mapping between n and Hjg;n 4 of the QUBO
problem is not strictly necessary in the AFS, as long as the modulations in 7 permit the system to

somehow reach the ground state of Hjg;, 4 at some point along the computation. In this regard, the
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AFS is not confined to relying on strategies for amplitude heterogeneity reduction to solve QUBO
problems, like conventional PO-based IMs. Instead, the AFS even benefits from the amplitude
heterogeneities introduced by periodic modulations since these modulations enable deeper
landscape explorations, permitting the system to identify several degenerate ground state or near-

ground state solutions throughout a single computation.

To demonstrate impact of the analog computing platform on the minimization of Hyg;p, 4, we plot
in Figs. S3(a) and S3(b) 77p¢ and Hjg;p4 of the PO-based IM as well as 77 and Hg;p, 4 of the AFS, as
extracted from the simulations of the 20-node Max-Cut problem solved in Fig. 2(a). 17 and 7p(,
which are the normalized interaction terms of the AFS and the PO-based IM, respectively, are
computed by setting the average envelope of x; to 1 (to match the amplitude of g;) in 1 and 1p,.
As can be seen, most of the reduction of Hyg;,, when using the PO-based IM occurs when the
nodes’ amplitudes are very small [thus, 17p, is very close to 0; Fig. S3(a)]. Consequently, small
perturbations in the mode amplitudes at that stage in the computation can lead to drastic changes
in the system’s overall ability to identify the ground state. When the node amplitudes are already
very small, these perturbations introduce significant amplitude heterogeneity and distort the
mapping between Hjg;,, (What is intended to be minimized) and 7p, (what is indeed minimized).
Similarly, the AFS also undergoes a majority of the minimization of its corresponding Hgjn 4
during the early stages of its computation, while the nodes’ amplitudes are still small. Yet, the
eventual emergence of amplitude modulations assist the AFS to identify a lower value of Hgjp 4
by oscillating the energetic landscape, leading the AFS to benefit from its continuous node

amplitudes rather than be harmed by them, as is often the case with PO-based IMs.
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Figure S3 Numerically extracted Hy;n4 and 7 for the 20-node 3-regular problem graph solved in
the main manuscript when considering a) a PO-based IM and b) an AFS. One can intuitively see
how distortions in problem mapping generated by amplitude heterogeneity leads to more adverse
computation outcomes when implementing only gradient descent to minimize the problem energy.

B. Recurrent Sampling
The reliability of the AFS to reach the best solutions is dependent on the sampling rate f; at which
the system’s waveforms are sampled and Hig;, 4 is computed. In our analysis, we have been
computing Hygpg4 at each time-step of the numerical simulation, leading to a value of f; that is
approximately equal to 180u. With such high f, we have tracked the H,g;,,4 identified by the AFS
with very high fidelity. However, as is analogous in the realm of signal processing, lower f; can
lead to degradations in the resolution of Hyg;y, 4, which can lead to a less complete evaluation of the
values of Hyy;p 4 identified by the AFS. To help visualize this point, Fig. S4(a) shows the impact of
fs on the solution quality extracted by the AFS by comparing the sampled reconstruction of Hjgjy g

when the AFS tackles the 200-node 3-regular problem from Fig. 3(a) when f; = 180u and when

fs = 9u. Unsurprisingly, the lower f; leads to a degradation in the resolution of Hj,, and even

causes the AFS to miss certain values of Hyg;p, 4 that were extracted when f; = 180u.
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Furthermore, we decided also to study the impact of f; on the solution quality of the AFS to
understand the necessary sampling requirements to ensure that the AFS outperforms the PO-based
IM. To do this, we computed the average minimum identified value of Hyg;p,g4 over 100 runs, Hpins
when considering a range of f; between /10 and 180u for both the AFS and the PO-based IM.
As expected, H,,;,, deteriorates as f; decreases when using the AFS but it is unchanged when using

the PO-based IM. Yet, for all f; > %, the AFS outperforms the PO-based IM.
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Figure S4 a) Numerically extracted Hjs;,; when considering f; = 180 and f; = 9u for the 200-
node 3-regular problem graph solved in Fig. 3(a) in the main manuscript. Specifically, Hgjpq 18
centered around the middle of the computation time. As can be seen, the resolution of Hjg;ng4
dramatically worsens with a twentyfold reduction in f;. b) Numerically extracted relationship
between H,,;, and f; for the PO-based IM and the AFS. As f, decreases, the solution quality of

the AFS goes through a commensurate degradation. For f; > %, the AFS reliably accesses better
quality solutions than the PO-based IM.

III. Impact of r, on Computational Performance

In this section, we study the impact of the pump power, r, on the computational performance of
the AFS to determine optimal operating conditions. Changes in 7, result in commensurate shifts in
both the characteristic Floquet exponent and each Floquet harmonic’s amplitude, as seen in Fig.

S5, which shows the frequency spectra of a single Floquet node when driven by three different r,
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values (namely, r, = 0.7k, 0.8k, and 0.9k). As elucidated in [1], the dependence between 1, and
u can be interpreted as a pre-synchronization between modes, which finally occurs once the

period-doubling regime is triggered.

In the context of computation, the value of 7, therefore sets the frequency of the modulation in n
and Higing, thus effectively configuring the system’s evolution and exploration throughout the
landscape. Furthermore, to characterize the impact of , on the solution quality obtained by the
AFS when solving QUBO problems, we solved a set of Max-Cut problems with varying size and
coupling density for the same r, as those reported in Fig. S5 (r, = 0.7k, 0.8k, and 0.9x). We
solved a set of randomly generated 3-regular, 5-regular, and 7-regular Max-Cut problem graphs
with N ranging from 40 to 200 in steps of 40 nodes. Each problem graph was solved 100 times
for each r, when considering different randomly generated initial conditions (ranging between
—107° to 107°). The system’s Hgp,4 is continuously monitored throughout each computation and
the lowest attained Hg;p,4, Which we deem as the solution of the highest quality, is extracted for
each run. Fig. S6(a)-(e) show the distribution of the lowest identified Hj;,, When the AFS tackles
3-regular graphs of varying sizes. Particularly for N = 40 and N = 80, there seems to be no
discernible difference in the distribution of Hjg;, 4. For higher N, it seems that r, = 0.7k identifies
marginally lower energy levels. On the other hand, Fig. S7(a)-(e) and Fig. S8(a)-(e), which
respectively present the distribution of Hjgp, against S-regular and 7-regular graph topologies
with varying sizes indicate very limited differences in the solution quality achieved with respect

to .

Next, we conducted a similar study characterizing the impact of 7, on the solution quality of the

PO-based IM. In this regard, we minimized the same set of problem graphs as before, but this time
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using Eq. (S.4) driven with the same values of r, and considering a different set of randomly
generated initial conditions (but within the same range as before). We again continuously monitor
the system’s energy and identify the lowest energy attained during each run. Figs. S9(a)-(e), Figs.
S10(a)-(e), and Figs. S11(a)-(e) show the distribution of solutions for each combination of problem
graph dimension, coupling density, and 7. In this study, we noted a more clearly defined relation
between the quality of the extracted solutions and r,, with , = 0.7k identifying the lowest values

of Hising. Nonetheless, the solutions identified by the PO-based IM were, on average, worse than

the solutions obtained by the AFS and driven by the same r,, as seen in Fig. 3 [17], [18]. These
extracted trends of solution quality v. r, indicate that the AFS is more agnostic to r, than its PO-

based IM counterparts.
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Figure S5 Numerically extracted frequency domain spectra of a the x mode of a single Floquet
node when driven with r, = 0.7k, 0.8k, and 0.9k. As can be seen, changes in r, lead to
commensurate shifts in g as well as slight changes in each Floquet harmonic’s amplitude.
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Figure S6 Numerically extracted energy values over 100 runs for a: a) 40-node 3-regular problem
graph, b) 80-node 3-regular problem graph, ¢) 120-node 3-regular problem graph, d) 160-node 3-
regular problem graph, and e) 200-node 3-regular problem graph solved by the AFS. All these

problem graphs are generated randomly, and each graph is solved with r, = 0.7k, 0.8k, and
0.9k.
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Figure S7 Numerically extracted energy values over 100 runs for a: a) 40-node 5-regular problem
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regular problem graph, and e) 200-node 5-regular problem graph solved by the AFS. All these
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Figure S8 Numerically extracted energy values over 100 runs for a: a) 40-node 7-regular problem
graph, b) 80-node 7-regular problem graph, ¢) 120-node 7-regular problem graph, d) 160-node 7-
regular problem graph, and e) 200-node 7-regular problem graph solved by the AFS. All these
problem graphs are generated randomly, and each graph is solved with r, = 0.7k, 0. 8k, and

0.9k.
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Figure S9 Numerically extracted energy values over 100 runs for a: a) 40-node 3-regular problem
graph, b) 80-node 3-regular problem graph, ¢) 120-node 3-regular problem graph, d) 160-node 3-
regular problem graph, and e) 200-node 3-regular problem graph solved by a PO-based IM. All
these problem graphs are generated randomly, and each graph is solved with r, =
0.7k, 0.8k, and 0.9k.
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Figure S10 Numerically extracted energy values over 100 runs for a: a) 40-node 5-regular problem
graph, b) 80-node 5-regular problem graph, ¢) 120-node 5-regular problem graph, d) 160-node 5-
regular problem graph, and e) 200-node 5-regular problem graph solved by a PO-based IM. All
these problem graphs are generated randomly, and each graph is solved with r, =
0.7x,0.8Kk, and 0.9k.
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Figure S11 Numerically extracted energy values over 100 runs for a: a) 40-node 7-regular problem
graph, b) 80-node 7-regular problem graph, ¢) 120-node 7-regular problem graph, d) 160-node 7-
regular problem graph, and e) 200-node 7-regular problem graph solved by a PO-based IM. All
these problem graphs are generated randomly, and each graph is solved with r, =
0.7x,0.8Kk, and 0.9k.
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