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Figure S1. AFM phase image corresponding to Figure 1c, showing the surface 
morphology of the bilayer graphene device. 

 



 

Figure S2. a) pulses of different frequency, ranging from 2 Hz to 20 Hz; d) pulses 
of different waveform. Bilayer graphene ECRAM’s conductance change when 
input pulses are b) pulses of different frequency; e) pulses of different waveform. 
Bilayer graphene ECRAM’s dynamic range when input pulses are c) pulses of 
different frequency; f) pulses of different setting. 
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Figure S3. Optical microscope image of the device before graphene etching and 
after etch for 4-terminal measurements as shown in Figure 4b. The outermost 
two electrodes are used for applying a small current, while the inner electrodes 
are used for voltage sweeping and measurement1. 

 



 

Figure S4. Optical image of the multilayer graphene device. 

 

 

Figure S5. Raman spectrum showing the G peak being more intense than the 2D 
peak, indicating the presence of multilayer graphene2,3.6/6/25 10:58:00 AM 



 

Figure S6. (a) Atomic force microscopy (AFM) height image of the graphene 
device after the experiment, with the dashed box indicating the measured step 
range. The LiClO4/PEO layer was removed using acetone. (b) AFM phase image. 
(c) Thickness profile showing a measured height of 4.77 nm, confirming the 
multilayer graphene structure. 

 



 

Figure S7. Conductance versus time during the intercalation process of 
multilayer graphene for different channel lengths (3 µm, 4 µm, and 5 µm) as 
shown in Figure 4c. 

As shown in Figure S7, the bilayer graphene device exhibits a maximum conductance 
of 480 µS and a minimum conductance of 55 µS, resulting in a dynamic range of 7.7. 
All conductance states within this range are stable, owing to the reversible and 
electrochemically robust lithium-ion intercalation into the bilayer structure. This 
intercalation process induces continuous modulation of carrier concentration without 
compromising the structural integrity of graphene, thereby ensuring non-volatile and 
reliable conductance states. The absence of drift or degradation over time highlights 
the intrinsic material stability and supports its applicability in neuromorphic 
architectures requiring high precision and endurance4. 
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