Supplementary materials
Mapping spatial zones of climate vulnerability and adaptive potential for major crops in the Texas High Plains 

Model description, calibration, and validation
The DSSAT version 4.8 (Hoogenboom et al., 2019) a process-based agroecosystem model that simulates crop growth, development, and yield by integrating soil properties, daily weather, and crop management practices. It dynamically models crop phenology, biomass accumulation, and root and shoot development while accounting for water and nutrient balances. Soil water content is modeled layer-by-layer using a water balance approach, incorporating precipitation, irrigation, evaporation, transpiration, runoff, and drainage (Ritchie et al., 2009).
The SOC dynamics are simulated using the CENTURY-based soil module, which includes three SOC pools—(i) active, easily decomposable SOC, (ii) slow, recalcitrant SOC (such as lignin and cell walls), and (iii) passive, stable SOC—along with two fresh organic C (litter) pools (Porter et al., 2010). These litter pools consist of surface and soil metabolic litter (easily decomposable) and structural litter (recalcitrant). The model continuously tracks SOC changes across different crop rotations, allowing carry-over effects of soil water, organic N, and SOC between seasons (Hoogenboom et al., 2019).
To initialize SOC dynamics, two SOC pools were considered: (i) total SOC measured at different soil depths and (ii) stable SOC. Since stable SOC is difficult to measure directly, it is estimated using a regression approach based on soil texture or historical site management records (Porter et al., 2010). This regression approach, applied to soils in the Texas High Plains, aligns with estimates by Six et al. (2002) and provides a reliable method for estimating stable SOC. The remaining total SOC is then divided into active SOC (5%) and recalcitrant SOC (95%). 
Model calibration was conducted to optimize the simulation performance of the DSSAT-CROPGRO model for Austrian winter pea and associated soil processes. As shown in Fig. S1, simulated values of aboveground biomass and nitrogen uptake aligned closely with observed data, demonstrating the model's capability to capture crop growth and nitrogen dynamics in the semi-arid northwest Texas. The root mean square error (RMSE) and visual agreement support the reliability of the parameter adjustments shown in Table S1. Additionally, Fig. S2 illustrates the comparison of observed and simulated soil water content (0–80 cm) during the long-term cotton rotation experiment with cover crops. The model reasonably captured the temporal dynamics of soil moisture under dryland conditions, with simulation trends tracking the seasonal variation and magnitude of measured data, thereby validating the water balance submodule under different cover cropping and rotations. This was demonstrated by nRMSE < 20% and MPE < 10%. These results confirm that the calibrated parameters provide a robust basis for simulating long-term agroecosystem outcomes in the region.











Table S1. Design of the suggested improved 4-year crop rotation with cover crops in the Texas High Plains. 
	Crop
	Plant Date
	Harvest Date
	Synthetic N (kg/ha)
	Organic N (kg/ha)
	Total N (kg/ha)
	Application Dates

	Sorghum
	June 25, 1990
	Nov 15, 1990
	55 + 55
	40
	150
	July 20 (10d planting) + Aug 20 (tillering stage)

	Winter Legume CC (Austrian Pea)
	Nov 20, 1990
	April 20, 1991
	0
	0
	Fixes ~50 kg N/ha
	No synthetic or organic N applied

	Maize
	April 25, 1991
	September 15, 1991
	50 + 50†
	50
	150
	April 25 (10d planting) + June 25 (V6 stage)

	Winter Legume CC (Austrian Pea)
	October 10, 1991
	April 20, 1992
	0
	0
	Fixes ~50 kg N/ha
	No synthetic or organic N applied

	Cotton
	May 1, 1992
	October 15, 1992
	50 + 50
	0
	100
	May 10 (10d planting) + June 20 (midseason)

	Winter Wheat
	October 20, 1992
	June 20, 1993
	30 + 30 +
30
	50
	140
	October 30 (10d planting) + March 1 (tillering stage)









Table S2. Calibration parameters for Austrian Winter Pea using the DSSAT-CROPGRO model. 
	Coefficient type
	Abbreviation
	Description
	Initial 
	Adjusted

	ECO
	JU-R0
	Juvenile to Floral Induction Duration (days)
	5.0
	7.0

	ECO
	FL-VS
	First Flower to Last Leaf Expansion (days)
	19.0
	25.00

	ECO
	OPTBI
	Minimum Daily Temperature for Flowering (°C)
	0.0
	5.0

	ECO
	SLOBI
	Slope of Temperature Effect on Flowering
	0.0
	0.15

	CUL
	CSDL
	Critical Short Daylength (hours)
	11.0
	10.00

	CUL
	PPSEN
	Photoperiod Sensitivity Coefficient
	-0.14
	-0.15

	CUL
	EM-FL
	Emergence to Flowering Time (photothermal days)
	28.0-42.0
	23.00

	CUL
	FL-SD
	Flowering to First Seed (photothermal days)
	12.5-16.5
	14.00

	CUL
	SD-PM
	Seed to Physiological Maturity (days)
	26.0-40.0
	30.00

	CUL
	WTPSD
	Maximum Seed Weight per Plant (g)
	0.150-0.30
	0.170

	CUL
	SFDUR
	Seed Filling Duration (days)
	22.0 – 29.0
	31.00

	CUL
	XFRT
	Max Fraction Partitioned to Seed/Shell
	0.94-1.0
	0.90

	SPE
	PARMAX
	Maximum Photosynthesis Rate
	39.00
	35.00

	SPE
	PHTMAX
	Maximum Photosynthetic Threshold
	54.00
	50.00

	SPE
	CCMAX
	Maximum Canopy Conductance
	2.09
	1.80

	SPE
	CCEFF
	CO₂ Effectiveness on Photosynthesis
	0.0105
	0.0110

	SPE
	RNO3C
	Respiration Coefficient for NO₃
	2.556
	2.300

	SPE
	RNH4C
	Respiration Coefficient for NH₄
	2.556
	2.300

	SPE
	NODRGM
	Nodule Growth Rate
	0.200
	0.275

	SPE
	NDTHMX
	Maximum Nitrogen Fixation Duration
	2.00
	2.80

	SPE
	RFIXN
	Nitrogen Fixation Efficiency
	2.83
	3.20

	SPE
	RFAC1
	Root Depth Factor
	7500
	8500

	SPE
	SLWREF
	Specific Leaf Weight Reference
	0.0050
	0.0048


Climate models and soil data
The Multivariate Adaptive Constructed Analogs team employed a statistical downscaling technique to refine global climate model outputs to a higher spatial resolution of 6 km, making them more applicable for regional studies (Abatzoglou and Brown, 2012; Taylor et al., 2012). The downscaling process utilizes the MACA method, which enhances coarse-resolution climate data by incorporating observed weather patterns and maintaining relationships among multiple climate variables. This approach ensures that the downscaled data accurately reflect local climatic conditions and preserves variable interdependencies, which is crucial for comprehensive climate impact assessments. These downscaled datasets provide region-specific climate projections that improve the accuracy of agricultural system simulations in the THP.
Table S3. List of GCM used with DSSAT model for climate change impact assessment. 
	Global model (GCM)
	Model Country
	Ensemble used
	Scenario name
	Model Agency
	Atmosphere resolution (Lon x Lat)

	CCSM4
	USA
	r6i1p1
	RCP4.5;8.5
	National Center of Atmospheric Research, USA
	1.25 deg x 0.94 deg

	CNRM-CM5
	France
	r1i1p1
	RCP4.5;8.5
	National Centre of Meteorological Research, France
	1.4 deg x 1.4 deg

	CSIRO-Mk3-6-0
	Australia
	r1i1p1
	RCP4.5;8.5
	Commonwealth Scientific and Industrial Research Organization/Queensland Climate Change Centre of Excellence, Australia
	1.8 deg x 1.8 deg

	IPSL-CM5A-MR
	France
	r1i1p1
	RCP4.5; 8.5
	Institut Pierre Simon Laplace, France
	2.5° x 1.25°

	MIROC5
	Japan
	r1i1p1
	RCP4.5; 8.5
	Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology
	1.4° x 1.4°
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Fig. S1. Texas High Plains counties. 
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Fig. S2. Comparison between simulated and observed biomass yield and N uptake of Austrian winter pea in Texas. 
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Fig. S3. Comparison between simulated and observed soil moisture content in 0-80 cm soil depth during long term cotton experiment with cover crops including Austrian winter pea in Chillicothe, Texas.   
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Fig. S4. County level baseline (1991-2020) simulated yield for wheat, cotton, maize, and sorghum in Texas High Plains. 
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Fig. S5. County level baseline (1991-2020) precipitation during the growing season for wheat, cotton, maize, and sorghum in Texas High Plains.
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