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Supplementary Table S1: Table of Acronyms 

Acronym Definition 

QUBO Quadratic Binary Unconstrained Optimization 

NP Nondeterministic Polynomial 

IM Ising Machine 

PO Parametric Oscillator 

AFS Analog Floquet Solver 

CMOS Complementary Metal-Oxide Semiconductor 

𝐷 Dimension, in higher-order spin-solvers 

𝑥𝑝 Resonant cavity pump mode 

𝜒(2) Type of nonlinearity 

𝜔𝑝 Pump frequency driving the pump mode 

𝑥 Signal mode 

𝜔𝑝/2 
Oscillation frequency of the signal mode parametrically down converted from 

𝜔𝑝 

𝐽 Coupling matrix 

𝑖 Index of the 𝑖𝑡ℎ spin 

𝑗 Index of the 𝑗𝑡ℎ spin 

𝐽𝑖𝑗  Coupling strength between the 𝑖𝑡ℎ and 𝑗𝑡ℎ spins 
𝜎𝑖, 𝜎𝑗 𝑖𝑡ℎ and 𝑗𝑡ℎ spin-states 

𝐻𝐼𝑠𝑖𝑛𝑔 Ising Hamiltonian 

𝜅𝑝  Loss-rate of the pump mode 

𝜅 Loss-rate of the signal mode 

𝑟1 Amplitude or gain saturation coefficient 

𝑟2 Small-signal gain parameter 

𝑦 Resonant mode 

𝑔 Linear coupling between 𝑥 and 𝑦 

Γ Loss-rate of the resonant mode 

𝜔𝑥 Natural angular frequency of the signal mode 
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𝜔𝑦 Natural angular frequency of the resonant mode 

𝑛 Separation index of Floquet harmonics 

M Separation index of Floquet harmonics 

𝐴𝑛 Amplitude coefficient of the 𝑛𝑡ℎ Floquet harmonic of the 𝑥 mode 

𝐵𝑛 Amplitude coefficient of the 𝑛𝑡ℎ Floquet harmonic of the 𝑦 mode 

𝜙𝑛 Relative phase shift of the 𝑛𝑡ℎ Floquet harmonic 

𝜇 Separation frequency between adjacent Floquet harmonic 

𝑁 Number of spins in a coupled system 

𝑥𝑖 Signal mode of the 𝑖𝑡ℎ spin 

𝜅𝑖 Loss-rate of the signal mode 

𝑔𝑖  Linear coupling between the 𝑖𝑡ℎ 𝑥 and 𝑦 modes 

Γ𝑖 Loss-rate of the 𝑖𝑡ℎ resonant mode 

𝐹𝐶 Cost Function describing the dynamics of coupled Floquet nodes  

𝜂 Interaction, or coupling, term in 𝐹𝐶 

𝐴𝑖,𝑛 Amplitude coefficient of the 𝑛𝑡ℎ Floquet harmonic of the 𝑖𝑡ℎ 𝑥 mode 

𝜙𝑖,𝑛 Phase of the 𝑛𝑡ℎ Floquet harmonic of the 𝑖𝑡ℎ signal mode 

𝜇𝑖 Separation frequency between adjacent Floquet harmonic of the 𝑖𝑡ℎ 𝑥 mode 

𝐴𝑖 Amplitude coefficient of the 1𝑠𝑡 Floquet harmonic of the 𝑖𝑡ℎ 𝑥 mode 

𝜂0 Static component of 𝜂(𝑡) 

𝜂1 Modulated component of 𝜂(𝑡) 

Φ𝑖 Extracted and binarized phase of the 𝑖𝑡ℎ spin 

𝜂̅ Normalized interaction term of 𝐹𝑐 

𝐺 Coupling between 𝑥 and 𝑥𝑝 modes 

𝜅𝑒𝑥 Extra-cavity mode loss-rate 

𝑥𝑖𝑛 Pump strength exciting the 𝑥𝑝 and 𝑥 modes 

𝑋 Amplitude solution form of 𝑥 

𝜃 Phase solution form of 𝑥 

𝐹𝑃𝑂 Cost Function describing the dynamics of coupled POs 

𝜂𝑃𝑂 Interaction term in 𝐹𝑃𝑂 

𝐵𝑖,𝑛 Amplitude coefficient of the 𝑛𝑡ℎ Floquet harmonic of the 𝑖𝑡ℎ resonant mode (𝑦) 

𝐵𝑖 Amplitude coefficient of the 1𝑠𝑡 Floquet harmonic of the 𝑖𝑡ℎ signal mode (𝑦) 

𝜙𝑥𝑖
− 𝜙𝑦𝑖

 Phase difference between the 𝑥 and 𝑦 modes 

𝑓𝑠 Sampling rate used to track the solutions identified by the AFS 

𝐻𝑚𝑖𝑛 The average of 𝐻𝑚𝑖𝑛 over, in this case, 100 runs 
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I. Analytical Studies of Systems via Coupled Mode Theory 

A. Parametric Oscillators and their Coupled Systems 

In this section, we address the dynamics of the nonlinear systems presented in the main manuscript. 

We begin with the model of a single PO, which will be the fundamental backbone for all following 

analysis in the main manuscript and supplementary material. POs, which consists of modes 𝑥𝑝 and 

𝑥 mediated by the 𝜒(2) nonlinear process, can be described with a system of two equations, Eq. 

(𝑆. 1𝑎) and Eq. (𝑆. 1𝑏) [1], [2]:  

𝑥𝑝̇ =  − (
𝜅𝑝

2
+ 𝑖ωp) 𝑥𝑝 − 𝑖𝐺𝑥2 + √𝜅𝑒𝑥𝑥𝑖𝑛𝑒−𝑖𝜔𝑝𝑡 , (𝑆. 1𝑎)

𝑥̇ =  − (
κ

2
+ 𝑖ω𝑥) 𝑥 − 𝑖𝐺 𝑥∗𝑥𝑝. (𝑆. 1𝑏)

 

This system is such that when 𝑥𝑝 is driven with a pump signal (ω𝑝) with strength 𝑥𝑖𝑛 and incurring 

a loss-rate √𝜅𝑒𝑥 , 𝑥  is indirectly excited at ω𝑝/2  through parametric down-conversion via the 

intramode coupling 𝐺 . Under the assumption that 𝜅𝑝 ≫ 𝜅  (𝜅𝑝  being the loss-rate of 𝑥𝑝  and 𝜅 

being the loss-rate of 𝑥), the mode 𝑥𝑝 can be adiabatically eliminated under a rotating frame of 

𝑥 → 𝑥𝑒−𝑖
𝜔𝑝

2
𝑡
 and 𝑥 → 𝑥𝑒−

𝑖𝜋

4  to produce a single equation, Eq. (𝑆2).  

𝑥̇ =  − (
κ

2
+ 𝑟1|𝑥|2) 𝑥 + 𝑟2𝑥∗. (𝑆. 2) 

Through this adiabatic elimination, the nonlinear parameters linking 𝑥 and 𝑥𝑝 take the form of 

𝑟1 =  
2|𝐺|2

𝜅𝑝
 and 𝑟2 =  

2𝐺√𝜅𝑒𝑥𝑥𝑖𝑛

𝜅𝑝
 (being 𝑟1 the gain saturation coefficient and 𝑟2 the small-signal gain 

parameter) [1]. POs are regarded as highly effective candidates for use as macroscopic spins in 

Ising Machines due to their inherent phase bistability, which is achieved following the activation 

of their period-doubling regime following a bifurcation [3], [4], [5], [6], [7], [8], [9]. To understand 
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the conditions via which this bistability appears, we can re-express Eq. (𝑆. 2) at steady state after 

changing the form of 𝑥 to 𝑋𝑒−𝑖θ and constraining 𝜃 = 0, 𝜋 [2]. 

0 =  − (
κ

2
+ 𝑖Δ𝑥 + 𝑟1𝑋2) 𝑋 + 𝑟2𝑋. (𝑆. 3) 

When 𝑟2 >
𝜅

2
, we can obtain a solution to Eq. (𝑆. 3) as 𝑋𝑡ℎ =  √

𝑟2−
𝜅

2

𝑟1
 [2]. For reference, Fig. 1(b) 

in the main manuscript illustrates the frequency spectrum of the 𝑥 mode of a PO after undergoing 

a period doubling bifurcation when driven with 𝑟2 >  
𝜅

2
. A collective of POs can then be coupled 

together with a coupling strength 𝐽𝑖,𝑗  (such that 𝐽𝑖,𝑗 = 𝐽𝑗,𝑖) between the 𝑖𝑡ℎ and 𝑗𝑡ℎ POs to create a 

PO-based IM. In this regard, POs with a phase solution 𝜃 = 0 can represent a “spin-up” in the 

Ising Model while those with a 𝜃 = 𝜋  represent a “spin-down”. Such a coupled system of 𝑁 

coupled POs can be modelled using temporal coupled mode theory with a system of equations 

taking the familiar form, shown in Eq. (𝑆. 4) : 

𝑥𝑖̇  =  − (
𝜅

2
+ 𝑟1|𝑥𝑖|

2) 𝑥𝑖 + 𝑟2𝑥𝑖
∗ − ∑ 𝐽𝑖,𝑗𝑥𝑗

𝑁

𝑗

. (𝑆. 4) 

Following the same procedure as shown in the main manuscript to determine 𝐹𝐶, it is relatively 

straightforward to construct 𝐹𝑃𝑂(𝑥1, 𝑥1
∗, 𝑥2𝑥2

∗, … , 𝑥𝑁𝑥𝑁
∗ ), a cost function for the PO-based IM, as 

shown in Eq. (𝑆. 5) [10], [11]:  

𝐹𝑃𝑂  =  ∑ [
𝜅

2
|𝑥𝑖|

2 + 
𝑟1

2
|𝑥𝑖|

4 −
𝑟2

2
(𝑥𝑖

2 + 𝑥𝑖
∗2

)]

𝑁

𝑖

+
1

2
∑ 𝑥𝑖

∗𝐽𝑖,𝑗𝑥𝑗

𝑁

𝑖,𝑗

. (𝑆. 5) 



5 

 

𝐹𝑃𝑂 obeys −
𝜕𝐹𝑃𝑂

𝜕𝑥𝑖
∗ =  𝑥𝑖̇ and −

𝜕𝐹𝑃𝑂

𝜕𝑥𝑖
=  𝑥𝑖

∗̇. To verify this relation, we differentiate 𝐹𝑃𝑂 with respect 

to 𝑥𝑖
∗ and 𝑥𝑖, and we achieve the results seen in Eq. (𝑆. 6𝑎) and Eq. (𝑆. 6𝑏).   

−
𝜕𝐹𝑃𝑂

𝜕𝑥𝑖
∗ =  −

𝜅

2
𝑥𝑖 − 𝑟1|𝑥𝑖|

2𝑥𝑖 + 𝑟2𝑥𝑖
∗ − 𝑖𝑔𝑦𝑖 − ∑ 𝐽𝑖,𝑗𝑥𝑗

𝑗

=  𝑥𝑖̇ =  
𝜕𝑥𝑖

𝜕𝑡
 (𝑆. 6𝑎) 

−
𝜕𝐹𝑃𝑂

𝜕𝑥𝑖
=  −

𝜅

2
𝑥𝑖

∗ − 𝑟1|𝑥𝑖|
2𝑥𝑖

∗ + 𝑟2𝑥𝑖 − 𝑖𝑔𝑦𝑖
∗ − ∑ 𝐽𝑖,𝑗𝑥𝑗

∗

𝑗

=  𝑥̇𝑖
∗ =  

𝜕𝑥𝑖
∗

𝜕𝑡
 (𝑆. 6𝑏) 

These conditions ensure that 
𝜕𝐹𝑃𝑂

𝜕𝑡
 =  −2 ∑ | 𝑥𝑖̇|

2 𝑁
𝑖  (meaning that 

𝜕𝐹𝑃𝑂

𝜕𝑡
  is negative semi-definite 

throughout the trajectories of 𝑥𝑖 ), as 
𝜕𝐹𝑃𝑂

𝜕𝑡
=  ∑ [ 

𝜕𝐹

𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝑡
+ 

𝜕𝐹

𝜕𝑥𝑖
∗

𝜕𝑥𝑖
∗

𝜕𝑡
]𝑁

𝑖 =  ∑ [𝑥𝑖
∗̇ 𝑥𝑖̇ +  𝑥𝑖̇𝑥𝑖

∗̇ ]𝑁
𝑖  . 

Furthermore, it can be shown that at the steady state or fixed point of the system (where all  𝑥𝑖̇ =

0), 
𝜕𝐹𝑃𝑂

𝜕𝑡
= 0. Such conditions permit to treat 𝐹𝑃𝑂 as a Lyapunov function since it is thus bounded 

from below by 0 [4]. 

As can be seen in Eq. (𝑆. 5), two processes contribute to the minimization of 𝐹𝑃𝑂; namely, self-

sustaining oscillations of each PO and the collective dynamics between POs [11]. The interaction 

term describing the collective dynamics of a PO-based IM can be expressed as: 𝜂𝑃𝑂 =

1

2
∑ 𝑥𝑖

∗𝐽𝑖,𝑗𝑥𝑗
𝑁
𝑖,𝑗 . Note that this term bears significant resemblance to the Ising Hamiltonian, 𝐻𝐼𝑠𝑖𝑛𝑔 =

 
1

2
∑ 𝜎𝑖𝐽𝑖,𝑗𝜎𝑗

𝑁
𝑖,𝑗 ; in fact, when all the POs’ amplitudes are equal, 𝜂𝑃𝑂 ∝ 𝐻𝐼𝑠𝑖𝑛𝑔, as 𝑥𝑖 can be treated 

as 𝐴𝑖𝜎𝑖 , where 𝐴𝑖  represents the amplitude of 𝑥𝑖 . Furthermore, under such conditions, the 

minimization of 𝜂𝑃𝑂  directly corresponds to the minimization of 𝐻𝐼𝑠𝑖𝑛𝑔 , as obtained through 

gradient descent [12]. Yet, while such a reliance on gradient descent optimization offers PO-based 

IMs unique computational advantages compared to von Neumann computers when solving QUBO 

problems, PO-based IMs suffer from an intrinsic susceptibility to become trapped in sub-optimal 

solutions corresponding to local minima without any recourses to escape [4]. 
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B. The Nonlinear Dynamics of Floquet Nodes and their Coupled Systems  

In this section, we undertake a more thorough derivation of 
𝜕𝐹𝑐

𝜕𝑡
 and more generally describe the 

AFS’s computational dynamics by assuming periodic envelopes for both the x and y modes 

[𝑥(𝑡) = ∑ 𝐴𝑛(𝑡)𝑒𝑖(𝑛μ𝑡+ϕ𝑛(𝑡))∞
𝑛=−∞  and 𝑦(𝑡) = ∑ 𝐵𝑛(𝑡)𝑒𝑖(𝑛μ𝑡+θ𝑛(𝑡))∞

𝑛=−∞ ]. Particularly, we show 

that 
𝜕𝐹𝑐

𝜕𝑡
 is negative semi-definite despite the activation of the Floquet state.  

First, we begin by revisiting the properties of 𝐹𝐶, namely: −
𝜕𝐹𝐶

𝜕𝑥𝑖
∗ =  𝑥𝑖̇, −

𝜕𝐹𝐶

𝜕𝑥𝑖
=  𝑥𝑖

∗̇, −
𝜕𝐹𝐶

𝜕𝑦𝑖
∗ =  𝑦𝑖̇, 

and −
𝜕𝐹𝐶

𝜕𝑦𝑖
=  𝑦𝑖

∗̇. Eqs. (𝑆. 7𝑎) - (𝑆. 7𝑑), below, show these relations in more explicit forms:  

−
𝜕𝐹𝐶

𝜕𝑥𝑖
∗ =  −

𝜅

2
𝑥𝑖 − 𝑟1|𝑥𝑖|

2𝑥𝑖 +  𝑟2𝑥𝑖
∗ − 𝑖𝑔𝑦𝑖 − ∑ 𝐽𝑖,𝑗𝑥𝑗

𝑗

=  𝑥𝑖̇ =  
𝜕𝑥𝑖

𝜕𝑡
 (𝑆. 7𝑎) 

−
𝜕𝐹𝐶

𝜕𝑥𝑖
=  −

𝜅

2
𝑥𝑖

∗ − 𝑟1|𝑥𝑖|
2𝑥𝑖

∗ +  𝑟2𝑥𝑖 − 𝑖𝑔𝑦𝑖
∗ − ∑ 𝐽𝑖,𝑗𝑥𝑗

∗

𝑗

=  𝑥̇𝑖
∗ =  

𝜕𝑥𝑖
∗

𝜕𝑡
 (𝑆. 7𝑏) 

−
𝜕𝐹𝐶

𝜕𝑦𝑖
∗ =  −

Γ

2
𝑦𝑖 − 𝑖𝑔𝑥𝑖 =  𝑦𝑖̇ =  

𝜕𝑦𝑖

𝜕𝑡
 (𝑆. 7𝑐) 

−
𝜕𝐹𝐶

𝜕𝑦𝑖
=  −

Γ

2
𝑦𝑖

∗ − 𝑖𝑔𝑥𝑖
∗ =  𝑦𝑖

∗̇ =  
𝜕𝑦𝑖

∗

𝜕𝑡
 (𝑆. 7𝑑) 

Now it can be observed that the computation of 
𝜕𝐹𝐶

𝜕𝑡
 requires determining ∑ [ 

𝜕𝐹𝐶

𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕𝑡
+  

𝜕𝐹𝐶

𝜕𝑥𝑖
∗

𝜕𝑥𝑖
∗

𝜕𝑡
+𝑁

𝑖

𝜕𝐹𝐶

𝜕𝑦𝑖

𝜕𝑦𝑖

𝜕𝑡
+ 

𝜕𝐹𝐶

𝜕𝑦𝑖
∗

𝜕𝑦𝑖
∗

𝜕𝑡
], which can be re-expressed as Eq. (𝑆. 8).  

𝜕𝐹𝐶

𝜕𝑡
=  − ∑[ 𝑥𝑖̇

∗𝑥𝑖̇ + 𝑥𝑖̇𝑥𝑖̇
∗ + 𝑦𝑖̇

∗𝑦𝑖̇ + 𝑦𝑖̇𝑦𝑖̇
∗]

𝑁

𝑖

=  −2 ∑[| 𝑥𝑖̇|
2  +  | 𝑦𝑖̇|

2 ] 

𝑁

𝑖

≤ 0 (𝑆. 8) 
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Next, we endeavor to express | 𝑥𝑖̇|
2  +  | 𝑦𝑖̇|

2 in their periodic forms to understand the implications 

of the activation of the Floquet states on the minimization of 𝐹𝐶 . In this regard, owing to the 

rotational frame 𝑥 → 𝑥𝑒−
𝑖𝜋

4  , we can express 𝑥𝑖 = 𝐴𝑖cos (𝜇𝑡 + 𝜙𝑖)  and 𝑦𝑖 = −𝑖𝐵𝑖sin (𝜇𝑡 + 𝜙𝑖) , 

as is done in the main manuscript. Like before, we retain only the first Floquet harmonics since 

we treat 𝐴𝑖,1 ≫  ∑ 𝐴𝑖,𝑛𝑛=2  and 𝐵𝑖,1 ≫  ∑ 𝐵𝑖,𝑛𝑛=2  (note that the two modes operate in quadrature 

owing to dispersive coupling mediated by 𝑖𝑔, with a constant phase difference of 
𝜋

2
). To visualize 

the mode amplitudes and confirm that our assumptions are reasonable, we numerically extracted 

time and frequency domain decompositions of both 𝑥𝑖 and 𝑦𝑖, as well as their phase difference 

with respect to frequency, as seen in Fig. S1. 

Consequently, we can explicitly formulate |𝑥𝑖̇ |
2, as seen in Eq. (𝑆. 9): 

|𝑥𝑖̇|
2 = 𝑥𝑖̇𝑥𝑖

∗̇ =  
[𝐴𝑖

̇ cos(𝜇𝑡 + 𝜙𝑖) − 𝐴𝑖(𝜇) sin(𝜇𝑡 + 𝜙𝑖)] ∗

[𝐴𝑖
∗̇ cos(𝜇𝑡 + 𝜙𝑖) − 𝐴𝑖

∗(𝜇) sin(𝜇𝑡 + 𝜙𝑖)]  
(𝑆. 9) 

which simplifies to Eq. (𝑆. 10):  

|𝑥𝑖̇|
2 =  

|𝐴𝑖
̇ |

2
cos2(𝜇𝑡 + 𝜙𝑖) + |𝐴𝑖|

2(𝜇)2sin2(𝜇𝑡 + 𝜙𝑖)

−
1

2
(𝐴𝑖

∗̇ 𝐴𝑖 + 𝐴𝑖
̇ 𝐴𝑖

∗)(𝜇) sin(2(𝜇𝑡 + 𝜙𝑖))
(𝑆. 10) 

In a similar fashion, we can express |𝑦𝑖̇|
2 as Eq. (𝑆. 11):  

|𝑦𝑖̇|
2 =  

|𝐵𝑖
̇ |

2
sin2(𝜇𝑡 + 𝜙𝑖) + |𝐵𝑖|

2(𝜇)2cos2(𝜇𝑡 + 𝜙𝑖)

+
1

2
(𝐵𝑖

∗̇ 𝐵𝑖 + 𝐵𝑖
̇ 𝐵𝑖

∗)(𝜇) sin(2(𝜇𝑡 + 𝜙𝑖))
(𝑆. 11) 

Additionally, we assume that the amplitude terms, 𝐴𝑖 and 𝐵𝑖, vary on a time-scale much larger 

than the oscillation period 
1

𝜇
. Henceforth, using the slow-envelope approximation, we can set 𝐴𝑖

̇ =
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𝜇𝐴𝑖, 𝐴𝑖
∗̇ = 𝜇𝐴𝑖

∗, 𝐵𝑖
̇ = 𝜇𝐵𝑖 , and 𝐵𝑖

∗̇ = 𝜇𝐵𝑖
∗ to express Eqs. (𝑆. 10) and (𝑆. 11) as Eqs. (𝑆. 12𝑎) and 

(𝑆. 12𝑏), as seen below [13], [14]:   

|𝑥𝑖̇|
2 =  |𝐴𝑖

̇ |
2

[1 − sin(2(𝜇𝑡 + 𝜙𝑖))] (𝑆. 12𝑎) 

|𝑦𝑖̇|
2 =  |𝐵𝑖

̇ |
2

[1 + sin(2(𝜇𝑡 + 𝜙𝑖))] (𝑆. 12𝑏) 

Furthermore, these forms of |𝑥𝑖̇|
2 and |𝑦𝑖̇|

2 permit to express 
𝜕𝐹𝐶

𝜕𝑡
 as Eq. (𝑆. 13):  

𝜕𝐹𝐶

𝜕𝑡
=  −2 ∑ [|𝐴𝑖

̇ |
2

+ |𝐵𝑖
̇ |

2
+ (|𝐵𝑖

̇ |
2

− |𝐴𝑖
̇ |

2
) sin(2(𝜇𝑡 + 𝜙𝑖))] 

𝑁

𝑖

≤ 0 (𝑆. 13) 

In the limit where 𝜇, 𝜙𝑖 → 0 (being the conditions for the period-doubling regime), 
𝜕𝐹𝐶

𝜕𝑡
 simplifies 

to −2 ∑ [|𝐴𝑖
̇ |

2
+ |𝐵𝑖

̇ |
2

] 𝑁
𝑖  and 𝜂 simplifies to 

1

2
∑ [𝐴𝑖𝐽𝑖,𝑗𝐴𝑗]𝑖,𝑗 , so the system’s modulations vanish. 

In other words, 𝜂 exactly matches 𝜂𝑃𝑂, so the system minimizes its energy as if it were a PO-based 

IM. Thus, the AFS implements a gradient descent optimization when driven in the period-doubling 

regime [3], [6], [7], [15].  

On the other hand, when the AFS is driven such that its POs exhibit activated Floquet states, 𝜂1 

(equal to 
1

4
∑ [𝐽𝑖,𝑗𝐴𝑖,1𝐴𝑗,1 cos (2𝜇𝑡 + (𝜙𝑖,1 + 𝜙𝑗,1))]𝑁

𝑖≠𝑗 )  is endowed with a modulation of 

frequency 2𝜇 , which is twice the characteristic Floquet exponent describing the modulation 

frequency of the modes 𝑥  and 𝑦 . In this regard, we have plotted in Fig. S2 the normalized 

frequency spectra of 𝜂  and the normalized frequency spectra of a randomly selected mode 

amplitude 𝑥𝑖 for the AFS computation conducted in Fig. 2(a) and Fig. 2(c). As can be seen, the 

mode 𝑥𝑖 only contains various Floquet harmonics evenly spaced by 𝜇, which has been numerically 

determined to have a value of 0.00285
𝜔𝑝

2
. On the other hand, the spectrum of 𝜂 features a strong 
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peak at DC, representing the energy minimization process arbitrated via gradient descent or 𝜂0, 

while its second largest frequency peak occurs at 0.0057
𝜔𝑝

2
, representing the modulation process 

at 2𝜇 appearing in 𝜂1.  

 

Figure S1 a) Frequency domain spectra of 𝒙𝒊  and 𝒚𝒊  when driven with 𝒓𝟐 = 𝟎. 𝟕𝜿. b) Time 

domain waveforms of 𝒙𝒊 and 𝒚𝒊 that demonstrates the different solution forms of the two modes. 

c) The phase difference between 𝒙𝒊 and 𝒚𝒊 across a range of frequencies normalized by 
𝝎𝒑

𝟐
. As can 

be seen, the modes are separated with a phase of 
𝝅

𝟐
 throughout the entire spectrum due to the 

dispersive coupling between 𝒙𝒊 and 𝒚𝒊 mediated by 𝒈.  

 

 

Figure S2 Frequency spectrum of 𝜂 for the 20-node 3-regular graph solved in the main manuscript, 

as well as the frequency spectrum of an amplitude mode 𝑥𝑖. Both quantities are normalized such 

that their highest peak corresponds to a value of 0 𝑑𝐵.  
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II. Solution Identification 

A. Analog and Digital Hamiltonians 

In this section, we expound the nuances between 𝜂 and 𝜂𝑃𝑂 and 𝐻𝐼𝑠𝑖𝑛𝑔. Specifically, we focus on 

the relationship between the minimization of a spin-solver’s interaction term and the minimization 

of the Ising Hamiltonian to show how the analog nature of the AFS can help it reach the ground 

state of 𝐻𝐼𝑠𝑖𝑛𝑔 whereas the analog nature of PO-based IMs can harm their ability to determine the 

ground state of 𝐻𝐼𝑠𝑖𝑛𝑔.  

𝜂 and 𝜂𝑃𝑂, which map to the interaction term in the systems’ cost functions, consider each node’s 

continuous amplitude dynamics rather than just the discretized spin state, 𝜎 . Furthermore, 

interactions between nodes 𝑖 and 𝑗 are governed not only by their coupling term 𝐽𝑖,𝑗 , but also by 

the relative difference in amplitude between the spins, which is commonly referred to as amplitude 

heterogeneity [16]. On the other hand, the Ising Hamiltonian, 𝐻𝐼𝑠𝑖𝑛𝑔 , deals only with discretized 

spin states in {+1, −1} and is completely agnostic to heterogeneous amplitudes, as intended in the 

Ising Model. 

While IMs are meant to minimize a QUBO problem mapped to 𝐻𝐼𝑠𝑖𝑛𝑔 , they instead minimize their 

continuous or analog interaction term (𝜂  or 𝜂𝑃𝑂 ), which dynamically embeds an uncontrolled 

distortion of the mapped QUBO problem due to the system’s heterogeneous amplitudes. As such, 

the minimization of 𝜂𝑃𝑂 in PO-based IMs can lead to suboptimal solutions to the problem graph 

mapped by 𝐻𝐼𝑠𝑖𝑛𝑔   when the heterogeneity between amplitudes is sufficiently large (as 𝜂𝑃𝑂  no 

longer properly maps to 𝐻𝐼𝑠𝑖𝑛𝑔  ) [3]. Yet, proper mapping between 𝜂  and 𝐻𝐼𝑠𝑖𝑛𝑔   of the QUBO 

problem is not strictly necessary in the AFS, as long as the modulations in 𝜂 permit the system to 

somehow reach the ground state of 𝐻𝐼𝑠𝑖𝑛𝑔  at some point along the computation. In this regard, the 
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AFS is not confined to relying on strategies for amplitude heterogeneity reduction to solve QUBO 

problems, like conventional PO-based IMs. Instead, the AFS even benefits from the amplitude 

heterogeneities introduced by periodic modulations since these modulations enable deeper 

landscape explorations, permitting the system to identify several degenerate ground state or near-

ground state solutions throughout a single computation. 

To demonstrate impact of the analog computing platform on the minimization of 𝐻𝐼𝑠𝑖𝑛𝑔, we plot 

in Figs. S3(a) and S3(b) 𝜂̅𝑃𝑂 and 𝐻𝐼𝑠𝑖𝑛𝑔 of the PO-based IM as well as 𝜂̅ and 𝐻𝐼𝑠𝑖𝑛𝑔  of the AFS, as 

extracted from the simulations of the 20-node Max-Cut problem solved in Fig. 2(a).  𝜂̅ and  𝜂̅𝑃𝑂, 

which are the normalized interaction terms of the AFS and the PO-based IM, respectively, are 

computed by setting the average envelope of 𝑥𝑖 to 1 (to match the amplitude of 𝜎𝑖) in 𝜂 and 𝜂𝑃𝑂. 

As can be seen, most of the reduction of 𝐻𝐼𝑠𝑖𝑛𝑔 when using the PO-based IM occurs when the 

nodes’ amplitudes are very small [thus, 𝜂𝑃𝑂 is very close to 0; Fig. S3(a)].  Consequently, small 

perturbations in the mode amplitudes at that stage in the computation can lead to drastic changes 

in the system’s overall ability to identify the ground state. When the node amplitudes are already 

very small, these perturbations introduce significant amplitude heterogeneity and distort the 

mapping between 𝐻𝐼𝑠𝑖𝑛𝑔 (what is intended to be minimized) and 𝜂𝑃𝑂 (what is indeed minimized). 

Similarly, the AFS also undergoes a majority of the minimization of its corresponding 𝐻𝐼𝑠𝑖𝑛𝑔 

during the early stages of its computation, while the nodes’ amplitudes are still small. Yet, the 

eventual emergence of amplitude modulations assist the AFS to identify a lower value of 𝐻𝐼𝑠𝑖𝑛𝑔 

by oscillating the energetic landscape, leading the AFS to benefit from its continuous node 

amplitudes rather than be harmed by them, as is often the case with PO-based IMs.  
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Figure S3 Numerically extracted 𝐻𝐼𝑠𝑖𝑛𝑔 and  𝜂̅ for the 20-node 3-regular problem graph solved in 

the main manuscript when considering a) a PO-based IM and b) an AFS. One can intuitively see 

how distortions in problem mapping generated by amplitude heterogeneity leads to more adverse 

computation outcomes when implementing only gradient descent to minimize the problem energy.  

 

B. Recurrent Sampling 

The reliability of the AFS to reach the best solutions is dependent on the sampling rate 𝑓𝑠 at which 

the system’s waveforms are sampled and 𝐻𝐼𝑠𝑖𝑛𝑔  is computed. In our analysis, we have been 

computing 𝐻𝐼𝑠𝑖𝑛𝑔  at each time-step of the numerical simulation, leading to a value of 𝑓𝑠 that is 

approximately equal to 180𝜇. With such high 𝑓𝑠, we have tracked the 𝐻𝐼𝑠𝑖𝑛𝑔 identified by the AFS 

with very high fidelity. However, as is analogous in the realm of signal processing, lower 𝑓𝑠 can 

lead to degradations in the resolution of 𝐻𝐼𝑠𝑖𝑛𝑔, which can lead to a less complete evaluation of the 

values of 𝐻𝐼𝑠𝑖𝑛𝑔  identified by the AFS. To help visualize this point, Fig. S4(a) shows the impact of 

𝑓𝑠 on the solution quality extracted by the AFS by comparing the sampled reconstruction of 𝐻𝐼𝑠𝑖𝑛𝑔 

when the AFS tackles the 200-node 3-regular problem from Fig. 3(a) when 𝑓𝑠 = 180𝜇 and when 

𝑓𝑠 = 9𝜇. Unsurprisingly, the lower 𝑓𝑠 leads to a degradation in the resolution of 𝐻𝐼𝑠𝑖𝑛𝑔 and even 

causes the AFS to miss certain values of 𝐻𝐼𝑠𝑖𝑛𝑔 that were extracted when 𝑓𝑠 = 180𝜇. 
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Furthermore, we decided also to study the impact of 𝑓𝑠  on the solution quality of the AFS to 

understand the necessary sampling requirements to ensure that the AFS outperforms the PO-based 

IM. To do this, we computed the average minimum identified value of 𝐻𝐼𝑠𝑖𝑛𝑔 over 100 runs, 𝐻𝑚𝑖𝑛, 

when considering a range of 𝑓𝑠 between 𝜇/10 and 180𝜇 for both the AFS and the PO-based IM. 

As expected, 𝐻𝑚𝑖𝑛 deteriorates as 𝑓𝑠 decreases when using the AFS but it is unchanged when using 

the PO-based IM. Yet, for all 𝑓𝑠 >
𝜇

4
, the AFS outperforms the PO-based IM.  

 

Figure S4 a) Numerically extracted 𝐻𝐼𝑠𝑖𝑛𝑔  when considering 𝑓𝑠 = 180𝜇 and 𝑓𝑠 = 9𝜇 for the 200-

node 3-regular problem graph solved in Fig. 3(a) in the main manuscript. Specifically, 𝐻𝐼𝑠𝑖𝑛𝑔  is 

centered around the middle of the computation time. As can be seen, the resolution of 𝐻𝐼𝑠𝑖𝑛𝑔 

dramatically worsens with a twentyfold reduction in 𝑓𝑠 . b) Numerically extracted relationship 

between  𝐻𝑚𝑖𝑛 and 𝑓𝑠 for the PO-based IM and the AFS. As 𝑓𝑠 decreases, the solution quality of 

the AFS goes through a commensurate degradation. For 𝑓𝑠 >
𝜇

4
 , the AFS reliably accesses better 

quality solutions than the PO-based IM.  

 

III. Impact of 𝒓𝟐 on Computational Performance 

In this section, we study the impact of the pump power, 𝑟2 on the computational performance of 

the AFS to determine optimal operating conditions. Changes in 𝑟2 result in commensurate shifts in 

both the characteristic Floquet exponent and each Floquet harmonic’s amplitude, as seen in Fig. 

S5, which shows the frequency spectra of a single Floquet node when driven by three different 𝑟2 



14 

 

values (namely, 𝑟2 = 0.7𝜅, 0.8𝜅, and 0.9𝜅). As elucidated in [1], the dependence between 𝑟2 and 

𝜇  can be interpreted as a pre-synchronization between modes, which finally occurs once the 

period-doubling regime is triggered.  

In the context of computation, the value of 𝑟2 therefore sets the frequency of the modulation in 𝜂 

and 𝐻𝐼𝑠𝑖𝑛𝑔 , thus effectively configuring the system’s evolution and exploration throughout the 

landscape. Furthermore, to characterize the impact of 𝑟2 on the solution quality obtained by the 

AFS when solving QUBO problems, we solved a set of Max-Cut problems with varying size and 

coupling density for the same 𝑟2  as those reported in Fig. S5 (𝑟2 = 0.7𝜅, 0.8𝜅,  and 0.9𝜅 ). We 

solved a set of randomly generated 3-regular, 5-regular, and 7-regular Max-Cut problem graphs 

with 𝑁 ranging from 40 to 200 in steps of 40 nodes. Each problem graph was solved 100 times 

for each 𝑟2  when considering different randomly generated initial conditions (ranging between 

−10−5 to 10−5). The system’s 𝐻𝐼𝑠𝑖𝑛𝑔 is continuously monitored throughout each computation and 

the lowest attained 𝐻𝐼𝑠𝑖𝑛𝑔, which we deem as the solution of the highest quality, is extracted for 

each run. Fig. S6(a)-(e) show the distribution of the lowest identified 𝐻𝐼𝑠𝑖𝑛𝑔 when the AFS tackles 

3-regular graphs of varying sizes. Particularly for 𝑁 = 40  and 𝑁 = 80 , there seems to be no 

discernible difference in the distribution of 𝐻𝐼𝑠𝑖𝑛𝑔. For higher 𝑁, it seems that 𝑟2 = 0.7𝜅 identifies 

marginally lower energy levels. On the other hand, Fig. S7(a)-(e) and Fig. S8(a)-(e), which 

respectively present the distribution of 𝐻𝐼𝑠𝑖𝑛𝑔  against 5-regular and 7-regular graph topologies 

with varying sizes indicate very limited differences in the solution quality achieved with respect 

to 𝑟2.  

Next, we conducted a similar study characterizing the impact of 𝑟2 on the solution quality of the 

PO-based IM. In this regard, we minimized the same set of problem graphs as before, but this time 
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using Eq. (𝑆. 4) driven with the same values of 𝑟2 and considering a different set of randomly 

generated initial conditions (but within the same range as before). We again continuously monitor 

the system’s energy and identify the lowest energy attained during each run. Figs. S9(a)-(e), Figs. 

S10(a)-(e), and Figs. S11(a)-(e) show the distribution of solutions for each combination of problem 

graph dimension, coupling density, and 𝑟2. In this study, we noted a more clearly defined relation 

between the quality of the extracted solutions and 𝑟2, with 𝑟2 = 0.7𝜅 identifying the lowest values 

of 𝐻𝐼𝑠𝑖𝑛𝑔. Nonetheless, the solutions identified by the PO-based IM were, on average, worse than 

the solutions obtained by the AFS and driven by the same 𝑟2, as seen in Fig. 3 [17], [18]. These 

extracted trends of solution quality v. 𝑟2 indicate that the AFS is more agnostic to 𝑟2 than its PO-

based IM counterparts.  
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Figure S5 Numerically extracted frequency domain spectra of a the 𝒙 mode of a single Floquet 

node when driven with 𝒓𝟐 = 𝟎. 𝟕𝜿, 𝟎. 𝟖𝜿, and 𝟎. 𝟗𝜿 . As can be seen, changes in 𝒓𝟐  lead to 

commensurate shifts in 𝝁 as well as slight changes in each Floquet harmonic’s amplitude.  

 

 

Figure S6 Numerically extracted energy values over 100 runs for a: a) 40-node 3-regular problem 

graph, b) 80-node 3-regular problem graph, c) 120-node 3-regular problem graph, d) 160-node 3-

regular problem graph, and e) 200-node 3-regular problem graph solved by the AFS. All these 

problem graphs are generated randomly, and each graph is solved with 𝒓𝟐 = 𝟎. 𝟕𝜿, 𝟎. 𝟖𝜿, and 

𝟎. 𝟗𝜿. 
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Figure S7 Numerically extracted energy values over 100 runs for a: a) 40-node 5-regular problem 

graph, b) 80-node 5-regular problem graph, c) 120-node 5-regular problem graph, d) 160-node 5-

regular problem graph, and e) 200-node 5-regular problem graph solved by the AFS. All these 

problem graphs are generated randomly, and each graph is solved with 𝒓𝟐 = 𝟎. 𝟕𝜿, 𝟎. 𝟖𝜿, and 

𝟎. 𝟗𝜿. 

 

Figure S8 Numerically extracted energy values over 100 runs for a: a) 40-node 7-regular problem 

graph, b) 80-node 7-regular problem graph, c) 120-node 7-regular problem graph, d) 160-node 7-

regular problem graph, and e) 200-node 7-regular problem graph solved by the AFS. All these 

problem graphs are generated randomly, and each graph is solved with 𝒓𝟐 = 𝟎. 𝟕𝜿, 𝟎. 𝟖𝜿, and 

𝟎. 𝟗𝜿. 
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Figure S9 Numerically extracted energy values over 100 runs for a: a) 40-node 3-regular problem 

graph, b) 80-node 3-regular problem graph, c) 120-node 3-regular problem graph, d) 160-node 3-

regular problem graph, and e) 200-node 3-regular problem graph solved by a PO-based IM. All 

these problem graphs are generated randomly, and each graph is solved with 𝒓𝟐 =
𝟎. 𝟕𝜿, 𝟎. 𝟖𝜿, and 𝟎. 𝟗𝜿. 

 

Figure S10 Numerically extracted energy values over 100 runs for a: a) 40-node 5-regular problem 

graph, b) 80-node 5-regular problem graph, c) 120-node 5-regular problem graph, d) 160-node 5-

regular problem graph, and e) 200-node 5-regular problem graph solved by a PO-based IM. All 

these problem graphs are generated randomly, and each graph is solved with 𝒓𝟐 =
𝟎. 𝟕𝜿, 𝟎. 𝟖𝜿, and 𝟎. 𝟗𝜿. 
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Figure S11 Numerically extracted energy values over 100 runs for a: a) 40-node 7-regular problem 

graph, b) 80-node 7-regular problem graph, c) 120-node 7-regular problem graph, d) 160-node 7-

regular problem graph, and e) 200-node 7-regular problem graph solved by a PO-based IM. All 

these problem graphs are generated randomly, and each graph is solved with 𝒓𝟐 =
𝟎. 𝟕𝜿, 𝟎. 𝟖𝜿, and 𝟎. 𝟗𝜿.  
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