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1. Supplementary Methods

Experimental details
Chemicals
C60 powder (99.9 at%; Suzhou Dade Carbon Nano Technology Co., Ltd, China), Mg foil (99.95% at%, 0.05 mm thickness ×10 cm width ×10 cm length, SCI Materials Hub Co., Ltd, China), all acids (HNO3, H2SO4, HCl, CF3COOH) and organic solvents (N,N-dimethylformamide, N-methylformamide, N-methylpyrrolidone) were used without any additional treatment.
CVT synthesis of Mg4C60 crystal
Mg4C60 crystals were prepared by a two-zone chemical vapor transport method, in which Mg foil was used as Mg supplier and the growth substrate. In prior to use, Mg foil was immersed into 0.1 M HCl for 5 s to remove the surface oxides. Then, a piece of Mg foil (1 cm×2 cm) and 150 mg C60 powder were placed into two terminals of quartz tube with a separate distance of 25 cm. After that, the quartz tube was vacuumed and transferred into two-temperature zone tube furnace with temperature gradient of 510-600 °C for 20 h. At the end, micrometer-scale Mg4C60 crystals were collected from the quartz tube.
[bookmark: OLE_LINK1]Synthesis of Layered C60 network (LCNW)
[bookmark: _Hlk183528946]The LCNW was produced by de-intercalation of Mg ions from Mg4C60. Firstly, 1.0 g Mg4C60 crystals were immersed in 100 ml 2M HCl (or 2M HNO3, 1M H2SO4, pure CF3COOH) for 6 h. In this process, a large amount of bubbles were observed on the surface of crystals. The samples were further washed with deionized water and ethanol for 3 times respectively, and dried at 60 °C in a vacuum oven. A solvothermal process was further applied to totally remove the residual Mg from acid-treated Mg0.5C60. Generally, the obtained Mg0.5C60 (100 mg) were added into 10 mL N,N-dimethylformamide containing 1.0 g salicylic acid, transferred into a polytetrafluoroethylene autoclave and kept at 80 oC for 6 h. After reaction, the obtained LCNW samples were washed carefully with deionized water and ethanol for 3 times, and dried at 60 °C in a vacuum oven.
Theoretical calculations
Density functional theory (DFT) calculations were performed using the Vienna ab initio Simulation Package (VASP). The projected augmented wave (PAW) method and Perdew-Burke-Ernzerhof (PBE) functional were used to describe the interaction between the ion-core and valence electron and the exchange-correlation interaction, respectively. To obtain a reasonable fullerene arrangement, the structural reconstruction was carried out by using the periodic rule of the crystal, i.e. orthorhombic phase. The Brillouin zone was sampled at the Γ-point, and a cut-off energy of 450 eV was applied for the plane-wave basis set. Convergence was considered achieved when the total energy and Hellmann-Feynman force reached thresholds of 10−5 eV and 0.02 eV/Å, respectively. The van der Waals interaction treated using the DFT-D3 method.
Electrochemical measurement
[bookmark: _Hlk194870740]The active materials, conductive acetylene black, and poly(vinyl difluoride) (PVDF) were blended at a mass ratio of 6:3:1 with the help of N-methyl-2-pyrrolidinone (NMP). Subsequently, the slurry was coated onto a copper foil and then vacuum-dried at 80°C overnight. The lithium-ion storage mechanism was adopted in coin-cells (CR2032 type). The raw C60, graphite, and LCNW electrodes were utilized as the working electrode respectively, lithium foil was employed as the counter electrode, and the polypropylene film was used as the separator. For Li/Na/K based half-cell, 1 M LiPF6, 1 M NaPF6, or 0.8 M KPF6 in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio (1:1) was served as the electrolyte, respectively. The full cell was assembled with LCNW anode and a commercial LiFePO4 cathode. The mass ratio of the cathode and anode was calculated to be 5.5. The cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and galvanostatic intermittent titration technique (GITT) were measured with a Land CT2001A test system. Electrochemical impedance spectroscopy (EIS) was carried out using a CHI 660E workstation. The GITT curve obtained at 0.2 A g–1 provides insights into the diffusion coefficient of Li+ (DLi) in the LCNW electrode. The DLi value can be determined using the following formula:1

where  represents relaxation time (1800 seconds),  denotes the number of moles,  is the molar volume,  indicates the contact area between electrode and electrolyte, while  and  refer to voltage variations induced by pulses and during constant current charging/discharging, respectively.

Material characterization
Scanning electron microscopy (SEM) analyses were conducted using a ZEISS Gemini SEM 300 field emission microscope operating at 5 kV. X-ray diffraction (XRD) was used to analyze the phase structure and crystallinity (Thermelfeld ARL Equinox 3500, Cu Kα, 0.154 nm). Raman spectra of the original C60 molecule, Mg4C60, and the LCNW were obtained by Labram Soleil confocal micro-Raman spectrometer (excitation wavelength of 532 nm). Fourier transform infrared (FTIR) spectra ranging from 400 to 4000 cm⁻¹ were obtained using a Nicolet 6700 spectrometer (Thermo Fisher, USA) by KBr squashing method. Transmission electron microscopy (TEM) images were captured from a field emission transmission electron microscope (Thermofisher, TALOS F200X, 200 kV). X-ray photoelectron spectroscopy (XPS) was conducted to investigate the surface chemical states and performed with Al Kα radiation (hν = 1486.6 eV, Thermo Scientific, ESXCALAB Xi).


2. Supplementary Figures
[image: ]
Figure S1. Previous method for preparing Mg4C60 crystals.2-5 They directly evaporate magnesium (Mg) and C60 powder mixture at high-temperature region to enable growth of Mg4C60 at low-temperature region. Under such circumstances, most C60 raw materials were consumed through side reactions with Mg powder, resulting in limited utilization of C60 and low yield of Mg4C60.
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Figure S2. (a) The CVT synthesis of Mg4C60 crystal in this work. The experimental setup positioned Mg and molecular C60 powder at separate ends of a vacuum quartz tube to initiate controlled volatilization. To minimize interference of characteristics from Mg source (including particle size and surface oxides) on volatilization behavior, pre-treated Mg foil was employed as the feedstock. (b) Crystal structure of Mg4C60.
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Figure S3. The CVT growth of Mg4C60 crystal on a Mg foil. The transparent quartz tube turns black, caused by the side reaction between Mg vapor and SiO2.
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Figure S4. Optical images of (a) pristine Mg foil and (b) prepared Mg4C60 crystals with clearly layered structure. The pristine Mg foil displays metallic luster with a smooth surface morphology, whereas CVT reaction induces the formation of black crystalline Mg4C60 particulates.

[image: ]
Figure S5. The evolution of Mg4C60 interface growth on a Mg foil at different reaction times: SEM images of (a,b) pristine Mg foil; (c,d) 3 h; (e,f) 5 h; (g,h) 8 h; (i,j) 13 h; (k,l) 17 h. The thickness of Mg4C60 increases with the extension of reaction time. When the Mg foil was fully reacted, the large Mg4C60 crystals can easily fall off from the substrate.
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Figure S6. The infrared spectroscopy of Mg4C60 and C60 molecule. The marked peak located at 795 cm–1 of Mg4C60 is attributed to the intermolecular bonding of C60.
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[bookmark: OLE_LINK2]Figure S7. The optical image of a Mg4C60 crystal immersed into a 2M HCl solution. Distinct bubbles were observed on the surface of the crystal, caused by electron transport from electronegative C60 network to H+.
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Figure S8. The average Zeta potentials of Mg0.5C60 and LCNW in aqueous dispersion. The measured average Zeta potential of Mg0.5C60 and LCNW are -25 mV and -11 mV.
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Figure S9. Typical SEM image of LCNW crystals. The LCNW presents 3D lamellar morphology composed of stacked individual nanosheets.
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[bookmark: OLE_LINK25]Figure S10. I-V curves of (a) Mg4C60 and (b) Mg0.5C60 determined by a four-probe test.
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Figure S11. (a) TEM image of LCNW and (b) the corresponding SAED image. The SAED pattern exhibit a distinct hexagonal shape, suggesting the high crystallinity of LCNW.

[image: ]
Figure S12. Raman spectrum of LCNW. The characteristic peaks located at 909, 978, and 1429 cm–1 can be related to interfullerene bridging bonds connecting C60 structural units and Ag2 symmetry pentagonal stretching vibrations.
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Figure S13. (a) XPS Full spectrum and (b) C 1s spectrum of LCNW. The weak O 1s peak is ascribed to the surface oxidation when exposed in air.
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Figure S14. (a) GCD curves of LCNW in Na+ based half cell. (b) CV curves scanning from 0.3 to 3 mV s–1. (c) The rate capability from 0.1 to 5.0 A g–1.
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Figure S15. (a) GCD curves of LCNW in K+ based half cell. (b) CV curves from 0.3 to 3 mV s–1. (c) The rate capability from 0.1 to 5.0 A g–1.
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Figure S16. (a) GCD curves of graphite in Li+ based half cell. (b) CV curves from 0.3 to 3 mV s–1. (c) The rate capability and Coulombic efficiencies from 0.1 to 5.0 A g–1.
[image: ]
Figure S17. (a) GCD curves of C60 molecule in Li+ based half-cell. (b) The rate capability and Coulombic efficiencies from 0.1 to 5.0 A g–1. (c) CV curves from 0.3 to 3 mV s–1. (d) Cycling performance at 2 A g–1.
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Figure S18. The Electrochemical impedance spectroscopy of LCNW in Li+ storage.



[image: ]
Figure S19. Cycling performance and Coulombic efficiencies of LCNW in Li based half-cell at 2 A g–1.
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Figure S20. Possible Li+ adsorption sites including four-membered ring, five-membered ring, six-membered ring carbon structure, pore space formed by adjacent three C60 units.
[image: ]
Figure S21. The full cell performance in comparison between LCNW and graphite: (a) GCD curves of LCNW//LiFePO4; (b) CV curves of LCNW//LiFePO4; (c) GCD curves of graphite//LiFePO4; (d) CV curves of graphite//LiFePO4.









Table S1. The comparison of recently reported carbon materials for the storage of Li+ ions.
	Carbon materials
	Capacity (mAh g-1)
	Voltage (V)
	Current density (mA g-1)
	Ref.

	Molecular C60
	120
	1.2-3
	20
	6

	Aligned Graphite
	350
	0-1.5
	37.2
	7

	Graphite Submicroflakes
	349
	0-3
	100
	8

	Dithianon
	271.2
	1-3.5
	271.2
	9

	Dual-shock Carbon
	375.6
	0-3
	37.56
	10

	Coal-derived Porous Graphene
	365
	0-3
	100
	11

	Onion-like Graphitic Carbon
	372
	0-2.8
	50
	12

	LCNW
	443
	0-3
	100
	This work
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