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Supplementary Note 1. Materials: 
Butylcarbinol, tributyl citrate, ethyl cellulose, sorbitan trioleate (Span-85, C60H108O8, Mw=957), 1 ,4-butyrolactone, hexamethyl disilazane, and acetone were purchased from Shanghai Macklin Biochemical Technology Co., Ltd., China. RuO2 particles were supplied from Sino-Platinum Metals Co., Ltd. China. Glass slags were self-made in lab. Alumina sol was purchased from Qingdao Hi-Tech Moulds & Plastics Technology Co., Ltd. China. Al2O3 chopped-fiber felt were purchased from Wei Ye Crystal Fiber Co., Ltd., China. Al2O3 fiber and Al2O3 fiber cloth was purchased from Dongheng Guoxian New Materials Co., Ltd.

Supplementary Note 2. Electromagnetic simulation: 
A full-wave electromagnetic simulation model of the designed microwave-absorbing structure is built in High Frequency Structure Simulator (HFSS) software to evaluate its reflective properties and to examine the frequency-dependent electric field distribution within the structure. Specifically, the microwave-absorbing structure is placed horizontally in x-y plane and the perfect electric conductor, the lower Al2O3f/Al2O3 ceramic composite layer, the lower aerogel composites layer, the lower metasurface layer, the intermediate aerogel composites layer, the upper metasurface layer, the upper aerogel composites layer, and the upper Al2O3f/Al2O3 ceramic composite layer are distributed in a positive direction along z-axis, from bottom to top, respectively. The cells of the two-layer metasurface are characterized by square resistor sheets with different resistances. Electromagnetic parameters of aerogels composites and ceramic composites were introduced into the dielectric layer model. Periodic boundary conditions and Flouqet excitation ports are set to simulate an infinite absorber. The line-polarized incident wave is incident on the surface of the absorber along -z direction and the electric field polarization direction is parallel to x-axis.

Supplementary Note 3. Heat transfer simulation:
A 3D model of 7 layers with dimensions of 50 mm × 50 mm × 18.1 mm was created in Abaqus software. The top layer of 0.5 mm and the bottom layer of 0.2 mm correspond to Al2O3f/Al2O3 ceramic composites. The thickness of two metasurface layers was both set as 0.3 mm. The remaining positions are alumina aerogel composites. The properties of the composites are defined by the thermal, mechanical, and density parameters in Supplementary Table 1. The parameters of metasurface layer were the same to Al2O3f/Al2O3 ceramic composites because its substrate is Al2O3f/Al2O3 ceramic composites. The heating procedure was consistent with the experiment and the bottom of the model was heated. The ambient temperature was set to 25 °C. The mesh size was 1 mm and a C3D8T heat transfer cell was used with nodes having only temperature degrees of freedom.
Supplementary Table 1 The thermal, mechanical, and density parameters of alumina aerogel composites and Al2O3f/Al2O3 ceramic composites
	Materials
	Density (g/cm3)
	Elasticity modulus (MPa)
	Poisson’s ratio
	Coefficient of thermal expansion （K-1）
	Specific heat (kJ/kg·K)
	Thermal conductivity (W/(m·K))

	Alumina aerogel composites
	0.38
	6.58
	0.09
	6×10-6
	0.9
	25℃
	0.03

	
	
	
	
	
	
	400℃
	0.034

	
	
	
	
	
	
	500℃
	0.037

	
	
	
	
	
	
	600℃
	0.041

	
	
	
	
	
	
	700℃
	0.045

	
	
	
	
	
	
	800℃
	0.048

	
	
	
	
	
	
	900℃
	0.054

	
	
	
	
	
	
	1000℃
	0.064

	Al2O3f/Al2O3 ceramic composites
	2.1
	3×104
	0.09
	6.45×10-6
	1.96
	25℃
	2.17

	
	
	
	
	
	
	400℃
	1.24

	
	
	
	
	
	
	500℃
	1.79

	
	
	
	
	
	
	600℃
	1.67

	
	
	
	
	
	
	800℃
	1.62

	
	
	
	
	
	
	1000℃
	1.80



Supplementary Note 4. Materials Characterizations:
Structural characterization: In order to observe the morphology of the resistive film, the resistor paste was printed on an alumina substrate and sintered. The alumina substrate was cut into rectangle with size of 20 mm × 10 mm using low-speed cutter and cold inlaid with acrylic resin. The sample was polished carefully to observe the cross-section morphology of resistive film using field emission scanning electron microscopy (SEM, Tescan Clara GMH, TESCAN, Czech Republic). Double Cs corrector transmission electron microscope (TEM, Themis Z, FEI, America) was used to observe the microstructure of the resistive film. The TEM samples were prepared by directly sintering the resistor paste and then grinding it into fine particles. X-ray diffractometer (XRD, X’ Pert Pro, Philips, Netherlands) using Cu Kα (λ = 1.54 A (°)) radiation was used to analyze the phase composition of the resistive film.
[bookmark: OLE_LINK15][bookmark: OLE_LINK16][bookmark: OLE_LINK10][bookmark: OLE_LINK12][bookmark: OLE_LINK7][bookmark: OLE_LINK8]Electrical property: The resistor paste was printed on Al2O3f/Al2O3 composites substrate and sintered. The sheet resistivity of RuO2/glass resistive patch at 25 °C ~ 1000 °C was measured using a high-temperature four probe resistivity tester. The normalized resistivity was calculated according to the following equation:

		(1)
where RN, Rt, and R0 represent normalized resistivity, sheet resistivity at test temperature, and sheet resistivity at room temperature, respectively. The TCR of the RuO2/glass material was calculated according to the following equation：

		(2)
where Tt and T0 are test temperature and room temperature.
Supplementary Note 5. Derived formula of input impedance:
The impedance of free space is:

		(3)
The impedance of ceramic composites (n=1) and aerogel composites (n=2) substrate is:

		(4)
The phase expression is:

		(5)
The equivalent impedance of the two metasurfaces are:

		(6)

		(7)
The expression of Zin can be derived through the following process: 

		(8)

		(9)

		(10)

		(11)

		(12)

		(13)

		(14)


[image: ]
Supplementary Fig. 1 High-temperature (a) dielectric constant (ε') and (b) loss tangent (tanδ) of alumina aerogel composites and Al2O3f/Al2O3 ceramic composites.
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Supplementary Fig. 2 Structural parameters of MTL integrated composite optimized by HFSS simulation software.
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Supplementary Fig. 3 Schematic diagram of (a) high-temperature four probe resistivity tester and (b) preparation of sample.


[image: D:\1-防隔热隐身一体化文章\电阻温度系数\TCR对比.tif]
Supplementary Fig. 4 Comparison of room-temperature TCR of RuO2/glass with other common resistive materials.
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Supplementary Fig. 5 Photographs of the RuO2/glass resistor paste.
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Supplementary Fig. 6 Hydrophobicity test of the alumina aerogel composites.
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Supplementary Fig. 7 Photograph of NRL arch device.


[image: ]
Supplementary Fig. 8 (a) Digital photograph and (b) infrared image of MTL integrated composites located in a muffle furnace of 1000°C during thermal shock testing.
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Supplementary Fig. 9 Digital photographs of MTL integrated composite after thermal shock at 25 ℃ ~ 1000 ℃.


[image: ]
Supplementary Fig.10 Typical wind tunnel photographs of MTL integrated composite at different time.


Supplementary Table 2 Comparison of microwave absorption properties for different types of microwave-absorbing materials
	Materials system
	Structure type
	Relative bandwidth (%)
	Absolute bandwidth (GHz)

	
	
	
	Room-temperature
	High-temperature

	This work
	Metasurface
	143 (1000℃)
	2~12
	2~12 (1000℃)

	C-SiO2/SiO21
	Metasurface
	[bookmark: OLE_LINK5][bookmark: OLE_LINK6]67 (1000℃)
	5.1~8.2
	3~6 (1000℃)

	C-SiO2/SiO22
	Metasurface
	113 (1000℃)
	3~18
	5~18 (1000℃)

	Cf-Al2O3f/SiOC3
	Metasurface
	64.7 (700℃)
	10~17.2
	9.2~18 (700℃)

	Pt-MoSi2-TiB2/Al2O34
	Metasurface
	12.9 (800℃)
	/
	10.9~12.4 (800℃)

	CNTs@BN/SiC5
	3D-metamaterials
	151 (1000℃)
	9.9~18
	2.5~18 (1000℃)

	
	
	60.5 (600℃)
	
	9.64~18 (600℃)

	
	
	57.5 (400℃)
	
	9.96~18 (400℃)

	SiCf/Si3N46
	3D-metamaterials
	33.8 (500℃)
	14.8~18
	12.8~18 (500℃)

	SiC7
	3D-metamaterials
	155.6 (1000℃)
	7~40
	5~40 (1000℃)

	
	
	140.4 (800℃)
	
	

	[bookmark: OLE_LINK3][bookmark: OLE_LINK4]SiOC8
	3D-metamaterials
	9.1 (800℃)
	13.9~14.9
	13.7~15 (800℃)

	TiB2-Al2O39
	Scattering
metamaterials
	91 (1000℃)
	4.9~14
	4.9~13.1 (1000℃)

	SiC10
	Honeycomb
	44.4 (1000℃)
	6.8~11.2
	7~11 (1000℃)

	Al2O3-TiC11
	Coating
	36.1 (800℃)
	11.5~12.4
	8.4~12.1 (800℃)

	SiCf/Si3N412
	Dallenbach 
structure
	38.6 (600℃)
	12~16.5
	9.6~14.2 (600℃)

	SiCf/SiC–Al2O313
	Dallenbach 
structure
	23.7 (600℃)
	9.7~12.4
	8.2~10.4 (600℃)

	Si3N4–SiC/SiO214
	Dallenbach 
structure
	39.2 (600℃)
	8.4~12.4
	8.2~12.2 (600℃)


Reference:
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