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Supplementary Methods
Tumor vaccination murine model
To establish an adaptive immune response against Hepa1-6 cells, 8-week-old male C57BL/6 mice were subcutaneously inoculated in the upper axillary region with 5×10⁵ Hepa1-6 cells. After 3 weeks, the primary tumors were surgically excised to allow immune memory development.
For tumor rechallenge, tumor fragments (2 mm×2 mm×2 mm) derived from P4-generation tumors previously passaged in immunodeficient NCG or Rag1⁻/⁻ mice were subcutaneously implanted in parallel into the lower axillary regions of the vaccinated mice. Tumor engraftment and growth were monitored and recorded over 4 weeks to assess tumor formation rates and volumetric changes.
In vitro cytotoxicity assay
Tumor cells were labeled with carboxyfluorescein succinimidyl ester (CFSE) according to the manufacturer’s instructions. Labeled tumor cells were seeded at a density of 1×105 cells per well. Effective cells (NK92MI, primary NK cell, purified OT-1 T cells) were then added to the wells at varying E:T ratios. The co-culture was incubated at 37°C in a humidified incubator with 5% CO2 for 4-24 hours, depending on the experimental design. After incubation, cells were stained with propidium iodide (PI) to identify dead cells. The samples were analyzed using flow cytometry. CFSE-positive tumor cells and PI-positive dead cells were quantified to determine the percentage of tumor cell lysis.
.
For T cell cytotoxicity assay, OVA-specific TCR transgenic OT-1 cells were isolated from OT-1 mice, and the OVA–derived peptide SIINFEKL was used to activate OT-1 cells. OVA-Hepa1-6 cells were generated by lentiviral vector OVA.

Scanning electron microscopy (SEM) Imaging
Tumor cells were seeded on glass coverslips at a density of 5×104 cells per well. NK92MI cells were added to the wells at an E:T ratio of 2:1. The co-culture was incubated for 1 hour at 37°C. Then, sample were washed with phosphate buffer (0.1 M, pH 7.4), and fixed in 2.5% glutaraldehyde solution overnight at 4°C. Next, samples were fixed with 1% osmium solution for 1.5 hours and washed 3 times with PBS, followed by a graded series of ethanol (50%, 70%, 90% and 100%) and dried by Critical Point Dryer CPD 300 (Leica). Finally, dried samples were sputter coated with Pt-palladium (8mA, 60s) by high vacuum ion sputtering apparatus (Quorum Q150T ES plus) and observed with a scanning electron microscope Nova Nano 450 (Thermo FEI) at 5kv.

CRISPR/Cas9 whole-genome knockout library screening
HepG2 WT cells are transduced with a lentiviral vector containing a pooled library of guide RNAs (gRNAs) targeting the entire genome (19050 genes and 1864 miRNAs, 6×gRNAs/gene). After selection with 2 µg/mL puromycin to ensure stable integration, the cells are subjected to the corresponding conditions (NK92MI-cytotoxicity group: E:T ration=5:1, the NK92MI cells and dead cells were washed away when the killing rate reached about 50%, then live cells were collected and counted. Control group: Routine culture, the excess cells were randomly discarded when the cells were collected, ensuring the remaining cell count matched with NK92MI-cytotoxicity group). Genomic DNA of surviving cells is extracted. The integrated gRNA sequences are amplified by PCR and sequenced. The sequencing data is analyzed to identify gRNAs that are enriched (cytotoxicity enhancement) or depleted (cytotoxicity resistance).

scRNA sequencing and snRNA sequencing
Library construction. For scRNA-seq, single-cell suspensions were loaded to 10x Chromium to capture 10000 single cells according to the manufacturer’s instructions of 10X Genomics Chromium Single-Cell 3 kit (V3). For snRNA-seq, nuclei were isolated with Nuclei EZ Lysis buffer (NUC-101; Sigma-Aldrich) supplemented with protease inhibitor (5892791001; Roche) and RNase inhibitor (N2615; Promega and AM2696; Life Technologies). The following cDNA amplification and library construction steps were performed according to the standard protocol. Libraries were sequenced on an Illumina NovaSeq 6000 sequencing system (paired-end multiplexing run,150bp) by LC-Bio Technology co.ltd. (HangZhou,China) at a minimum depth of 20,000 reads per cell.
Read alignment and quality control. Raw fastq data of scRNA-seq and snRNA-seq were preprocessed using CellRanger software (v7.1.0, 10x Genomics) against the pre-built GRCh38 human reference genome (GENCODE v32/Ensembl98). The cell-by-gene count metrices obtained from CellRanger’s output were subsequently imported into R (v4.2.0) with Seurat package (v4.2.0) for downstream analyses1. Quality control was performed to filter out low-quality cells. For HepG2 samples (scRNA-seq), cells with high percentage of mitochondrial genes (percent.mt  20%), cells with Unique Molecular Identifier count (nUMI) less than 4,000 or more than 50,000, cells with detected genes (nGene) less than 2,000 or more than 80,000 were removed. For patient samples (snRNA-seq), considering the high cross-patient heterogeneity, threshold for nUMI and nGene of each sample was decided by runScStatistics of scCancer package (v2.2.1) respectively, also cells with nUMI ≤ 400, nGene ≤ 500 or percent.mt  4% were discarded2.
scRNA-seq data processing. The filtered count matrices were integrated and processed mainly with Seurat package. Data normalization, highly variable gene (HVG) detection, data scaling, and principle component analysis (PCA) was conducted with Seurat’s NormalizeData (normalization.method = ‘LogNormalize’), FindVariableFeatures (nfeatures = 5,000), ScaleData (regress out ‘nCount_RNA’) and runPCA function. Batch effect was then corrected by harmony algorithm (v0.1.1) based on precomputed PCA dimensions3. Subsequently, the top 25 harmony dimensions were taken as input for Seurat’s RunUMAP to achieve 2D Uniform Manifold Approximation and Projection (UMAP) visualization. Following that, shared nearest neighbor (SNN) based cell clustering was run by Seurat’s FindNeighbors and FindClusters (resolution = 0.3) function based on the top 25 harmony embeddings.
snRNA-seq processing and annotation. Considering the high cross-patient variability, integration of snRNA-seq was conducted following Seurat’s ‘anchor-based’ integration workflow. In brief, for each sample, data normalization (normalization.method = ‘LogNormalize’), HVG detection (nfeatures = 2,000) and data scaling (regress out ‘nCount_RNA’ and ‘percent.mt’) were performed respectively as described before. After that, anchors for data integration were identified by FindIntegrationAnchors with ‘cca’ reduction. All patient samples were integrated together with IntegrateData function based on the top 30 dimensions. PCA analysis was then performed with RunPCA. Following that, UMAP visualization, cell clustering was carried out by RunUMAP FindNeighbors and FindClusters (resolution = 0.1) based on the top 30 PCA dimensions. Cell types were annotated manually based on canonical marker gene expression. For specific cell types, including epithelial, NK cell and T cell, above procedure was repeated for subtype annotation.

Spatial transcriptome sequencing
Library construction. The samples were sectioned coronally with a cryostat at 10 mm thickness (Leica, CM1950). Tissue sections were then fixed on a spatially barcoded array with 3.6%–3.8% formaldehyde solution at room temperature for 10 min, then treated for one min with isopropanol and airdried. To acquire the appropriate areas for Visium Spatial slides, we quick H&E staining of series of sections. Tissue fixation, HE staining, and bright-field imaging were used to establish optimal conditions for permeabilization. Tissue sections were placed on Visium spatial tissue optimization slides (10x Genomics) with six capture areas covered, one as a positive control and one as a negative control. After tissue staining, imaging and pre-permeabilize, tissues were immediately permeabilized and followed by in situ reverse transcription. Finally, libraries were sequenced on the Illumina Nextseq platform using paired-end sequencing.
Read alignment. Raw fastq data and H&E images of spatial transcriptome (ST) were processed using SpaceRanger (v2.1.1, 10x Genomics). Considering the hybrid genetic background of immune-humanized mice, a customized reference genome combining human GRCh38 (GENCODE v32/Ensembl98) and mouse mm10 (GENCODE vM23/Ensembl98) reference genome was constructed using SpaceRanger’s mkref function for read alignment. Besides, considering that transcripts within tumor region should be mainly of human origin, a separate sequence alignment against the GRCh38 reference genome was also performed. At the same time, species classification (human/mouse) of sequencing reads was evaluated using Xenome. To screen out human transcripts dominated spots for subsequent analysis, we measure the proportion of human-origin transcripts in each spot by defining the human ratio with the following formula:
.
Region annotation and quality control. SpaceRanger generated cloupe file was then imported into Loupe Browser software (v7.0.1, 10x Genomics). For each sample, the graph-based clustering was performed based on the alignment result obtained via the hybrid reference genome. According to the H&E images as well as the gene expression of each cluster, spots outside the main region were first discarded and labeled as ‘drop’, then the left spots were preliminarily classified into human-origin tumor (hTumor), peri-tumor (peri-hTumor), mouse-origin hepatocyte (mHep), mouse-origin red blood cell (mRBC) and mouse-origin stromal cell (mStromal) regions. In brief, we classified spot clusters presenting high ‘human ratio’ as well as high expression of canonical HCC marker genes (GPC3, AFP, EPCAM, ALB) as ‘hTumor’, and manual adjustments were performed to this region according to corresponding H&E images. To facilitate the study of immune infiltration in the tumor periphery, we categorized the region extending three spots away from the ‘hTumor’ area, which exhibit moderate ‘human ratio’, as ‘peri-hTumor’. Regions further away from the ‘peri-hTumor’ area were classified as ‘mHep’, which representing specific expression of mouse hepatocyte signatures (Alb, Ttr). At the same time, in the 4W samples, we observed significant intratumoral heterogeneity within the ‘hTumor’ area. Thus, clusters within the ‘hTumor’ regions but with high expression of red blood cell (RBC) marker genes (Hbb-a1, Hba-a2) or stromal signature genes (Col1a1, Vim) were further classified as ‘mRBC’ and ‘mStromal’ region respectively. In the downstream analysis, we mainly focused on the hTumor and surrounding peri-hTumor area, thus the spot-by-gene count matrix generated by SpaceRanger based on the GRCh38 reference genome was then imported into R and processed with Seurat (v5.0.1)4. Low-quality spots, including spots with high percentage of mitochondrial genes (percent.mt   10%) or hemoglobin genes (precent.hb  2%) and spots with nUMI ≤ 500 were all excluded from further analysis.
Data integration and clustering. Profile of all samples was integrated after data normalization performed with SCTransform function. Then we extracted spots within the hTumor regions and performed PCA and clustering via Seurat’s runPCA, FindNeighbors (dims = 1:11) and FindClusters (resolution = 0.1) function. hTumor regions spots was then classified into hC1-hC6 clusters.
[bookmark: _Hlk196765557]ST analyses. SpatialDecon (v1.8.0) was run to estimate tumor purity and immune infiltration within ST spots5. Annotation of the hC2-enriched ROI area (‘Core’) was performed using SPATA2 toolkit (v2.0.4)6. Spots surrounding the selected ‘Core’ region was then screened and binned into Circle 1-4 by distance to the “Core” area via plotSurfaceIAS function. Spatial trajectory was constructed with SPATA2’s createSpatialTrajectories function. 
DEG analyses and pathway enrichment
Differentially expressed genes (DEGs) analysis: for scRNA/snRNA-seq data, DEGs were identified by Seurat’s FindAllMarkers function, with threshold set to be FDR < 0.25 and |log2FC| > 0.25; For bulk-seq data, DEGs were identified by the R package "limma" (version 3.58.1). The criteria for screening included |log2(FC)| > 1 and an adjusted P-value < 0.05. P-value correction was performed using the Benjamini-Hochberg (BH) method. To further explore potential functions played by DEGs, over-representation analysis (ORA) was carried out by enrichGO, enrichKEGG functions of clusterProfiler package (v4.11.0.2)7. Gene Set Enrichment Analysis (GSEA) analysis was performed by fgsea (v1.24.0) on pre-rank gene list against gene set obtained via msigdbr (v7.5.1)8. Enrichment and network visualization of relevant pathways was achieved by aPEAR (v1.0)9.

Calculation of signature score
Signature gene sets associated with NK activation ligand, HCC stemness, NK function state, hepatocyte characteristics, and T cell phenotype were obtained from previous research (Supplementary Table. 1). For comparison of cholesterol metabolism between groups, signature gene sets were obtained via msigdbr (v7.5.1) msigdbr: MSigDB Gene Sets for Multiple Organisms in a Tidy Data Format. Signature score of specific gene set was calculated using Seurat’s AddModuleScore function.

Metabolism analyses
Signature score of metabolism pathways in single-cell resolution was quantified by scMetabolism (v0.2.1) against the REACTOME gene sets10.

Survival analyses
The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset was obtained from the GDC data portal (https://portal.gdc.cancer.gov/). Low-expression genes with the sum of FPKM across all samples less than 10 were discarded. We extracted primary tumor samples with overall survival under 5 years (n = 365) and quantified the transcriptional similarity between LIHC samples and HepG2 clusters with Spearman’s correlation coefficient. For each HepG2 cluster, Pearson’s correlation was then utilized to examine the relationship between overall survival and similarity to HepG2 cluster of LIHC samples. Also, LIHC samples were stratified into high and low groups according to their transcriptional similarity to HepG2 groups. Following that, survival analysis was run by survival (v3.5.3) and survminer (v0.4.9).

Trajectory analyses
For HepG2 cells and patients’ epithelial cells, Monocle3 (v1.0.0) algorithm were utilized to infer trajectory and corresponding pseudotime of single cells11. Gene expression trend along with tumor evolution was predicted based on Monocle3 calculated pseudotime. The HepG2 trajectory was verified by Slingshot (v2.6.0), which shows high consistency12. CytoTRACE toolkit (v0.3.3), which mainly focus on cell differentiation state, was also applied to construct cellular trajectory and quantify stemness level of cells13.

Cell-cell communication analysis
For both patient groups (NK-S, NK-R), expression matrix and cell type information of all cells were extracted and imported into CellPhoneDB (statistical analysis mode) respectively to infer potential interactions between different cell types. After that, state of coinhibitory and costimulatory ligand-receptor (LR) pairs predefined by CellPhoneDB within each group were screened out via plot_cpdb function provided by ktplots (v1.2.3)14. Cell state specific LR pairs in both groups were subsequently visualized using ggplot2 (v3.5.1).

Cell state classifier
To verify that the NK-trained tumor cell evolution observed in HepG2 cells in vitro also exists in in-vivo patient level, the single cell classification software scPred (v1.9.2) was employed15. Following the standard workflow, we first divided previously obtained HepG2 clusters into three cell states (WT-enriched, Mixed, NKR-enriched) based on their cell components. Next, feature space for classifier training was created via getFeatureSpace. Following that, classifiers for each cell state were trained by trainModel based on Support Vector Machines (SVM) model with a radial kernel. Model performance was evaluated by calculation (get_probabilities()) and visualization (plot_probabilities()) of training probabilities for HepG2 cells. Finally, all patients’ epithelial cells were classified and aligned onto a low-dimensional space using the pre-trained classifier by scPredict function.


Supplementary Figure Legend
Figure. S1 Spatial Distribution of NK Cells Positively Correlates with Early Transcriptome Evolution of Liver Cancer
A. Bar plots show the proportions of hCD4⁺, hCD8⁺, hCD19⁺, hCD56⁺, and other cells among hCD45⁺ cells in peripheral blood from each individual immune-humanized hHSC-NCG-hIL15 mice (n = 5).
B. Liver-specific epithelial cell phenotype score of indicated liver cancer cells (n = 3) were evaluated by GSVA based on transcriptomic data ( **P < 0.01, ****P < 0.0001, unpaired Student’s t-test)..
C. H&E staining of all spatial transcriptomic samples taking from immune-humanized mice.
D and E. Spatial distribution of all spatial transcriptome spots colored by nFeatures Spatial, nCount Spatial (D) and human ratio (E).
F. Based on the maker gene expression level and corresponding H&E images, ST spots were first classified into the human-origin tumor (hTumor), peri-tumor (peri-hTumor), mouse-origin hepatocyte (mHep), mouse-origin red blood cell (mRBC) and mouse-origin stromal cell (mStromal) regions. 
G. Donor proportion (1W-4W samples) of each individual cluster (hC1-hC7 sub-population) identified in hTumor region.
H and I. Based on the spatial distribution characteristics of different clusters, the 1W2 sample was mainly divided into three regions: hC1-enriched, hC2-enriched, and peri-hTumor region (H). Immunocyte distribution was significantly higher in the hC2-enriched and peri-hTumor regions compared to the hC1-enriched region (I, ***P < 0.001, unpaired Student’s t-test).
J. [bookmark: _Hlk171982243]Deconvolution analysis of 1W2 sample confirmed NK cells were the most infiltrated humanized immunocytes.
K. Expression level of NK cell, B cell, Macrophage, CD4+ cell marker genes in 1W1 Visium slice.
L. Spatial transcriptome of 1W2 sample colored by NK signature score.
M. Expression level of NK cell marker genes in 1W2 Visium slice.
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Figure. S2 NK Cell Drives Liver Cancer Evolution in Murine Models
A. Immunofluorescence staining of tumor tissues in the humanized mouse model revealed early infiltration of NK cells into the tumor region. In contrast, CD8+ T cells exhibit minimal infiltration starting in the 2nd week.
B. Hepa1-6 P4 tumors from NCG and Rag1-/- mice were subcutaneously transplanted into corresponding mice, tumor growth was monitored over 4 weeks. The graph presents individual tumor growth curves for each mouse.
C. HepG2 P4 tumors from different sources were subcutaneously transplanted into corresponding mice, and tumor growth was monitored over 4 weeks. The graph presents individual tumor growth curves for each mouse.
D and E. Primary cells from Hepa1-6 P4 tumors were labeled with luciferase and injected 5×105 cells orthotopically into the liver of Rag1-/- (D) and NCG (E) mice. Tumor progression was tracked and quantified using IVIS imaging.
F. Primary cells from HepG2 P4 tumors were labeled with luciferase and injected 2×106 cells orthotopically into the liver of NCG mice. Tumor progression was tracked and quantified using IVIS imaging.
G. This heatmap illustrates the differential gene expression profiles between Hepa1-6 tumors from NCG and Rag1-/- mice as revealed by bulk sequencing (|log2(fold-change)|≥ 1, P< 0.05).
H. This heatmap illustrates the differential gene expression profiles between HepG2 tumors from different sources as revealed by bulk sequencing (|log2(fold-change)|≥ 1, P< 0.05).
I and J. Primary cells from P4 tumors (I for HepG2 tumors, J for Hepa1-6 tumor) were subjected to cytotoxicity assays using NK92MI cells (I) or murine primary NK cells (J) at various E:T ratios (***P < 0.001, one-way ANOVA test).
K and L. Expression levels of NK activating ligands in tumors across different passages were quantified using RT-qPCR (K for Hepa1-6 tumors, L for HepG2 tumor) .
M. Flow cytometry analysis of DX5⁺ cells in mouse liver showed that anti-Asialo GM1 antibodies effectively depleted hepatic NK cells.
N. In the 4th week post-transplant of Hepa1-6 P4 tumors in sensitized mice, the tumor formation rate was quantified.

Figure. S3 Alterations of Liver Cancer Cell State Driven by NK Cells Lead to Evolution
A. WT cells labeled with GFP and NK-R cells labeled with RFP were mixed in a 1:1 ratio and plated. NK92MI cells were added at varying E:T ratios and co-cultured for 4 hours. After removing NK cells and dead cells, fluorescence images were captured. Left: Representative fluorescence images at different E:T ratios. scale bar, 100 μm. Right: Quantification of surviving WT/NK-R cells post-cytotoxicity (*P < 0.05, **P < 0.01, ***P < 0.001, unpaired Student’s t-test).
B. Expression levels of NK activating ligands in HepG2/HCCLM3 WT/NK-R cells were quantified using RT-qPCR (*P < 0.05, **P < 0.01, ***P < 0.001, unpaired Student’s t-test).
C. The expression levels of HLA-A, HLA-C, and HLA-E on the surface of HepG2/HCCLM3 WT and NK-R cells were quantified using flow cytometry.
D. The expression levels of HLA-A, HLA-C, and HLA-E on the surface of HepG2 WT and NK-R (NK-stimulation or not) cells were quantified using flow cytometry.
E. Ovalbumin (OVA)-specific T cell cytotoxicity assay was conducted to assess the sensitivity of HepG2 WT and NK-R cells to T cell (**P < 0.01, unpaired Student’s t-test).
F. In vitro 3D tumor sphere assays were performed using HepG2/HCCLM3 WT/NK-R cell. Left: the representative pictures were shown. Right: the diameter of the sphere was measured and analyzed Scale bar, 100 μm. (**P < 0.01, unpaired Student’s t-test).
G. 2×106 HepG2 or HCCLM3 WT/NK-R cells were subcutaneously transplanted into NCG mice, and tumor growth was monitored over 4 weeks (***P < 0.001, one-way ANOVA test).
H. Representative immunohistochemistry images showing the expression level of CD31 (marker of vascular endothelial cell) in corresponding tumors. Scale bars, 100 μm.
I. Real-time capture of HepG2/HCCLM3 WT/NK-R cell migration was performed on the xCELLigence System and RTCA DP Instrument over 48 hours. Data was processed by RTCA Software 2.0 (***P < 0.001, one-way ANOVA test).
J. 2×106 HCCLM3 WT/NK-R cells were injected into NCG mice via the tail vein. Tumor metastasis was observed using IVIS after 8 weeks. Left: Metastasis in individual mice. Right: Quantitative analysis of metastatic foci fluorescence (**P < 0.01, unpaired Student’s t-test).
K. NK92MI cells were co-cultured with HepG2 WT or NK-R cells at a 1:1 ratio. At specific time points, NK92MI cells were collected and the expression levels of activating/recognition receptors were assessed using RT-qPCR.
L. Flow cytometry was used to assess the activation state of NK92MI cells under different pre-treatment conditions, focusing on effector molecules (IFNγ, TNFα, GZMB, and PRF) and the activation marker CD107a (*P < 0.05, ***P < 0.001, one-way ANOVA test).
M. The cytotoxicity of NK92MI cells against HepG2 WT cells under different pre-treatment conditions was assessed by in vitro cytotoxicity assay (***P < 0.001, one-way ANOVA test).
N. Stacked bar plot displays cell composition of each HepG2 cluster, colored by sample group.
O. Dot plot shows expression level of the most significantly up-regulated and down-regulated DEGs in NK-R versus WT cells. Dots are colored by corresponding average expression value, and the dot size indicated expression percentage.
P. UMAP showed the landscape of tumor from NK-S/R patients. Each dot represents an individual cell, color-coded according to its cell type. The top panel shows the cell type distribution across all patients. The bottom panel separates the UMAP plots based on the patient group, with NK-S (left) and NK-R (right).
Q. Follow-up data shows 33.3% (9/27) of NK-R patients had tumor recurrence within 30 months after radical resection, while no NK-S patients have experienced recurrence.

Figure .S4 Enhancement of Cancer Stemness is a Prominent Feature of NK Cell-Driven Tumor Evolution
A. Line plot displas Slingshot predicted cell trajectory colored by cell cluster in UMAP embedding.
B. Identification of candidate tumorigenic genes associated with tumor evolution. Genes rank-ordered by the difference in their Pearson correlations with CytoTRACE in HepG2 NK-R versus HepG2 WT. The top 10 genes that are predicted to be specifically associated with less differentiated tumor cell.
C. Lollipop plot showing CytoTRACE score rank of all detected genes, colored by corresponding log2FC of gene expression in NK-R versus WT cells. Genes related to tumor stemness are specifically highlighted and enlarged in purple.
D. Raincloud plot depicting the distribution of epithelial characteristics of WT and NK-R cells. For the boxplot, center line represents the median, box limits correspond to the 25th, 75th percentiles and the whiskers extend to 1.5IQR.
E. Beeswarm plot showing CytoTRACE score distribution of hTumor clusters, with inter-cluster t-test comparison result annotated (****P < 0.0001, unpaired Student’s t-test).
F and G. NK-R groups of A375, MCF-7 and PANC-1 cell were obtained through the aforementioned in vitro co-culture system. Bulk-seq (F) and GSVA (G) were used to analyze the differences in tumor stemness signatures (**P < 0.01, ***P < 0.001, unpaired Student’s t-test).


Figure. S5 Cholesterol Metabolism Mediates Liver Cancer Evolution Driven by NK Cells
A. This graph shows quality control results of the CRISPR/Cas9 whole-genome library screening, including gene distribution and gRNA distribution, which indicated a robust representation ensured the reliability of the screening process.
B. This graph shows the selection results of CRISPR/Cas9 whole-genome library screening, with target genes ranked by RRA score.
C. PCA plot showing expression of the top 5 PC1 contribution genes.
D. Network depicting cluster of molecular functions (MF terms of GO) played by the top 20 contributed genes in PC1. Clusters are annotated according to the main biological theme of containing pathways.
E. Lipidome analysis of cell membrane showed that cholesterol was one of the most different components.
F. The expression levels of LXRα in cell model, murine model and patient cohort during tumor evolution were detected by western blot.
G. The expression levels of LXRα influenced by NK cell stimulation (0-4 circle) was detected by western blot.
H. Total cholesterol content of 2×106 tumor cells (with NK cell stimulation or not) was measured using the Amplex Red cholesterol assay kit and standardized (***P < 0.001, unpaired Student’s t-test).
I. The expression levels of LXRα under corresponding conditions was detected by western blot. Pre-stimulation of NK92MI cells with IL-2/IL-15 could enhance their capacity to secrete cytokines.
J. The expression levels of LXRα influenced by perforin stimulation was detected by western blot.
K. Total cholesterol content of 2×106 tumor cells (with perforin stimulation or not) was measured using the Amplex Red cholesterol assay kit and standardized (***P < 0.001, unpaired Student’s t-test).
L. NK-R groups of A375, MCF-7 and PANC-1 cell were obtained through the aforementioned in vitro co-culture system. Bulk-seq and GSVA were used to analyze the differences in cholesterol efflux ability between them (*P < 0.05, ***P < 0.001, ****P < 0.0001, unpaired Student’s t-test).
M and N. Corresponding tumor cells were treated with LXR agonists (GW3965, T0901317, LXR-623, M) or LXR inhibitors (GSK2003, SR9238, N) for 48 hours, followed by assessment of changes in cholesterol content (***P < 0.001, one-way ANOVA test).
O. HepG2 WT cells were cultured long-term in standard medium supplemented with 2 μM GW3965, and cell growth was assessed using the CCK8 assay. Results indicated that low concentrations of GW3965 did not significantly inhibit tumor cell growth (one-way ANOVA test).



Figure .S6 LXR Activation Enhances the Efficacy of Anti-LAG-3 Immunotherapy in HCC
A. Expression trends of the target gene (related to cholesterol efflux and tumor stemness) across different tumor stages in the TCGA-BRCA and TCGA-SKCM cohorts.
B. Spatial transcriptomic maps of the remaining five HCC patients treated with ICIs. All samples were analyzed using the NKTEPM algorithm. The responders harbored a distinct population of HepG2 WT-like tumor cells, whereas nonresponders showed an exclusive presence of HepG2-NKR-like cells.
C. Cohorts related to immunotherapy (ICBatlas database, including Melanoma and NSCLC cohorts) show that tumor LXR expression levels are lower in the non-response group compared to the response group.
D. CellPhoneDB predicted cell-cell communication playing co-stimulatory role between tumor cell and NK cell (left), tumor cell and CD8+ T cell (right). Color and size of each dot represents average expression of corresponding ligand-receptor partners.


Supplementary Materials
Antibodies
	Name
	Supplier
	Cat No.

	Rabbit anti-CD56 antibody
	Cell Signaling Technology
	Cat# 99746

	Rabbit anti-CD19 antibody
	Biolynx
	Cat# I1045 

	Rabbit anti-CD4 antibody
	Biolynx
	Cat# I1030

	Rabbit anti-CD68 antibody
	Biolynx
	Cat# I1034

	Rabbit anti-LXRα antibody 
	Abcam
	Cat# ab176323

	Rabbit anti-LXRα antibody
	Proteintech
	Cat# 14351-1-AP

	Rabbit anti-FGL1 antibody
	Abcam
	Cat# ab170922

	Rabbit anti-FGL1 antibody
	Proteintech
	Cat# 16000-1-AP

	Mouse anti-β-ACTIN antibody
	Proteintech
	Cat# 66009-1-Ig

	Rabbit anti-Ki67 antibody
	Abcam
	Cat# ab15580

	Rabbit anti-NCAD antibody
	Abcam
	Cat# ab76011

	Rabbit anti-Vimentin antibody
	Abcam
	Cat# ab16700

	Rabbit anti-VEGFα antibody
	Abcam
	Cat# ab52917

	PerCP/Cyanine5.5 anti-CD3 antibody
	Dakewe Biotech
	Cat# 317336

	Brilliant Violet 421 anti-TCR γ/δ antibody
	Dakewe Biotech
	Cat# 331217

	FITC anti-CD4 antibody
	Dakewe Biotech
	Cat# 317408

	APC/Cyanine7 anti-CD8 antibody
	Dakewe Biotech
	Cat# 344714

	APC anti-CD56 antibody
	Dakewe Biotech
	Cat# 318310

	Brilliant Violet 60 anti-CD45 antibody
	Dakewe Biotech
	Cat# 368523

	Brilliant Violet 421 anti-IFNγ antibody
	Univ Bio
	Cat# 564791

	PerCP/Cyanine5.5 anti-Perforin antibody
	Univ Bio
	Cat# 563762

	PE-CY7 anti TNFα antibody
	Univ Bio
	Cat# 560923

	FITC anti-GZMB antibody 
	Univ Bio
	Cat# 561998

	APC anti-HLA-E
	Biolegend
	Cat# 342605

	PE anti-HLA-A/B/C
	Biolegend
	Cat# 311405

	Alexa Fluor 488 anti-CD107a
	Biolegend
	Cat# 328609



Cell lines
	Name
	Supplier
	Cat No.

	Human: HepG2
	ATCC
	Cat# HB-8065

	Human: HCCLM3
	Type Culture Collection of Chinese Academy of Science
	Cat# SCSP-528

	Human: A375
	Type Culture Collection of Chinese Academy of Science
	Cat# SCSP-533

	Human: MCF-7
	Type Culture Collection of Chinese Academy of Science
	Cat# SCSP-531

	Human: PANC-1
	Type Culture Collection of Chinese Academy of Science
	Cat# SCSP-535

	Human: NK92MI
	Procell
	Cat# CL-0533

	Mouse: Hepa1-6
	Type Culture Collection of Chinese Academy of Science
	Cat# SCSP-512



Primers
	Name
	Sequence
	Supplier

	MIC-A qPCR primer-F
	CTTCAGAGTCATTGGCAGACAT
	TsingKe

	MIC-A qPCR primer-R
	TGTGGTCACTCGTCCCAACT
	TsingKe

	MIC-B qPCR primer-F
	TCTTCGTTACAACCTCATGGTG
	TsingKe

	MIC-B qPCR primer-R
	TCCCAGGTCTTAGCTCCCAG
	TsingKe

	ULBP1 qPCR primer-F
	TAAGTCCAGACCTGAACCACA
	TsingKe

	ULBP1 qPCR primer-R
	TCCACCACGTCTCTTAGTGTT
	TsingKe

	ULBP2 qPCR primer-F
	AGCAACTGCGTGACATTCAG
	TsingKe

	ULBP2 qPCR primer-R
	GCCATCCTATACAGTCTCCCA
	TsingKe

	ULBP3 qPCR primer-F
	TCTATGGGTCACCTAGAAGAGC
	TsingKe

	ULBP3 qPCR primer-R
	TCCACTGGGTGTGAAATCCTC
	TsingKe

	PVR qPCR primer-F
	TGGAGGTGACGCATGTGTC
	TsingKe

	PVR qPCR primer-R
	GTTTGGACTCCGAATAGCTGG
	TsingKe

	BAG6 qPCR primer-F
	AAGACCTTGGACTCTCAAACTCG
	TsingKe

	BAG6 qPCR primer-R
	CCTGGTAAATGAGCCGTTGTTTT
	TsingKe

	CD48 qPCR primer-F
	AGGTTGGGATTCGTGTCTGG
	TsingKe

	CD48 qPCR primer-R
	AGTTGTTTGTAGTTCTCAGGCAG
	TsingKe

	ICAM1 qPCR primer-F
	ATGCCCAGACATCTGTGTCC
	TsingKe

	ICAM1 qPCR primer-R
	GGGGTCTCTATGCCCAACAA
	TsingKe

	NECTIN2 qPCR primer-F
	GGATGTGCGAGTTCAAGTGCT
	TsingKe

	NECTIN2 qPCR primer-R
	TGGGACCCATCTTAGGGTGG
	TsingKe

	NCR3LG1 qPCR primer-F
	CTTTTATTCCCAACCCCTCAACA
	TsingKe

	NCR3LG1 qPCR primer-R
	CACATCGGTACTCTCCTGCTT
	TsingKe

	Bag6 qPCR primer-F
	ATGGAGCCGAGTGATAGTGC
	TsingKe

	Bag6 qPCR primer-R
	CCCACAATAAAAGTCCGAGTCTG
	TsingKe

	Cd48 qPCR primer-F
	ACCACCGGCAGCAATGTAA
	TsingKe

	Cd48 qPCR primer-R
	AGTATGAAGCCAGGTGATACGTT
	TsingKe

	Ulbp1 qPCR primer-F
	CTGCCAGTAACAAGGTCCTTTC
	TsingKe

	Ulbp1 qPCR primer-R
	GCTGTTCCTATGAGCACCAATG
	TsingKe

	Nectin2 qPCR primer-F
	CCGCCGTCCAGATTGTCAC
	TsingKe

	Nectin2 qPCR primer-R
	ACCTCGGGAAGCACTCGTA
	TsingKe

	Pvr qPCR primer-F
	GGGTGGGGATATACGTGTGC
	TsingKe

	Pvr qPCR primer-R
	GAGATGCGTTCCTCAGATCCT
	TsingKe

	IFNγ qPCR primer-F
	TCGGTAACTGACTTGAATGTCCA
	TsingKe

	IFNγ qPCR primer-R
	TCGCTTCCCTGTTTTAGCTGC
	TsingKe

	TNFα qPCR primer-F
	CCTCTCTCTAATCAGCCCTCTG
	TsingKe

	TNFα qPCR primer-R
	GAGGACCTGGGAGTAGATGAG
	TsingKe

	GZMB qPCR primer-F
	CCCTGGGAAAACACTCACACA
	TsingKe

	GZMB qPCR primer-R
	GCACAACTCAATGGTACTGTCG
	TsingKe

	PRF qPCR primer-F
	GGCTGGACGTGACTCCTAAG
	TsingKe

	PRF qPCR primer-R
	CTGGGTGGAGGCGTTGAAG
	TsingKe

	NKG2D qPCR primer-F
	GAGTGATTTTTCAACACGATGGC
	TsingKe

	NKG2D qPCR primer-R
	ACAGTAACTTTCGGTCAAGGGAA
	TsingKe

	NCR1 qPCR primer-F
	TGGACCCGAAGTGATCTCG
	TsingKe

	NCR1 qPCR primer-R
	TCCTTGAGCAGTAAGAACATGC
	TsingKe

	NCR2 qPCR primer-F
	GGCTCTCAGGCACAATCCAAG
	TsingKe

	NCR2 qPCR primer-R
	GCTGAAGCCTCCTTACACCA
	TsingKe

	NCR3 qPCR primer-F
	CCCCTGAGATTCGTACCCTG
	TsingKe

	NCR3 qPCR primer-R
	CTCCACTCTGCACACGTAGAT
	TsingKe

	CD226 qPCR primer-F
	GTGGAGTGGTTCAAGATCGGG
	TsingKe

	CD226 qPCR primer-R
	GCTTCCTTATGACCATGCCAT
	TsingKe

	KLRF2 qPCR primer-F
	TCCCAGAATGTAAACGTCAGC
	TsingKe

	KLRF2 qPCR primer-R
	TTCCCTTCGTTCAACAGCCAG
	TsingKe

	β-ACTIN qPCR primer-F
	CATGTACGTTGCTATCCAGGC
	TsingKe

	β-ACTIN qPCR primer-R
	CTCCTTAATGTCACGCACGAT
	TsingKe

	β-actin qPCR primer-F
	GGCTGTATTCCCCTCCATCG
	TsingKe

	β-actin qPCR primer-R
	CCAGTTGGTAACAATGCCATGT
	TsingKe



Biological samples
	Description
	Source

	Human HCC tumor tissue (NK-S and NK-R)
	Sir Run Run Shaw Hospital,
Zhejiang University



Reagents and kits
	Description
	Source
	Identifier

	EZ-press RNA Purification Kit
	EZBioscience
	Cat# B0004DP

	Tissue single cell dissociation reagent
	Singleron
	-

	Fluorescence Triple-Label Signal Amplification Kit
	HaoKebio
	Cat# HKI0000-3

	DAB Staining Kit
	HaoKebio
	Cat# HKI0039

	Cyclosporin A
	MedChemExpress
	Cat# HY-B0579

	Teplizumab
	MedChemExpress
	Cat# HY-P99222

	Relatlimab
	MedChemExpress
	Cat# HY-P99156

	D-Luciferin potassium
	MedChemExpress
	Cat# HY-12591B

	GW3965
	MedChemExpress
	Cat# HY-10627

	T0901317
	MedChemExpress
	Cat# HY-10626

	LXR-623
	MedChemExpress
	Cat# HY-10629

	GSK2033
	MedChemExpress
	Cat# HY-108688

	SR9238
	MedChemExpress
	Cat# HY-101442

	Zombie Aqua Fixable Viability Kit
	Dakewe Biotech
	Cat# 423101	

	Human TruStain FcX Kit
	Dakewe Biotech
	Cat# 422302	

	Recombinant Human Perforin protein
	Abcam
	Cat# ab114201

	Plasma Membrane Isolation Kit
	Abcam
	Cat# ab284937

	Amplex Red Cholesterol Assay Kit
	Thermo Fisher
	Cat# A12216

	MagiSort Mouse CD8+ T cell Isolation Kit
	Thermo Fisher
	Cat# 8804682274

	CellTrace CFSE Cell Proliferation Kit
	Thermo Fisher
	Cat# C34570

	MojoSort Human NK Cell Isolation Kit
	Biolegend
	Cat# 480054

	MojoSort Mouse NK Cell Isolation Kit
	Biolegend
	Cat# 480049

	PI/RNase Staining Buffer
	BD
	Cat# 550825

	Recombinant Human IL-2
	Peprotech
	Cat# 200-02

	Recombinant Murine IL-2
	Peprotech
	Cat# 212-12

	Recombinant Human IL-15
	Peprotech
	Cat# 200-02

	Recombinant Murine IL-15
	Peprotech
	Cat# 210-15
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