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Appendix A. The time difference correlation analysis (TDCA)
method

This section introduces the principles and process of feature selection using the TDCA
method. Denote the total candidate feature number as Nf , let L (L > 0) represent the lag
period of a feature sequence ahead of the arrival time, and Lmax be the maximum lag period
(L ≤ Lmax). The expression of the candidate feature set is

FL =
{

F1,L,F2,L, . . . ,Fn,L, . . . ,FNf ,L

}
, L = 1, 2, . . . , Lmax, (A.1)

where Fn,L represents a feature sequence.
We assess the correlation between the target and the feature sequences at various lag periods

to optimally choose features for model training. Metrics for correlation measurement encompass
the distance correlation coefficient (Székely et al., 2007), Pearson correlation coefficient (Rodgers
and Nicewander, 1988), and Spearman correlation coefficient (Myers et al., 2010) and the copula
entropy (Ma, 2021; Schnaubelt, 2022). We extensively employ these correlation coefficients, and
the assessment criterion is determined by taking the maximum of their absolute values. Let
D represent the demand sequence ending at the arrival time. The formula for the absolute
correlation is expressed as

fR (Fn,L,D) = max
f∈{Distance,Pearson,Spearman,CopEnt}

|f (Fn,L,D)| , (A.2)

where ”Distance”, ”Spearman”, ”Pearson”, and ”CopEnt” is the function of the distance cor-
relation, Pearson, Spearman and the copula entropy, respectively. The implementation process
are as follows:

First, initiate the screening process for candidate features by computing the absolute cor-
relation between each feature sequence with various lag periods before the arrival time and the
demand sequence at the arrival time, utilizing Eq. (A.2). Establish an appropriate screening
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threshold r̂1, as the screening criterion, representing the minimum correlation between the de-
mand and the selected features. Features meeting the condition fR (Fn,L,D) ≥ r̂1 are chosen,
and the set of selected features is defined as X .

Second, to address multicollinearity among the initially screened features, the Pearson cor-
relation coefficient is employed. The removal criterion is defined by the threshold r̂2, which
represents the maximum permissible correlation among the chosen features. Feature pairs with
high linear correlation in set X are identified, and the feature with the relatively weaker correla-
tion to the demand sequence is removed from the set. Negative correlations are also considered
in this procedure, as highly anti-correlated input features are also collinear.

Finally, repeat the second step, until the Pearson correlation between any two features in
set X is no longer greater than r̂2. Consequently, the features in set X =

{
x1,x2, . . . ,xNp

}
represent the selected appropriate features, with the feature count Np.

We extract the values of each feature in the features set X at time t, represented as xn,t ∈ xn,
to form the demand-related feature vector at time t, expressed as

Xt =
(
x1,t, x2,t, . . . , xNp,t

)
. (A.3)

Here, the screening thresholds and relevant removal criteria are hyperparameters deter-
mined through repeated experiments.

Appendix B. Transformer

The Transformer model, introduced by Vaswani et al. (2017), is a machine learning model
designed for natural language processing tasks, with the self-attention mechanism as its core
component. The structure of the Transformer is shown in Fig. B.1.

Transformer adopts a Seq2Seq structure composed of an encoder and a decoder. The
encoder maps the input sequence into a fixed-length vector representation, and the decoder
transforms the fixed-length vector into an output sequence. Both the encoder and the decoder
consist of multiple identical layers, each containing a self-attention mechanism and a feed-
forward neural network. The self-attention mechanism assigns a weight to each position by
computing the similarity between that position and all others in the input sequence, thereby
computing a weighted average that incorporates information from the entire sequence. The
principles of each component are described as follows:

(1) Self-attention mechanism
The self-attention mechanism is the core component of Transformer. It computes the

similarity between each position (word) in the input sequence and all other positions to assign
weights, thus generating a weighted average for each word vector that incorporates context.
The specific computation process is as follows:

Query, key, and value matrices: The input sequence X is transformed by three different
linear layers to generate the query matrix Q, the key matrix K, and the value matrix V :
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Fig. B.1. The structure of Transformer

Q = XWQ,K = XWK , V = XW V , (B.1)

where X represents the input sequence, and WQ, WK , and W V are trainable weight matrices.
Attention scores: The dot product is computed between the query matrix Q and the key

matrix K. Since the dimensionality dK of the key vectors affects Transformer performance, the
result is scaled by

√
dK , and then normalized using the SoftMax function:

Attention(Q,K, V ) = soft max
(
QKT
√
dK

)
V. (B.2)

Multi-head attention mechanism: Multiple independent self-attention heads are intro-
duced to enhance the model’s capability, with each head operating in a different subspace. The
formula for multi-head attention Mhead is as follows:
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Mhead(Q,K, V ) = Concat(head1, head2, . . . ,headNh
)WO, (B.3)

where headi = Attention(QWQ
i ,KW

K
i , V W

V
i ), and WO is a linear transformation matrix. The

number of attention heads Nh is set to 4 in our experiment. Each head has its own set of weight
matrices WQ

i , WK
i , and W V

i .
(2) Feed-forward neural network (FFN)
The output at each position from the self-attention mechanism is processed by a feed-

forward neural network, which consists of two linear transformations and a ReLU activation
function max(0, ·):

FFN(x) = max(0, xW1 + b1)W2 + b2. (B.4)

(3) Residual connections and layer normalization
To alleviate the vanishing gradient problem in deep networks, Transformer applies residual

connections after both the self-attention and feed-forward sublayers, followed by layer normal-
ization. The output of each sublayer is:

LayerNorm(x+ Sublayer(x)), (B.5)

where Sublayer(x) represents the function implemented by that sublayer.
(4) Encoder and decoder
Overall, Transformer consists of stacked encoder and decoder components. The encoder

maps the input sequence into a fixed-length vector representation, and the decoder transforms
this representation into the output sequence. Both the encoder and decoder are composed of
NE identical layers, each including multi-head self-attention and a feed-forward neural network.
The computation steps of the encoder layer are:

x := LayerNorm(x+ FFN(x)), (B.6)

EncoderLayer(x) = LayerNorm(x+ MHead(x, x, x)). (B.7)

In addition to the two sublayers in the encoder layer, the decoder layer includes a masked
multi-head self-attention mechanism sublayer MaskedMHead. Similar to the encoder, resid-
ual connections and layer normalization are applied around each sublayer. The decoder layer
computations are:

y := LayerNorm(y + FFN(y)), (B.8)

y := LayerNorm(y + MHead(y, %, %)), (B.9)

DecoderLayer(y, %) = LayerNorm(y + MaskedMHead(y, y, y)), (B.10)

where % denotes the output of the encoder layer.
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(5) Positional encoding
Since Transformer lacks recurrence and convolution, it must be supplied with information

about the positions of tokens in a sequence. To provide this, positional encodings are added to
the input/output embeddings at the bottom of the encoder and decoder stacks. These encodings
are defined using sine and cosine functions:

PE(pos,2i) = sin
(
pos/100002i/v

)
, (B.11)

PE(pos,2i+1) = cos
(
pos/100002i/v

)
, (B.12)

where pos represents the position index, i is the dimension index, and v is the embedding
dimension.

Appendix C. Candidate macroeconomic indicators and Baidu in-
dices

The candidate features before being screened using the TDCA method include 86 macroe-
conomic indicators and keywords from the Baidu search indices, as shown in Table C.1 and
Table C.2, respectively.

Table C.1. List of candidate macroeconomic indicators

No. Name No. Name

1 China: CPI: YoY 44 China: Financial Institutions: Foreign
Currency Loans Balance

2 China: CPI: Transport and Communica-
tions: Transportation Facility: YoY

45 China: Financial Institutions: New For-
eign Total Loans

3 China: CPI: Transport and Communica-
tions: Fuels for Transport Facility: YoY

46 China: Financial Institutions: Total De-
posits Balance: RMB

4 China: CPI: Transport and Communica-
tions: Use and Maintenance of Transport
Facility: YoY

47 China: Financial Institutions: New RMB
Deposits

5 China: CPI: MoM 48 China: Financial Institutions: New RMB
Deposits: Households

6 China: CPI: Transport and Communica-
tions: Transportation Facility: MoM

49 China: Demand Deposit Interest Rate

7 China: CPI: Transport and Communica-
tions: Fuels for Transport Facility: MoM

50 China: Time Deposit Rate: 3M

(Continued on next page)
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(Continued from previous page)

No. Name No. Name

8 China: CPI: Transport and Communica-
tions: Use and Maintenance of Transport
Facility: MoM

51 China: Time Deposit Rate: 6M

9 China: RPI: MoM 52 China: Short-term Loan Interest Rate:
6M (Incl.)

10 China: RPI: Transportation and Com-
munication Appliances: MoM

53 China: Short-term Loan Interest Rate:
6M-1Y (Inclusive)

11 China: RPI: Fuels: MoM 54 Chinaedium and Long-term Lending
Rates: 1Y-3Y (Inclusive)

12 China: PPI: Total Industry Products:
YoY

55 Chinaedium and Long-term Lending
Rates: 3Y-5Y (Inclusive)

13 China: PPI: Total Industry Products:
MoM

56 Chinaedium and Long-term Lending
Rates: Above 5Y

14 China: PPI: Consumer Goods: Durable
Consumer Goods: YoY

57 China: SH and SZ Stock Markets: Total
Market Value (A and B Shares)

15 China: PPI: Extraction of Petroleum and
Natural Gas: MoM

58 China: SH and SZ Stock Markets: Total
Stock Turnover

16 China: PPI: Manufacture of Rubber and
Plastic Products: MoM

59 SSE: Average P/E Ratio

17 China: PPI: Manufacture of Automobile:
MoM

60 SSE Conglomerates Index

18 China: Purchasing Price Index of Raw
Material,Fuel and Power: MoM

61 CSI 300 Index

19 Purchasing Price Index of Raw Mate-
rial,Fuel and Power: Fuel and Power:
YoY

62 SZSE Component Index

20 China: CGPI: YoY 63 SSE T-Bond Index: Closing
21 China: CGPI: MoM 64 SSE Corporate Bond Index: Closing
22 China: Export Unit Value Index: HS2:

Total Index
65 Futures Settlement Price (Active Con-

tract): Deformed Steel Bar
23 China: Export Price Index: HS2: Class

17: Vehicles, Aircraft, Vessels and Asso-
ciated Transport Equipment

66 Futures Settlement Price (Active Con-
tract): Natural Rubber

24 China: Import Unit Value Index: HS2:
Total Index

67 Futures Settlement Price (Active Con-
tract): Fuel Oil

(Continued on next page)
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(Continued from previous page)

No. Name No. Name

25 China: Import Price Index: HS2: Class
17: Vehicles, Aircraft, Vessels and Asso-
ciated Transport Equipment

68 Futures Settlement Price (Active Con-
tract): Stainless Steel

26 China: Market Price: Gasoline (92#):
China VI:MONTHLY:LAST

69 Futures Settlement Price (Continuous):
Fuel Oil

27 China: Market Price: Gasoline (95#):
China VI:MONTHLY:LAST

70 Futures Settlement Price (Continuous):
Natural Rubber

28 China: Value of Imports and Exports:
CNY

71 Futures Settlement Price (Continuous):
Deformed Steel Bar

29 China: Trade Balance: CNY 72 Futures Settlement Price (Continuous):
Stainless Steel

30 China: M0 73 China: Macro-economic Climate Index:
Coincident Index

31 China: M1 74 China: Macro-economic Climate Index:
Leading Index

32 China: M2 75 China: Macro-economic Climate Index:
Lagging Index

33 China: M0: YoY 76 China: Surveyed Urban Unemployment
Rate

34 China: M1: YoY 77 Surveyed Urban Unemployment Rate in
31 Big Cities and Towns

35 China: M2: YoY 78 China: Surveyed Urban Unemployment
Rate: YoY

36 China: Financial Institutions: Total
Loans Balance: RMB

79 China: Manufacturing PMI

37 China: Financial Institutions: Total
Loans Balance: RMB: YoY

80 China: Manufacturing PMI: Production

38 China: Financial Institutions: New RMB
Loans

81 China: Manufacturing PMI: Large En-
terprises

39 China: Financial Institutions: New RMB
Loans: Households

82 China: Manufacturing PMI: Medium-
sized Enterprises

40 China: Financial Institutions: New RMB
Loans: Households: Short-term

83 China: Manufacturing PMI: Small En-
terprises

41 China: Financial Institutions: New RMB
Loans: Households: Mid & Long-term

84 China: Consumer Confidence Index

(Continued on next page)
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(Continued from previous page)

No. Name No. Name

42 China: Financial Institutions: Short-
term Loas Balance: RMB

85 China: Consumer Satisfaction Index

43 China: Financial Institutions: Mid &
Long-term Loans Balance: RMB

86 China: Consumer Expectation Index

Table C.2. Baidu index keyword sets

Topics or products Baidu Index keywords

Automobile
industry related

汽车保险 (Car Insurance), 汽车官网 (Car Official Website), 汽车摇号 (Car
Lottery),
汽车新闻 (Car News), 汽车点评 (Car Review), 汽车购置税 (Car Purchase
Tax),
汽车销量 (Car Sales), 汽车销量排行 (Car Sales Ranking), 汽车销量排行榜
(Car Sales Ranking List)

Lavida 一汽大众 (Faw-Volkswagen), 大众 (Volkswagen), 大众4s店 (Volkswagen 4S
Dealership), 大众朗逸价格 (Volkswagen Lavida Price), 大众朗逸怎么样
(How Is the Volkswagen Lavida),大众朗逸报价 (Volkswagen Lavida Quote),
大众朗逸报价及图片 (Volkswagen Lavida Quote and Pictures), 大众汽车官
网 (Volkswagen Official Website), 朗逸 (Lavida), 朗逸价格 (Lavida Price),
朗逸多少钱 (How Much Is Lavida), 朗逸怎么样 (How Is the Lavida), 朗
逸报价 (Lavida Quote), 朗逸最新报价 (Latest Quote of Lavida), 朗逸汽
车 (Lavida Car), 朗逸油耗 (Lavida Fuel Consumption), 朗逸论坛 (Lavida
Forum), 大众朗逸 (Volkswagen Lavida)

Emgrand 吉利帝豪 (Geely Emgrand), 吉利帝豪怎么样 (How Is Geely Emgrand), 吉
利 (Geely), 吉利汽车 (Geely Automobile), 吉利4s店 (Geely 4S Dealership),
帝豪 (Emgrand), 帝豪汽车 (Emgrand Automobile), 吉利帝豪报价 (Geely
Emgrand Price)

Haval H6 哈弗h6 (Haval H6), 哈弗h6报价 (Haval H6 Quote), 哈弗h6怎么样 (How
About Haval H6), 哈弗h6运动版 (Haval H6 Sport Edition), 哈弗h6油耗
(Fuel Consumption of Haval H6), 哈弗h6新款 (New Version of Haval H6),
哈弗 (Haval), 哈弗汽车 (Haval Cars), 哈弗官网 (Official Website of Haval)

Camry 凯美瑞 (Camry), 凯美瑞油耗 (Fuel Consumption of Camry), 凯美瑞怎么样
(How about Camry?),凯美瑞论坛 (Camry Forum),凯美瑞2.0 (Camry 2.0),
凯美瑞多少钱 (How Much Is Camry), 凯美瑞报价 (Camry Quote), 凯美瑞
汽车 (Camry Automobile), 丰田凯美瑞 (Toyota Camry), 丰田凯美瑞报价
(Toyota Camry Quote)

Appendix D. Selected numerical features and their correlation
coefficients

Tables D.1–D.4 present the demand-related feature selection results for the four products.
In our experiments, the threshold parameters are set as follows: for the Lavida experiment,
r̂1 = 0.35 and r̂2 = 0.7; for the Emgrand experiment, r̂1 = 0.35 and r̂2 = 0.7; for the Haval H6
experiment, r̂1 = 0.45 and r̂2 = 0.7; and for the Camry experiment, r̂1 = 0.4 and r̂2 = 0.7.
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Table D.1. Structured feature selection results for the Lavida experiment

Feature Name Lag order Correlation

China: CPI: Transport and Communications: Trans-
portation Facility: MoM

3 CopEnt=-0.366

China: CPI: Transport and Communications: Trans-
portation Facility: MoM

6 Spearman=-0.411

China: CPI: Transport and Communications: Trans-
portation Facility: MoM

9 CopEnt=-0.400

China: CPI: Transport and Communications: Use
and Maintenance of Transport Facility: MoM

11 Pearson=0.377

China: RPI: Transportation and Communication
Appliances: MoM

5 Distance=0.351

China: RPI: Transportation and Communication
Appliances: MoM

6 Distance=0.460

China: PPI: Manufacture of Rubber and Plastic
Products: MoM

1 CopEnt=-0.368

China: PPI: Manufacture of Rubber and Plastic
Products: MoM

2 CopEnt=-0.378

China: PPI: Manufacture of Rubber and Plastic
Products: MoM

4 CopEnt=-0.360

China: PPI: Manufacture of Rubber and Plastic
Products: MoM

7 CopEnt=-0.414

China: PPI: Manufacture of Automobile: MoM 2 CopEnt=0.509
China: PPI: Manufacture of Automobile: MoM 3 CopEnt=0.582
China: PPI: Manufacture of Automobile: MoM 4 CopEnt=0.566
China: PPI: Manufacture of Automobile: MoM 5 CopEnt=0.479
China: PPI: Manufacture of Automobile: MoM 6 CopEnt=0.420
China: PPI: Manufacture of Automobile: MoM 7 CopEnt=0.491
China: PPI: Manufacture of Automobile: MoM 8 CopEnt=0.668
China: PPI: Manufacture of Automobile: MoM 9 CopEnt=0.553
China: PPI: Manufacture of Automobile: MoM 10 CopEnt=0.716
China: PPI: Manufacture of Automobile: MoM 11 CopEnt=0.733
China: Trade Balance: CNY 8 Distance=0.361
China: M2: YoY 2 CopEnt=-0.385
China: Financial Institutions: New RMB Loans 1 Pearson=-0.415
China: Financial Institutions: New RMB Loans:
Households

2 Distance=0.355

(Continued on next page)
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(Continued from previous page)

Feature Name Lag order Correlation

China: Financial Institutions: New RMB Deposits 1 Distance=0.471
China: Financial Institutions: New RMB Deposits 6 CopEnt=-0.394
China: SH and SZ Stock Markets: Total Stock
Turnover

1 Spearman=-0.366

Futures Settlement Price (Continuous): Fuel Oil 7 CopEnt=-0.402
Futures Settlement Price (Continuous): Natural
Rubber

4 Spearman=-0.453

Futures Settlement Price (Continuous): Stainless
Steel

12 CopEnt=0.773

China: Manufacturing PMI 7 CopEnt=-0.359
大众朗逸报价 (Volkswagen Lavida Quote) 2 CopEnt=-0.357
大众汽车官网 (Volkswagen Official Website) 12 CopEnt=-0.372
朗逸价格 (Lavida Price) 8 CopEnt=-0.357
朗逸油耗 (Lavida Fuel Consumption) 1 Spearman=0.362
汽车摇号 (Car Lottery) 10 CopEnt=-0.365
汽车购置税 (Car Purchase Tax) 10 CopEnt=-0.357
汽车销量 (Car Sales) 4 CopEnt=-0.352

Table D.2. Structured feature selection results for the Emgrand experiment

Feature Name Lag order Correlation

China: CPI: MoM 11 Pearson=0.424
China: CPI: Transport and Communications: Trans-
portation Facility: MoM

6 Distance=0.440

China: CPI: Transport and Communications: Trans-
portation Facility: MoM

8 CopEnt=-0.374

China: CPI: Transport and Communications: Trans-
portation Facility: MoM

11 CopEnt=-0.359

China: CPI: Transport and Communications: Use
and Maintenance of Transport Facility: MoM

10 Distance=0.350

China: CPI: Transport and Communications: Use
and Maintenance of Transport Facility: MoM

12 CopEnt=-0.352

China: RPI: Transportation and Communication
Appliances: MoM

5 Distance=0.417

China: RPI: Transportation and Communication
Appliances: MoM

6 Distance=0.490

(Continued on next page)
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(Continued from previous page)

Feature Name Lag order Correlation

China: PPI: Manufacture of Rubber and Plastic
Products: MoM

2 CopEnt=-0.401

China: PPI: Manufacture of Automobile: MoM 1 CopEnt=0.434
China: PPI: Manufacture of Automobile: MoM 2 CopEnt=0.367
China: PPI: Manufacture of Automobile: MoM 3 CopEnt=0.532
China: PPI: Manufacture of Automobile: MoM 4 CopEnt=0.492
China: PPI: Manufacture of Automobile: MoM 5 CopEnt=0.561
China: PPI: Manufacture of Automobile: MoM 6 CopEnt=0.634
China: PPI: Manufacture of Automobile: MoM 7 CopEnt=0.599
China: PPI: Manufacture of Automobile: MoM 8 CopEnt=0.862
China: PPI: Manufacture of Automobile: MoM 9 CopEnt=0.738
China: PPI: Manufacture of Automobile: MoM 10 CopEnt=0.712
China: PPI: Manufacture of Automobile: MoM 11 CopEnt=0.818
China: Value of Imports and Exports: CNY 8 Spearman=-0.364
China: Financial Institutions: New RMB Loans 1 Pearson=-0.389
China: Financial Institutions: New RMB Loans:
Households: Short-term

11 Pearson=-0.415

China: Financial Institutions: Foreign Currency
Loans Balance

12 Spearman=-0.354

China: Financial Institutions: New RMB Deposits 1 Pearson=-0.387
China: Financial Institutions: New RMB Deposits 7 Distance=0.358
Futures Settlement Price (Continuous): Stainless
Steel

11 CopEnt=0.771

China: Surveyed Urban Unemployment Rate 1 CopEnt=0.590
China: Manufacturing PMI: Large Enterprises 1 Distance=0.392
China: Manufacturing PMI: Small Enterprises 11 Distance=0.514
帝豪汽车 (Emgrand Automobile) 2 Pearson=0.371
汽车购置税 (Car Purchase Tax) 3 CopEnt=-0.357

Table D.3. Structured feature selection results for the Haval H6 experiment

Feature Name Lag order Correlation

China: CPI: Transport and Communications: Trans-
portation Facility: MoM

5 Distance=0.462

China: CPI: Transport and Communications: Trans-
portation Facility: MoM

6 Distance=0.609

(Continued on next page)
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(Continued from previous page)

Feature Name Lag order Correlation

China: RPI: MoM 6 Spearman=-0.469
China: RPI: Transportation and Communication
Appliances: MoM

6 Distance=0.482

China: PPI: Manufacture of Automobile: MoM 2 CopEnt=0.590
China: PPI: Manufacture of Automobile: MoM 3 CopEnt=0.458
China: PPI: Manufacture of Automobile: MoM 4 CopEnt=0.510
China: PPI: Manufacture of Automobile: MoM 5 CopEnt=0.590
China: PPI: Manufacture of Automobile: MoM 6 CopEnt=0.650
China: PPI: Manufacture of Automobile: MoM 7 CopEnt=0.678
China: PPI: Manufacture of Automobile: MoM 8 CopEnt=0.744
China: PPI: Manufacture of Automobile: MoM 9 CopEnt=0.507
China: PPI: Manufacture of Automobile: MoM 10 CopEnt=0.466
China: PPI: Manufacture of Automobile: MoM 11 CopEnt=0.870
China: Value of Imports and Exports: CNY 8 Spearman=-0.552
China: M1: YoY 2 Distance=0.534
China: Financial Institutions: New RMB Loans 1 Spearman=-0.456
Futures Settlement Price (Active Contract): Stain-
less Steel

12 CopEnt=0.842

China: Macro-economic Climate Index: Leading In-
dex

1 Pearson=0.459

China: Manufacturing PMI: Small Enterprises 10 Distance=0.556
China: Manufacturing PMI: Small Enterprises 11 Spearman=-0.548
哈弗官网 (Official Website of Haval) 1 Spearman=0.549

Table D.4. Structured feature selection results for the Camry experiment

Feature Name Lag order Correlation

China: PPI: Manufacture of Rubber and Plastic Prod-
ucts: MoM

2 CopEnt=-0.453

China: PPI: Manufacture of Automobile: MoM 2 CopEnt=0.446
China: PPI: Manufacture of Automobile: MoM 3 CopEnt=0.605
China: PPI: Manufacture of Automobile: MoM 4 CopEnt=0.989
China: PPI: Manufacture of Automobile: MoM 5 CopEnt=0.563
China: PPI: Manufacture of Automobile: MoM 6 CopEnt=0.582
China: PPI: Manufacture of Automobile: MoM 7 CopEnt=0.636
China: PPI: Manufacture of Automobile: MoM 8 CopEnt=0.565

(Continued on next page)
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(Continued from previous page)

Feature Name Lag order Correlation

China: PPI: Manufacture of Automobile: MoM 9 CopEnt=0.534
China: PPI: Manufacture of Automobile: MoM 10 CopEnt=0.598
China: PPI: Manufacture of Automobile: MoM 11 CopEnt=0.860
China: Export Unit Value Index: HS2: Total Index 12 Distance=0.474
China: Value of Imports and Exports: CNY 12 Spearman=0.734
China: Financial Institutions: New RMB Loans 4 Spearman=0.484
China: Financial Institutions: New RMB Loans 10 Distance=0.441
China: Financial Institutions: New RMB Loans 12 Pearson=0.501
China: Financial Institutions: New RMB Loans:
Households

12 Distance=0.597

China: Financial Institutions: New RMB Loans:
Households: Short-term

4 Distance=0.408

China: Financial Institutions: New RMB Loans:
Households: Short-term

7 Distance=0.404

China: Financial Institutions: New RMB Loans:
Households: Short-term

10 Distance=0.485

Futures Settlement Price (Continuous): Deformed
Steel Bar

12 Distance=0.711

Futures Settlement Price (Continuous): Stainless
Steel

12 CopEnt=0.933

China: Manufacturing PMI: Small Enterprises 8 Spearman=0.417
China: Manufacturing PMI: Small Enterprises 9 Distance=0.405
China: Manufacturing PMI: Small Enterprises 12 Spearman=0.618
凯美瑞油耗 (Fuel Consumption of Camry) 3 Distance=0.436
凯美瑞油耗 (Fuel Consumption of Camry) 12 Distance=0.440
丰田凯美瑞 (Toyota Camry) 7 Distance=0.420
汽车保险 (Car Insurance) 5 Spearman=-0.723
汽车摇号 (Car Lottery) 8 Spearman=-0.595
汽车摇号 (Car Lottery) 12 Distance=0.478
汽车销量排行 (Car Sales Ranking) 2 Spearman=-0.451
汽车销量排行 (Car Sales Ranking) 4 Spearman=-0.522
汽车销量排行 (Car Sales Ranking) 6 Spearman=-0.529
汽车销量排行 (Car Sales Ranking) 8 Spearman=-0.485
汽车销量排行 (Car Sales Ranking) 10 Spearman=-0.494
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Appendix E. Description of benchmark methods

In our experiments, the benchmark methods used for comparison include the (S, s), DQN,
A2C, SAC, PPO, and DDPG. Detailed descriptions are as follows:

(1) (S, s) Policy (Arrow et al., 1958): This is a classical periodic inventory control strategy.
The core rule is: at the end of each period, the inventory level is checked; if the current
inventory is less than or equal to threshold s (reorder point), a replenishment is triggered to
raise the inventory to the target level S; otherwise, no replenishment is performed. S and s are
determined based on historical sales statistics such as the mean and standard deviation, where
s is set to the historical mean demand and S is calculated as:

S = µ+ z × σ, z = Φ−1
(

cb
cb + ch

)
, (E.1)

where Φ−1 is the inverse of the standard normal distribution, and µ and σ represent the esti-
mated mean and standard deviation of demand based on historical sales.

(2) DQN (Deep Q-Network) (Oroojlooyjadid et al., 2021): This method integrates deep
neural networks with reinforcement learning. Its core idea is to approximate the Q-value func-
tion (i.e., state-action value function) using a neural network, thereby learning the optimal
policy in complex environments. In the multi-period inventory context, DQN defines a dis-
crete action space by evenly dividing the range between the minimum and maximum historical
demand values (e.g., 10,000 discrete replenishment quantities). The policy is optimized by max-
imizing cumulative rewards (i.e., minimizing total costs). During training, the ε-greedy strategy
balances exploration and exploitation, selecting a random action with certain probability or oth-
erwise choosing the action with the highest current Q-value. Network parameters are updated
by minimizing the temporal-difference (TD) error, and the target Q-values are calculated using
a separately updated target network to stabilize training.

(3) A2C (Advantage Actor-Critic) (Mohamadi et al., 2024): A policy gradient-based on-
policy reinforcement learning algorithm that employs a shared network architecture to jointly
optimize the policy function and value function. The Actor network outputs the parame-
ters of a Gaussian distribution (mean µ and standard deviation σ) over the continuous action
space for replenishment, with reparameterization techniques used for differentiable sampling.
The Critic network evaluates the state value function V (S), and shares lower layers with the
Actor to improve training efficiency. A2C uses Generalized Advantage Estimation (GAE),
AGAEt =

∑T−t
l=0 (γλ)lδt+l, which balances bias and variance by incorporating multi-step returns.

An entropy regularization term H(π(·|S)) is added to prevent premature convergence to local
optima. Gradient clipping and advantage normalization are also applied. The optimization ob-
jective is: J(θ) = E[log π(a|S)At+βH(π)]. This approach learns adaptive replenishment policies
under stochastic demand, and the shared network architecture improves training efficiency.

(4) SAC (Soft Actor-Critic) (Kou et al., 2025): This is an off-policy algorithm based on
the maximum entropy reinforcement learning framework. Its key feature is the dual objec-
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tive of maximizing both expected returns and policy entropy. Unlike traditional Actor-Critic
methods such as A2C, SAC employs a stochastic policy instead of a deterministic one, encour-
aging exploration through entropy regularization. The Actor network outputs a probability
distribution (e.g., Gaussian) from which continuous replenishment actions are sampled, over-
coming the granularity limitations of discretization in DQN. Two independent Critic networks
(Q-functions) and a temperature parameter α are used to dynamically balance exploration
and exploitation. In inventory management applications, SAC’s entropy-maximization design
enhances its adaptability to demand fluctuations and non-stationary environments. The SAC
objective is expressed as: J(π) = E[Σ(r(S, a)+αH(π(·|S)))], where H(π) denotes policy entropy
and α automatically adjusts the degree of exploration.

(5) PPO (Proximal Policy Optimization) (Schulman et al., 2017): This method strikes a
balance between training stability and decision accuracy via constrained policy updates and
an adaptive optimization framework. The core innovation lies in its clipped surrogate objec-
tive function: LCLIP (θ) = E [min (r(θ), clip (r(θ), 1− ε, 1 + ε))A(S, a)], where the policy ratio
r(θ) = πθ(a|S)/πθold(a|S) quantifies the extent of policy update, and the clipping threshold ε

(typically 0.1-0.3) constrains deviation to prevent policy oscillation, particularly in inventory
settings without lead time, where abrupt changes in replenishment could destabilize the sys-
tem. PPO applies multiple mini-batch updates (3-10 iterations per batch) and state-related
constraints to stably extract policy gradients from limited-period observations. Its entropy reg-
ularization term H(πθ) = −E[Σaπθ(a|S) log πθ(a|S)] dynamically adjusts exploration intensity
to avoid premature convergence under non-stationary demand. While PPO sacrifices some his-
torical data efficiency compared to off-policy methods like SAC, its hard constraint on policy
update magnitude reduces the risk of policy collapse. In practice, the clipping threshold ε and
learning rate should be tuned based on the coefficient of demand variation: ε = 0.1 is recom-
mended for high volatility, while 0.3 is suitable for stable demand to accelerate convergence.

(6) DDPG (Deep Deterministic Policy Gradient) (Lillicrap et al., 2016): This off-policy al-
gorithm combines deep neural networks with deterministic policy gradients, directly generating
continuous replenishment actions via an Actor-Critic architecture. It consists of a deterministic
Actor network and a Critic network for Q-value estimation. Unlike DQN, which operates on
a discrete action space, DDPG supports continuous action outputs, eliminating discretization
bias. Compared with SAC’s stochastic policy, DDPG’s deterministic policy is more efficient
under stable demand conditions. As the foundation of the TD3 algorithm used in this study,
DDPG exhibits certain limitations in continuous action space control: it uses only a single
Critic network, making its value estimation prone to overestimation. Additionally, its simul-
taneous updates of the Actor and Critic networks introduce instability, and it lacks the target
policy smoothing regularization employed by TD3. In inventory management scenarios, DDPG
demonstrates lower convergence speed and less training stability than TD3.
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Appendix F. Hyperparameter search space and selected results

Similar to De Moor et al. (2022), for each method and each hyperparameter in the ex-
periments, a finite set of candidate values was predefined. The optimal combination was then
selected based on performance on the validation set. It is worth noting that due to computa-
tional limitations, an exhaustive search over all possible combinations was infeasible. Therefore,
we adopted a random grid search strategy. The results reported are relatively conservative, and
more extensive hyperparameter tuning could potentially further improve the performance of the
proposed method.

(1) Hyperparameter selection for WET-TD3
The hyperparameters involved in WET-TD3, along with their symbols, meanings, and

search spaces, are listed in Table F.1. After repeated experimentation, we determine that
across all product experiments and (ch, cb) combinations, the optimal values are as follows:
γ = 0.83; µ = 0.01; σ = 0.4; σ̃ = 0.6; ς0 = 0.5; Delay = 2; Epmax = 500; Tmax = 100;
Bmax = 200; ∆min = 0.001. The values of other hyperparameters under different product and
(ch, cb) combinations are shown in Table F.2.

Table F.1. Introduction to the hyperparameters of WET-TD3.

Hyperparameter Symbol Description Search Range

Embedding Dim
v Dimension of the trainable

weight matrix WE in the
embedding layer

8, 16, 20, 24, 28, 32, 36,
40, 64

Encoder Layers LE Number of layers in Transformer
encoder

1, 2, 3, 4

Feedforward Dim dE Hidden layer dimension of FFN
in Transformer encoder

16, 32, 64, 128, 256, 512,
1024

Discount γ Discount factor 0.80, 0.81, 0.82, ..., 0.99
Update Rate µ Soft update rate of target net-

works
0.005, 0.01, 0.05, 0.1

Action noise σ Standard deviation of Gaussian
noise ε on action a

0.2, 0.4, 0.6, 0.8

Policy noise σ̃ Std. of policy noise ς 0.2, 0.4, 0.6, 0.8
Policy noise clip ς0 Clipping value for policy noise 0.5, 0.6, 0.7, 0.8
Delay delay Delay steps for target network

updates
1, 2, 3, 4

Max Episodes Epmax Maximum training episodes 500, 1000
Max Timestep Tmax Maximum time steps per episode 100, 200
Max Size Bmax Size of replay buffer B 200, 300, 400
Batch Size N Batch size sampled per update 8, 16, 32, 64

(Continued on next page)
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(Continued from previous page)

Hyperparameter Symbol Description Search Range

Learning Rate A lrA Learning rate for Actor and tar-
get Actor

1E-1, 1E-2, 5E-2, 1E-3,
5E-3, 1E-4, 5E-4, 1E-5

Learning Rate Q lrQ Learning rate for Critic and tar-
get Critic

1E-1, 1E-2, 5E-2, 1E-3,
5E-3, 1E-4, 5E-4, 1E-5

Min Improv ∆min Minimum loss improvement for
early stopping

0.01, 0.001, 0.0001

Patience P Epochs to wait without improve-
ment

5, 10, 15, 20, ..., 150

Table F.2. Selected hyperparameters for training WET-TD3.

Experiment (ch, cb) v LE dE N lrA lrQ P

Lavida (1,0.5) 24 4 16 8 1E-03 1E-02 70
(1,1) 24 4 16 8 1E-03 1E-02 100
(1,2) 20 1 64 64 1E-05 1E-02 60
(1,5) 20 2 64 64 1E-05 1E-02 70
(1,10) 20 1 64 64 1E-05 1E-02 70
(1,20) 20 1 64 64 1E-05 1E-02 70
(1,50) 20 1 128 64 1E-05 1E-02 100
(1,100) 20 1 64 64 1E-05 1E-02 50

Emgrand (1,0.5) 24 4 16 8 1E-03 1E-02 100
(1,1) 24 1 1024 32 1E-03 1E-02 20
(1,2) 24 1 512 32 1E-05 1E-02 20
(1,5) 24 1 64 64 1E-05 1E-02 100
(1,10) 24 1 64 64 1E-05 1E-02 100
(1,20) 24 1 512 32 1E-05 1E-02 20
(1,50) 24 1 512 64 1E-05 1E-02 50
(1,100) 24 1 256 32 1E-03 1E-02 50

Haval H6 (1,0.5) 20 1 64 16 1E-03 1E-02 20
(1,1) 20 1 64 64 1E-03 1E-02 10
(1,2) 16 1 16 64 1E-03 1E-02 30
(1,5) 20 1 128 8 1E-03 1E-02 100
(1,10) 16 1 16 16 1E-03 1E-02 10
(1,20) 16 1 16 16 1E-03 1E-02 100
(1,50) 16 1 16 8 1E-03 1E-02 135
(1,100) 16 1 16 8 1E-03 1E-02 30

(Continued on next page)
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(Continued from previous page)

Experiment (ch, cb) v LE dE N lrA lrQ P

Camry (1,0.5) 16 1 16 8 1E-03 1E-02 10
(1,1) 24 1 128 32 1E-03 1E-02 10
(1,2) 24 1 64 32 1E-03 1E-02 20
(1,5) 16 1 16 32 1E-03 1E-02 20
(1,10) 16 1 64 32 1E-03 1E-02 20
(1,20) 16 1 64 32 1E-04 1E-02 10
(1,50) 16 1 16 64 1E-04 1E-03 50
(1,100) 20 1 64 64 1E-04 1E-01 10

(2) Hyperparameter selection for No Feat
The hyperparameters involved in No Feat, along with their symbols, meanings, and search

ranges, are the same as in Table F.1. After repeated experiments, the optimal values for all
product experiments and (ch, cb) combinations are: γ = 0.83; µ = 0.01; σ = 0.4; σ̃ = 0.6;
ς0 = 0.5; Delay = 2; Epmax = 500; Tmax = 100; Bmax = 200; ∆min = 0.001. The values of other
hyperparameters under different products and (ch, cb) combinations are shown in Table F.3.

Table F.3. Selected hyperparameters for training No Feat.

Experiment (ch, cb) v LE dE N lrA lrQ P

Lavida (1,0.5) 24 4 16 8 1E-03 1E-02 100
(1,1) 24 4 16 8 1E-03 1E-02 100
(1,2) 20 1 64 64 1E-05 1E-02 100
(1,5) 20 2 64 64 1E-05 1E-02 100
(1,10) 20 1 64 64 1E-05 1E-02 100
(1,20) 20 1 64 64 1E-05 1E-02 100
(1,50) 20 1 64 64 1E-05 1E-02 100
(1,100) 20 1 64 64 1E-04 1E-02 100

Emgrand (1,0.5) 24 4 16 8 1E-03 1E-02 100
(1,1) 8 1 64 8 1E-03 1E-02 100
(1,2) 24 1 256 64 1E-05 1E-02 100
(1,5) 24 1 64 64 1E-05 1E-02 100
(1,10) 24 1 64 64 1E-05 1E-02 100
(1,20) 24 1 64 64 1E-05 1E-02 100
(1,50) 16 1 64 64 1E-05 1E-02 100
(1,100) 16 1 64 64 1E-05 1E-02 100

Haval H6 (1,0.5) 20 1 16 8 1E-03 1E-02 100
(1,1) 20 1 64 64 1E-03 1E-02 100

(Continued on next page)
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Experiment (ch, cb) v LE dE N lrA lrQ P

(1,2) 16 1 64 8 1E-03 1E-02 100
(1,5) 24 1 128 16 1E-04 1E-02 200
(1,10) 16 1 64 8 1E-03 1E-02 100
(1,20) 24 1 64 8 1E-05 1E-02 100
(1,50) 24 1 64 8 1E-05 1E-02 100
(1,100) 24 3 64 64 1E-05 1E-02 100

Camry (1,0.5) 24 4 16 8 1E-03 1E-02 100
(1,1) 8 1 64 8 1E-03 1E-02 100
(1,2) 16 1 64 64 1E-03 1E-02 20
(1,5) 24 1 64 64 1E-05 1E-02 100
(1,10) 24 1 64 64 1E-05 1E-02 100
(1,20) 24 1 64 64 1E-04 1E-02 10
(1,50) 16 1 64 64 1E-04 1E-03 20
(1,100) 20 1 64 64 1E-04 1E-01 10

(3) Hyperparameter selection for No Rev
The hyperparameters involved in No Rev, along with their symbols, meanings, and search

ranges, are the same as in Table F.1, except that it does not include the hyperparameters
Embedding Dim, Encoder Layers, and Feedforward Dim. After repeated experiments, the
optimal values across all product experiments and (ch, cb) combinations are: µ = 0.01; σ = 0.4;
σ̃ = 0.6; ς0 = 0.5; Delay = 2; Epmax = 500; Tmax = 100; Bmax = 200; ∆min = 0.001. Other
hyperparameter values are shown in Table F.4.

Table F.4. Selected hyperparameters for training No Rev.

Experiment (ch, cb) γ N lrA lrQ P

Lavida (1,0.5) 0.83 64 1E-04 5E-02 100
(1,1) 0.83 64 1E-03 1E-03 100
(1,2) 0.83 64 1E-03 5E-02 100
(1,5) 0.92 64 1E-03 1E-04 100
(1,10) 0.83 64 1E-05 1E-03 100
(1,20) 0.92 64 1E-05 1E-02 100
(1,50) 0.83 64 1E-05 1E-02 50
(1,100) 0.83 64 1E-04 1E-02 100

Emgrand (1,0.5) 0.83 64 1E-03 5E-02 100
(1,1) 0.83 64 1E-05 1E-02 100
(1,2) 0.83 64 1E-04 1E-02 100
(1,5) 0.83 64 1E-03 1E-02 100

(Continued on next page)
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Experiment (ch, cb) γ N lrA lrQ P

(1,10) 0.83 64 1E-05 1E-03 100
(1,20) 0.92 64 1E-05 1E-02 100
(1,50) 0.83 64 1E-05 1E-02 100
(1,100) 0.83 64 1E-05 1E-02 100

Haval H6 (1,0.5) 0.83 64 1E-03 5E-02 100
(1,1) 0.83 64 1E-03 1E-03 100
(1,2) 0.83 64 1E-03 5E-02 100
(1,5) 0.83 64 1E-03 1E-03 100
(1,10) 0.83 64 1E-05 1E-03 100
(1,20) 0.83 64 1E-03 1E-03 100
(1,50) 0.83 64 1E-05 1E-03 100
(1,100) 0.83 64 1E-05 1E-03 100

Camry (1,0.5) 0.83 64 1E-03 5E-02 100
(1,1) 0.83 64 1E-05 1E-02 100
(1,2) 0.83 64 1E-04 1E-02 100
(1,5) 0.83 64 1E-03 1E-02 100
(1,10) 0.83 32 1E-03 1E-02 50
(1,20) 0.83 64 1E-02 1E-01 50
(1,50) 0.83 8 1E-02 1E-01 50
(1,100) 0.83 8 1E-02 1E-01 50

(4) Hyperparameter selection for DDPG
The hyperparameters involved in DDPG, along with their symbols, meanings, and search

ranges, are the same as in Table F.1, except that it does not include the hyperparameters
Embedding Dim, Encoder Layers, Feedforward Dim, and delay. After repeated experiments,
the optimal values across all product experiments and (ch, cb) combinations are: µ = 0.01;
σ = 0.4; σ̃ = 0.6; ς0 = 0.5; Epmax = 500; Tmax = 100; Bmax = 200; N = 64; ∆min = 0.001.
Other hyperparameter values are shown in Table F.5.

Table F.5. Selected hyperparameters for training DDPG.

Experiment (ch, cb) γ lrA lrQ P

Lavida (1,0.5) 0.83 1E-03 1E-04 50
(1,1) 0.83 1E-03 1E-04 50
(1,2) 0.83 1E-03 1E-03 50
(1,5) 0.92 1E-03 1E-03 50
(1,10) 0.83 1E-03 1E-03 50
(1,20) 0.83 1E-03 1E-03 50

(Continued on next page)
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Experiment (ch, cb) γ lrA lrQ P

(1,50) 0.83 1E-03 1E-03 50
(1,100) 0.83 1E-03 1E-03 50

Emgrand (1,0.5) 0.83 1E-03 5E-02 100
(1,1) 0.83 1E-05 1E-02 100
(1,2) 0.83 1E-03 1E-02 50
(1,5) 0.83 1E-04 1E-02 50
(1,10) 0.83 1E-05 1E-03 100
(1,20) 0.92 1E-05 1E-02 100
(1,50) 0.83 1E-05 1E-03 50
(1,100) 0.83 1E-04 1E-03 50

Haval H6 (1,0.5) 0.83 1E-03 5E-02 100
(1,1) 0.83 1E-03 1E-03 100
(1,2) 0.83 1E-03 5E-02 100
(1,5) 0.83 1E-03 1E-03 100
(1,10) 0.83 1E-05 1E-03 100
(1,20) 0.83 1E-03 1E-03 100
(1,50) 0.83 1E-05 1E-03 100
(1,100) 0.83 1E-05 1E-03 100

Camry (1,0.5) 0.83 1E-03 5E-02 100
(1,1) 0.83 1E-03 1E-03 100
(1,2) 0.83 1E-03 5E-02 100
(1,5) 0.83 1E-03 1E-03 100
(1,10) 0.83 1E-03 1E-02 50
(1,20) 0.83 5E-03 1E-02 50
(1,50) 0.83 1E-02 1E-01 50
(1,100) 0.83 1E-02 1E-01 50

(5) Hyperparameter selection for EAS Same
The hyperparameters involved in EAS Same, along with their symbols, meanings, and

search ranges, are listed in Table F.6. After repeated experiments, the optimal values across all
product experiments are: v = 16; dE = 64; Epmax = 500; N = 64; ∆min = 0.001. Other values
are shown in Table F.7.
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Table F.6. Introduction to the hyperparameters of EAS Same

Hyperparameter
Name

Symbol Meaning Search Space

Embedding Dim v Dimension of the trainable
weight matrix WE in the
word embedding layer

8, 16, 20, 24, 28, 32,
36, 40, 64

Encoder Layers LE Number of Transformer
encoder layers

1, 2, 3, 4

Feedforward Dim dE Dimension of the hidden
layer in the Transformer
encoder’s feedforward
network

16, 32, 64, 128, 256,
512, 1024

Max Episodes Epmax Maximum number of
training episodes

500, 1000

Batch Size N Batch size per iteration 8, 16, 32, 64
Learning Rate lr Learning rate 1E-1, 1E-2, 5E-2, 1E-3,

5E-3, 1E-4, 5E-4, 1E-5
Min Improv ∆min Minimum improvement in

loss for early stopping
0.01, 0.001, 0.0001

Patience P Number of epochs allowed
without validation
improvement

5, 10, 15, 20, ..., 150

Table F.7. Selected hyperparameters for training EAS Same.

Experiment LE lr P

Lavida 2 0.01 100
Emgrand 2 0.01 100
Haval H6 1 0.001 100
Camry 1 0.01 50

(6) Hyperparameter selection for DQN
The hyperparameters involved in DQN, along with their symbols, meanings, and search

ranges, are listed in Table F.8. After repeated experiments, the optimal values across all product
experiments and (ch, cb) combinations are: Epmax = 500; Bmax = 200; N = 64; ∆min = 0.001;
P = 50. Other values are shown in Table F.9.
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Table D.8. Introduction to the hyperparameters of DQN.

Hyperparameter
Name

Symbol Meaning Search Space

Discount γ Discount factor 0.80, 0.81, 0.82, ...,
0.99

Epsilon ε Exploration probability in
ε-greedy policy

0.001, 0.005, 0.01,
0.05, 0.1

Delay delay Steps before target network
update

1, 2, 3, 4

Max Episodes Epmax Maximum training episodes 500, 1000
Max Size Bmax Size of replay buffer B 200, 300, 400
Batch Size N Sample batch size from

experience buffer
8, 16, 32, 64

Learning Rate lr Learning rate 1E-1, 1E-2, 5E-2,
1E-3, 5E-3, 1E-4,
5E-4, 1E-5

Min Improv ∆min Minimum loss improvement
for early stopping

0.01, 0.001, 0.0001

Patience P Epochs allowed without
validation improvement

5, 10, 15, 20, ..., 150

Table D.9. Selected hyperparameters for training DQN.

Experiment (ch, cb) γ ε delay lr

Lavida (1,0.5) 0.83 0.01 2 1E-03
(1,1) 0.83 0.01 2 1E-03
(1,2) 0.83 0.01 2 1E-03
(1,5) 0.83 0.01 2 1E-03
(1,10) 0.83 0.01 2 1E-03
(1,20) 0.83 0.01 2 1E-02
(1,50) 0.83 0.01 2 1E-03
(1,100) 0.83 0.01 2 1E-03

Emgrand (1,0.5) 0.83 0.01 2 1E-03
(1,1) 0.83 0.01 2 1E-03
(1,2) 0.83 0.01 2 1E-03
(1,5) 0.90 0.01 2 1E-03
(1,10) 0.83 0.01 2 1E-03

(Continued on next page)
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Experiment (ch, cb) γ ε delay lr

(1,20) 0.92 0.01 2 1E-03
(1,50) 0.83 0.01 2 1E-03
(1,100) 0.83 0.01 2 1E-03

Haval H6 (1,0.5) 0.83 0.01 2 1E-02
(1,1) 0.83 0.01 2 1E-02
(1,2) 0.80 0.01 2 1E-02
(1,5) 0.95 0.01 2 1E-03
(1,10) 0.83 0.01 2 5E-03
(1,20) 0.95 0.01 2 1E-02
(1,50) 0.90 0.01 2 1E-03
(1,100) 0.90 0.01 2 1E-03

Camry (1,0.5) 0.83 0.01 2 1E-03
(1,1) 0.83 0.01 2 1E-03
(1,2) 0.83 0.01 2 1E-03
(1,5) 0.83 0.01 2 1E-03
(1,10) 0.99 0.01 2 1E-03
(1,20) 0.99 0.001 3 1E-01
(1,50) 0.99 0.001 4 1E-01
(1,100) 0.90 0.001 2 1E-01

(7) Hyperparameter selection for A2C
The hyperparameters involved in A2C, along with their symbols, meanings, and search

ranges, are listed in Table F.10. After repeated experiments, the optimal values across all
product experiments and (ch, cb) combinations are: Epmax = 500; Tmax = 200; ∆min = 0.001;
P = 50. Other values are shown in Table F.11.

Table D.10. Introduction to the hyperparameters of A2C.

Hyperparameter
Name

Symbol Meaning Search Space

Discount γ Discount factor 0.80, 0.81, 0.82, ...,
0.99

Entropy Coefficient β Entropy regularization to
encourage exploration

0.001, 0.01, 0.1

Max Episodes Epmax Maximum training episodes 500, 1000
GAE Lambda λ GAE bias-variance tradeoff

parameter
0.5, 1.0, 1.5, ...,
0.95, 0.99

(Continued on next page)
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Hyperparameter
Name

Symbol Meaning Search Space

Batch Size N Training batch size per
iteration

8, 16, 32, 64

Learning Rate lr Learning rate 1E-1, 1E-2, 5E-2,
1E-3, 5E-3, 1E-4,
5E-4, 1E-5

Max Timestep Tmax Maximum training steps per
episode

100, 200

Patience P Epochs allowed without
validation improvement

5, 10, 15, 20, ..., 150

Table D.11. Selected hyperparameters for training A2C.

Experiment (ch, cb) γ β lr λ N

Lavida (1,0.5) 0.99 0.01 1E-02 0.95 32
(1,1) 0.99 0.01 1E-02 0.95 32
(1,2) 0.99 0.01 1E-02 0.95 32
(1,5) 0.99 0.01 1E-02 0.95 32
(1,10) 0.99 0.01 1E-01 0.90 64
(1,20) 0.99 0.01 5E-02 0.80 64
(1,50) 0.99 0.001 1E-01 0.70 64
(1,100) 0.99 0.01 5E-02 0.83 64

Emgrand (1,0.5) 0.90 0.01 5E-03 0.95 64
(1,1) 0.90 0.01 5E-03 0.95 64
(1,2) 0.90 0.01 5E-03 0.95 64
(1,5) 0.83 0.01 1E-02 0.95 64
(1,10) 0.90 0.001 1E-02 0.99 64
(1,20) 0.90 0.01 1E-01 0.80 64
(1,50) 0.95 0.001 5E-02 0.85 64
(1,100) 0.90 0.001 1E-01 0.80 64

Haval H6 (1,0.5) 0.83 0.01 1E-02 0.95 32
(1,1) 0.83 0.01 1E-02 0.95 32
(1,2) 0.99 0.01 1E-03 0.99 64
(1,5) 0.99 0.01 1E-02 0.95 64
(1,10) 0.80 0.001 1E-01 0.95 64
(1,20) 0.99 0.01 1E-01 0.85 64
(1,50) 0.85 0.001 1E-01 0.80 64

(Continued on next page)
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Experiment (ch, cb) γ β lr λ N

(1,100) 0.99 0.001 1E-02 0.95 64
Camry (1,0.5) 0.83 0.01 1E-02 0.95 64

(1,1) 0.83 0.01 1E-02 0.99 64
(1,2) 0.99 0.01 1E-02 0.99 64
(1,5) 0.95 0.001 5E-02 0.85 64
(1,10) 0.99 0.001 5E-02 0.99 64
(1,20) 0.99 0.001 5E-02 0.99 64
(1,50) 0.99 0.01 1E-01 0.85 64
(1,100) 0.97 0.01 5E-02 0.50 64

(8) Hyperparameter selection for SAC
The hyperparameters involved in SAC, along with their symbols, meanings, and search

ranges, are listed in Table F.12. After repeated experiments, the optimal values across all
product experiments and (ch, cb) combinations are: γ = 0.83; µ = 0.01; Epmax = 500; Tmax =
100; Bmax = 200; ∆min = 0.001. Other values are shown in Table F.13.

Table F.12. Introduction to the hyperparameters of SAC.

Hyperparameter
Name

Symbol Meaning Search Space

Discount γ Discount factor 0.0.80, 0.81, 0.82, ...,
0.99

Update Rate µ Target network soft update
rate

0.001, 0.005, 0.01,
0.05, 0.1

Max Episodes Epmax Maximum training episodes 500, 1000
Max Timestep Tmax Maximum steps per episode 100, 200
Max Size Bmax Replay buffer size B 200, 300, 400
Batch Size N Batch size per iteration 8, 16, 32, 64
Learning Rate A lrA Actor and target Actor

learning rate
1E-1, 1E-2, 5E-2,
1E-3, 5E-3, 1E-4,
5E-4, 1E-5

Learning Rate Q lrQ Critic and target Critic
learning rate

1E-1, 1E-2, 5E-2,
1E-3, 5E-3, 1E-4,
5E-4, 1E-5

Min Improv ∆min Min loss improvement for
early stop

0.01, 0.001, 0.0001

Patience P Epochs allowed without
validation improvement

5, 10, 15, 20, ..., 150
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Table F.13. Selected hyperparameters for training SAC.

Experiment (ch, cb) N lrA lrQ P

Lavida (1,0.5) 64 1E-04 1E-03 50
(1,1) 64 1E-04 1E-03 20
(1,2) 64 1E-04 1E-02 50
(1,5) 64 1E-04 1E-04 50
(1,10) 64 1E-04 1E-03 50
(1,20) 64 1E-05 1E-02 100
(1,50) 64 1E-05 1E-03 100
(1,100) 64 1E-03 1E-02 50

Emgrand (1,0.5) 32 1E-04 1E-03 50
(1,1) 64 1E-05 1E-02 100
(1,2) 32 1E-05 1E-03 50
(1,5) 64 1E-05 1E-03 50
(1,10) 64 1E-05 1E-03 50
(1,20) 64 1E-05 1E-03 50
(1,50) 64 1E-04 1E-02 50
(1,100) 64 1E-05 1E-03 100

Haval H6 (1,0.5) 64 1E-03 5E-02 100
(1,1) 64 1E-03 1E-03 100
(1,2) 64 1E-03 1E-02 100
(1,5) 64 1E-03 1E-03 100
(1,10) 64 1E-05 1E-03 100
(1,20) 64 1E-03 1E-03 100
(1,50) 64 1E-05 1E-03 100
(1,100) 64 1E-05 1E-03 100

Camry (1,0.5) 64 1E-03 5E-02 100
(1,1) 64 1E-05 1E-02 100
(1,2) 64 1E-04 1E-02 100
(1,5) 64 1E-03 1E-02 100
(1,10) 32 1E-03 1E-02 100
(1,20) 64 1E-02 1E-01 100
(1,50) 32 1E-02 1E-02 50
(1,100) 32 1E-02 1E-02 50

(9) Hyperparameter selection for PPO
The hyperparameters involved in PPO, along with their symbols, meanings, and search

ranges, are listed in Table F.14. After repeated experiments, the optimal values across all
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product experiments and (ch, cb) combinations are: ε = 0.2; γ = 0.99; Epmax = 500; Bmax =
200; N = 64; ∆min = 0.001; P = 50. Other values are shown in Table F.15.

Table F.14. Introduction to the hyperparameters of PPO.

Hyperparameter
Name

Symbol Meaning Search Space

Discount γ Discount factor 0.80, 0.81, 0.82, ...,
0.99

Clip Epsilon ε Clipping threshold for
policy update

0.001, 0.01, 0.1

Max Episodes Epmax Maximum training episodes 500, 1000
GAE Lambda λ GAE bias-variance

parameter
0.9, 0.95, 0.99

Max Size Bmax Replay buffer size 200, 300, 400
Batch Size N Training batch size per

iteration
8, 16, 32, 64

Learning Rate A lrA Policy network learning rate 1E-1, 1E-2, 5E-2,
1E-3, 5E-3, 1E-4,
5E-4, 1E-5

Learning Rate Q lrQ Value network learning rate 1E-1, 1E-2, 5E-2,
1E-3, 5E-3, 1E-4,
5E-4, 1E-5

Update Epochs Epu Policy update epochs per
batch

10, 20, 30, 40, 50

Max Timestep Tmax Max steps per episode 100, 200
Patience P Epochs allowed without

validation improvement
5, 10, 15, 20, ..., 150

Table F.15. Selected hyperparameters for training PPO.

Experiment (ch, cb) λ lrA lrQ Epu

Lavida (1,0.5) 0.95 1E-03 1E-03 10
(1,1) 0.95 1E-03 1E-03 20
(1,2) 0.95 1E-03 1E-03 40
(1,5) 0.90 1E-03 1E-03 20
(1,10) 0.95 1E-03 1E-03 20
(1,20) 0.99 1E-03 1E-03 40
(1,50) 0.95 1E-03 1E-03 20

(Continued on next page)
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Experiment (ch, cb) λ lrA lrQ Epu

(1,100) 0.99 1E-03 1E-03 40
Emgrand (1,0.5) 0.99 1E-03 1E-03 20

(1,1) 0.95 1E-03 1E-03 20
(1,2) 0.99 1E-03 1E-03 20
(1,5) 0.99 1E-03 1E-03 20
(1,10) 0.99 1E-03 1E-03 20
(1,20) 0.99 1E-03 1E-03 30
(1,50) 0.99 1E-03 5E-03 30
(1,100) 0.99 1E-03 5E-03 40

Haval H6 (1,0.5) 0.99 1E-03 1E-03 20
(1,1) 0.99 1E-03 1E-03 20
(1,2) 0.95 1E-03 1E-03 40
(1,5) 0.99 1E-03 1E-03 30
(1,10) 0.99 1E-03 1E-03 30
(1,20) 0.95 1E-03 1E-03 10
(1,50) 0.95 1E-03 1E-03 30
(1,100) 0.99 1E-03 1E-03 20

Camry (1,0.5) 0.95 1E-03 1E-03 20
(1,1) 0.95 1E-03 1E-03 20
(1,2) 0.95 1E-03 1E-03 20
(1,5) 0.99 1E-03 1E-03 40
(1,10) 0.99 5E-03 5E-03 20
(1,20) 0.99 1E-03 1E-03 30
(1,50) 0.95 5E-03 1E-02 40
(1,100) 0.95 1E-01 1E-01 20
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