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Appendix A. The time difference correlation analysis (TDCA)
method

This section introduces the principles and process of feature selection using the TDCA
method. Denote the total candidate feature number as Ny, let L (L > 0) represent the lag
period of a feature sequence ahead of the arrival time, and Ly .x be the maximum lag period

(L < Lpax)- The expression of the candidate feature set is

]FL = {Fl,LaFZ,[n e 7F’n,L7 e 7FNf,L} 7L = ]-5 27 cre 7LmaX’ (Al)

where F,, 1, represents a feature sequence.

We assess the correlation between the target and the feature sequences at various lag periods
to optimally choose features for model training. Metrics for correlation measurement encompass
the distance correlation coefficient (Székely et al., 2007), Pearson correlation coefficient (Rodgers
and Nicewander, 1988), and Spearman correlation coefficient (Myers et al., 2010) and the copula
entropy (Ma, 2021; Schnaubelt, 2022). We extensively employ these correlation coefficients, and
the assessment criterion is determined by taking the maximum of their absolute values. Let
D represent the demand sequence ending at the arrival time. The formula for the absolute

correlation is expressed as

fR (Fn,La D) = max |f (Fn,La D)| ) (A2)

fe{Distance,Pearson,Spearman,CopEnt }

where "Distance”, ”Spearman”, "Pearson”, and "CopEnt” is the function of the distance cor-
relation, Pearson, Spearman and the copula entropy, respectively. The implementation process
are as follows:

First, initiate the screening process for candidate features by computing the absolute cor-
relation between each feature sequence with various lag periods before the arrival time and the

demand sequence at the arrival time, utilizing Eq. (A.2). Establish an appropriate screening



threshold 71, as the screening criterion, representing the minimum correlation between the de-
mand and the selected features. Features meeting the condition fr (F, 1,D) > 7 are chosen,
and the set of selected features is defined as X.

Second, to address multicollinearity among the initially screened features, the Pearson cor-
relation coefficient is employed. The removal criterion is defined by the threshold 2, which
represents the maximum permissible correlation among the chosen features. Feature pairs with
high linear correlation in set X are identified, and the feature with the relatively weaker correla-
tion to the demand sequence is removed from the set. Negative correlations are also considered
in this procedure, as highly anti-correlated input features are also collinear.

Finally, repeat the second step, until the Pearson correlation between any two features in
set X' is no longer greater than 7. Consequently, the features in set X = {x1,x2,... ,XNP}
represent the selected appropriate features, with the feature count N,,.

We extract the values of each feature in the features set X’ at time ¢, represented as x,,; € X,

to form the demand-related feature vector at time t, expressed as

X = ($1,t7x2,t7 e 733Np,t) . (A.S)

Here, the screening thresholds and relevant removal criteria are hyperparameters deter-

mined through repeated experiments.

Appendix B. Transformer

The Transformer model, introduced by Vaswani et al. (2017), is a machine learning model
designed for natural language processing tasks, with the self-attention mechanism as its core
component. The structure of the Transformer is shown in Fig. B.1.

Transformer adopts a Seq2Seq structure composed of an encoder and a decoder. The
encoder maps the input sequence into a fixed-length vector representation, and the decoder
transforms the fixed-length vector into an output sequence. Both the encoder and the decoder
consist of multiple identical layers, each containing a self-attention mechanism and a feed-
forward neural network. The self-attention mechanism assigns a weight to each position by
computing the similarity between that position and all others in the input sequence, thereby
computing a weighted average that incorporates information from the entire sequence. The
principles of each component are described as follows:

(1) Self-attention mechanism

The self-attention mechanism is the core component of Transformer. It computes the
similarity between each position (word) in the input sequence and all other positions to assign
weights, thus generating a weighted average for each word vector that incorporates context.
The specific computation process is as follows:

Query, key, and value matrices: The input sequence X is transformed by three different

linear layers to generate the query matrix @), the key matrix K, and the value matrix V:
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Fig. B.1. The structure of Transformer

Q=XW? K=xwEv=xw", (B.1)

where X represents the input sequence, and W, WX and WV are trainable weight matrices.
Attention scores: The dot product is computed between the query matrix () and the key
matrix K. Since the dimensionality dg of the key vectors affects Transformer performance, the

result is scaled by v/dg, and then normalized using the SoftMax function:

Attention(Q, K, V') = soft ma QK7 V. (B.2)
ntion(Q, K,V) = max [ —— | V. .
Vi

Multi-head attention mechanism: Multiple independent self-attention heads are intro-

duced to enhance the model’s capability, with each head operating in a different subspace. The

formula for multi-head attention Mhead is as follows:



Mhead(Q, K, V') = Concat(head,, heads, ..., heath)WO, (B.3)

where head; = Attention(QI/ViQ, K WiK , VWiV), and W9 is a linear transformation matrix. The
number of attention heads IV}, is set to 4 in our experiment. Each head has its own set of weight
matrices WZQ, WHE and W}

(2) Feed-forward neural network (FFN)

The output at each position from the self-attention mechanism is processed by a feed-
forward neural network, which consists of two linear transformations and a ReLU activation

function max(0, -):

FEN(z) = max(0,zW7 + b1) Wy + bo. (B.4)

(3) Residual connections and layer normalization
To alleviate the vanishing gradient problem in deep networks, Transformer applies residual
connections after both the self-attention and feed-forward sublayers, followed by layer normal-

ization. The output of each sublayer is:

LayerNorm(z + Sublayer(z)), (B.5)

where Sublayer(z) represents the function implemented by that sublayer.

(4) Encoder and decoder

Overall, Transformer consists of stacked encoder and decoder components. The encoder
maps the input sequence into a fixed-length vector representation, and the decoder transforms
this representation into the output sequence. Both the encoder and decoder are composed of
N identical layers, each including multi-head self-attention and a feed-forward neural network.

The computation steps of the encoder layer are:
x := LayerNorm(z + FFN(z)), (B.6)

EncoderLayer(x) = LayerNorm(x + MHead(z, x, x)). (B.7)

In addition to the two sublayers in the encoder layer, the decoder layer includes a masked
multi-head self-attention mechanism sublayer MaskedMHead. Similar to the encoder, resid-
ual connections and layer normalization are applied around each sublayer. The decoder layer

computations are:

y := LayerNorm(y + FFN(y)), (B.8)
y := LayerNorm(y + MHead(y, 0, 0)), (B.9)
DecoderLayer(y, p) = LayerNorm(y + MaskedMHead(y, y,y)), (B.10)

where ¢ denotes the output of the encoder layer.



(5) Positional encoding

Since Transformer lacks recurrence and convolution, it must be supplied with information
about the positions of tokens in a sequence. To provide this, positional encodings are added to
the input /output embeddings at the bottom of the encoder and decoder stacks. These encodings

are defined using sine and cosine functions:

PE o5 2i) = sin (pos/10000%/") (B.11)
PE(pos.2i41) = €OS (pos /100002 ”) , (B.12)

where pos represents the position index, ¢ is the dimension index, and v is the embedding

dimension.

Appendix C. Candidate macroeconomic indicators and Baidu in-

dices

The candidate features before being screened using the TDCA method include 86 macroe-
conomic indicators and keywords from the Baidu search indices, as shown in Table C.1 and

Table C.2, respectively.

Table C.1. List of candidate macroeconomic indicators

No. Name No. Name
1 China: CPI: YoY 44  China: Financial Institutions: Foreign
Currency Loans Balance
2 China: CPI: Transport and Communica- 45  China: Financial Institutions: New For-
tions: Transportation Facility: YoY eign Total Loans

3 China: CPI: Transport and Communica- 46  China: Financial Institutions: Total De-
tions: Fuels for Transport Facility: YoY posits Balance: RMB
4 China: CPI: Transport and Communica- 47  China: Financial Institutions: New RMB

tions: Use and Maintenance of Transport Deposits
Facility: YoY
5 China: CPI: MoM 48  China: Financial Institutions: New RMB

Deposits: Households
6 China: CPI: Transport and Communica- 49  China: Demand Deposit Interest Rate
tions: Transportation Facility: MoM
7 China: CPI: Transport and Communica- 50  China: Time Deposit Rate: 3M
tions: Fuels for Transport Facility: MoM

(Continued on next page)
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No. Name No. Name

8 China: CPI: Transport and Communica- 51  China: Time Deposit Rate: 6M
tions: Use and Maintenance of Transport
Facility: MoM

9 China: RPI: MoM 52  China: Short-term Loan Interest Rate:

6M (Incl.)

10  China: RPI: Transportation and Com- 53  China: Short-term Loan Interest Rate:
munication Appliances: MoM 6M-1Y (Inclusive)

11 China: RPI: Fuels: MoM 54  Chinaedium and Long-term Lending

Rates: 1Y-3Y (Inclusive)

12 China: PPI: Total Industry Products: 55  Chinaedium and Long-term Lending
YoY Rates: 3Y-5Y (Inclusive)

13 China: PPI: Total Industry Products: 56  Chinaedium and Long-term Lending
MoM Rates: Above 5Y

14 China: PPI: Consumer Goods: Durable 57  China: SH and SZ Stock Markets: Total
Consumer Goods: YoY Market Value (A and B Shares)

15 China: PPI: Extraction of Petroleum and 58  China: SH and SZ Stock Markets: Total
Natural Gas: MoM Stock Turnover

16 China: PPI: Manufacture of Rubber and 59  SSE: Average P/E Ratio
Plastic Products: MoM

17 China: PPI: Manufacture of Automobile: 60  SSE Conglomerates Index
MoM

18  China: Purchasing Price Index of Raw 61  CSI 300 Index
Material,Fuel and Power: MoM

19  Purchasing Price Index of Raw Mate- 62  SZSE Component Index
rial,Fuel and Power: Fuel and Power:
YoY

20  China: CGPI: YoY 63  SSE T-Bond Index: Closing

21 China: CGPI: MoM 64  SSE Corporate Bond Index: Closing

22 China: Export Unit Value Index: HS2: 65  Futures Settlement Price (Active Con-
Total Index tract): Deformed Steel Bar

23 China: Export Price Index: HS2: Class 66  Futures Settlement Price (Active Con-
17: Vehicles, Aircraft, Vessels and Asso- tract): Natural Rubber
ciated Transport Equipment

24 China: Import Unit Value Index: HS2: 67  Futures Settlement Price (Active Con-

Total Index

tract): Fuel Oil

(Continued on next page)
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No. Name No. Name
25  China: Import Price Index: HS2: Class 68  Futures Settlement Price (Active Con-
17: Vehicles, Aircraft, Vessels and Asso- tract): Stainless Steel
ciated Transport Equipment
26  China: Market Price: Gasoline (92#): 69  Futures Settlement Price (Continuous):
China VI MONTHLY:LAST Fuel Oil
27  China: Market Price: Gasoline (95#): 70  Futures Settlement Price (Continuous):
China VLMONTHLY:LAST Natural Rubber
28  China: Value of Imports and Exports: 71  Futures Settlement Price (Continuous):
CNY Deformed Steel Bar
29  China: Trade Balance: CNY 72 Futures Settlement Price (Continuous):
Stainless Steel
30  China: MO 73  China: Macro-economic Climate Index:
Coincident Index
31  China: M1 74  China: Macro-economic Climate Index:
Leading Index
32 China: M2 75  China: Macro-economic Climate Index:
Lagging Index
33  China: M0: YoY 76  China: Surveyed Urban Unemployment
Rate
34 China: M1: YoY 77  Surveyed Urban Unemployment Rate in
31 Big Cities and Towns
35  China: M2: YoY 78  China: Surveyed Urban Unemployment
Rate: YoY
36  China: Financial Institutions: Total 79  China: Manufacturing PMI
Loans Balance: RMB
37  China: Financial Institutions: Total 80  China: Manufacturing PMI: Production
Loans Balance: RMB: YoY
38  China: Financial Institutions: New RMB 81  China: Manufacturing PMI: Large En-
Loans terprises
39  China: Financial Institutions: New RMB 82  China: Manufacturing PMI: Medium-
Loans: Households sized Enterprises
40  China: Financial Institutions: New RMB 83  China: Manufacturing PMI: Small En-
Loans: Households: Short-term terprises
41  China: Financial Institutions: New RMB 84  China: Consumer Confidence Index
Loans: Households: Mid & Long-term

(Continued on next page)



(Continued from previous page)

No. Name No. Name

42  China: Financial Institutions: Short- 85  China: Consumer Satisfaction Index
term Loas Balance: RMB

43  China: Financial Institutions: Mid & 86  China: Consumer Expectation Index
Long-term Loans Balance: RMB

Table C.2. Baidu index keyword sets

Topics or products Baidu Index keywords

IRZEARRS (Car Insurance), VXZEH M (Car Official Website), {X%#% 5 (Car

Automobile Lottery)
industry related /o . R § N
Y RZEHTE (Car News), R R (Car Review), IRZEMERL (Car Purchase
Tax),

RERE (Car Sales), IREMEHT (Car Sales Ranking), IR EMH EHATH;
(Car Sales Ranking List)

Lavida —VR KA (Faw-Volkswagen), KAk (Volkswagen), KAx4ds)i (Volkswagen 49
Dealership), KAXBHIRT % (Volkswagen Lavida Price), KAXBHI%RE 4 FF
(How Is the Volkswagen Lavida), KAXBHI&E AT (Volkswagen Lavida Quote),
KARBHE AT S B /- (Volkswagen Lavida Quote and Pictures), KAVIEE
M (Volkswagen Official Website), Bli& (Lavida), BIi&/#% (Lavida Price),
MR % b (How Much Is Lavida), BI#/E 24 (How Is the Lavida), B
BARMr (Lavida Quote), RIMRERFTMT (Latest Quote of Lavida), BIIRIR
% (Lavida Car), Hli®M#E (Lavida Fuel Consumption), Bli& i1z (Lavida
Forum), KA (Volkswagen Lavida)

Emgrand Fi R 5 (Geely Emgrand), 7 Fl# 5 E 4 (How Is Geely Emgrand), #
F| (Geely), #FIIR% (Geely Automobile), 75 #4s)5 (Geely 4S Dealership),
5% (Emgrand), 7 55¥5% (Emgrand Automobile), A7 A (Geely
Emgrand Price)

Haval H6 15 9Bh6 (Haval H6), MG 3Ph6 4T (Haval H6 Quote), & #Bh6/E AR (How
About Haval H6), W4 3bh6i85h /iR (Haval H6 Sport Edition), M4 35h6iHFE
(Fuel Consumption of Haval H6), I JEh6#3K (New Version of Haval H6),
536 (Haval), M5 30754 (Haval Cars), "5 #F M (Official Website of Haval)

Camry Il (Camry), JLEHHMFE (Fuel Consumption of Camry), Hl3 B AR
(How about Camry?), JlEHiitlx (Camry Forum), Jl3Hi2.0 (Camry 2.0),
JIEHG £ D8 (How Much Is Camry), JlEH kAT (Camry Quote), I35
A% (Camry Automobile), FEHPLEHi (Toyota Camry), 3= H £ HimH M
(Toyota Camry Quote)

Appendix D. Selected numerical features and their correlation

coefficients

Tables D.1-D .4 present the demand-related feature selection results for the four products.
In our experiments, the threshold parameters are set as follows: for the Lavida experiment,
71 = 0.35 and 73 = 0.7; for the Emgrand experiment, #; = 0.35 and 7, = 0.7; for the Haval H6

experiment, 71 = 0.45 and 72 = 0.7; and for the Camry experiment, 71 = 0.4 and 72 = 0.7.



Table D.1. Structured feature selection results for the Lavida experiment

Feature Name Lag order Correlation

China: CPI: Transport and Communications: Trans- 3 CopEnt=-0.366
portation Facility: MoM

China: CPI: Transport and Communications: Trans- 6 Spearman=-0.411
portation Facility: MoM

China: CPI: Transport and Communications: Trans- 9 CopEnt=-0.400
portation Facility: MoM

China: CPI: Transport and Communications: Use 11 Pearson=0.377
and Maintenance of Transport Facility: MoM

China: RPI: Transportation and Communication 5 Distance=0.351

Appliances: MoM

China: RPI: Transportation and Communication 6 Distance=0.460
Appliances: MoM

China: PPI: Manufacture of Rubber and Plastic 1 CopEnt=-0.368
Products: MoM

China: PPI: Manufacture of Rubber and Plastic 2 CopEnt=-0.378
Products: MoM

China: PPI: Manufacture of Rubber and Plastic 4 CopEnt=-0.360
Products: MoM

China: PPI: Manufacture of Rubber and Plastic 7 CopEnt=-0.414

Products: MoM

China: PPI: Manufacture of Automobile: MoM 2 CopEnt=0.509
China: PPI: Manufacture of Automobile: MoM 3 CopEnt=0.582
China: PPI: Manufacture of Automobile: MoM 4 CopEnt=0.566
China: PPI: Manufacture of Automobile: MoM 5 CopEnt=0.479
China: PPI: Manufacture of Automobile: MoM 6 CopEnt=0.420
China: PPI: Manufacture of Automobile: MoM 7 CopEnt=0.491
China: PPI: Manufacture of Automobile: MoM 8 CopEnt=0.668
China: PPI: Manufacture of Automobile: MoM 9 CopEnt=0.553
China: PPI: Manufacture of Automobile: MoM 10 CopEnt=0.716
China: PPI: Manufacture of Automobile: MoM 11 CopEnt=0.733
China: Trade Balance: CNY 8 Distance=0.361
China: M2: YoY 2 CopEnt=-0.385
China: Financial Institutions: New RMB Loans 1 Pearson=-0.415
China: Financial Institutions: New RMB Loans: 2 Distance=0.355

Households

(Continued on next page)
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Feature Name Lag order Correlation
China: Financial Institutions: New RMB Deposits 1 Distance=0.471
China: Financial Institutions: New RMB Deposits 6 CopEnt=-0.394
China: SH and SZ Stock Markets: Total Stock 1 Spearman=-0.366
Turnover

Futures Settlement Price (Continuous): Fuel Oil 7 CopEnt=-0.402
Futures Settlement Price (Continuous): Natural 4 Spearman=-0.453
Rubber

Futures Settlement Price (Continuous): Stainless 12 CopEnt=0.773
Steel

China: Manufacturing PMI 7 CopEnt=-0.359
KA AT (Volkswagen Lavida Quote) 2 CopEnt=-0.357
KAIREE M (Volkswagen Official Website) 12 CopEnt=-0.372
WA (Lavida Price) 8 CopEnt=-0.357
B FE (Lavida Fuel Consumption) 1 Spearman=0.362
REHRES (Car Lottery) 10 CopEnt=-0.365
REMER (Car Purchase Tax) 10 CopEnt=-0.357
RZEHE (Car Sales) 4 CopEnt=-0.352

Table D.2. Structured feature selection results for the Emgrand experiment

Feature Name

Lag order

Correlation

China: CPI: MoM

China: CPI: Transport and Communications: Trans-
portation Facility: MoM

China: CPI: Transport and Communications: Trans-
portation Facility: MoM

China: CPI: Transport and Communications: Trans-
portation Facility: MoM

China: CPI: Transport and Communications: Use
and Maintenance of Transport Facility: MoM
China: CPI: Transport and Communications: Use
and Maintenance of Transport Facility: MoM
China:
Appliances: MoM
China:
Appliances: MoM

RPI: Transportation and Communication

RPI: Transportation and Communication

11
6

11

10

12

Pearson=0.424
Distance=0.440

CopEnt=-0.374

CopEnt=-0.359

Distance=0.350

CopEnt=-0.352

Distance=0.417

Distance=0.490

10

(Continued on next page)
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Feature Name Lag order Correlation
China: PPI: Manufacture of Rubber and Plastic 2 CopEnt=-0.401
Products: MoM

China: PPI: Manufacture of Automobile: MoM 1 CopEnt=0.434
China: PPI: Manufacture of Automobile: MoM 2 CopEnt=0.367
China: PPI: Manufacture of Automobile: MoM 3 CopEnt=0.532
China: PPI: Manufacture of Automobile: MoM 4 CopEnt=0.492
China: PPI: Manufacture of Automobile: MoM 5 CopEnt=0.561
China: PPI: Manufacture of Automobile: MoM 6 CopEnt=0.634
China: PPI: Manufacture of Automobile: MoM 7 CopEnt=0.599
China: PPI: Manufacture of Automobile: MoM 8 CopEnt=0.862
China: PPI: Manufacture of Automobile: MoM 9 CopEnt=0.738
China: PPI: Manufacture of Automobile: MoM 10 CopEnt=0.712
China: PPI: Manufacture of Automobile: MoM 11 CopEnt=0.818
China: Value of Imports and Exports: CNY 8 Spearman=-0.364
China: Financial Institutions: New RMB Loans Pearson=-0.389
China: Financial Institutions: New RMB Loans: 11 Pearson=-0.415
Households: Short-term

China: Financial Institutions: Foreign Currency 12 Spearman=-0.354
Loans Balance

China: Financial Institutions: New RMB Deposits Pearson=-0.387
China: Financial Institutions: New RMB Deposits 7 Distance=0.358
Futures Settlement Price (Continuous): Stainless 11 CopEnt=0.771
Steel

China: Surveyed Urban Unemployment Rate 1 CopEnt=0.590
China: Manufacturing PMI: Large Enterprises 1 Distance=0.392
China: Manufacturing PMI: Small Enterprises 11 Distance=0.514
554 (Emgrand Automobile) 2 Pearson=0.371

REMER (Car Purchase Tax)

CopEnt=-0.357

Table D.3. Structured feature selection results for the Haval H6 experiment

Feature Name Lag order Correlation
China: CPI: Transport and Communications: Trans- 5 Distance=0.462
portation Facility: MoM

China: CPI: Transport and Communications: Trans- 6 Distance=0.609

portation Facility: MoM

11
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Feature Name Lag order Correlation
China: RPI: MoM Spearman=-0.469
China: RPI: Transportation and Communication 6 Distance=0.482
Appliances: MoM

China: PPI: Manufacture of Automobile: MoM 2 CopEnt=0.590
China: PPI: Manufacture of Automobile: MoM 3 CopEnt=0.458
China: PPI: Manufacture of Automobile: MoM 4 CopEnt=0.510
China: PPI: Manufacture of Automobile: MoM 5 CopEnt=0.590
China: PPI: Manufacture of Automobile: MoM 6 CopEnt=0.650
China: PPI: Manufacture of Automobile: MoM 7 CopEnt=0.678
China: PPI: Manufacture of Automobile: MoM 8 CopEnt=0.744
China: PPI: Manufacture of Automobile: MoM 9 CopEnt=0.507
China: PPI: Manufacture of Automobile: MoM 10 CopEnt=0.466
China: PPI: Manufacture of Automobile: MoM 11 CopEnt=0.870
China: Value of Imports and Exports: CNY 8 Spearman=-0.552
China: M1: YoY Distance=0.534
China: Financial Institutions: New RMB Loans 1 Spearman=-0.456
Futures Settlement Price (Active Contract): Stain- 12 CopEnt=0.842
less Steel

China: Macro-economic Climate Index: Leading In- 1 Pearson=0.459
dex

China: Manufacturing PMI: Small Enterprises 10 Distance=0.556
China: Manufacturing PMI: Small Enterprises 11 Spearman=-0.548
S #5E M (Official Website of Haval) 1 Spearman=0.549

Table D.4. Structured feature selection results for the Camry experiment

Feature Name Lag order Correlation
China: PPI: Manufacture of Rubber and Plastic Prod- 2 CopEnt=-0.453
ucts: MoM

China: PPI: Manufacture of Automobile: MoM 2 CopEnt=0.446
China: PPI: Manufacture of Automobile: MoM 3 CopEnt=0.605
China: PPI: Manufacture of Automobile: MoM 4 CopEnt=0.989
China: PPI: Manufacture of Automobile: MoM 5 CopEnt=0.563
China: PPI: Manufacture of Automobile: MoM 6 CopEnt=0.582
China: PPI: Manufacture of Automobile: MoM 7 CopEnt=0.636
China: PPI: Manufacture of Automobile: MoM 8 CopEnt=0.565

12
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Feature Name Lag order Correlation
China: PPI: Manufacture of Automobile: MoM 9 CopEnt=0.534
China: PPI: Manufacture of Automobile: MoM 10 CopEnt=0.598
China: PPI: Manufacture of Automobile: MoM 11 CopEnt=0.860
China: Export Unit Value Index: HS2: Total Index 12 Distance=0.474
China: Value of Imports and Exports: CNY 12 Spearman=0.734
China: Financial Institutions: New RMB Loans 4 Spearman=0.484
China: Financial Institutions: New RMB Loans 10 Distance=0.441
China: Financial Institutions: New RMB Loans 12 Pearson=0.501
China: Financial Institutions: New RMB Loans: 12 Distance=0.597
Households

China: Financial Institutions: New RMB Loans: 4 Distance=0.408
Households: Short-term

China: Financial Institutions: New RMB Loans: 7 Distance=0.404
Households: Short-term

China: Financial Institutions: New RMB Loans: 10 Distance=0.485
Households: Short-term

Futures Settlement Price (Continuous): Deformed 12 Distance=0.711
Steel Bar

Futures Settlement Price (Continuous): Stainless 12 CopEnt=0.933
Steel

China: Manufacturing PMI: Small Enterprises 8 Spearman=0.417
China: Manufacturing PMI: Small Enterprises Distance=0.405
China: Manufacturing PMI: Small Enterprises 12 Spearman=0.618
JIEHTMFE (Fuel Consumption of Camry) 3 Distance=0.436
JIZEHMAE (Fuel Consumption of Camry) 12 Distance=0.440
FHYIEH (Toyota Camry) Distance=0.420
RERE (Car Insurance) 5 Spearman=-0.723
RERES (Car Lottery) Spearman=-0.595
RERS (Car Lottery) 12 Distance=0.478
REBEFT (Car Sales Ranking) Spearman=-0.451
REBEFT (Car Sales Ranking) Spearman=-0.522
REWEHAT (Car Sales Ranking) Spearman=-0.529
IR EFT (Car Sales Ranking) 8 Spearman=-0.485
REREHHT (Car Sales Ranking) 10 Spearman=-0.494

13



Appendix E. Description of benchmark methods

In our experiments, the benchmark methods used for comparison include the (.S, s), DQN,
A2C, SAC, PPO, and DDPG. Detailed descriptions are as follows:

(1) (S, s) Policy (Arrow et al., 1958): This is a classical periodic inventory control strategy.
The core rule is: at the end of each period, the inventory level is checked; if the current
inventory is less than or equal to threshold s (reorder point), a replenishment is triggered to
raise the inventory to the target level S; otherwise, no replenishment is performed. S and s are
determined based on historical sales statistics such as the mean and standard deviation, where

s is set to the historical mean demand and S is calculated as:

_ Cp
S = = ! E.1
u+zxo,z (Cb-i-ch)’ (E.1)

where ®~! is the inverse of the standard normal distribution, and x and o represent the esti-
mated mean and standard deviation of demand based on historical sales.

(2) DQN (Deep Q-Network) (Oroojlooyjadid et al., 2021): This method integrates deep
neural networks with reinforcement learning. Its core idea is to approximate the Q-value func-
tion (i.e., state-action value function) using a neural network, thereby learning the optimal
policy in complex environments. In the multi-period inventory context, DQN defines a dis-
crete action space by evenly dividing the range between the minimum and maximum historical
demand values (e.g., 10,000 discrete replenishment quantities). The policy is optimized by max-
imizing cumulative rewards (i.e., minimizing total costs). During training, the e-greedy strategy
balances exploration and exploitation, selecting a random action with certain probability or oth-
erwise choosing the action with the highest current Q-value. Network parameters are updated
by minimizing the temporal-difference (TD) error, and the target Q-values are calculated using
a separately updated target network to stabilize training.

(3) A2C (Advantage Actor-Critic) (Mohamadi et al., 2024): A policy gradient-based on-
policy reinforcement learning algorithm that employs a shared network architecture to jointly
optimize the policy function and value function. The Actor network outputs the parame-
ters of a Gaussian distribution (mean g and standard deviation o) over the continuous action
space for replenishment, with reparameterization techniques used for differentiable sampling.
The Critic network evaluates the state value function V(S), and shares lower layers with the
Actor to improve training efficiency. A2C uses Generalized Advantage Estimation (GAE),
AtGAE = EZT:_Ot (YA)!;41, which balances bias and variance by incorporating multi-step returns.
An entropy regularization term H (7 (-|S)) is added to prevent premature convergence to local
optima. Gradient clipping and advantage normalization are also applied. The optimization ob-
jective is: J(0) = E[log m(a|S)A;+BH ()]. This approach learns adaptive replenishment policies
under stochastic demand, and the shared network architecture improves training efficiency.

(4) SAC (Soft Actor-Critic) (Kou et al., 2025): This is an off-policy algorithm based on

the maximum entropy reinforcement learning framework. Its key feature is the dual objec-
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tive of maximizing both expected returns and policy entropy. Unlike traditional Actor-Critic
methods such as A2C, SAC employs a stochastic policy instead of a deterministic one, encour-
aging exploration through entropy regularization. The Actor network outputs a probability
distribution (e.g., Gaussian) from which continuous replenishment actions are sampled, over-
coming the granularity limitations of discretization in DQN. Two independent Critic networks
(Q-functions) and a temperature parameter « are used to dynamically balance exploration
and exploitation. In inventory management applications, SAC’s entropy-maximization design
enhances its adaptability to demand fluctuations and non-stationary environments. The SAC
objective is expressed as: J(7) = E[X(r(S,a)+aH (7(-|S)))], where H (7) denotes policy entropy
and « automatically adjusts the degree of exploration.

(5) PPO (Proximal Policy Optimization) (Schulman et al., 2017): This method strikes a
balance between training stability and decision accuracy via constrained policy updates and
an adaptive optimization framework. The core innovation lies in its clipped surrogate objec-
tive function: LELP(0) = E [min (r(6), clip (r(0),1 — €,1 4+ €)) A(S, a)], where the policy ratio
r(0) = mp(alS)/mg,, (a|S) quantifies the extent of policy update, and the clipping threshold e
(typically 0.1-0.3) constrains deviation to prevent policy oscillation, particularly in inventory
settings without lead time, where abrupt changes in replenishment could destabilize the sys-
tem. PPO applies multiple mini-batch updates (3-10 iterations per batch) and state-related
constraints to stably extract policy gradients from limited-period observations. Its entropy reg-
ularization term H(mp) = —E[X,mp(a|S) log m(a|S)] dynamically adjusts exploration intensity
to avoid premature convergence under non-stationary demand. While PPO sacrifices some his-
torical data efficiency compared to off-policy methods like SAC, its hard constraint on policy
update magnitude reduces the risk of policy collapse. In practice, the clipping threshold e and
learning rate should be tuned based on the coefficient of demand variation: € = 0.1 is recom-
mended for high volatility, while 0.3 is suitable for stable demand to accelerate convergence.

(6) DDPG (Deep Deterministic Policy Gradient) (Lillicrap et al., 2016): This off-policy al-
gorithm combines deep neural networks with deterministic policy gradients, directly generating
continuous replenishment actions via an Actor-Critic architecture. It consists of a deterministic
Actor network and a Critic network for Q-value estimation. Unlike DQN, which operates on
a discrete action space, DDPG supports continuous action outputs, eliminating discretization
bias. Compared with SAC’s stochastic policy, DDPG’s deterministic policy is more efficient
under stable demand conditions. As the foundation of the TD3 algorithm used in this study,
DDPG exhibits certain limitations in continuous action space control: it uses only a single
Critic network, making its value estimation prone to overestimation. Additionally, its simul-
taneous updates of the Actor and Critic networks introduce instability, and it lacks the target
policy smoothing regularization employed by TD3. In inventory management scenarios, DDPG

demonstrates lower convergence speed and less training stability than TD3.
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Appendix F. Hyperparameter search space and selected results

Similar to De Moor et al. (2022), for each method and each hyperparameter in the ex-
periments, a finite set of candidate values was predefined. The optimal combination was then
selected based on performance on the validation set. It is worth noting that due to computa-
tional limitations, an exhaustive search over all possible combinations was infeasible. Therefore,
we adopted a random grid search strategy. The results reported are relatively conservative, and
more extensive hyperparameter tuning could potentially further improve the performance of the
proposed method.

(1) Hyperparameter selection for WET-TD3

The hyperparameters involved in WET-TD3, along with their symbols, meanings, and
search spaces, are listed in Table F.1. After repeated experimentation, we determine that
across all product experiments and (cp, ) combinations, the optimal values are as follows:
v =083 u =001 0=04 6 = 0.6; o = 0.5; Delay = 2; Epmax = 500; Tiax = 100;
Bax = 200; Apin = 0.001. The values of other hyperparameters under different product and

(ch, cp) combinations are shown in Table F.2.

Table F.1. Introduction to the hyperparameters of WET-TD3.

Hyperparameter Symbol Description Search Range
v Dimension of the trainable 8, 16, 20, 24, 28, 32, 36,
Embedding Dim weight matrix Wpg in  the 40, 64
embedding layer
Encoder Layers Lg Number of layers in Transformer 1, 2, 3, 4
encoder
Feedforward Dim dg Hidden layer dimension of FFN 16, 32, 64, 128, 256, 512,
in Transformer encoder 1024
Discount ¥ Discount factor 0.80, 0.81, 0.82, ..., 0.99
Update Rate 1 Soft update rate of target net- 0.005, 0.01, 0.05, 0.1
works
Action noise o Standard deviation of Gaussian 0.2, 0.4, 0.6, 0.8
noise € on action a
Policy noise o Std. of policy noise ¢ 0.2, 0.4, 0.6, 0.8
Policy noise clip S0 Clipping value for policy noise 0.5, 0.6, 0.7, 0.8
Delay delay Delay steps for target network 1,2, 3,4
updates
Max Episodes Epmax Maximum training episodes 500, 1000
Max Timestep Trax Maximum time steps per episode 100, 200
Max Size Bhrax Size of replay buffer B 200, 300, 400
Batch Size N Batch size sampled per update 8, 16, 32, 64
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(Continued from previous page)

Hyperparameter Symbol Description Search Range

Learning Rate A Ira Learning rate for Actor and tar- 1E-1, 1E-2, 5E-2, 1E-3,
get Actor 5E-3, 1E-4, 5E-4, 1E-5

Learning Rate Q Irg Learning rate for Critic and tar- 1E-1, 1E-2, 5E-2, 1E-3,
get Critic 5E-3, 1E-4, 5E-4, 1E-5

Min Improv Amin Minimum loss improvement for 0.01, 0.001, 0.0001
early stopping

Patience P Epochs to wait without improve- 5, 10, 15, 20, ..., 150
ment

Table F.2. Selected hyperparameters for training WET-TD3.

Experiment (cp,cp) v Lg dg N Ira lrg P
Lavida (1,0.5) 24 4 16 8 1E-03 1E-02 70
(1,1) 24 4 16 8 1E-03 1E-02 100
(1,2) 20 1 64 64 1E-05 1E-02 60
(1,5) 20 2 64 64 1E-05 1E-02 70
(1,10) 20 1 64 64 1E-05 1E-02 70
(1,200 20 1 64 64 1E-05 1E-02 70
(1,50) 20 1 128 64 1E-05 1E-02 100
(1,100) 20 1 64 64 1E-05 1E-02 50
Emgrand  (1,0.5) 24 4 16 8 1E-03 1E-02 100
(1,1) 24 1 1024 32 1E-03 1E-02 20
(1,2) 24 1 512 32 1E-05 1E-02 20
(1,5) 24 1 64 64 1E-05 1E-02 100
(1,10) 24 1 64 64 1E-05 1E-02 100
(1,20) 24 1 512 32 1E-05 1E-02 20
(1,50) 24 1 512 64 1E-05 1E-02 50
(1,100) 24 1 256 32 1E-03 1E-02 50
Haval H6  (1,0.5) 20 1 64 16 1E-03 1E-02 20
(1,1) 20 1 64 64 1E-03 1E-02 10
(1,2) 16 1 16 64 1E-03 1E-02 30
(1,5) 20 1 128 8 1E-03 1E-02 100
(1,10) 16 1 16 16 1E-03 1E-02 10
(1,20) 16 1 16 16 1E-03 1E-02 100
(1,50) 16 1 16 8 1E-03 1E-02 135
(1,100) 16 1 16 8 1E-03 1E-02 30

(Continued on next page)
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Experiment (cp, cp) v Lg dg N Ira Irg P
Camry (1,0.5) 16 1 16 8 1E-03 1E-02 10
(1,1) 24 1 128 32 1E-03 1E-02 10
(1,2) 24 1 64 32 1E-03 1E-02 20
(1,5) 16 1 16 32 1E-03 1E-02 20
(1,10) 16 1 64 32 1E-03 1E-02 20
(1,20) 16 1 64 32 1E-04 1E-02 10
(1,50) 16 1 16 64 1E-04 1E-03 50
(1,100) 20 1 64 64 1E-04 1E-01 10

(2) Hyperparameter selection for No_Feat

The hyperparameters involved in No_Feat, along with their symbols, meanings, and search
ranges, are the same as in Table F.1. After repeated experiments, the optimal values for all
product experiments and (cp, ) combinations are: v = 0.83; u = 0.01; 0 = 04; ¢ = 0.6;
g0 = 0.5; Delay = 2; Epmax = 500; Tinax = 100; Bax = 200; Apin = 0.001. The values of other

hyperparameters under different products and (cp, ¢;) combinations are shown in Table F.3.

Table F.3. Selected hyperparameters for training No_Feat.

Experiment (cp,cp) v Lg dg N Ira Irg P
Lavida (1,05) 24 4 16 8 1E-03 1E-02 100
(1,1) 24 4 16 8 1E-03 1E-02 100
(1,2) 20 1 64 64 1E-05 1E-02 100
(1,5) 20 2 64 64 1E-05 1E-02 100
(1,10) 20 1 64 64 1E-05 1E-02 100
(1,20) 20 1 64 64 1E-05 1E-02 100
(1,50) 20 1 64 64 1E-05 1E-02 100
(1,100) 20 1 64 64 1E-04 1E-02 100
Emgrand  (1,0.5) 24 4 16 8 1E-03 1E-02 100
(1,1) 8 1 64 8 1E-03 1E-02 100
(1,2) 24 1 256 64 1E-05 1E-02 100
(1,5) 24 1 64 64 1E-05 1E-02 100
(1,10) 24 1 64 64 1E-05 1E-02 100
(1,20) 24 1 64 64 1E-05 1E-02 100
(1,50) 16 1 64 64 1E-05 1E-02 100
(1,100) 16 1 64 64 1E-05 1E-02 100
Haval H6 (1,0.5) 20 1 16 8 1E-03 1E-02 100
(1,1) 20 1 64 64 1E-03 1E-02 100

(Continued on next page)
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Experiment (cp,cp) v Lg dg N Ira lrg P
(1,2) 16 1 64 8 1E-03 1E-02 100
(1,5) 24 1 128 16 1E-04 1E-02 200
(1,10) 16 1 64 1E-03 1E-02 100
(1,200 24 1 64 1E-05 1E-02 100
(1,50) 24 1 64 1E-05 1E-02 100
(1,100) 24 3 64 64 1E-05 1E-02 100
Camry (1,0.5) 24 4 16 8 1E-03 1E-02 100
(1,1) 8 1 64 1E-03 1E-02 100
(1,2) 16 1 64 64 1E-03 1E-02 20
(1,5) 24 1 64 64 1E-05 1E-02 100
(1,10) 24 1 64 64 1E-05 1E-02 100
(1,20) 24 1 64 64 1E-04 1E-02 10
(1,50) 16 1 64 64 1E-04 1E-03 20
(1,100) 20 1 64 64 1E-04 1E-01 10

(3) Hyperparameter selection for No_Rev

The hyperparameters involved in No_Rev, along with their symbols, meanings, and search
ranges, are the same as in Table F.1, except that it does not include the hyperparameters
Embedding Dim, Encoder Layers, and Feedforward Dim. After repeated experiments, the
optimal values across all product experiments and (¢, ¢;) combinations are: u = 0.01; 0 = 0.4;
& = 0.6; ¢9 = 0.5; Delay = 2; Epmax = 500; Tinax = 100; Bpax = 200; Apin = 0.001. Other

hyperparameter values are shown in Table F.4.

Table F.4. Selected hyperparameters for training No_Rev.

Experiment (ch,cp) vy N Ira Irg P
Lavida (1,0.5) 0.83 64 1E-04 5E-02 100
(1,1) 0.83 64 1E-03 1E-03 100
(1,2) 0.83 64 1E-03 5E-02 100
(1,5) 0.92 64 1E-03 1E-04 100
(1,10) 0.83 64 1E-05 1E-03 100
(1,20) 0.92 64 1E-05 1E-02 100
(1,50) 0.83 64 1E-05 1E-02 50
(1,100) 0.83 64 1E-04 1E-02 100
Emgrand (1,0.5) 0.83 64 1E-03  5E-02 100
(1,1) 0.83 64 1E-05 1E-02 100
(1,2) 0.83 64 1E-04 1E-02 100
(1,5) 0.83 64 1E-03 1E-02 100
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Experiment (ch,cp) ~ N Ira lrg P
(1,10) 0.83 64 1E-05 1E-03 100
(1,20) 0.92 64 1E-05 1E-02 100
(1,50) 0.83 64 1E-05 1E-02 100
(1,100) 0.83 64 1E-05 1E-02 100
Haval H6 (1,0.5) 0.83 64 1E-03 5E-02 100
(1,1) 0.83 64 1E-03 1E-03 100
(1,2) 0.83 64 1E-03 5E-02 100
(1,5) 0.83 64 1E-03 1E-03 100
(1,10) 0.83 64 1E-05 1E-03 100
(1,20) 0.83 64 1E-03 1E-03 100
(1,50) 0.83 64 1E-05 1E-03 100
(1,100) 0.83 64 1E-05 1E-03 100
Camry (1,0.5) 0.83 64 1E-03 5E-02 100
(1,1) 0.83 64 1E-05 1E-02 100
(1,2) 0.83 64 1E-04 1E-02 100
(1,5) 0.83 64 1E-03 1E-02 100
(1,10) 0.83 32 1E-03 1E-02 50
(1,20) 0.83 64 1E-02 1E-01 50
(1,50) 0.83 8 1E-02 1E-01 50
(1,100) 0.83 8 1E-02 1E-01 50

(4) Hyperparameter selection for DDPG

The hyperparameters involved in DDPG, along with their symbols, meanings, and search
ranges, are the same as in Table F.1, except that it does not include the hyperparameters
Embedding Dim, Encoder Layers, Feedforward Dim, and delay. After repeated experiments,
the optimal values across all product experiments and (cp,c;) combinations are: p = 0.01;
oc=204; 6 =0.6; g0 = 0.5, Epmax = 500; Tinax = 100; Bnax = 200; N = 64; A = 0.001.

Other hyperparameter values are shown in Table F.5.

Table F.5. Selected hyperparameters for training DDPG.

Experiment (cn,cp) ~y Ira lrg P
Lavida (1,0.5) 0.83 1E-03 1E-04 50
(1,1) 0.83 1E-03 1E-04 50
(1,2) 0.83 1E-03 1E-03 50
(1,5) 0.92 1E-03 1E-03 50
(1,10) 0.83 1E-03 1E-03 50
(1,20) 0.83 1E-03 1E-03 50

(Continued on next page)

20



Experiment (ch,cp) ¥ Ira lrg P
(1,50) 0.83 1E-03 1E-03 50
(1,100) 0.83 1E-03 1E-03 50
Emgrand (1,0.5) 0.83 1E-03 5E-02 100
(1,1) 0.83 1E-05 1E-02 100
(1,2) 0.83 1E-03 1E-02 50
(1,5) 0.83 1E-04 1E-02 50
(1,10) 0.83 1E-05 1E-03 100
(1,20) 0.92 1E-05 1E-02 100
(1,50) 0.83 1E-05 1E-03 50
(1,100) 0.83 1E-04 1E-03 50
Haval H6 (1,0.5) 0.83 1E-03 5E-02 100
(1,1) 0.83 1E-03 1E-03 100
(1,2) 0.83 1E-03 5E-02 100
(1,5) 0.83 1E-03 1E-03 100
(1,10) 0.83 1E-05 1E-03 100
(1,20) 0.83 1E-03 1E-03 100
(1,50) 0.83 1E-05 1E-03 100
(1,100) 0.83 1E-05 1E-03 100
Camry (1,0.5) 0.83 1E-03 5E-02 100
(1,1) 0.83 1E-03 1E-03 100
(1,2) 0.83 1E-03 5E-02 100
(1,5) 0.83 1E-03 1E-03 100
(1,10) 0.83 1E-03 1E-02 50
(1,20) 0.83 5E-03 1E-02 50
(1,50) 0.83 1E-02 1E-01 50
(1,100) 0.83 1E-02 1E-01 50

(5) Hyperparameter selection for EAS_Same

The hyperparameters involved in EAS_Same, along with their symbols, meanings, and
search ranges, are listed in Table F.6. After repeated experiments, the optimal values across all
product experiments are: v = 16; dg = 64; Epmax = 500; N = 64; Apin = 0.001. Other values

are shown in Table F.7.

21



Table F.6. Introduction to the hyperparameters of EAS_Same

Hyperparameter Symbol Meaning Search Space
Name
Embedding Dim v Dimension of the trainable 8, 16, 20, 24, 28, 32,

weight matrix Wg in the 36, 40, 64
word embedding layer
Encoder Layers Lg Number of Transformer 1,2,3,4

encoder layers

Feedforward Dim dg Dimension of the hidden 16, 32, 64, 128, 256,
layer in the Transformer 512, 1024
encoder’ s feedforward
network
Max Episodes Epmax Maximum number of 500, 1000
training episodes
Batch Size N Batch size per iteration 8, 16, 32, 64
Learning Rate Ir Learning rate 1E-1, 1E-2, 5E-2, 1E-3,
5E-3, 1E-4, 5E-4, 1E-5
Min Improv Amin Minimum improvement in 0.01, 0.001, 0.0001

loss for early stopping
Patience P Number of epochs allowed 5, 10, 15, 20, ..., 150
without validation

improvement

Table F.7. Selected hyperparameters for training EAS_Same.

Experiment Lg Ir P
Lavida 2 0.01 100
Emgrand 2 0.01 100
Haval H6 1 0.001 100
Camry 1 0.01 50

(6) Hyperparameter selection for DQN

The hyperparameters involved in DQN, along with their symbols, meanings, and search
ranges, are listed in Table F.8. After repeated experiments, the optimal values across all product
experiments and (cp, ¢p) combinations are: Epmax = 500; Bpax = 200; N = 64; Ay, = 0.001;
P = 50. Other values are shown in Table F.9.
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Table D.8. Introduction to the hyperparameters of DQN.

Hyperparameter @ Symbol Meaning Search Space
Name
Discount v Discount factor 0.80, 0.81, 0.82, ...,
0.99
Epsilon € Exploration probability in 0.001, 0.005, 0.01,
e-greedy policy 0.05, 0.1
Delay delay Steps before target network 1,2, 3, 4
update
Max Episodes Epmax Maximum training episodes 500, 1000
Max Size Brax Size of replay buffer B 200, 300, 400
Batch Size N Sample batch size from 8, 16, 32, 64
experience buffer
Learning Rate Ir Learning rate 1E-1, 1E-2, 5E-2,
1E-3, 5E-3, 1E-4,
5E-4, 1E-5
Min Improv Amin Minimum loss improvement  0.01, 0.001, 0.0001
for early stopping
Patience P Epochs allowed without 5, 10, 15, 20, ..., 150
validation improvement
Table D.9. Selected hyperparameters for training DQN.
Experiment (ch,cp) y € delay Ir
Lavida (1,0.5) 0.83 0.01 2 1E-03
(1,1) 0.83 0.01 2 1E-03
(1,2) 0.83 0.01 2 1E-03
(1,5) 0.83 0.01 2 1E-03
(1,10) 0.83 0.01 2 1E-03
(1,20) 0.83 0.01 2 1E-02
(1,50) 0.83 0.01 2 1E-03
(1,100) 0.83 0.01 2 1E-03
Emgrand (1,0.5) 0.83 0.01 2 1E-03
(1,1) 0.83 0.01 2 1E-03
(1,2) 0.83 0.01 2 1E-03
(1,5) 0.90 0.01 2 1E-03
(1,10) 0.83 0.01 2 1E-03

(Continued on next page)
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Experiment (ch,cp) ¥ € delay Ir
(1,20) 0.92 0.01 2 1E-03
(1,50) 083 0.0l 2 1E-03
(1,100) 0.83 0.01 2 1E-03

Haval H6 (1,0.5) 0.83 0.01 2 1E-02
(1,1) 0.83 0.01 2 1E-02
(1,2) 0.80 0.01 2 1E-02
(1,5) 0.95 0.01 2 1E-03
(1,10) 0.83 0.01 2 5E-03
(1,20) 0.95 0.01 2 1E-02
(1,50) 0.90 0.01 2 1E-03
(1,100) 0.90 0.01 2 1E-03

Camry (1,0.5) 0.83 0.01 2 1E-03
(1,1) 0.83 0.01 2 1E-03
(1,2) 0.83 0.01 2 1E-03
(1,5) 0.83 0.01 2 1E-03
(1,10) 0.99 0.01 2 1E-03
(1,20) 0.99 0.001 3 1E-01
(1,50) 0.99 0.001 4 1E-01
(1,100) 0.90  0.001 2 1E-01

(7) Hyperparameter selection for A2C

The hyperparameters involved in A2C, along with their symbols, meanings, and search
ranges, are listed in Table F.10. After repeated experiments, the optimal values across all
product experiments and (cp, ¢p) combinations are: Epmax = 500; Tinax = 200; Apin = 0.001;
P = 50. Other values are shown in Table F.11.

Table D.10. Introduction to the hyperparameters of A2C.

Hyperparameter Symbol Meaning Search Space

Name

Discount v Discount factor 0.80, 0.81, 0.82, ...,

0.99

Entropy Coefficient B Entropy regularization to 0.001, 0.01, 0.1
encourage exploration

Max Episodes Epmax Maximum training episodes 500, 1000

GAE Lambda A GAE bias-variance tradeoff 0.5, 1.0, 1.5, ...,
parameter 0.95, 0.99

(Continued on next page)
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Hyperparameter Symbol Meaning Search Space

Name
Batch Size N Training batch size per 8, 16, 32, 64
iteration
Learning Rate Ir Learning rate 1E-1, 1E-2, 5E-2,
1E-3, 5E-3, 1E-4,
5E-4, 1E-5
Max Timestep Tinax Maximum training steps per 100, 200
episode
Patience P Epochs allowed without 5, 10, 15, 20, ..., 150
validation improvement
Table D.11. Selected hyperparameters for training A2C.
Experiment (ch,cp) ~y I5; Ir A N
Lavida (1,0.5) 0.99 0.01 1E-02 0.95 32
(1,1) 0.99 0.01 1E-02 0.95 32
(1,2) 0.99 0.01 1E-02 0.95 32
(1,5) 0.99 0.01 1E-02 0.95 32
(1,10) 0.99 0.01 1E-01 0.90 64
(1,20) 0.99 0.01 5E-02 0.80 64
(1,50) 0.99 0.001 1E-01 0.70 64
(1,100) 0.99 0.01 5E-02 0.83 64
Emgrand (1,0.5) 0.90 0.01 5E-03 0.95 64
(1,1) 0.90 0.01 5E-03 0.95 64
(1,2) 0.90 0.01 5E-03 0.95 64
(1,5) 0.83 0.01 1E-02 0.95 64
(1,10) 0.90 0.001 1E-02 0.99 64
(1,20) 0.90 0.01 1E-01 0.80 64
(1,50) 0.95 0.001 5E-02 0.85 64
(1,100) 0.90 0.001 1E-01 0.80 64
Haval H6 (1,0.5) 0.83 0.01 1E-02 0.95 32
(1,1) 0.83 0.01 1E-02 0.95 32
(1,2) 0.99 0.01 1E-03 0.99 64
(1,5) 0.99 0.01 1E-02 0.95 64
(1,10) 0.80 0.001 1E-01 0.95 64
(1,20) 0.99 0.01 1E-01 0.85 64
(1,50) 0.85 0.001 1E-01 0.80 64

(Continued on next page)
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Experiment (ch,cp) ~ 8 Ir A N
(1,100) 0.99 0.001 1E-02 0.95 64
Camry (1,0.5) 0.83 0.01 1E-02 0.95 64
(1,1) 0.83 0.01 1E-02 0.99 64
(1,2) 0.99 0.01 1E-02 0.99 64
(1,5) 0.95 0.001 5E-02 0.85 64
(1,10) 0.99 0.001 5E-02 0.99 64
(1,20) 0.99 0.001 5E-02 0.99 64
(1,50) 0.99 0.01 1E-01 0.85 64
(1,100) 0.97 0.01 5E-02 0.50 64

(8) Hyperparameter selection for SAC

The hyperparameters involved in SAC, along with their symbols, meanings, and search
ranges, are listed in Table F.12. After repeated experiments, the optimal values across all
product experiments and (cp, ¢p) combinations are: v = 0.83; p = 0.01; Epmax = 500; Tiax =
100; Bmax = 200; Apin = 0.001. Other values are shown in Table F.13.

Table F.12. Introduction to the hyperparameters of SAC.

Hyperparameter Symbol Meaning Search Space
Name
Discount v Discount factor 0.0.80, 0.81, 0.82, ...,
0.99
Update Rate I Target network soft update  0.001, 0.005, 0.01,
rate 0.05, 0.1
Max Episodes Epmax Maximum training episodes 500, 1000
Max Timestep Tinax Maximum steps per episode 100, 200
Max Size Bhrax Replay buffer size B 200, 300, 400
Batch Size N Batch size per iteration 8, 16, 32, 64
Learning Rate A lra Actor and target Actor 1E-1, 1E-2, 5E-2,
learning rate 1E-3, 5E-3, 1E-4,
5E-4, 1E-5
Learning Rate Q Irg Critic and target Critic 1E-1, 1E-2, 5E-2,
learning rate 1E-3, 5E-3, 1E-4,
5E-4, 1E-5
Min Improv Amin Min loss improvement for 0.01, 0.001, 0.0001
early stop
Patience P Epochs allowed without 5, 10, 15, 20, ..., 150

validation improvement
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Table F.13. Selected hyperparameters for training SAC.

Experiment (cn,cp) N lra lrg P
Lavida (1,0.5) 64 1E-04 1E-03 50
(1,1) 64 1E-04 1E-03 20
(1,2) 64 1E-04 1E-02 50
(1,5) 64 1E-04 1E-04 50
(1,10) 64 1E-04 1E-03 50
(1,20) 64 1E-05 1E-02 100
(1,50) 64 1E-05 1E-03 100
(1,100) 64 1E-03 1E-02 50
Emgrand (1,0.5) 32 1E-04 1E-03 50
(1,1) 64 1E-05 1E-02 100
(1,2) 32 1E-05 1E-03 50
(1,5) 64 1E-05 1E-03 50
(1,10) 64 1E-05 1E-03 50
(1,20) 64 1E-05 1E-03 50
(1,50) 64 1E-04 1E-02 50
(1,100) 64 1E-05 1E-03 100
Haval H6 (1,0.5) 64 1E-03 5E-02 100
(1,1) 64 1E-03 1E-03 100
(1,2) 64 1E-03 1E-02 100
(1,5) 64 1E-03 1E-03 100
(1,10) 64 1E-05 1E-03 100
(1,20) 64 1E-03 1E-03 100
(1,50) 64 1E-05 1E-03 100
(1,100) 64 1E-05 1E-03 100
Camry (1,0.5) 64 1E-03 5E-02 100
(1,1) 64 1E-05 1E-02 100
(1,2) 64 1E-04 1E-02 100
(1,5) 64 1E-03 1E-02 100
(1,10) 32 1E-03 1E-02 100
(1,20) 64 1E-02 1E-01 100
(1,50) 32 1E-02 1E-02 50
(1,100) 32 1E-02 1E-02 50

(9) Hyperparameter selection for PPO
The hyperparameters involved in PPO, along with their symbols, meanings, and search

ranges, are listed in Table F.14. After repeated experiments, the optimal values across all
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Table F.14. Introduction to the hyperparameters of PPO.

product experiments and (cp, ¢p) combinations are: € = 0.2; v = 0.99; Eppax = 500; Bpax =
200; N = 64; Apin = 0.001; P = 50. Other values are shown in Table F.15.

Hyperparameter Symbol Meaning Search Space
Name
Discount 0% Discount factor 0.80, 0.81, 0.82, ...,
0.99
Clip Epsilon € Clipping threshold for 0.001, 0.01, 0.1
policy update
Max Episodes Epmax Maximum training episodes 500, 1000
GAE Lambda A GAE bias-variance 0.9, 0.95, 0.99
parameter
Max Size Brax Replay buffer size 200, 300, 400
Batch Size N Training batch size per 8, 16, 32, 64
iteration
Learning Rate A lra Policy network learning rate 1E-1, 1E-2, 5E-2,
1E-3, 5E-3, 1E-4,
5E-4, 1E-5
Learning Rate Q Irg Value network learning rate  1E-1, 1E-2, 5E-2,
1E-3, 5E-3, 1E-4,
5E-4, 1E-5
Update Epochs Epy Policy update epochs per 10, 20, 30, 40, 50
batch
Max Timestep Thax Max steps per episode 100, 200
Patience P Epochs allowed without 5, 10, 15, 20, ..., 150
validation improvement
Table F.15. Selected hyperparameters for training PPO.
Experiment (ch,cp) A Ira Irg Ep,
Lavida (1,0.5) 0.95 1E-03 1E-03 10
(1,1) 0.95 1E-03 1E-03 20
(1,2) 0.95 1E-03 1E-03 40
(1,5) 0.90 1E-03 1E-03 20
(1,10) 0.95 1E-03 1E-03 20
(1,20) 0.99 1E-03 1E-03 40
(1,50) 0.95 1E-03 1E-03 20

(Continued on next page)
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Experiment (ch,cp) A Ira Irg Ep,
(1,100) 0.99 1E-03 1E-03 40
Emgrand (1,0.5) 0.99 1E-03 1E-03 20
(1,1) 0.95 1E-03 1E-03 20
(1,2) 0.99 1E-03 1E-03 20
(1,5) 0.99 1E-03 1E-03 20
(1,10) 0.99 1E-03 1E-03 20
(1,20) 0.99 1E-03 1E-03 30
(1,50) 0.99 1E-03 5E-03 30
(1,100) 0.99 1E-03 5E-03 40
Haval H6 (1,0.5) 0.99 1E-03 1E-03 20
(1,1) 0.99 1E-03 1E-03 20
(1,2) 0.95 1E-03 1E-03 40
(1,5) 0.99 1E-03 1E-03 30
(1,10) 0.99 1E-03 1E-03 30
(1,20) 0.95 1E-03 1E-03 10
(1,50) 0.95 1E-03 1E-03 30
(1,100) 0.99 1E-03 1E-03 20
Camry (1,0.5) 0.95 1E-03 1E-03 20
(1,1) 0.95 1E-03 1E-03 20
(1,2) 0.95 1E-03 1E-03 20
(1,5) 0.99 1E-03 1E-03 40
(1,10) 0.99 5E-03 5E-03 20
(1,20) 0.99 1E-03 1E-03 30
(1,50) 0.95 5E-03 1E-02 40
(1,100) 0.95 1E-01 1E-01 20
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