


Reconstruction of LFP based on dipole theory
Since pyramidal neurons are perpendicular to the cortical surface, with dendrites facing the cortical surface and axons pointing to the grey matter-white matter border, the central dipole orientation is also set perpendicular to the cortical surface. The dipole theory is used to reconstruct the local field potentials (LFPs) and the theory of Demont-Guignard (2009) is considered in this study (Demont Guignard et al. 2009). The assumptions include, on the one hand, that each neuronal mass model is considered as a dipole, located in a brain tissue with uniform conductivity (σ = 1), on the other hand, according to the superposition theory, the total LFP of a given brain region is the instantaneous summation of itself and the contribution of the remaining brain regions. The specific LFP formula is as follows:
[bookmark: OLE_LINK16]		(1)
where  is the conductivity,  is the distance from cell i to the measurement point (i.e., the recording electrode),  is a unit vector on a straight line from neuron  to the recording point ,  is the dipole moment, and N is the total number of brain regions (1≤N≤68).
Nodal model of neurovascular coupling
Reverse Neural Mass Model (RNMM)
[bookmark: OLE_LINK6][bookmark: _Hlk194312914]The NMM was used in this study is an established and validated neural population model (Jansen and Rit 1995) including two sub-populations corresponding to pyramidal cells and interneurons, respectively. The linear transformation function labeled  and , convert presynaptic potentials (mean pulse density of action potentials) to postsynaptic potentials (excitatory postsynaptic potential (EPSP) and inhibitory postsynaptic potential (IPSP)). The following expressions for unit impulse response generating blocks have been used:
	(t)=Aa，(t)=Bb	(2)
[bookmark: OLE_LINK1]where A is the excitatory synaptic gain and B is the inhibitory synaptic gain. Parameters  and  are the excitatory and inhibitory mean synaptic gains which are used to regulate the postsynaptic potential (PSP), respectively. These four parameters of A, B, a and b can regulate the sensitivity of excitatory and inhibitory synapses and determine the excitatory and inhibitory properties of the model.
The static nonlinear function S(v) have been depicted by the following formula:
		(3)
where  is the maximum firing rate of the neural population,  is PSP relatives to the ,  the steepness of the sigmoidal transformation, and  is the presynaptic mean membrane potential.
The interactions between two sub-populations are characterized by the four connectivity constants  ~ . These connectivity constants represent the average number of synaptic connections between and among pyramidal cells, excitatory cells and inhibitory interneurons. At the same time a lumped connectivity constant parameter (C) to relate these four connectivity constants, and the relationship is specified as C = C1, C2 = 0.8C, C3 = 0.25C and C4 = 0.25C.
The PSP is described by a first-order ordinary differential equation of the form:
		(4)
where G and g denote the parameters  in the excitability condition or the parameters  in the suppression condition. In the excitatory case, G=A, g=a, and in the inhibitory case, G=B, g=b.  and  are the input and output signals of the sub-populations, respectively.
The Reverse Neural Mass Model (RNMM) modified by NMM (Jansen and Rit 1995). Using the following differential equations to describe the whole-brain Reverse Neural Mass Model (wRNMM):



		
		(5)





[bookmark: _Hlk139808041]where ,  and  are the outputs of the three PSP blocks, respectively.  is the contribution of the current node to all other nodes. Connectivity constants , attenuate the output of  column before it is fed to the n column. The above system of differential equations is solved using the ode45 method.
 was firstly normalized to ensure that its magnitude was similar to . To ensure the accuracy of the PSP, the values of A, B and C are adjusted to maximize the match between the  and . The optimization method was simulated annealing method, and the error cost function was root mean square error:
		(6)
where  is the number of time point.
Metabolic Hemodynamic Model
The interpretation and values of MHM parameters are displayed in Table. 1. The equations relating these biological processes are as follows:
Table. 1 Interpretation and values of the parameters used in the simulations
	Parameter
	Interpretation
	Value

	
	Efficacy of glucose consumption response to excitation
	1

	
	Efficacy of glucose consumption response to inhibition
	1

	
	Time-constant of the excitatory glucose consumption impulse response
	1

	
	Time-constant of the inhibitory glucose consumption impulse response
	0.8

	c
	Steepness of the sigmoid function x
	2.5

	d
	Position of the threshold of the sigmoid function x
	1.6

	
	Delay between excitatory neuronal activity and corresponding glucose consumption.
	0.1s

	
	Delay between inhibitory neuronal activity and corresponding glucose consumption
	0.1s

	
	Delay between excitatory neuronal activity and CBF response
	0.2s

	
	Baseline ratio of excitatory to inhibitory synaptic activity in the voxel
	5

	
	Efficacy of blood flow response to excitation
	0.6

	
	Constant for CBF signal decay
	1.5

	
	Constant for CBF autoregulatory feedback
	2.4

	
	Transit time through the balloon
	1s

	
	Coefficient of the steady state flow–volume relationship
	0.4

	
	Weight for deoxyhemoglobin change
	3.4

	
	Weight for blood volume change
	1

	
	Baseline blood volume
	0.02


The glucose consumed for excitatory activity is given by:
		(7)
The glucose consumed for inhibitory activity is given by:
		(8)
 and  are the total glucose consumption signals are given by:
		(9)
The equations of total oxygen consumption m(t) are as follows: 
		(10)
There are specific details of the derivation of the equations describing this relationship (Sotero and Trujillo-Barreto 2007). For the simulation of CBF, MHM used the model of others (Friston et al. 2000). It also attached the hypothesis that CBF is not coupled to inhibition activity.
		(11)
 At the same time, the Balloon model (Buxton et al. 2004) is employed for linking the output of the metabolic and vascular models to normalized cerebral blood volume (v) and deoxyhemoglobin content (q). Knowing q and v, the BOLD signal is calculated as in (Buxton et al. 2004).
		(12)
[bookmark: _Hlk157287985]Given q and v, the BOLD signal is described as:
		(13)

Segmentation of cognitive subnetworks
The following table shows the correspondence between cognitive sub-networks and DK brain regions (ROIs) (Tao et al. 2013).
Table. 2 The table demonstrated the segmented subnetworks and their constituting brain regions (ROI). Each ROI is symmetric in the ipsilesional and contralesional hemispheres.
	ROI
	Subnetwork

	inferior parietal
	Attention Network (ATT)

	lateral occipital
	

	medial orbitofrontal
	

	pars opercularis
	

	pars orbitalis
	

	pars triangularis
	

	rostral middle frontal
	

	superior parietal
	

	frontal pole
	

	bankssts
	Auditory Network (ADN)

	superior temporal
	

	supramarginal
	

	transverse temporal
	

	insula
	

	middle temporal
	Default Mode Network (DMN)

	precuneus
	

	superior frontal
	

	caudal anterior cingulate
	

	isthmus cingulate
	

	lateral orbitofrontal
	

	posterior cingulate
	

	rostral anterior cingulate
	

	temporal pole
	

	caudal middle frontal
	

	paracentral
	Sensory Motor Area (SMA)

	postcentral
	

	precentral
	

	entorhinal
	Subcortical Network (SN)

	inferior temporal
	

	parahippocampal
	

	cuneus
	Visual Recognition Network (VRN)

	fusiform
	

	lingual
	

	pericalcarine
	


Variation of the FC sub-networks at the group level
The following Fig. 1 shows the average FC results over the subnetwork, in which A (a) is the average FC result before the task and A (b) is the average FC result after the task. Furthermore, to further observe the matrix variation, we obtain the difference of the two matrixes (a2 - a1) and binarize it according to 0, as shown in A (c). Also, we represented the enhanced and reduced connections in the matrix as a chord diagram as in B(a-b), and we calculated network topological metrics including average degree, betweenness centrality, clustering coefficient, and characteristic path length as in B(c).
[image: ]
[bookmark: _Hlk195106638]Fig. 1. Variation of the FC sub-networks at the group level. (A) Results of the mean FC before visual-motor task (a), and after the visual-motor task (b), as well as matrix of binary changes in FC after the task compared to before the task (c). (B) FC enhanced (a) and reduced (b) connections on the sub-network as a chord diagram, as well as network topological metrics (c).
Differences in optimized parameters on the sub-network before and after the task
At the sub-network level, the model-optimized parameters A, B, and C were found to vary before and after the task. On the one hand, parameter A in the ATT was found to increase in the group. Parameter A in SMA and parameters A and C in VRN were found to increase more. On the other hand, there was no significant trend in the other sub-networks for these parameters and the detailed results are shown in Fig. 2.
[image: ]
[bookmark: _Hlk195108384]Fig. 2. Differences in optimized parameters on the sub-network before and after the task.
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