

1 **Supplementary Information**

2

3 **Physical limits of sea-level rise adaptation in global river deltas**

4 Kiara G. Lasch, Jaap H. Nienhuis, Gundula Winter, Marjolijn Haasnoot

5

6 **Contents**

7 SI1. Adaptation strategies (including examples) 2

8 SI2. Delta polygon extent 3

9 SI3. Equations and data sources of physical indicators 4

10 SI4. Support for thresholds selected 8

11 SI5. Flood risks for global deltas and differences between climate scenarios 11

12 SI6. Model output comparison 12

13 SI6.1. Sensitivity analysis and model stress-testing 12

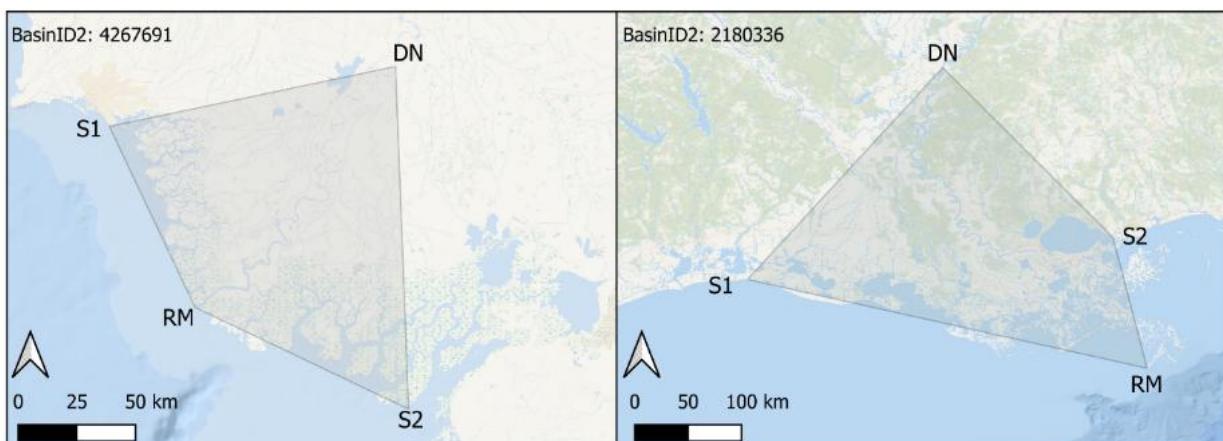
14 SI6.2. Literature assessment and model output comparison for 10 deltas 14

15

16

17 **SI1. Adaptation strategies (including examples)**

18 We assess the physical feasibility of adaptation options for the following five adaptation
 19 strategies: advance, protect-closed, protect-open, accommodate, and retreat (Table SI1).


20
 21 **Table SI1:** Description and examples of five adaptation strategies assessed in this study.

Adaptation strategy	Examples
Advance: involves the extension of the coastline seaward to build flood defences and is typically used to create new land for nature and recreation or urban and industrial developments. Pumps are installed to pump excess rainwater and river flows across the new coastline.	<ul style="list-style-type: none"> • The Flevoland polder and the Afsluitdijk pumping station in the Rhine Meuse delta, the Netherlands^{1,2} • Advance strategy along the coast of the Netherlands^{3,4} • The Great Garuda project for Jakarta city, Indonesia⁵ • Reclaimed land to be used free up space on the mainland, Singapore⁶ • Development of new coastal estates in Eko Atlantic City, Nigeria⁷ • Terrebonne basin barrier island in Louisiana⁸
Protect-closed: The protect-closed strategy aims to keep flood waters away by constructing engineered structures, such as levees, along the coastline, which protects the inland areas from the sea. In addition, pumps are installed at the river mouths to pump water from the low-lying areas to the sea.	<ul style="list-style-type: none"> • Pumps along the IJmuiden mouth in the Rhine Meuse delta, the Netherlands³ • A series of dikes, floodwalls and pumping stations along stretches of the coast in Louisiana⁹
Protect-open: Following protect-open, an open connection with the sea is maintained while still protecting the inland areas from SLR. This is achieved by extending sea level influences upstream by building levees along the coast and rivers. Moreover, storm surge barriers are built at the river mouths along the coast. These barriers remain open for most of the time, but close during storm surge events to mitigate the effects of elevated water levels.	<ul style="list-style-type: none"> • The Maeslantkering storm surge barrier in South Holland the Rhine Meuse delta, the Netherlands¹⁰ • A series of dikes, barriers and walls along the estuary, as well as the Thames barrier in London, United Kingdom^{11,12} • Floodwalls and the Inner Harbor Navigation canal (IHNC) Lake Borgne Surge Barrier in Louisiana⁸ • Dikes along distributaries of the Ganges river in Dhaka, Bangladesh¹³ • Seawalls, revetments and sand dunes along part of the coast in the Nile Delta, Egypt¹⁴

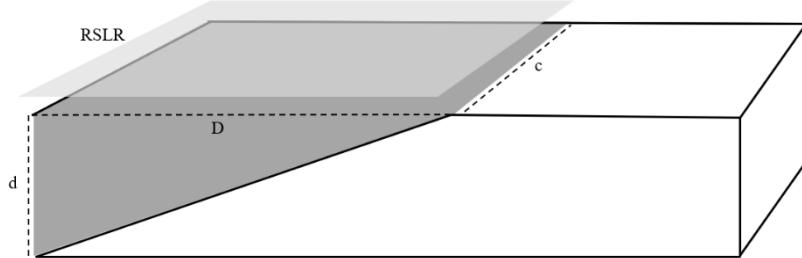
<p>Accommodate: adopts a ‘living with water’ concept. This strategy implies the continued use of at-risk areas, whereby, no attempt is made to prevent flooding. Instead, land use is adjusted to reduce the vulnerability to SLR and associated floods by elevating the urban areas and surrounding land. This approach often aims to mitigate the economic and health costs associated with floods instead of preventing the flood¹⁵</p>	<ul style="list-style-type: none"> Building raising following SLR in the Mississippi delta, the United States of America¹⁶ Elevating homes in the Mekong delta, Vietnam¹⁷ Flood proofing houses and infrastructure in Los Angeles, USA¹⁸ Tidal river management in parts of the Ganges-Brahmaputra-Meghna delta, Bangladesh¹⁹ Flood proofing structures in the Rio-Grande delta, United States of America²⁰
<p>Retreat: focuses on a planned and permanent relocation of people, assets, and activities to reduce exposure to coastal hazards caused by SLR-induced flooding.</p>	<ul style="list-style-type: none"> Climate-driven community retreat on the Isle de Jean Charles, Gulf of Mexico²¹ Voluntary buyouts of flood-prone properties in the Mississippi river valley, United States of America²² Permanent retreat from damaged homes and infrastructure in the Greater Toronto Area (GTA), Canada¹⁵ Forced resettlement programs in the Mekong delta, Vietnam¹⁷ Household scale resettlement, Vietnam¹⁷

22 **SI2. Delta polygon extent**

23 The global delta dataset defines deltas as four-point deltaic extents (DN = delta node, RM =
24 river mouth, S1 = shoreline position 1, S2 = shoreline position 2)(Fig. SI1)²³.

Fig. SI1: Two examples of the four deltaic points that define the delta polygon. DN represents the delta node, S1 and S2 represent the lateral shoreline positions, and RM represents the river mouth²³.

25 SI3. Equations and data sources of physical indicators


26 The physical indicators for each strategy are calculated using the following equations in a
 27 simple geometric model:

29 Advance

30 Volume of material required (m^3) to extend the coastline seaward (Fig. SI2) is calculated using:

$$32 V_{adv} = \left(\frac{1}{2} * D * d * c \right) + (RSLR * D * c) \quad (1)$$

33 where D is the offshore distance (m); d is the offshore depth (m) calculated using the
 34 bathymetric slope (m.m^{-1}) immediately offshore of the river mouth which is assumed to be
 35 linear²⁴; and c is the coastline length (m). The coastline length is calculated as the distance
 36 between the coordinates which demarcate the shoreline position S1 and S2 in the delta
 37 polygon^{23,25} (Fig. SI1). Finally, RSLR is calculated using the predicted SLR (m) under three
 38 climate scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5)²⁶ and vertical land motion
 39 (VLM)(mm/yr)²⁷ for each delta by 2100. We include subsidence in this equation because
 40 omitting it from global SLR risk assessments may underestimate exposure²⁸.
 41

Fig. SI2: Shape of the volume of material required to extend the coastline seaward based on Eqn. 1.

42 The total amount of river sediment collected to advance the coastline seaward over 50 years is
 43 calculated using:

$$45 Q_s (\text{m}^3 \cdot \text{s}^{-1}) = \frac{Q_s (\text{kg} \cdot \text{s}^{-1})}{\rho_b (\text{kg} \cdot \text{m}^{-3})}$$

$$46 \text{Sediment collected}_{adv} (\text{m}^3 \cdot \text{s}^{-1}) = Q_s * R_r * T \quad (2)$$

47 Here, Q_s (kg/s) is the mean annual river sediment discharge (m^3/s)^{29,30} which is assumed to
 48 remain unchanged until 2100 (see Supplementary Text SI6). Sediment discharge is converted
 49 to m^3/s by assuming the bulk density of the sediment (ρ_b) is 1600 kg/m^3 . We estimate the total
 50 volume of sediment collected over a 50-year period (T , s) and using different sediment retention
 51 rates (R_r , %)(see Methods). Since sediment retention rates vary between 2 and 100% according
 52 to existing literature (Table SI2), we consider three representative retention estimates, namely
 53 20%, 40% and 80% which correspond to low-resource, current known and innovative
 54 thresholds, respectively. If, for example, the volume of river sediment retained at a 40%
 55

56 retention rate exceeds the sediment required to aggrade the coastline seaward, then the measure
57 is considered physically under current known conditions. However, if the volume of river
58 sediment contained at a 20% retention rate is insufficient to meet the sediment demand for the
59 coastline extension, the measure is considered unfeasible under low-resource conditions.

60
61 Alternatively, deltas can collect offshore sand as a material source to aggrade a new coastline
62 instead of river sediment. The depth (m) at 10km offshore for sand minding (beach
63 nourishment) is calculated using the offshore distance (m) and bathymetric slope²⁴. Under each
64 climate scenario, we add the SLR value to this depth calculation²⁶.

65
66 The pump capacity (PC)(m³/s) is calculated using:

$$PC_{mean} = Q_r \quad (3)$$

67
68 Where the mean pump capacity (PC_{mean}) is either equal to the mean annual river discharge, Q_r
69 (m³/s)^{29,30} or the maximum river discharge, assuming a 100% pump efficiency and that the
70 river discharge will not change by 2100 (see Supplementary Text SI6). The maximum river
71 discharge is the 99th percentile of discharges, which is a modelled value from the Water Balance
72 Model (WBM) reanalysis between 1980 and 2012³¹. We base pump requirements on the mean
73 river discharge, assuming the excess water during higher river flows can be diverted to
74 retention areas. We also considered the maximum river discharge without assuming the
75 availability of retention areas for excess water.

76 Protect-closed

77 The volume of material required (m³) to build a smooth, gentle-sloped (1:6) coastal levee (Fig.
78 SI3) is calculated using:

$$\begin{aligned} h_c &= 3 * (H_w + H_{ss}) \\ b_{1c} &= h_c \\ b_{2c} &= b_{1c} * 6 \\ V_{coast} &= \left(\frac{1}{2} * (b_{1c} + b_{2c}) * h_c * c \right) + (RSLR * b_{2c} * c) \end{aligned} \quad (4)$$

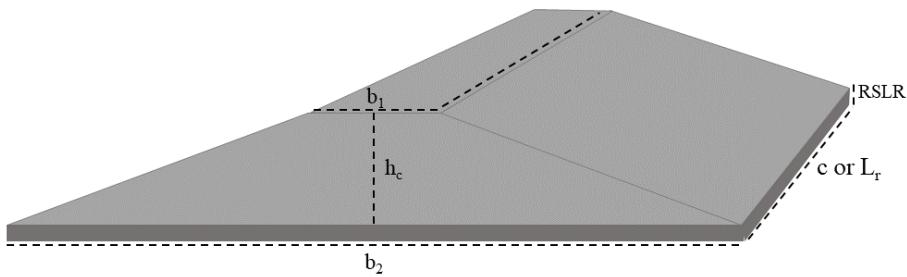
79 Variable definitions:

- h_c : Coastal levee height (m)
- H_w : Mean significant wave height (m)²⁴
- H_{ss} : Storm surge height (m)^{23,32}
- b_{1c} : Short base of the coastal levee (i.e. the top of the levee)
- b_{2c} : Long base of the coastal levee (i.e. the bottom of the levee)
- V_{coast} : Total volume of material (m³) required to build coastal levees
- c : Coastline length
- RSLR: Relative sea-level rise (m)

98 The significant wave height (H_w) is the average of the largest 1/3 of wave heights using the
99 NOAA WAVEWATCH III 30-year Hindcast Phase 2 between 1979 and 2009³³. H_{ss} data has a
100 100-year return-period²³ and is calculated using the median of recorded storm surge values³².
101 RSLR is the sum of the predicted SLR (m) following three climate scenarios, namely SSP1-
102 2.6, SSP2-4.5 and SSP5-8.5²⁶, and the VLM (mm/yr)²⁷ by 2100.

103
104 The pump capacity (m³/s) is calculated using the same equation (Eqn. 3) and data as discussed
105 above, and the maximum river discharge is tested in this case too.

106
107 Protect-open


108 The volume of levee material required (m³) to build levees (Fig. SI3) along the coast and both
109 sides of the rivers is calculated using:

$$110$$
$$111 \quad h_r = 5m = b_{1r}$$
$$112 \quad b_{2r} = b_{1r} * 6$$
$$113 \quad V_{river} = 2 * \left(\frac{1}{2} * (b_{1r} + b_{2r}) * h_r * L_r \right) + (RSLR * b_{2r} * L_r)$$
$$114 \quad V_{total} = V_{coast} + V_{river} \quad (5)$$
$$115$$

116 Variable definitions:

- 117 • h_r : River levee height (m)
- 118 • b_{1r} : Short base of the river levee (i.e. the top of the levee)
- 119 • b_{2r} : Long base of the river levee (i.e. the bottom of the levee)
- 120 • V_{river} : Total volume of material (m³) required to build river levees on both sides of the
121 river
- 122 • L_r : Total river length (m)³⁴
- 123 • RSLR: Relative sea-level rise (m)
- 124 • V_{total} : Total volume of material (m³) required to build both coastal and river levees
- 125 • V_{coast} : Total volume of material (m³) required to build coastal levees (Eqn. 4)

126 Here, h_r is the river levee height (m) which we base on existing studies that show that levee
127 heights can vary between 1m and 12m high, and can reach up to 21m³⁵⁻³⁷. We use an average
128 levee height of 5m which excludes the uncommon and extreme cases. We extract the river
129 lengths (L_r) from the Surface Water and Ocean Topography River Database (SWORD) dataset
130 which provides high-resolution river reaches (~10km) and river nodes (200m) at a global
131 scale³⁴. Where SWORD is missing a river length (214 cases) within the polygon, we calculate
132 the river length manually. We assume that the river length is equal to the length between the
133 coordinates demarcating the delta node (DN) and the river mouth (RM)(Fig. SI1). DN, in this
134 case, is the upstream-most bifurcation of the parent channel, and RM is the location of the
135 widest river mouth along the coastline. RSLR is the sum of the predicted SLR (m) following
136 three climate scenarios, namely SSP1-2.6, SSP2-4.5 and SSP5-8.5²⁶, and the VLM (mm/yr)²⁷
137 by 2100.

Fig. SI3: Assumed shape of the levee to calculate the volume of material required for construction, following Eqn. 4 and 5. In the equations, b_{1c} refers to the b_1 for coastal (c) levees, whereas b_{1r} refers to b_1 of river (r) levees.

139
 140 The river width required to build a storm surge barrier (m) is extracted and summed from the
 141 SWORD dataset³⁴. Where river widths are missing (369 deltas), we calculate these values using
 142 a simple river-mouth width (w_m) estimate³⁸:

143
 144
$$w_m = \beta * k * \alpha * L + w_u \quad (6)$$

 145

146 Here, $\beta = w/d$, where w the channel width and d is the channel depth, k is the proportionality
 147 coefficient that relates the tidal prism to the cross-sectional area to the river mouth, α is the
 148 offshore tidal amplitude (m), L is the estuarine length scale for long-wave propagation in a
 149 distributary channel (m) and w_u is the fluvial channel width (m)³⁸. The calculated river-mouth
 150 widths have been compared to observed river-mouth widths and show very good agreement,
 151 with no systematic bias³⁸. However, the calculated river-mouth widths tend to be lower than
 152 those from SWORD, likely because the river-mouth estimate assumes a single channel whereas
 153 values from SWORD include multiple river mouths whose combined width can be ~50%
 154 greater. However, the river-mouth width estimate is used in small deltas, typically with only
 155 one distributary mouth.

156
 157 Accommodate
 158 The 2019 Copernicus global land cover dataset is used to identify land cover within each
 159 polygon³⁹. This dataset distinguishes 21 land cover types, which we categorize into 3 main
 160 groups, namely nature, cropland, urban (built-up). We isolate urban land use from this dataset,
 161 overlay it with ~1km resolution flood maps containing global inundation projections with
 162 global mean values that correspond to the climate scenario used⁴⁰, and downscale it to 100m
 163 resolution. The flood maps in our analysis were created using a static flood modelling approach
 164 with extreme sea levels from combined tide and surge levels and accounting for national
 165 estimates of flood protection standards. These maps use the Multi-Error-Removed Improved-
 166 Terrain (MERIT) digital elevation model. MERIT has previously been found to be consistently
 167 higher than the reference, specifically in areas with built-up land cover⁴¹. This may result in an
 168 underestimation in the flooding in the urban areas.

169

170 The flood depth of each urban land use grid cell is identified and the thresholds are applied,
171 assuming the urban areas can be raised by of 0.5m, 1m or 2m. If the mean flood depth in the
172 urban area, based on the flood maps⁴⁰, exceeds 0.5m, then raising by 0.5m is unfeasible.
173 Similarly, if the mean flood depth in the urban area exceeds 1m or 2m, then raising by 1m or
174 2m is unfeasible. However, if the flood depth is lower than 1m, then a 1m elevation is
175 considered to be physically feasible.

176

177 Retreat

178 The land availability for a retreat is calculated by dividing the urban flooded area (m^2) by three
179 different areas where the urban flooded area can retreat to (see Methods).

180

$$181 LA_{ret} = \frac{Area\ to\ retreat\ to\ (m^2)}{Urban\ flooded\ area\ (m^2)} \quad (7)$$

182 Where LA_{ret} is expressed as a ratio between 0 and 1. A value greater than 1 indicates that retreat
183 is physically feasible. Retreat to areas outside the delta is always deemed physically feasible.

184

185 Do nothing (no strategy required)

186 The presence or absence of flood risks in the delta polygon are identified using the flood
187 maps⁴⁰. Where no flood risks were predicted under each climate scenario by 2100, these deltas
188 are assumed to do nothing.

189

190 **SI4. Support for thresholds selected**

191 The “current known” threshold is determined using existing examples of adaptation measures
192 in literature, and refers to the largest known or most commonly used value of a measure (Table
193 SI2). While our indicators’ thresholds are based on currently implemented scales of measures,
194 these thresholds may vary based on a delta’s capabilities and resources.

195

196 **Table SI2:** Database of existing examples of measures within adaptation strategies. These
197 measures represent the physical indicators in our assessment and the magnitude values are used
198 to create the respective thresholds.

Measure	Area/ name, Country	Income level (World Bank) ⁴²	Magnitude	Ref
Pump capacity	New Orleans, United States of America	High income	~55m ³ /s per pump (22 pumps)	⁴³
	IJmuiden, the Netherlands	High income	~43m ³ /s per pump (6 pumps)	⁴⁴
	Afsluitdijk, the Netherlands	High income	~45m ³ /s per pump (6 pumps)	¹
	Fens, United Kingdom	High income	~16.6m ³ /s per pump (6 pumps)	⁴⁵
Levee heights	Mississippi, United States of America	High income	~12m high (~5.6km total extent)	⁴⁶

	The Netherlands	High income	~4-7m high (~22,000km total extent)	⁴⁷
Seawall height	Saemangeum, Korea	High income	36m (33.9km total extent)	⁴⁸
Land reclamation	Palm Jumeirah, Dubai	High income	700ha = ~6km ²	⁴⁹
	Hong Kong International Airport, China	Upper-middle income	250million m ³ of material was dredged for an area of 1248ha	⁵⁰
	Maasvlaakte 2 harbour, Rotterdam, the Netherlands	High income	20km ² , with an offshore extension of ~3km	⁵¹
	Pulau Tekong, Singapore	High income	800ha polder	^{6,43}
Artificial shoreline construction	Jakarta, Indonesia	Upper-middle income	18.93km ² new coastline	⁵²
	Istanbul, Turkey	Upper-middle income	9.23km ² new coastline	⁵²
Storm surge barrier	Eastern Scheldt Barrier, the Netherlands	High income	9000m	⁵³
	Saint Petersburg Flood Prevention Facility Complex (FPFC), Russia	High income	25000m	⁵⁴
	Maeslant barrier, the Netherlands	High income	400m	⁵³
	Hartel Barrier, the Netherlands	High income	~150m	⁵⁵
	Thames Barrier, United Kingdom	High income	520m	⁵⁵
	Venice MOSE project, Italy	High income	3200m	⁵⁵
	Ems barrier, Germany	High income	462m	⁵⁶
	Seabrook barrier, New Orleans, United States of America	High income	130m	⁵⁵
	IHNC Surge Barrier, New Orleans, United States of America	High income	2890m	⁵⁷

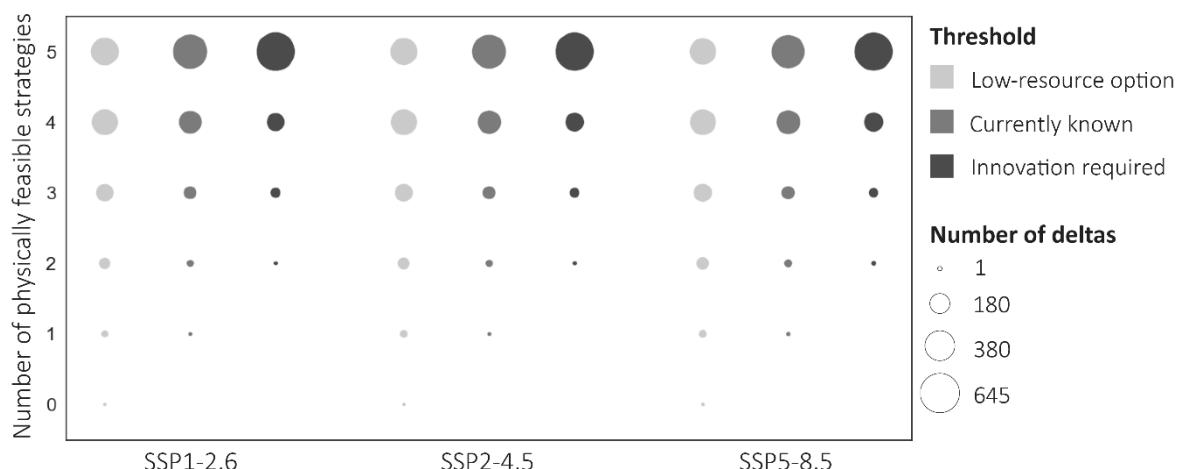
Home raising	Vietnam	Lower-middle income	0.3-0.8m (39 homes)	¹⁷
	Genuk, Indonesia	Upper-middle income	0.5m (170 homes)	⁵⁸
	Philippines Islands	Lower-middle income	0.3m (169 homes)	⁵⁹
	Mississippi, United States of America	High income	3.6m (1 gymnasium)	¹⁶
	Mississippi, United States of America	High income	1.8m	⁶⁰
Retreat	Mozambique	Low income	43,400 families	⁶¹
	Vietnam	Lower-middle income	Household scale	¹⁷
	Vietnam	Lower-middle income	Neighbourhood scale	¹⁷
	Isle de Jean Charles, Gulf of Mexico	Upper-middle income	Community retreat	²¹

199

200 **Table SI3:** Examples of published natural sediment retention rate estimates in delta plains.

Delta, Country	Sediment retention rate (%)	Source
Amazon, Brazil	41 (over 15 years)	⁶²⁻⁶⁶
Guadiana, Portugal	2	⁶⁷
Burdekin, Australia	2	^{68,69}
Mekong, Vietnam	102	⁷⁰⁻⁷²
Rhine, the Netherlands	13 to 67	^{73,74}
Ob, Russia	43 (over 30 years)	⁷⁵
Yangtze, China	37	^{76,77}

201


202 The “innovative” threshold is defined as twice the value of the “current known” threshold
 203 (Table 2 in manuscript). This threshold reflects the importance of scaling-up measures for long
 204 term sustainability⁷⁸. While there are currently no projections for how adaptation technologies
 205 will evolve by 2100, there have been significant increases in technological and infrastructural
 206 capabilities over the last 100 years. For example, between 1970 and the late 20th century, there
 207 was a shift from manual data collection to modern, high-technology digital modelling
 208 methods⁷⁹, and nowadays, artificial intelligence (AI) and machine learning (ML) offer even
 209 more opportunities for flood risk assessments^{79,80}. Beyond technological modelling
 210 advancements, flood management practices have advanced between 2000 and 2017, from
 211 costly and basic structural flood control measures that impact biodiversity, to environmentally
 212 friendly adaptation strategies that build resilience and enable rapid recovery⁸¹. More
 213 specifically, in the Netherlands, flood defences have evolved from the Afsluitdijk (1932) and
 214 the Delta Works with storm surge barriers like the Eastern Scheldt (1986) and Maeslant Barrier
 215 (1997) to recent adaptive and nature-based projects such as the Room for the River and the
 216 Sand Motor⁸². This reflects the innovation in scale, technology, and sustainability over the last

217 century. As such, assuming a twofold increase in technological capabilities by 2100 is perhaps
218 conservative, but also more realistic than an extrapolation based on the past.

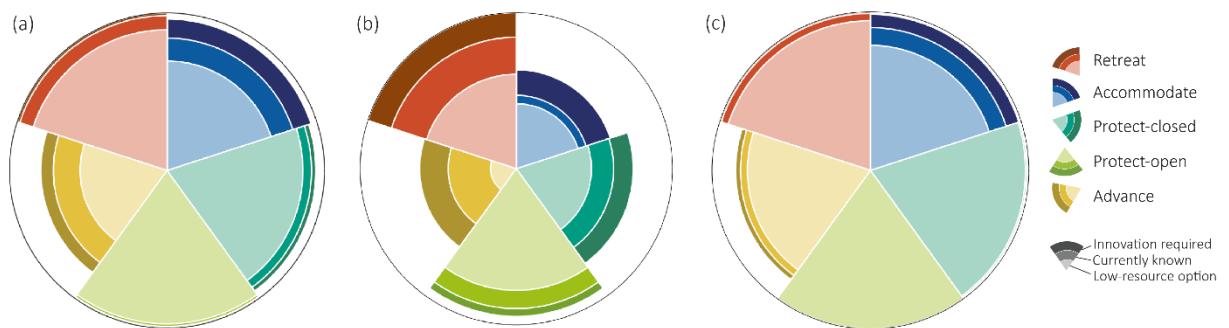
219
220 For other strategies, including accommodate where homes are raised by more than 1m, or
221 retreat where people and assets are relocated outside of the delta, such technologies to
222 implement these measures at “innovative” scales already exist (Table SI2) but have not been
223 implemented delta-wide, which would require innovation. Similarly, while one storm-surge
224 barrier of 9km has already been constructed (Table SI2), constructing multiple barriers of
225 similar scale would also require innovation in terms of resources, space and planning. Thus,
226 the innovative threshold not only represents possible physical limits of technology (in the case
227 of pump capacity), but also the application of measures at a larger scale (accommodate or
228 protect-open) and the coordination required for their implementation.

229 **SI5. Flood risks for global deltas and differences between climate 230 scenarios**

231 Our data shows that all 769 global deltas will experience sea-level rise following each climate
232 scenario (Mean = 0.48m under SSP1-2.6; Mean = 0.6m under SSP2-4.5; Mean = 0.94m under
233 SSP5-8.5). Additionally, at least 79% of global deltas will experience flooding under a 100-
234 year return storm surge event. This increases to 82% and 86% under higher climate scenarios
235 (SSP2-4.5 and SSP5-8.5), respectively.

Fig. SI4: The number of physically feasible adaptation strategies (between 0 and 5) for global deltas following three climate scenarios. The size of the bubbles represent the number of deltas that can choose between each range of adaptation options. The coloured thresholds represent different scales of adaptation measures, namely low-resource measures that are physically feasible under limited resource conditions, current known measures that are the largest known examples of measures or commonly used scales of measures, and innovative measures which are only physically feasible with technological advancements.

237 However, when comparing the number of physically feasible adaptation strategies for deltas
238 across climate scenarios, we find that the differences between scenarios are minor (1.62%
239 decrease; Fig. SI4). Instead, the thresholds applied to the adaptation measures have a greater


240 influence on the number of strategies that are physically feasible (35% increase; Fig. SI4). For
 241 only one delta, namely the Rhine-Meuse delta in the Netherlands, there are no physically
 242 feasible low-resource strategies across all three climate scenarios (Fig. SI4). In this delta, only
 243 current known scales of measures or innovative solutions are physically feasible given the
 244 deltas large physical characteristics, large urban area, and large flooded extent.

245 **SI6. Model output comparison**

246 **SI6.1. Sensitivity analysis and model stress-testing**

247 To validate the model performance under extreme conditions, we perform a sensitivity test by
 248 increasing or decreasing parameters by an order of magnitude well beyond plausible ranges (\pm
 249 10 or $\times/\div 10$)(Fig. SI5). This confirms the expected expansion of the PSS when the delta's
 250 physical characteristics are small, and the contraction of the PSS when the delta's physical
 251 characteristics are large. This stress test serves as a boundary check which illustrates model
 252 reliability rather than reflecting parameter uncertainty.

253

Fig SI5: Radar plots comparing (a) the physical solution space (PSS) of global deltas under an SSP2-4.5 scenario, with the outcomes from a stress-test of the model by (b) increasing or (c) decreasing input parameters well beyond plausible ranges to assess how the PSS contracts or expands, respectively.

254 However, we also assess parameter uncertainty by performing a sensitivity analysis. Based on
 255 projected changes in river discharge, mean flow is expected to vary between approximately a
 256 decrease of 23% and increase of 65% across river basins⁸³, while global mean river discharge
 257 is projected to increase by 2%, 6%, 7.5%, and 11% under RCP2.6, 4.5, 6.0, and 8.5 scenarios,
 258 respectively, by the end of this century⁸⁴. In contrast, projected sediment discharge for many
 259 deltas around the world shows a reduction in sediment flux, with mean declines of
 260 approximately 38% by 2100⁸⁵, while the mean global sediment flux is projected to increase by
 261 11%, 15%, 14%, and 16.4% across the four emission scenarios⁸⁴. We use these projections to
 262 test the sensitivity of our input parameters on the physical feasibility of strategies. Specifically,
 263 we vary river discharge between -23% and +65% and sediment flux between -38% and +16%
 264 to consider the full range of variability from both basin and global scale projections. Under
 265 decreased river discharge projections, we find that 13 additional deltas can adopt the protect-
 266 closed strategy under current known conditions given lower pump capacity requirements.
 267 However, under increased river discharge projections, 28 fewer deltas can adopt this strategy
 268 due to pump capacity constraints under current known conditions. We assume that projected

269 increases in maximum river discharge would also decrease the number of deltas that can adopt
270 this strategy. Under decreased river and sediment discharge projections, the advance strategy
271 becomes physically feasible for an additional 12 deltas given the lower pump capacity
272 requirements. However, under increased river and sediment discharge projections, the number
273 of deltas that can adopt advance decreases by 25 deltas, since installing larger river pumps
274 become less physically feasible despite increased sediment to aggrade the coastline. This
275 reveals that some input parameters, such as river discharge, have a greater influence on the
276 physical feasibility of certain strategies, like advance. Moreover, while individual deltas are
277 impacted by changes in these parameters which has implications for local scale decision-
278 making, the general adaptation trends remain mostly consistent across the global scale.
279

280 We test the sensitivity of assuming 5m high river levees following the protect-open strategy by
281 changing this height and recalculating the material requirements ($2m = 8.4\text{km}^3$; $5m =$
282 14.56km^3 ; $10m = 33.64\text{km}^3$). We find that the overall message remains the same whereby the
283 protect-open strategy has higher material requirements than protect-closed strategy, even when
284 considering lower-end levee heights.
285

286 Finally, we explore the influence of the chosen innovative threshold on the PSS. We increase
287 the threshold by an order of magnitude, as opposed to a twofold increase, and find that
288 substantial innovation in technological capabilities does not necessarily imply more strategies
289 are physically feasible. While certain adaptation measures, such as 10m stilts following
290 accommodate or $12,000\text{m}^3/\text{s}$ pumps following protect-closed, increase the PSS for some deltas,
291 the PSS of other deltas remain unchanged due to fundamental physical characteristics. This
292 highlights that innovation alone does not provide more adaptation opportunities. Given these
293 findings, we maintain the assumption of a twofold increase in innovation capabilities for our
294 analysis since it is more realistic by 2100, and avoids overestimating adaptation opportunities.
295

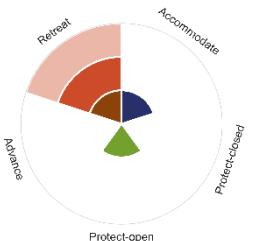
296 **SI6.2. Literature assessment and model output comparison for 10 deltas**

297 The model is tested by first applying the equations and thresholds to 10 field deltas, which vary
298 in size, degree of urbanization and flood extent (Fig. SI5; Table SI3).

Fig. SI6: Names and locations of 10 deltas for model testing.

299 **Table SI3:** Delta names and country of 10 deltas for model testing.

Number	Delta name	Country
1	Amazon	South America
2	Ebro	Spain
3	Ganges-Brahmaputra-Meghna	Bangladesh
4	Mekong	Vietnam
5	MacKenzie	Canada
6	Mississippi	United States of America
7	Niger	Nigeria
8	Nile	Egypt
9	Rhine-Meuse	The Netherlands
10	Riö Grande- Bravo	United States of America


300
301 We compare our model outputs with literature that focusses on current implemented adaptation
302 measures and potential future strategies in these deltas. The model outcomes are mostly
303 consistent with measures used in practice (Table SI4). For example, in the Ebro delta, future
304 strategies based on literature include protect, advance, or accommodate, which we find to be
305 physically feasible based on our model (Table SI4). Additionally, in the Mississippi delta,
306 future measures to address flood risks include relocations within the delta, land raising or
307 elevations of urban areas, and protective measures, which we also find to be physically feasible
308 strategies in 2100 (Table SI4).

309

310 However, there are also measures in the literature that are not consistent in the PSS that we
 311 modelled. This may be primarily because we assessed the PSS assuming the strategy will be
 312 adopted across the entire delta, however, small scale, localized strategies may also be
 313 implemented in these deltas. For example, in the Ganges-Brahmaputra-Meghna delta, the
 314 modelled PSS is small, but according to literature, many other measures are already
 315 implemented in this delta at a smaller scale (Table SI4). Additionally, in some cases, the hazards
 316 that measures protect against, or the currently implemented measures based on literature are
 317 not measures that we assess within the adaptation strategy, as seen for the Ganges-
 318 Brahmaputra-Meghna and the Amazon delta, respectively (Table SI4).

319

320 **Table SI4:** Comparison between the calculated physical solution space, and the existing
 321 implemented or future strategies in the 10 deltas based on existing literature.

Delta Name	PSS found in this study	Existing implemented strategies and future strategies
Amazon		<ul style="list-style-type: none"> • Sediment deposition along the coast⁶⁴ • Early warning systems⁸⁶ • Forecasting and alert system for floods⁸⁷ • River and rainwater drainage infrastructure⁸⁸ • Raise the level of properties (25cm between road and flood level)⁸⁸ • Flood resistant crops⁸⁹ • Artificial islands and terraces built on flooded areas⁸⁹ • Social organization and the process of awareness and training of the community⁸⁸
Ebro		<ul style="list-style-type: none"> • Large dams and marshes in the area⁹⁰ • Wetlands⁹¹ <p>Future:</p> <ul style="list-style-type: none"> • Sand dunes, natural beach barriers, artificial barriers, accretion of sediment supply, shift rice fields to wetlands to retain more sediment⁹² • Use sediment to naturally raise the land to compensate flooding⁹³ • Wetland restoration, engineered structures (dikes, canals), sediment accretion to stop coastal retreats⁹⁴

Ganges-Brahmaputra-Meghna		<ul style="list-style-type: none"> Diked polder system that protect agriculture⁹⁵ Controlled flooding to allow sediment deposition (Sedimentation following dike breaches)⁹⁶ Cyclone shelters, dike construction, aquaculture, salt tolerant rice, floating infrastructure⁹⁷ Dikes and early warning systems⁹⁸ <p>Future:</p> <ul style="list-style-type: none"> Promote nature-based solutions to protect and restore natural or modified ecosystems, construction and rehabilitation of flood and drainage management measures, protection against flash floods and waves, reclamation and development of lands for expansion⁹⁹ Future migration from hazard-prone areas. Specifically, overseas migration over urban migration⁹⁷
MacKenzie		<ul style="list-style-type: none"> Home to a very small population, so there are no protect adaptation measures. <p>Future:</p> <ul style="list-style-type: none"> Promote emergency preparedness in schools, avoid building in areas vulnerable to erosion and slumping¹⁰⁰
Mekong		<ul style="list-style-type: none"> Sedimentation basins created by permeable bamboo dams¹⁰¹ Earth dike and floodplain (mangrove) restoration using T-groins/fences¹⁰² Dike rings to protect agricultural crops and reduce local natural hazards¹⁰³ Mangrove restoration and national sea dike along entire coast¹⁰⁴ <p>Future:</p> <ul style="list-style-type: none"> Implement integrated flood impacts assessment, improve communication, and build capacity for flood management staffs, and infrastructural measures such as optimize the existing flood control infrastructures¹⁰⁵ Develop new technical measures for flood management and address the unwanted impacts of existing flood management infrastructures¹⁰⁵

		<ul style="list-style-type: none"> Enhance early forecast and warning of extreme events, enhance monitoring, data collection and sharing, strengthen capacity on development of climate change adaptation strategies¹⁰⁶
Mississippi		<ul style="list-style-type: none"> Community relocation from areas at risk²² Wetlands and levees¹⁰⁷ Inner Harbor Navigation Canal-Lake (IHNC) Borgne Surge Barrier⁵⁵ Home raising 5-6ft (1.5-1.8m)⁶⁰ Forced relocation (involuntary relocation)¹⁰⁸ Terrebonne Basin Barrier island restoration¹⁰⁹ <p>Future:</p> <ul style="list-style-type: none"> Elevating the city of New Orleans¹⁶ Land raising in New Orleans⁶⁰ Ring levee systems to protect specific areas¹¹⁰ Relocate within the delta if necessary¹⁰⁸
Niger		<ul style="list-style-type: none"> Construction of foot bridges with wood, stones and sand bags¹¹¹ Raising walls with sand bags and/or blocks to divert flood water¹¹¹ Use of mulching materials for crops and shades for animals¹¹¹ Agricultural adaptation, such as crop diversification and altering the timing of operations¹¹² Migration from climate risk areas¹¹² Reclamation of wetlands/ river valleys¹¹² <p>Future:</p> <ul style="list-style-type: none"> Need government, NGO, donor agencies and other stakeholders to come together to implement strategies (accommodate, protect, retreat)¹¹³
Nile		<ul style="list-style-type: none"> Seawalls, revetments, sand dunes, nourishment, and artificial sand dunes based on a geotextile sand-tube core, fish farming, regular dredging for coastal lakes and lagoons, and enforcing the coastal road were observed¹⁴ <p>Future:</p> <ul style="list-style-type: none"> Restoration and maintenance of sand dunes, maintaining coastal protection structures,

		<p>preserving existing wetlands, setting up regulations to restrict development in vulnerable areas, change of land use, development of comprehensive monitoring program¹¹⁴</p>
Rhine-Meuse		<ul style="list-style-type: none"> • Zuiderzee closure, groynes, river training (canalisation), Delta Works (dams, sluices, storm surge barriers), dikes, pumps, land reclamation^{115,116} • Floating homes¹¹⁷ <p>Future:</p> <ul style="list-style-type: none"> • Upgrading of current flood defense system¹¹⁸ • Permanent closure of estuaries, pumping high river discharges, maintenance of coastlines by beach nourishments^{3,119} • Frequent closure of storm surge barriers¹¹⁹
Riö Grande-Bravo		<ul style="list-style-type: none"> • Levee system¹¹⁸ • Diversion dams¹¹⁸ • Pumping plant and conveyance channel used to reduce salinity of the river¹¹⁸ • Flood warning systems, flood proofing structures, land use regulations, development restrictions in flood²⁰

322

323

324 **References**

- 325 1. Rijkswaterstaat. The Afsluitdijk. <https://www.rijkswaterstaat.nl/en/projects/iconic->
326 structures/the-afsluitdijk.
- 327 2. Hoeksema, R. J. Three stages in the history of land reclamation in the Netherlands.
328 *Irrigation and Drainage* 56, (2007).
- 329 3. van Alphen, J., Haasnoot, M. & Diermanse, F. Uncertain Accelerated Sea-Level Rise,
330 Potential Consequences, and Adaptive Strategies in The Netherlands. *Water*
331 (*Switzerland*) 14, (2022).
- 332 4. Van Alphen, J., Haasnoot, M., Diermanse, F. & Nillesen, A. L. Beyond the Limits of
333 Present Adaptation Strategies: Exploring Strategies and Measures to Anticipate on
334 Accelerated Sea-Level Rise in the Netherlands. *J Coast Zone Manag* 27, 7 (2024).
- 335 5. Colven, E. Understanding the Allure of Big Infrastructure: Jakarta's Great Garuda Sea
336 Wall Project. (2017).
- 337 6. CNA. Singapore uses non-traditional method to create new land at Pulau Tekong - CNA.
338 [https://www.channelnewsasia.com/watch/singapore-uses-non-traditional-method-](https://www.channelnewsasia.com/watch/singapore-uses-non-traditional-method-create-new-land-pulau-tekong-5338486)
339 [create-new-land-pulau-tekong-5338486](https://www.channelnewsasia.com/watch/singapore-uses-non-traditional-method-create-new-land-pulau-tekong-5338486) (2025).
- 340 7. Ajibade, I. Can a future city enhance urban resilience and sustainability? A political
341 ecology analysis of Eko Atlantic city, Nigeria. *International Journal of Disaster Risk*
342 *Reduction* 26, 85–92 (2017).
- 343 8. State of Louisiana. Louisiana's Comprehensive Master Plan for a Sustainable Coast .
344 (2023).
- 345 9. U.S. Army Corps of Engineers. Algiers Canal Risk Reduction Features. (2013).
- 346 10. De Bruijn, K. M., Diermanse, F. L. M., Weiler, O. M., De Jong, J. S. & Haasnoot, M.
347 Protecting the Rhine-Meuse delta against sea level rise: What to do with the river's
348 discharge? in *Journal of Flood Risk Management* vol. 15 (John Wiley and Sons Inc,
349 2022).
- 350 11. Lavery, S. & Donovan, B. Flood risk management in the Thames Estuary looking ahead
351 100 years. *Philosophical Transactions of the Royal Society A: Mathematical, Physical*
352 *and Engineering Sciences* 363, 1455–1474 (2005).
- 353 12. Lumbroso, D. & Ramsbottom, D. Flood Risk Management in the United Kingdom:
354 Putting Climate Change Adaptation Into Practice in the Thames Estuary. *Resilience: The*
355 *Science of Adaptation to Climate Change* 79–87 (2018) doi:10.1016/B978-0-12-
356 811891-7.00006-2.
- 357 13. Rahman, M. A. & Islam, S. Climate Change Adaptation in Urban Areas: A Critical
358 Assessment of the Structural and Non-structural Flood Protection Measures in Dhaka.
359 161–173 (2019) doi:10.1007/978-3-030-05237-9_11.
- 360 14. Sharaan, M., Iskander, M. & Udo, K. Coastal adaptation to Sea Level Rise: An overview
361 of Egypt's efforts. *Ocean Coast Manag* 218, (2022).

362 15. Doberstein, B., Fitzgibbons, J. & Mitchell, C. Protect, accommodate, retreat or avoid
363 (PARA): Canadian community options for flood disaster risk reduction and flood
364 resilience. *Natural Hazards* 98, 31–50 (2019).

365 16. Erdman, J. A., Williams, E. A., James, C. W. & Coakley, G. P. Raising Buildings: The
366 Resilience of Elevated Structures. 143–170 (2018) doi:10.1007/978-3-319-65663-2_10.

367 17. Garschagen, M. Risky Change? Vietnam's Urban Flood Risk Governance between
368 Climate Dynamics and Transformation. *Pac Aff* 88, 599–621 (2015).

369 18. Aerts, J. C. J. H. *et al.* Pathways to resilience: adapting to sea level rise in Los Angeles.
370 *Ann N Y Acad Sci* 1427, 1–90 (2018).

371 19. Islam, M. F., Middelkoop, H., Schot, P. P., Dekker, S. C. & Griffioen, J. Enhancing
372 effectiveness of tidal river management in southwest Bangladesh polders by improving
373 sedimentation and shortening inundation time. *J Hydrol (Amst)* 590, 125228 (2020).

374 20. U.S. Army Corps of Engineers. Coastal Texas Protection and Ecosystem Restoration
375 Feasibility Study: Final Environmental Impact Statement.
376 https://www.swg.usace.army.mil/Portals/26/Coastal%20Texas%20Protection%20and%20Ecosystem%20Restoration%20Feasibility%20Study_2021FEIS_1.pdf (2021).

377 21. Simms, J. R. Z., Waller, H. L., Brunet, C. & Jenkins, P. The long goodbye on a
378 disappearing, ancestral island: a just retreat from Isle de Jean Charles. *J Environ Stud
379 Sci* 11, 316–328 (2021).

380 22. Magnan, A. K. *et al.* Status of global coastal adaptation. *Nat Clim Chang* 13, 1213–1221
381 (2023).

382 23. Edmonds, D. A., Caldwell, R. L., Brondizio, E. S. & Siani, S. M. O. Coastal flooding
383 will disproportionately impact people on river deltas. *Nat Commun* 11, (2020).

384 24. Caldwell, R. L. *et al.* A global delta dataset and the environmental variables that predict
385 delta formation on marine coastlines. *Earth Surface Dynamics* 7, 773–787 (2019).

386 25. Nienhuis, J. H., Cox, J. R., O'Dell, J., Edmonds, D. A. & Scussolini, P. A global open-
387 source database of flood-protection levees on river deltas (openDELvE). *Natural
388 Hazards and Earth System Sciences* 22, 4087–4101 (2022).

389 26. Fox-Kemper, B. Chapter 9: Ocean, Cryosphere and Sea Level Change. *Climate Change
390 2021 – The Physical Science Basis* 1211–1362 (2021) doi:10.1017/9781009157896.011.

391 27. Oelsmann, J. *et al.* Regional variations in relative sea-level changes influenced by
392 nonlinear vertical land motion. *Nat Geosci* 17, 137–144 (2024).

393 28. Nicholls, R. J. *et al.* A global analysis of subsidence, relative sea-level change and
394 coastal flood exposure. *Nat Clim Chang* 11, 338–342 (2021).

395 29. Cohen, S., Kettner, A. J., Syvitski, J. P. M. & Fekete, B. M. WBMsed, a distributed
396 global-scale riverine sediment flux model: Model description and validation. *Comput
397 Geosci* 53, 80–93 (2013).

399 30. Nienhuis, J. H. *et al.* Global-scale human impact on delta morphology has led to net land
400 area gain. *Nature* 577, 514–518 (2020).

401 31. Grogan, D. S. Global and regional assessments of unsustainable groundwater use in
402 irrigated agriculture. (University of New Hampshire, 2016).

403 32. Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H. & Ward, P. J. A global
404 reanalysis of storm surges and extreme sea levels. *Nature Communications* 2016 7:17,
405 1–12 (2016).

406 33. Chawla, A., Spindler, D. M. & Tolman, H. L. Validation of a thirty year wave hindcast
407 using the Climate Forecast System Reanalysis winds. *Ocean Model (Oxf)* 70, 189–206
408 (2013).

409 34. Altenau, E. H. *et al.* The Surface Water and Ocean Topography (SWOT) Mission River
410 Database (SWORD): A Global River Network for Satellite Data Products. *Water Resour
411 Res* 57, e2021WR030054 (2021).

412 35. Lim, M. Seven years after tsunami, Japanese live uneasily with seawalls | Reuters.
413 <https://www.reuters.com/article/us-japan-disaster-seawalls/seven-years-after-tsunami-japanese-live-uneasily-with-seawalls-idUSKCN1GL0DK/> (2018).

415 36. Teramura, J. & Shimatani, Y. Advantages of the Open Levee (Kasumi-Tei), a Traditional
416 Japanese River Technology on the Matsuura River, from an Ecosystem-Based Disaster
417 Risk Reduction Perspective. *Water* 2021, Vol. 13, Page 480 13, 480 (2021).

418 37. Koelewijn, A., Pol, J. & van Schaijk, M. Performance of flood defences in the
419 Netherlands during the 2021 summer floods. *Journal of Coastal and Riverine Flood Risk*
420 2, (2023).

421 38. Nienhuis, J. H., Hoitink, A. J. F. T. & Törnqvist, T. E. Future Change to Tide-Influenced
422 Deltas. *Geophys Res Lett* 45, 3499–3507 (2018).

423 39. Buchhorn, M. *et al.* Copernicus Global Land Service: Land Cover 100m: collection 3:
424 epoch 2018: Globe. (2019) doi:10.5281/ZENODO.3518038.

425 40. Haasnoot, M. *et al.* Long-term sea-level rise necessitates a commitment to adaptation: A
426 first order assessment. *Clim Risk Manag* 34, 100355 (2021).

427 41. Pronk, M. *et al.* DeltaDTM: A global coastal digital terrain model. *Scientific Data* 2024
428 11:1 11, 1–18 (2024).

429 42. WDI - The World by Income and Region. <https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html>.

431 43. Sewerage & Water Board of New Orleans. *Operations Report 2017*.
432 https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://swbno.org/Media/documents/Reports/2017_operations_report.pdf&ved=2ahUKEwjUpfy8mbSNAxX4g_0HHdqUCnAQFnoECB0QAQ&usg=AOvVaw0bc5vXV16wz69Z7bAhDTa (2017).

436 44. van Gijzen, L. & Bakker, A. M. R. Determining the future functional requirements of a
437 pumping-weir station with the help of data-analysis. *Life-Cycle of Structures and*

438 *Infrastructure Systems - Proceedings of the 8th International Symposium on Life-Cycle*
439 *Civil Engineering, IALCCE 2023* 2612–2619 (2023) doi:10.1201/9781003323020-
440 318/DETERMINING-FUTURE-FUNCTIONAL-REQUIREMENTS-PUMPING-
441 WEIR-STATION-HELP-DATA-ANALYSIS-VAN-GIJZEN-BAKKER.

442 45. ITV News Anglia. Working harder than ever: UK's biggest pumping station fending off
443 floods. [https://www.itv.com/news/anglia/2024-01-06/working-harder-than-ever-uks-
444 biggest-pumping-station-fending-off-floods](https://www.itv.com/news/anglia/2024-01-06/working-harder-than-ever-uks-biggest-pumping-station-fending-off-floods) (2024).

445 46. Orleans Levee District. History: Building the Hurricane Protection System.
446 <https://www.leveeboard.org/history12.html>.

447 47. Dutch Dikes Foundation. Dutch Dikes. <http://dutchdikes.net/> (2014).

448 48. Samuel, K. Han River Renaissance: Seoul revives river's legacy.
449 <https://www.korea.net/NewsFocus/Culture/view?articleId=190405#none> (2020).

450 49. Royal IHC. Creating Palm Islands. [https://www.royalihc.com/dredging/project-
451 type/creating-palm-islands](https://www.royalihc.com/dredging/project-type/creating-palm-islands).

452 50. Royal Boskalis Westminster N.V. Land reclamation Chek Lap Kok airport Hong Kong.
453 [https://boskalis.com/about-us/projects/land-reclamation-check-lap-kok-airport-hong-
kong](https://boskalis.com/about-us/projects/land-reclamation-check-lap-kok-airport-hong-
454 kong).

455 51. Michon, S. Land Reclamation at Rotterdam.
456 <https://earthobservatory.nasa.gov/images/47122/land-reclamation-at-rotterdam> (2010).

457 52. Sengupta, D., Chen, R. & Meadows, M. E. Building beyond land: An overview of
458 coastal land reclamation in 16 global megacities. *Applied Geography* 90, 229–238
459 (2018).

460 53. Rijkswaterstaat. Maeslantkering.
461 [https://www.rijkswaterstaat.nl/water/waterbeheer/bescherming-tegen-het-
water/waterkeringen/deltawerken/maeslantkering](https://www.rijkswaterstaat.nl/water/waterbeheer/bescherming-tegen-het-
462 water/waterkeringen/deltawerken/maeslantkering).

463 54. Boskalis. Coastal protection, St. Petersburg. [https://boskalis.com/about-
us/projects/coastal-protection-st-petersburg](https://boskalis.com/about-
464 us/projects/coastal-protection-st-petersburg).

465 55. Jonkman, S. N., Hillen, M. M., Nicholls, R. J., Kanning, W. & Van Ledden, M. Costs of
466 adapting coastal defences to sea-level rise - New estimates and their implications. *J
467 Coast Res* 29, 1212–1226 (2013).

468 56. Hofstede, J. Climate change and coastal adaptation strategies: the Schleswig-Holstein
469 perspective. *BALTICA* 21, 71–78 (2008).

470 57. Flood Protection Authority. *Info Sheet: IHNC-Lake Borgne Surge Barrier*.
471 [https://www.floodauthority.org/wp-content/uploads/2018/04/Info-Sheet-IHNC-Surge-
Barrier.pdf](https://www.floodauthority.org/wp-content/uploads/2018/04/Info-Sheet-IHNC-Surge-
472 Barrier.pdf) (2018).

473 58. Khadiyanto, P., Soetomo, S. & Hadi, S. P. Settlement adaptation on a seawater tide
474 overflow area at the north part of Semarang, Indonesia. (2015) doi:10.1111/jfr3.12167.

475 59. Jamero, M. L. *et al.* Small-island communities in the Philippines prefer local measures
476 to relocation in response to sea-level rise. *Nature Climate Change* 2017 7:8 7, 581–586
477 (2017).

478 60. Colten, C. E. Raising Urban Land: Historical Perspectives on Adaptation. 135–142
479 (2018) doi:10.1007/978-3-319-65663-2_9.

480 61. Arnall, A., Thomas, D. S. G., Twyman, C. & Liverman, D. Flooding, resettlement, and
481 change in livelihoods: Evidence from rural Mozambique. *Disasters* 37, 468–488 (2013).

482 62. Dunne, T. , Mertes, L. A. K. , Meade, R. H. , Richey, J. E. , & Forsberg, B. R. Exchanges
483 of sediment between the flood plain and channel of the Amazon River in Brazil. *Bulletin
484 of the Geological Society of America* 110(4), 450–467., (1998).

485 63. Nittrouer, C. A. & DeMaster, D. J. Sedimentary processes on the Amazon continental
486 shelf: past, present and future research. *Cont Shelf Res* 6, 5–30 (1986).

487 64. Nittrouer, C. A. *et al.* Amazon Sediment Transport and Accumulation along the
488 Continuum of Mixed Fluvial and Marine Processes. *Ann Rev Mar Sci* 13, 501–536
489 (2021).

490 65. Nittrouer, C. A. *et al.* Amazon Sediment Transport and Accumulation along the
491 Continuum of Mixed Fluvial and Marine Processes. *Ann Rev Mar Sci* 13, 501–536
492 (2021).

493 66. Rine, J. M. & Ginsburg, R. N. Depositional facies of a mud shoreface in Suriname, South
494 America; a mud analogue to sandy, shallow-marine deposits. *Journal of Sedimentary
495 Research* 55, 633–652 (1985).

496 67. Morales, J. A. Evolution and facies architecture of the mesotidal Guadiana River delta
497 (S.W. Spain-Portugal). *Mar Geol* 138, 127–148 (1997).

498 68. Fielding, C. R., Trueman, J. & Alexander, J. Sedimentology of the Modern and Holocene
499 Burdekin River Delta of North Queensland, Australia—Controlled by River Output, not
500 by Waves and Tides. *River Deltas-Concepts, Models, and Examples* 467–496 (2005)
501 doi:10.2110/PEC.05.83.0467.

502 69. Fielding, C. R., Trueman, J. D. & Alexander, J. Holocene Depositional History of the
503 Burdekin River Delta of Northeastern Australia: A Model for a Low-Accommodation,
504 Highstand Delta. *Journal of Sedimentary Research* 76, 411–428 (2006).

505 70. Van Nguyen, L., Ta, T. K. O. & Tateishi, M. Late Holocene depositional environments
506 and coastal evolution of the Mekong River Delta, Southern Vietnam. *J Asian Earth Sci*
507 18, 427–439 (2000).

508 71. Ta, T. K. O. *et al.* Holocene delta evolution and sediment discharge of the Mekong River,
509 southern Vietnam. *Quat Sci Rev* 21, 1807–1819 (2002).

510 72. Xue, Z., Liu, J. P., DeMaster, D., Van Nguyen, L. & Ta, T. K. O. Late Holocene Evolution
511 of the Mekong Subaqueous Delta, Southern Vietnam. *Mar Geol* 269, 46–60 (2010).

512 73. Middelkoop, H., Erkens, G. & van der Perk, M. The Rhine delta-a record of sediment
513 trapping over time scales from millennia to decades. *J Soils Sediments* 10, 1–12 (2010).

514 74. Erkens, Gilles. Sediment dynamics in the Rhine catchment : Quantification of fluvial
515 response to climate change and human impact. 278 (2009).

516 75. Bobrovitskaya, N. N. & Meade, R. H. *Discharges and Yields of Suspended Sediment in*
517 *the Ob' and Yenisey Rivers of Siberia. Erosion and Sediment Yield: Global and Regional*
518 *Perspectives, IAHS Publication No. 236 (Pp. 115–123). . (1996).*

519 76. Hori, K., Saito, Y., Zhao, Q. & Wang, P. Architecture and evolution of the tide-dominated
520 Changjiang (Yangtze) River delta, China. *Sediment Geol* 146, 249–264 (2002).

521 77. Liu, J. P. *et al.* Flux and fate of Yangtze River sediment delivered to the East China Sea.
522 *Geomorphology* 85, 208–224 (2007).

523 78. Guerriero, R. & Penning-Rowsell, E. C. Innovation in flood risk management: An
524 ‘Avenues of Innovation’ analysis. *J Flood Risk Manag* 14, e12677 (2021).

525 79. Sargentis, G. F. *et al.* Technological Advances in Flood Risk Assessment and Related
526 Operational Practices Since the 1970s: A Case Study in the Pikrodafti River of Attica.
527 *Water* 2025, Vol. 17, Page 112 17, 112 (2025).

528 80. Rozos, E., Dimitriadis, P. & Bellos, V. Machine Learning in Assessing the Performance
529 of Hydrological Models. *Hydrology* 2022, Vol. 9, Page 5 9, 5 (2021).

530 81. Wang, L. *et al.* A review of the flood management: from flood control to flood resilience.
531 *Heliyon* 8, (2022).

532 82. Rijkswaterstaat. Iconic structures. <https://www.rijkswaterstaat.nl/en/projects/iconic-structures>.

534 83. Van Vliet, M. T. H. *et al.* Global river discharge and water temperature under climate
535 change. *Global Environmental Change* 23, 450–464 (2013).

536 84. Moragoda, N. & Cohen, S. Climate-induced trends in global riverine water discharge
537 and suspended sediment dynamics in the 21st century. (2020)
538 doi:10.1016/j.gloplacha.2020.103199.

539 85. Dunn, F. E. *et al.* Projections of declining fluvial sediment delivery to major deltas
540 worldwide in response to climate change and anthropogenic stress. *Environmental*
541 *Research Letters* 14, 084034 (2019).

542 86. De Lima, A. C. B. *et al.* Climate hazards in small and medium cities in the Amazon Delta
543 and Estuary: challenges for resilience. *Environ Urban* 32, 195–212 (2020).

544 87. Amazon Cooperation Treaty Organization (ACTO). Strategic Action Program: Regional
545 Strategy for the Integrated Management of Water Resources in the Amazon Basinamazon
546 Basin Project. <https://aguasamazonicas.otca.org/strategic-action-program/strategic-actions/?lang=en>.

548 88. Szlafsztein, C. F. & de Araújo, A. N. B. Autonomous flood adaptation measures in
549 Amazonian cities (Belem, Brazil). *Natural Hazards* 108, 1069–1087 (2021).

550 89. Da Cunha Ávila, J. V., Clement, C. R., Junqueira, A. B., Ticktin, T. & Steward, A. M.
551 Adaptive Management Strategies of Local Communities in Two Amazonian Floodplain
552 Ecosystems in the Face of Extreme Climate Events. *J Ethnobiol* 41, 409–426 (2021).

553 90. Day, J. W., Ibáñez, C., Pont, D. & Scarton, F. Status and Sustainability of Mediterranean
554 Deltas: The Case of the Ebro, Rhône, and Po Deltas and Venice Lagoon. in *Coasts and*
555 *Estuaries: The Future* 237–249 (Elsevier, 2019). doi:10.1016/B978-0-12-814003-
556 1.00014-9.

557 91. Rovira, A. & Ibàñez, C. Sediment management options for the lower Ebro River and its
558 Delta. *J Soils Sediments* 7, 285–295 (2007).

559 92. Fatorić, S. & Chelleri, L. Vulnerability to the effects of climate change and adaptation:
560 The case of the Spanish Ebro Delta. *Ocean Coast Manag* 60, 1–10 (2012).

561 93. Genua-Olmedo, A., Temmerman, S., Ibáñez, C. & Alcaraz, C. Evaluating adaptation
562 options to sea level rise and benefits to agriculture: The Ebro Delta showcase. *Science*
563 *of the Total Environment* 806, (2022).

564 94. Rovira, A. & Ibàñez, C. Sediment management options for the lower Ebro River and its
565 Delta. *Journal of Soils and Sediments* vol. 7 285–295 Preprint at
566 <https://doi.org/10.1065/jss2007.08.244> (2007).

567 95. Hinkel, J. *et al.* The ability of societies to adapt to twenty-first-century sea-level rise.
568 *Nature Climate Change* 2018 8:7 8, 570–578 (2018).

569 96. Auerbach, L. W. *et al.* Flood risk of natural and embanked landscapes on the Ganges-
570 Brahmaputra tidal delta plain. *Nat Clim Chang* 5, 153–157 (2015).

571 97. Rahman, M. M. *et al.* Ganges-Brahmaputra-Meghna delta, Bangladesh and India: a
572 transnational mega-delta. in *Deltas in the Anthropocene* 23–51 (Palgrave Macmillan,
573 Cham, 2020). doi:10.1007/978-3-030-23517-8_2.

574 98. Uddin, S. A., He, L., Hossain, M. J., Nusrat, N. & Debi, M. Ganges-Brahmaputra-
575 Meghna River Delta. *Delta Sustainability: A Report to the Mega-Delta Programme of*
576 *the UN Ocean Decade* 89–116 (2024) doi:10.1007/978-981-97-7259-9_6/FIGURES/9.

577 99. Government of the People's Republic of Bangladesh. *National Adaptation Plan of*
578 *Bangladesh 2023-2050.* (2022).

579 100. Inuvialuit Regional Corporation. *Inuvialuit on the Frontline of Climate Change: Final*
580 *Report – February 2018.* moz-extension://a7cabc7c-3e4a-4570-bea7-
581 a8ff0c99dd63/enhanced-
582 reader.html?openApp&pdf=https%3A%2F%2Firc.inuvialuit.com%2Fwp-
583 content%2Fuploads%2F2023%2F10%2FInuvialuit%2520on%2520the%2520Frontline
584 %2520of%2520Climate%2520Change-Final-Feb2018%2520(SMALL).pdf (2018).

585 101. Winterwerp, J. C. *et al.* Managing erosion of mangrove-mud coasts with permeable
586 dams – lessons learned. *Ecol Eng* 158, (2020).

587 102. Schmitt, K. & Albers, T. Area Coastal Protection and the Use of Bamboo Breakwaters
588 in the Mekong Delta. in *Coastal Disasters and Climate Change in Vietnam: Engineering*

589 and Planning Perspectives 107–132 (Elsevier Inc., 2014). doi:10.1016/B978-0-12-
590 800007-6.00005-8.

591 103. Quoc Thanh, V. *et al.* Flooding in the Mekong Delta: The impact of dyke systems on
592 downstream hydrodynamics. *Hydrol Earth Syst Sci* 24, 189–212 (2020).

593 104. Powell, N., Osbeck, M., Bach, S. & Canh Toan, V. U. *Mangrove Restoration and*
594 *Rehabilitation for Climate Change Adaptation in Vietnam World Resources Report Case*
595 *Study.* <http://www.worldresourcesreport.org/> (2011).

596 105. Hoang, L. P. *et al.* Managing flood risks in the Mekong Delta: How to address emerging
597 challenges under climate change and socioeconomic developments. *Ambio* 47, 635–649
598 (2018).

600 106. Mekong River Commission. *Mekong Climate Change Adaptation Strategy and Action*
601 *Plan (MASAP).* (Vientiane, Lao PDR: Mekong River Commission, 2018).

602 107. Day, J. W. *et al.* Pattern and process of land loss in the Mississippi Delta: A spatial and
603 temporal analysis of wetland habitat change. *Estuaries* 23, 425–438 (2000).

604 108. Bailey, C., Gramling, R., Laska, S. B., Gramling, R. & Laska, S. B. Complexities of
605 Resilience: Adaptation and Change within Human Communities of Coastal Louisiana.
606 *Estuaries of the World* 125–140 (2014) doi:10.1007/978-94-017-8733-8_9.

607 109. Coastal Protection and Restoration Authority (CPRA). *2023 Coastal Master Plan:*
608 *Executive Summary.* [https://coastal.la.gov/wp-](https://coastal.la.gov/wp-content/uploads/2023/04/2023MP_Executive-Summary.pdf)
609 [content/uploads/2023/04/2023MP_Executive-Summary.pdf](https://coastal.la.gov/wp-content/uploads/2023/04/2023MP_Executive-Summary.pdf) (2023).

610 110. Day, J. W., Ibáñez, C., Pont, D. & Scarton, F. Status and Sustainability of Mediterranean
611 Deltas: The Case of the Ebro, Rhône, and Po Deltas and Venice Lagoon. *Coasts and*
612 *Estuaries: The Future* 237–249 (2019) doi:10.1016/B978-0-12-814003-1.00014-9.

613 111. Ikehi, M. E., Onu, F. M., Ifeanyieze, F. O. & Paradang, P. S. Farming Families and
614 Climate Change Issues in Niger Delta Region of Nigeria: Extent of Impact and
615 Adaptation Strategies. *Agricultural Sciences* 05, 1140–1151 (2014).

616 112. Nzeadibe, T. C. , Egbule, C. L. , Chukwuone, N. A. & Agu, V. C. Climate Change
617 Awareness and Adaptation in the Niger Delta Region of Nigeria. *African Technology*
618 *Policy Studies Network, Nairobi.* (2011).

619 113. Ohwo, O. Climate Change Impacts, Adaptation and Vulnerability in the Niger Delta
620 Region of Nigeria. 8, (2018).

621 114. Eldeberky, Y. & Hünicke, B. the Netherlands VULNERABILITY OF THE NILE
622 DELTA TO RECENT AND FUTURE CLIMATE CHANGE.

623 115. Delta Programme Commissioner. *Delta Programme 2015. Working on the Delta. The*
624 *Decisions to Keep the Netherlands Safe and Liveable.* (2015).

625 116. de Vriend, H., Wang, Z., vanMaren, B. & Peng, Z. Rhine-Meuse-Scheldt Delta BT -
626 Delta Sustainability: A Report to the Mega-Delta Programme of the UN Ocean Decade.
627 263–292 (2024) doi:10.1007/978-981-97-7259-9_14.

628 117. Penning-Rowse, E. Floating architecture in the landscape: climate change adaptation
629 ideas, opportunities and challenges. *Landsc Res* 45, 395–411 (2020).

630 118. International Boundary and Water Commission (IBWC). Flood Control Levee Systems.
631 <https://www.ibwc.gov/flood-control-levee-systems/#rio-grande>.

632 119. Haasnoot, M. *et al.* Generic adaptation pathways for coastal archetypes under uncertain
633 sea-level rise. *Environmental Research Communications* vol. 1 Preprint at
634 <https://doi.org/10.1088/2515-7620/ab1871> (2019).

635