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Supplementary Methods

Acquisition of whole blood transcriptional profiles from public repositories:
PUBLIC dataset

Public WB transcriptional profiles were acquired from the ARCHS4 database, which
aggregates transcriptional profiles sourced from a range of platforms, including HiSeq
2000, HiSeq 2500, and NextSeq 500 platforms, and encompasses various species.
This database compiles datasets from the Gene Expression Omnibus (GEO) and
Sequence Read Archive (SRA) repositories. [1] For our analysis, we specifically
sourced human gene-level data from ARCHS4 Version 2.2, corresponding to Ensembl
release 107.

To ensure a diverse collection of WB transcriptional profiles, the human gene-
level data from ARCHS4 was carefully curated. Only profiles annotated with 'paxgene’
to specifically denote WB samples were included. Concurrently, we applied an
automatic sample extraction for whole blood to make sure to exclude as much as
possible the following terms: 'cancer’, 'pbmc', 'tcell', 'monocyte’, 'neutrophil’, 'cd14',
'leukocyte’, 'umbilical', 'skin', 'mononuclear’, and 'white blood'. Quality control filters
were applied to ensure dataset.

First, we retained only genes from coding sequences and genes with at least
20 reads in 1% of samples, eliminating non-functional pseudo-genes and genes with
very low transcript abundance. We then removed samples with a gene count sum of
less than 218 and zero counts in over 50% of all genes, excluding sparse and single-
cell data. We removed samples with duplicated gene counts, retaining one randomly
selected sample. A weak quality control step was performed using DESeq2 v1.30.1
size factor calculation with the "poscounts” estimator. [2] Samples with a size factor of

<0.1 and >5 were removed to exclude samples with an overall too low or high median
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gene count level. Additionally, PCA was conducted on the sample correlation matrix
of the size factor normalized and log2(x+1) transformed gene expression profiles.
Samples which failed the outlier detection threshold based on Tukey's rule on PCA's
first principal component activity were removed using the tukey_mc_up(PC1, coef=1)
function from the R package bigutilsr v0.3.4.

The transcriptional profiles were then normalized to account for variations in
sequencing library size, employing size factors, followed by a logz(x+1) transformation
to stabilize the variance across the dataset. [3] To reduce the influence of technical
variability attributable to sequencing platforms on the transcriptional profiles, principal
component analysis (PCA) was employed on the correlation matrix of the profiles. This
analysis allowed for identifying and removing the dominant non-biological variation,
represented by the first principal component and primarily associated with platform-
specific artifacts. This refined dataset is referred to as the PUBLIC dataset.

To annotate the gene expression data with relevant gene information and
National Center for Biotechnology Information (NCBI) identifiers, the BioMart tool was

used for cross-referencing Ensembl gene IDs. [2]

Consensus-independent component analysis and projection of PRIMERO
profiles onto transcriptional components from the PUBLIC dataset

A) Whitening the bulk transcriptional profiles

Whitening the bulk transcriptional profiles is an essential preprocessing step before
applying ICA, where we transform the matrix X containing the bulk transcriptional
profiles in rows and measurements for p genes in the columns into a new matrix
Xnitenea With whitened transcriptional profiles. This transformation gives the whitened

transcriptional profiles desirable statistical properties:
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1)

2)

3)

1)

Unit variance: This standardizes the scale of each whitened transcriptional
profile, ensuring that each has a variance of 1. As a result, all whitened
transcriptional profiles are on a comparable scale, which is critical for the
subsequent analysis because it prevents any single whitened transcriptional
profile from dominating the results due to differences in the magnitude of gene
expression.

Zero covariance: By transforming the bulk transcriptional profiles so that the
covariance between any pair is zero, we ensure they are uncorrelated. In the
covariance matrix of X, ,itenea this is reflected by having diagonal elements
representing variances (now one due to unit variance scaling) and off-diagonal
elements (representing covariances between different profiles) being zero.
Orthogonality: With zero covariance, the whitened transcriptional profiles also
achieve orthogonality, meaning they are perpendicular to each other in the
multidimensional gene expression space. This orthogonality provides a robust
basis for separating the whitened transcriptional profiles into independent

components during the ICA process.

The process of whitening is critical when performed before applying ICA to bulk

transcriptional profiles for two main reasons:

Enhancing the efficiency of ICA: As described above, whitening transforms the
matrix of bulk transcriptional profiles, denoted as X, into a new matrix X, ;itened
with desirable statistical properties. Such a transformation simplifies the
optimization landscape for ICA, making it smoother and more tractable.
Consequently, this increases the efficiency of the ICA algorithm, leading to

faster convergence.
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2)

Reducing dimensionality and mitigating noise: Beyond expediting convergence,
whitening can play a role in reducing the dimensionality of the data and
mitigating noise. By transforming the bulk transcriptional profiles into an
orthogonal and uncorrelated space, it becomes feasible to pinpoint and
disregard whitened transcriptional profiles that contribute minimal variance,
which often represent noise or less informative transcriptional patterns in the
data. Discarding these whitened transcriptional profiles reduces computational
demand and enhances the ability of ICA to discern transcriptional patterns that

reflect distinct biological processes.

Whitening the matrix X containing the bulk transcriptional profiles involves the

following steps:

1)

2)

3)

Center each profile: To center each bulk transcriptional profile in matrix X,
subtract the mean of its respective row. The centered matrix X is obtained by
the operation X = X — u1”, where pu is the vector of row means, and 17 is a row
vector of ones with a length matching the number of columns in X. This process
adjusts each value in a row by the row's mean, centering the bulk transcriptional
profiles.

Calculate the covariance matrix: Compute the covariance matrix € of the
matrix X. The covariance is computed as C = ﬁ)?XT, where XT is the

transpose of X, and N is the number of genes (columns of X).

Eigenvalue decomposition: Perform an eigenvalue decomposition on the
covariance matrix €. Since C is a positive semi-definite matrix, it can be
decomposed € = VAVT, where V is a matrix of eigenvectors and A is a

diagonal matrix with eigenvalues on the diagonal. The eigenvectors correspond
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to the principal axes of the data distribution, and the eigenvalues correspond to
the variance explained by each axis.
4) Form the whitening transform: Create the whitening transform matrix W using

the eigenvalues and eigenvectors. Each eigenvalue 4; is used to form a scaling
factor /11._1/2 (assuming 4; is non-zero). The whitening matrix W is then

constructed as W = VA~/2¥T where A~'/?is the diagonal matrix of the inverse
square roots of the eigenvalues.

5) Apply the whitening transform: Multiply the matrix X by the whitening matrix W
to obtain the whitened matrix X, nirenea = XW. The result is that the covariance
matrix of X, niteneqa 1S the identity matrix I, meaning that the rows of X, nitenea
are linearly uncorrelated/orthogonal, and each has unit variance.

6) Dimensionality and noise reduction (optional): You can choose a subset of the
eigenvectors—for example, corresponding to the largest eigenvalues—before
constructing W. This effectively reduces the number of dimensions in the
whitened data, as you're only keeping the eigenvectors with the most variance,
which typically carry the most information. This automatically discards the
eigenvectors that contribute the least variance. These eigenvectors often

represent noise or less informative features of the data.

In the whitening process, there's an important setting known as the Cumulative
Explained Variance Threshold. This setting allows to specify the amount of the original
data's variance we want to preserve in the whitened data. The cumulative explained
variance is the total variance accounted for by the selected eigenvectors. Choosing a
cumulative explained variance threshold—Ilike 90%—determines that we want to keep

enough eigenvectors to capture 90% of the original variance. In practice, we would
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add up the eigenvalues from largest to smallest until the sum is equal to or just
exceeds 90% of the sum of all eigenvalues. The minimum number of eigenvalues we
add up to meet this threshold is the number we keep. The remaining eigenvectors,
which correspond to smaller eigenvalues and thus less variance, are discarded. As
described above, this approach ensures that the whitened matrix X, ,ireneq Maintains
most of the informative variance from the original matrix while reducing dimensionality
and potentially removing noise. This matrix X, pitenea With whitened transcriptional

profiles serves as input to ICA.

B) Applying Independent Component Analysis on the whitened transcriptional profiles
ICA is performed with the fastlCA algorithm. FastiCA is an iterative, fixed-point
algorithm designed for the task of ICA. It reaches a solution through an iterative
process that converges to a fixed point where the algorithm's output becomes stable
and does not change significantly with further iterations. A detailed description of the
fastICA algorithm has been provided by Hyvarinen et al. [4] In brief, the algorithm
operates under the assumption that the observed bulk transcriptional profiles are linear
mixtures of statistically independent, non-Gaussian source transcriptional patterns.
The primary objective is to estimate the unmixing matrix that recovers these
statistically independent source transcriptional patterns (i.e., TCs) when applied to the

observed bulk transcriptional profiles.

Four key parameters govern FastICA:

1) Mu (u): This parameter is often referred to as the learning rate or step size in
the context of iterative optimization algorithms. In FastiCA, Mu controls the
magnitude of the updates made to the unmixing matrix in each iteration. An

adequately chosen Mu is crucial for the algorithm's convergence; too large a
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Mu may cause the algorithm to oscillate or diverge, while too small a Mu can
lead to very slow convergence.

Contrast Function (g): The contrast function is a key component in ICA
algorithms that measures non-Gaussianity. The contrast function maximizes
the non-Gaussianity of the estimated source transcriptional patterns (i.e., TCs),
assuming that the true source transcriptional patterns are statistically
independent and have non-Gaussian distributions. Different choices of contrast
functions can lead to different fastICA solutions, and the choice of function may
depend on the nature of the true source transcriptional patterns. Common
examples include hyperbolic tangent, kurtosis, raise to power 3, and skewness.
The contrast function directly influences the update rule applied to the unmixing
matrix during optimization.

Epsilon (¢): This parameter is a small positive value that serves as a
convergence criterion. Specifically, Epsilon is used to determine when the
change in the non-Gaussianity metric between consecutive iterations is small
enough to consider the algorithm to have converged. In other words, when the
algorithm's updates lead to changes smaller than Epsilon, the algorithm stops
iterating, assuming that further iterations will not lead to significant
improvements. This parameter helps to prevent infinite loops in cases where
exact convergence to a threshold is not achievable.

Maximum Number of lterations (max;;.,): This parameter sets an upper limit on
the number of iterations the algorithm will perform. This safeguards against
non-convergence or extremely slow convergence, ensuring that the algorithm
terminates after a reasonable time even if the Epsilon convergence criterion

has not been met. The choice of this value may depend on the application
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context and the computational resources available; a higher value allows for

more thorough convergence at the cost of increased computational time.

FastlICA employs a random initialization for the unmixing matrix and refines the
unmixing matrix through an iterative process. Each iteration consists of two main steps:
calculating the unmixing matrix update based on a chosen non-linear contrast function
and the subsequent orthogonalization of the updated unmixing matrix to ensure that
the estimated source transcriptional patterns remain statistically independent. The
iterative process continues until a convergence criterion is met, defined as the change
in the unmixing matrix between successive iterations falling below our predetermined
threshold Epsilon. This criterion ensures that the algorithm terminates once the
estimated source transcriptional patterns are sufficiently statistically independent and
the unmixing matrix stabilizes. Upon convergence, the FastlCA algorithm has
decomposed the observed bulk transcriptional profiles into their constituent

statistically independent source transcriptional patterns (i.e., TCs).

In formulas:

Given X, nitenea,» Which is the matrix containing the whitened transcriptional profiles,
estimate the unmixing matrix W such that: § = WX, hiteneq - Here S is a matrix
containing the independent source transcriptional patterns (i.e., TCs), which are
assumed to be non-Gaussian and statistically independent. The FastICA algorithm

proceeds iteratively as follows:

1) Initialization: Choose an initial random unmixing matrix W.
2) lteration:

a. For each component i, update W using the fixed-point iteration scheme:

10



220 Winew =Ww; + M(IE [thitened ' g(WiTthitened)] - E[g,(WiTthitened)] ' Wi)

221  Where:

222 - w; is the i*" row of W.

223 - g() is the non-linear contrast function and g'(+) its derivate.

224 - E[‘] denotes the expected value (mean).

225 3) Normalization: Normalize w*V: wj*¢¥ = sz::”.

226 4) Orthogonalization: Ensure that the components remain linearly uncorrelated by
227 orthogonalizing the vectors: W™¢" = orthogonalize(W™®").

228 5) Convergence and iteration check: Check if the change in W is below the
229 threshold «. Ifitis, assume convergence: || W"¢* — W | < ¢ . If the convergence
230 criterion is not met, set W = W™°" and repeat the iteration process if max;;.,
231 is not reached yet.

232 6) End: Once convergence is reached, the final unmixing matrix W can be used
233 to compute the statistically independent components S = WX, 1itenead-

234  C) Consensus approach

235  The fastICA algorithm employs an optimization technique to decompose whitened
236 transcriptional profiles of mixed signals X,,i:eneq iNto statistically independent source
237  transcriptional patterns (i.e., TCs) S. However, this optimization process can converge
238 to local optima, particularly in high-dimensional or noisy data spaces, leading to
239  solutions that are not globally optimal. These local solutions may vary with different
240  random initializations of the unmixing matrix W, resulting in different sets of TCs S,,,,
241  upon each run of the algorithm.

242 A consensus approach addresses this challenge by aggregating the results

243 from multiple runs of the fastICA algorithm, each with a different random initialized

11
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unmixing matrix W and identifying the TCs extracted across multiple runs. This

approach aims to filter out TCs likely to be noise artifacts specific to a particular run or

from convergence to a suboptimal local solution. The consensus approach enhances

reliability by focusing on the stable and robust TCs that emerge across multiple runs.

Three parameters govern the consensus approach:

1)

2)

3)

Consensus Runs: This parameter dictates how often the FastICA algorithm will
be executed. In each run, the unmixing matrix W is randomly initialized with a
different random seed, affecting the optimization process's starting conditions.
The significance of this parameter lies in its ability to capture a wide range of
potential solutions, which helps determine the consistency of the TCs identified
across runs. A higher number of runs increases the chances of capturing stable
and robust TCs, allowing for a more comprehensive sampling of the solution
space. However, this also increases computational load.

Consensus threshold: This parameter specifies the minimum Pearson
correlation coefficient TCs must exceed to be considered equivalent across
different runs. A higher correlation threshold requires a stronger linear
relationship between TCs to be regarded as the same. This could lead to
identifying only the most consistent and robust TCs across runs. However, this
might also dismiss less correlated but potentially relevant TCs, thereby
reducing the sensitivity of the analysis.

Credibility index: This parameter serves as a threshold to determine whether a
consensus-independent component (c-TCs) is robust enough to be considered
reliable. It measures how consistently an TC appears across different runs. If a

TC is identified in a proportion of runs that exceeds the credibility index, it is

12
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deemed robust. The credibility index filters out TCs that are less likely to be true
signals and more likely to be noise or artifacts, as these would not consistently
appear across multiple runs. The credibility index's choice impacts the filtering
process's strictness: setting it too high might exclude genuine TCs. At the same

time, a too low threshold might include spurious ones.

The consensus approach involves several steps:

1)

2)

3)

4)

Consolidation of TCs: Initially, the TCs §,,, derived from each run are
combined to form a matrix S ,mpined-

Computation of pair-wise correlations: Begin by centering each TC S in
S combinea SUbtracting its mean and normalizing it to its L2-norm resulting in the
matrix S_ompineq- 1Hen, calculate the product of the matrix S ompineq With its
transpose: S.ompined (Scompinea)” - The resulting matrix R will have diagonal
elements that signify the self-correlation of each TC S, and off-diagonal
elements that indicate the Pearson correlation coefficients between different
TCs. The absolute value of these coefficients is then used to evaluate the
similarity between the TCs.

Establishment of sets of linked TCs: For each TC S in the matrix S.,pineq, the
correlation matrix R is utilized to find TCs correlated with S above the
Consensus Threshold. Those that exceed this threshold are deemed equivalent.
TCs S and these equivalent TCs constitute a set of linked TCs Lg,, .
Subsequently, TC S and its corresponding set L,,; are paired as key-value and
added to L,,4,, Where S serves as the key and L, as the value.

Organize TCs into consensus clusters: An iterative process I for forming

consensus clusters is started by processing Ly, ,y,:

13



292 e Take the largest set of linked TCs L from L,,,, and use its TCs

setiargest
293 to create a new consensus cluster.
294 e Then, a recursive process P starts to update L,,,, that takes a set of
295 linked V L,; as parameter Lparam. This recursive process is started
296 with Lsetlargest as parameter Lparam. In this recursive process P the
297 following steps are performed:
298 1. Eliminate any key-value pairs from L,,, where the key is
299 identical to any TC S found in Lparam.
300 2. From the L,,,,, for each pair that remains, update the pair's set
301 of linked TCs Lg,;, by excluding any TC S that is included in
302 Lparam.
303 3. For each TC § within Lparam , we search L,,, for a
304 corresponding key that matches S. If no matching key is found,
305 the current recursive process halts. Otherwise, if a matching pair
306 is identified, we start another recursive process P, this time using
307 the linked TC set L, from the matching pair as the new Lparam.
308 e The iterative process I is stopped when there are no key-value pairs left
309 in Lyq,. Otherwise, another iteration of I is started with the current
310 Lsetlargest from L, 4p.
311 5) Filtering consensus clusters based on credibility index: We iterate over the
312 consensus clusters, computing the credibility index for each. This index
313 represents the ratio of the number of TCs within the clusters to the total number
314 of runs (consensus runs). Clusters with a credibility index meeting or exceeding
315 the consensus threshold are considered valid; the rest are removed. Suppose

14



316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

the total number of valid consensus clusters surpasses the number of whitened
variables. In that case, we only retain the N clusters with the largest credibility
index, where N equals the number of whitened variables.

6) Determining c- TCs: For all TCs within a consensus cluster that persisted after
the credibility index-based filtering, we compute a correlation matrix as
described in 2) Computation of pair-wise correlations. Then, for each
consensus cluster, we identify the most representative TC (the “winner”) by
identifying the TC with the lowest average correlation to those outside its cluster.
We refer to this winner as the c- TC.

7) Flipping based on skewness: We determine the skewness of the gene weights

for each TC. If the skewness is negative, we flip all signs of the gene weights.

C) Calculating the consensus mixing matrix

As described above, ICA operates under the assumption that the observed bulk
transcriptional profiles can be understood as linear mixtures of source transcriptional
patterns. These mixtures are composed of statistically independent, non-Gaussian
source transcriptional patterns, which are encapsulated by what we refer to as c- TCs.
Consequently, each bulk transcriptional profile observed can be considered a
composite, where the c- TCs contribute with varying weights. These weights are
systematically arranged in what is known as a consensus mixing matrix, denoted by

MM . sensus- In the MM . consus, €aCh weight MM represents the

consensus (s, o x)
‘activity’ of a ¢c-TC S.onsensus iN @ bulk transcriptional profile X. In practical terms, to
derive the MM, c.nus ONe must take the matrix X, which contains the bulk
transcriptional profiles, and perform a matrix multiplication with the pseudo-inverse of

the c-TCs S onsensus- 1his operation is mathematically represented as MM .,,sensus=

X(Sconsensus) -

15
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D) Normalizing the consensus mixing matrix

In the analysis of bulk transcriptional profiles, we observe considerable variation in
gene expression levels. This variation can often be attributed to technical factors such
as platform inconsistencies or batch effects, rather than underlying biological
differences. Additionally, within each c-TC, the number of genes carrying heigh
weights varies, which could introduce bias into the calculated consensus mixing matrix,
MM . sensus- SUch biases hamper direct comparisons withinthe MM ., ,,consus, Whether
comparing values from different profiles for a single component or across multiple
components for a single profile. To address these challenges and facilitate more
accurate comparisons, we have implemented a normalization methodology for the
MM consensus-

1) Randomly permute the rows (containing genes) within the pseudo-inverse of

-1
the consensus-independent component to get (Sconsensuspermuted) and

For each weight

-1
consensuspermuted) -

compute MM = X(s

consensuspermuted

MM , add the weight to the null distribution

consensuspermuted s )
consensusr

null distribution, .+ . Repeat this process for a specified number of
permutations.

2) For every null distribution null distribution,_ .., if the null distribution
does not adhere to a Gaussian distribution, as determined by the Anderson-
Darling test, we apply the Johnson transformation to convert the null distribution

into a Gaussian distribution null distribution;trensformea This

(SCOTISETLSU.S:X) )

transformation employs one of three optimal families of distributions (S, SU, SL)

and finds the parameters that transform the null distribution as much as

16
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3)

possible to a Gaussian distribution. Apply this transformation also to the

corresponding MM to get MM

consensus (s X CONSeNnsuSjtransformed ’
(SconsensusX) J f (Sconsensus:X)

We then fit a symmetrical, generalized Gaussian distribution to

null distribution;transformea Next, we extract the p-value of the

(SCOTLSETLSLLSIX) '

MM and convert it to a Z-score to obtain the final

CONSensuUStransformed @ X
consensus»

normalized mixing matrix weight MM

normalized (SCOTLSETF.SU.S’X) )

17
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Supplementary Table 1. Co-treatment up to 3 months before, during, or up to 3 months after treatment

with immune checkpoint inhibitors in the PRIMERO-cohort.

CSCC Melanoma MCC NSCLC RCC Total
(N=10) (N=83) (N=7) (N=17) (N=28) (N=145)
Targeted therapy up to 3 months before ICls
VEGF inhibitor & IFN 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 (14.3%) 4 (2.8%)
BRAF MEK inhibitors 0 (0%) 24 (28.9%) 0 (0%) 0 (0%) 0 (0%) 24 (16.6%)
Capmatinib 0 (0%) 0 (0%) 0 (0%) 1 (5.9%) 0 (0%) 1 (0.7%)
TKI 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 (14.3%) 4 (2.8%)
None 10 (100%) 59 (71.1%) 7 (100%) 16 (94.1%) 20 (71.4%) 112 (77.2%)
Targeted therapy during ICls
TKI 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 (14.3%) 4 (2.8%)
VEGF inhibitor 0 (0%) 0 (0%) 0 (0%) 1 (5.9%) 0 (0%) 1 (0.7%)
None 10 (100%) 83 (100%) 7 (100%) 16 (94.1%) 24 (85.7%) 140 (96.6%)

19



CSCC Melanoma MCC NSCLC RCC Total
(N=10) (N=83) (N=7) (N=17) (N=28) (N=145)
Targeted therapy up to 3 months after ICls
TKI 0 (0%) 0 (0%) 0 (0%) 0 (0%) 6 (21.4%) 6 (4.1%)
VEGF inhibitor 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (3.6%) 1 (0.7%)
BRAF MEK inhibitors 0 (0%) 12 (14.5%) 0 (0%) 0 (0%) 0 (0%) 12 (8.3%)
None 10 (100%) 71 (85.5%) 7 (100%) 17 (100%) 21 (75.0%) 126 (86.9%)
Chemotherapy up to 3 months before ICIs
Yes 0 (0%) 1(1.2%) 1 (14.3%) 0 (0%) 0 (0%) 2 (1.4%)
No 10 (100%) 82 (98.8%) 6 (85.7%) 17 (100%) 28 (100%) 143 (98.6%)
Chemotherapy during ICls
Yes 0 (0%) 0 (0%) 0 (0%) 10 (58.8%) 0 (0%) 10 (6.9%)
No 10 (100%) 83 (100%) 7 (100%) 7 (41.2%) 28 (100%) 135 (93.1%)
Chemotherapy up to 3 months after ICls
Yes 0 (0%) 1(1.2%) 0 (0%) 4 (23.5%) 0 (0%) 5 (3.4%)

20



CSCC Melanoma MCC NSCLC RCC Total
(N=10) (N=83) (N=7) (N=17) (N=28) (N=145)
No 10 (100%) 82 (98.8%) 7 (100%) 13 (76.5%) 28 (100%) 140 (96.6%)
Other therapies up to 3 months before ICls
TILs and IL-2 0 (0%) 1(1.2%) 0 (0%) 0 (0%) 0 (0%) 1 (0.7%)
None 10 (100%) 82 (98.8%) 7 (100%) 17 (100%) 28 (100%) 144 (99.3%)
Other therapies up to 3 months after ICls
TILs and IL-2 0 (0%) 1(1.2%) 0 (0%) 0 (0%) 0 (0%) 1 (0.7%)
TVEC 0 (0%) 1(1.2%) 0 (0%) 0 (0%) 0 (0%) 1 (0.7%)
None 10 (100%) 81 (97.6%) 7 (100%) 17 (100%) 28 (100%) 143 (98.6%)
Radiotherapy up to 3 months before ICls
Yes 1(10.0%) 17 (20.5%) 0 (0%) 4 (23.5%) 6 (21.4%) 28 (19.3%)
No 9 (90.0%) 66 (79.5%) 7 (100%) 13 (76.5%) 22 (78.6%) 117 (80.7%)
Radiotherapy during ICls
Yes 0 (0%) 11 (13.3%) 0 (0%) 1(5.9%) 6 (21.4%) 18 (12.4%)
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CSCC Melanoma MCC NSCLC RCC Total
(N=10) (N=83) (N=7) (N=17) (N=28) (N=145)
No 10 (100%) 72 (86.7%) 7 (100%) 16 (94.1%) 22 (78.6%) 127 (87.6%)
Radiotherapy up to 3 months after ICls
Yes 0 (0%) 1(1.2%) 0 (0%) 4 (23.5%) 0 (0%) 5 (3.4%)
No 10 (100%) 82 (98.8%) 7 (100%) 13 (76.5%) 28 (100%) 140 (96.6%)
Cancer surgery up to 3 months before ICls
Yes 1(10.0%) 7 (8.4%) 0 (0%) 0 (0%) 0 (0%) 8 (5.5%)
No 9 (90.0%) 76 (91.6%) 7 (100%) 17 (100%) 28 (100%) 137 (94.5%)
Cancer surgery during ICls
Yes 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 (14.3%) 4 (2.8%)
No 10 (100%) 83 (100%) 7 (100%) 17 (100%) 24 (85.7%) 141 (97.2%)
Cancer surgery up to 3 months after ICls
Yes 1(10.0%) 3 (3.6%) 0 (0%) 0 (0%) 2 (7.1%) 6 (4.1%)
No 9 (90.0%) 80 (96.4%) 7 (100%) 17 (100%) 26 (92.9%) 139 (95.9%)
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384 CSCC, Cutaneous Squamous Cell Carcinoma; IL-2, Interleukin 2; ICls, Immune Checkpoint Inhibitors; MCC, Merkel Cell Carcinoma;
385 N, sample size; NSCLC, Non-Small Cell Lung Cancer; RCC, Renal Cell Carcinoma; SD, Standard Deviation, TILs, Tumor-Infiltrating

386  Lymphocytes; TKI, Tyrosine kinase inhibitor; T-VEC, Talimogene laherparepve; VEGF inhibitor, Vascular Endothelial Growth Factor.
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Supplementary Figures

Supplementary Figure 1. Biology of the 70 TCs with a median absolute deviation
score >3. The heatmaps in the left section illustrate the associations between TCs
and OS, PFS, and tumor response to ICls. TCs for which higher activity is associated
with better clinical outcomes are indicated in green, while those associated with worse
clinical outcomes are indicated in red. The shade of green or red reflects the
significance of the association. The central heatmap displays the results of gene set
enrichment analyses focusing on Hallmark gene sets. The heatmap on the right

section of the figure shows the association between TC activity and clinical parameters.
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Supplementary Figure 2. Mixing matrix activity differences for sex, age, and
tumor type of outcome-associated TCs. For each of the outcome-associated TCs,
its activity's significant association with sex, age, and tumor type was determined. P-
values for age were calculated using Spearman's rank correlation. P-values for sex

and tumor type were calculated using multinomial log-linear models.
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Supplementary Figure 3. Detected variants for small gene set-driven outcome-
associated TCs. Columns represent samples, sorted by their mixing matrix activity
for each TC. For samples with variants in the top genes of these TCs, the variant allele
frequency (VAF) is shown. Rows represent variants significantly associated with
mixing matrix activity, as determined by a Mann-Whitney U test with Bonferroni
correction for multiple testing. Variants are ordered by decreasing statistical
significance. Each row label includes gene name, chromosome, base pair position,
reference base, alternative base, and reference SNP cluster ID. For TC28, no variant

was significantly associated with mixing matrix activity.
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Supplementary Figure 4. Robustness of the associations between clinical
outcome and TCs. The robustness of associations between TCs and outcome was
determined by selecting a random 80% subsamples of the data in a permutation
framework (1000 iterations). The sign and strength of associations (via coefficients
and -log10 p-values) were computed for each TC. These results were compared to
the original dataset's associations (red). Each plot depicts the degree of association
with clinical outcome in the y-axis and the random subset of TCs in the x-axis. Each
box's lower and upper ends represent the 1st and 3rd quartiles, respectively. The
vertical line within the box indicates the median. Whiskers extend to 1.5 times the
interquartile range below and above the 1st and 3rd quartiles. Single points represent

outliers.
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Supplementary Figure 5. HLA haplotypes for small gene set-driven outcome-
associated TCs. Columns represent samples, sorted by their MM activity for each TC.
Inferred HLA alleles for each sample are shown. Rows represent HLA alleles, sorted
by decreasing statistical significance of their association with MM activity, as
determined by a Mann-Whitney U test. HLA alleles significantly associated with MM
activity and passing Bonferroni multiple testing correction are marked in red. The plots
were created with an edited plotting function from the RIMA tutorial (https:/liulab-

dfci.github.io/RIMA/).
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Supplementary Figure 6. Activity of outcome-associated TCs across cell types
in blood and bone marrow single-cell RNA-seq data. Single-cell RNA-seq data
included 117,854 cells from 8 blood samples (a) and 127,618 cells from 8 bone marrow
samples (b) from the single-cell immune cell atlas of the human hematopoietic system.
The transcriptomic profile of each cell was projected onto the 18 outcome-associated
TCs. Cell annotation was based on the labels defined in the immune cell atlas. Box
plot colors represent major cell type groups. Each box's lower and upper ends
represent the 1st and 3rd quartiles, respectively. The vertical line within the box
indicates the median. Whiskers extend to 1.5 times the interquartile range below and

above the 1st and 3rd quartiles. Single points represent outliers.
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Supplementary Figure 6B
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