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I. SYSTEM CALIBRATION

As described in the main text, we have full control over the system parameters and the prop-
erties of the reservoirs. Prior to realizing the two-mode LVCM dynamics with the twelve laser
tones, we independently calibrate each term of the Hamiltonian and the motional cooling of each
vibrational mode using their corresponding laser configurations, following the procedure detailed
in Ref. [1], with additional steps for the drives associated with the second vibrational mode. The
following table lists out the values of the system parameters and motional cooling rates used to

realize the LVCM dynamics in the main text:

Reported Trapped-ion parameters [27 x kHz]
data AE [V {wi| g1 | 1 |wa| 92 | 72
Figs.2A-B| 2-28 | 1 | 5 6 [0.18| 5 | 5.5 (0.2
Figs.2C-D| 3-40 [ 1.1 | 8 | 8.23]0.18 | 3 | 2.98 |0.08
Figs. 3A-B| 2-40 (0.5 | 8 |10.3]0.12| 3 | 1.82]0.2
Figs.4A-B| 5-25| 2 | 10| 2 |045|10| 2.2 |0.18
Figs.4C-D| 5-25| 2 | 12| 3.3 |0.34| 8 | 2.1 |0.15

TABLE I. Trapped-ion interaction settings used for simulating the LVCM dynamics in the main text. The
values of the system parameters (AFE, V, wi, g1, ws, g2) and vibrational dissipation rates (1, 72)
are determined by the frequency and power of the laser tones used to generate the associated ion-light
interactions.

As shown in Table I, in this work, we demonstrate precise control and wide-range tunability
of ion-light interactions on our quantum simulator, which allow us to explore the rich dynam-
ics of multi-mode LVCM systems in different vibronic coupling regimes and vibrational mode

degeneracy.

II. NUMERICAL SIMULATIONS

We use a QuTiP-based Python package? to numerically obtain the LVCM dynamics for compar-

ing with the experimental data and theoretical investigations. Due to experimental imperfections,
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we include additional decoherence processes to our simulations of Eq. (2), as follows:

0
5? = —i[H, p] + Y {7 + VLo [p] + 7iltiL o [0} + 72 Lo, [0] + Y YimLein o], (S1)

i=1,2 i=1,2

where the jump operator o, and its corresponding rate 7y, account for spin dephasing induced by

laser power fluctuations in the rotated spin basis (z <> y), while the jump operators c¢;,, = aiaj +

alai and their corresponding rates -y;,,, consider the motional dephasing of the radial tilt modes due
to trap frequency fluctuations'*. From the comparison between the numerical calculations and

experimental data, we obtain -y, /27 = 7 Hz and ~;,,, /27 = 20 Hz for all cases.

III. PERTURBATIVE ANALYSIS
A. Weak electronic coupling

Throughout the main text, we focus our investigation of the two-mode CT process in the strong
electronic coupling regime (|V'| ~ \;/4), where there is no analytical description for the rate of
the transfer dynamics. However, in the weak electronic coupling regime, where |V| < \;/4, the
eigenstates of the two-mode LVCM can be approximated to the two-dimensional uncoupled donor
and acceptor vibronic states, where we treat the electronic coupling term Vo, as a perturbation
to the uncoupled system, described by H — Vo, with g; = w;. In this case, the transfer rates

~

are given by the Fermi’s golden rule (FGR) for the transitions between the donor and acceptor

vibronic states, as follows!'*7:

k‘T:27T‘V|2 Z pmfpn%FCZ;:’Z;iL(EDAﬂ 763)7 (82)
ni—,ni14 '
na—,Na4



where FCZ;?Z;’ = [{n1_ |n1y) {na_ |nay) |? is the convolution of the Franck-Condon factors of
the two vibrational modes, which describes the total two-dimensional overlap between the dis-
placed Fock wavefunctions, and p,,,  is the initial phonon population of the vibrational mode ¢
in the donor state. Here, we account for the dissipation of the vibrational modes by including a
Lorentzian energy distribution to the resonances at Epy = Ep o, no. — Eang, n,. = AE, the

difference between the eigenenergies of the uncoupled donor |D) ® |n;_) ® |ny_) and acceptor

|A) ® |n14+) @ |noy) vibronic states. The line-broadening profile takes the form:

/2w

L(Ey, ) = B+ 2/ (S3)

The effective spectral width of the broadening is v.¢ = C1y1 + Cy72, where the vibrational mode
i is independently subjected to the dissipation rate ~; with v; = |V/|, and C; corresponds to its
correction factor, which is explained below. The effective broadening arises from the convolution

of two Lorentzian distributions of widths C'7y; and Cyy,. This description can be extended to the

perturbative CT systems with a higher number of vibrational modes (i > 2).

Regarding the width of the line broadening associated with the vibrational dissipation in pertur-
bative CT systems, we numerically find that it depends not only on the dissipation rate -y; but also
on the displacement given by ¢;/w;. This dependence is related to the fact that the Lindbladian
eigenvalues are diagonal in the non-displaced Fock basis, and not in the eigenbasis of the vibronic
system, which causes the collapse operator to act on both the donor and acceptor vibronic states®.
To demonstrate this finding, we revisit the single-mode CT case with a vibrational energy w and
a vibronic coupling g subject to vibrational dissipation at a rate y. The effective full width at half
maximum of the Lorentzian broadening is presumed to be v, = C~y. As shown in Fig. S1A, we

empirically estimate a fixed value of the correction factor C' > 1 for a given g/w by comparing
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Figure S1. Line-broadening corrections in the weak electronic coupling regime. Empirically determined
width correction factor C' (connecting point markers) for the single-mode CT process with V' = 0.005w and
7 = iy = 0.01, plotted as a function of (A) v/V and (B) g/w.

the transfer rate spectra obtained from the master equation with those from the FGR. Since C' is
found to be independent of ~, we can deduce that the effective broadening width v.g is linearly
proportional to . By varying g/w for fixed 7 and V' in Fig. SI1B, we observe that C' grows as
~ (g/w)?. For instance, when g/w = 2.5, we get C' & 4, the correction factor used in Ref. [6]
Although C' seems to approach the value of 1 as g/w goes to 0, this limit is forbidden by the
perturbation criterion of the regime, which requires |V| < A/4. However, C' = 1 is appropriate
for the analysis of the perturbative VAET dynamics in Supplementary Information III B, where
g is the perturbation to the uncoupled vibronic system, whose eigenstates are the products of the

electronic states and the non-displaced Fock states.

It is also worth noting that we have used the definition in Eq. (3) for the transfer rate to capture
both the time it takes for the system to equilibrate and the steady-state population of the dynamics
throughout the main text for our non-perturbative studies. As pointed out in Refs. [6, 9], given

an exponentially decaying dynamics with no remaining population in the initial state, the transfer
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Figure S2. Transfer rates in the weak electronic coupling regime. (A) Transfer rate spectra for the
degenerate two-mode CT case (w; = w2 =w) with (V, g1, 92) = (0.005, 1, 1)w and 79; = 7; = 0.01. Red
and green data correspond to (y1,7v2) = (0.04,0.01)w and (0.05,0.15)w, respectively. Blue data are the
numerical results of the single-mode CT process, where w2 = g2 =72 =0 and y; =7y =0.05w. (B) Transfer
rate spectra for the non-degenerate two-mode CT case (w1 > we) with (V, g1, g2, ws) = (0.005,1,1,0.6)w;.
Similarly, red and green data correspond to (y1,72) = (0.025,0.005)w; and (0.025,0.075)w;, respectively.
Blue data are the numerical results of the single-mode CT process, where wy = g2 = y2 =0andy; =7 =
0.025w;. The solid curves show the transfer rates obtained from the exponential fits of the master equation
dynamics, while the point markers are their corresponding FGR predictions from Eq. (S2).

rate calculated by Eq. (3) converges to the inverse of the time constant at sufficiently large Zg,.
However, when the population transfer is not complete (PS> = Pp(t — o) > 0), the absolute
values of the rates extracted from Eq. (3) differ from those obtained via the exponential fits despite
retaining the same qualitative behaviors in the transfer rate spectra. Therefore, when comparing the
transfer rates of the perturbative dynamics given by the master equation with the FGR predictions,
it is more accurate to use the inverse time constants from the exponential fits rather than the rates

obtained from Eq. (3).

By considering these effects in our analysis, we observe that the FGR calculations agree well
with the numerical results of the master equation in Eq. (2) for weak electronic couplings (V =

0.02 x A;/4), as shown in Fig. S2. Despite the overall increase in the energetically allowed transfer
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robustness, there are some subtle differences in the transfer behaviors between the degenerate
(w1 = wy = w) and non-degenerate (w; > wo) cases when compared to their single-mode (wy =

go = 72 = 0) counterparts. Thus, we shall discuss their features separately:

Degenerate case (w; = wy = w) - As shown by the red and blue curves in Fig. S2A,
the transfer rates of the two-mode system are lower to those of the single-mode system around
AFE = w, and they become larger at higher resonances (AE = mw,m € N,m > 1) for
Y1 + v2 = 7. This can be understood by comparing the FGR formula of the single-mode and
two-mode cases. At a low temperature (2; ~ 0.01), the initial population in both cases domi-
nantly occupies the ground level of the donor well. For AE = mw, m € N, the transfer rates
are proportional to the wavefunction overlaps between the donor and acceptor states, given by
FCoum = D0 oo Okithoan (0= [k14) [*[(0= |k2y) |* in the degenerate two-mode case and
FCi = [{(0_|m,)|? in the single-mode case, where we suppose p,, = p,_ ~ po_ ~ 1 and
[(ni— Inix) | = |{n_|ny)| < 1 for simplicity. Intuitively, the vibrational modes of the two-
dimensional donor well can “share” the energy difference, increasing the likelihood of transitions
to higher excited states of the two-dimensional acceptor well (for m > 1) despite the lessened
individual couplings from the smaller wavefunction overlaps as compared to the single-mode
case. For example, for a well separation of g;/w; = 1 between the donor and acceptor energy
surfaces, the Franck-Condon factors of the two systems decrease with increasing AF = mw
as follows: FCyy = {0.271,0.271,0.180,0.124} and FCyy = {0.368,0.184,0.061,0.015} for
m = {1,2,3,4}, which explains the comparative features of the red and blue data points in

Fig. S2A.

However, for increasing width ~, the transfer dependence on AFE can be diminished at the
expense of the transfer rates at resonances. As shown in the green curve of Fig. S2A, when we

increase the dissipation rate on the slow mode, the widths of the two-mode transfer resonances
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grow despite the lowered peak values, which increases the transition probabilities for off-resonant
processes, thus making excitation transfer more robust to the energy offset in the donor-acceptor

system.

Non-degenerate case (w; > w,) - The additional resonances, provided by the slow mode, can
also increase the transfer robustness to AF (see Fig. S2B). Extra broadening of the resonances
from increased 7.z can further enhance this robustness. Meanwhile, the transfer rates at reso-
nances associated with the fast mode (AFE = mwi, m € N) are evidently reduced compared to the
single-mode system, differently from the degenerate case. This decrease can be explained by the
significantly lowered overlaps of the wavefunctions (2%::2& FC%::Z; SO FCn,,m)

due to the mismatch of the resonances between those associated with the fast vibrational mode

and those provided by the slow vibrational modes (AE = mw; # mws).

B. Weak vibronic coupling (VAET)

To gain insights into the VAET regime, we shall employ a similar perturbative analysis of the
two-mode model in the weak vibronic coupling regime (¢g; < w;)'*!!. The unperturbed system is
now the uncoupled, non-displaced vibronic system, described by:

AE 2
H;ﬁ%gc =—o0,+ Vo, + ija;aj. (S4)

2

j=1

The eigenstates of this system are given by:

+ AE/2
€i7n1;n2> = < ‘ / |T>+ X \n1> & \n2> R (SS)

v
i«/Ze(e:I:AE/Q) V2¢e(e£AE/2) H>)



which correspond to the eigenenergies E., ,, n, = t€ + nyw; + nowy, where € = (%)2 + V2,
and n; € N. Without the vibrational displacements being parts of the uncoupled vibronic sys-
tem, the concept of state-dependent potential energy landscape does not apply here, and HYAET =
Z?Zl %az(aj + a}) rather acts as a perturbation that induces transitions between the states with

ladder-like energy levels. By transforming into the eigenstate basis defined in Eq. (S5), the vi-

bronic perturbation can be written as:

2
HVAET _ g] AE ~ V6 i S6
Int,e Z o 2 0z = VOg (CL]' + CL]-), ( )

where 0, . are the Pauli operators in the eigenstate basis. From the first-order perturbation theory,
single-phonon exchange processes are allowed, and the transfer rates are given by the first-order

transition probability amplitude C(Tl) and the final density of states pr(Fy):

2
kD zzn‘c;” pr(Er)
v &
- 271' 27 Z pn11p7L2I Z \gj\Qénka“ (S7)
€ nir,N1F j=1
n21,N2F

X [njldnjF7n]-I—l+(n‘jI + 1)5n_jF,n_7~1+1] L(E'IF77.])7

where index k # j, specifically (j, k) can only be either (1,2) or (2,1), and Ep = E

ey ,nir,ner

E

€—,N1F,N2F

= 2¢ + (n1; — nip)wi + (N2 — nap)ws is the energy difference between the initial
lex, nir,nor) and final |e_, nyp, nop) eigenstates. The allowed transfers in Eq. (S7) describe the
processes in which the vibronic system exchanges single-phonon energy with the environment to
enable the excitation transfer!®!2.

In contrast to the CT regime, where the collapse operators—diagonal in the Fock basis—act on

displaced Fock states, the dissipation in VAET applies directly to the vibrational degrees of free-
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Figure S3. Transfer rates in the weak vibronic coupling regime associated with VAET. (A) Trans-
fer rate spectra for the degenerate case (w1 = we = w) with (V,g1,92) = (0.125,0.005,0.005)w and
fip; = 7; = 0.01. Red and green data correspond to (7y1,72) = (0.020,0.005)w and (0.025,0.075)w, re-
spectively. Blue data are the numerical results of the single-mode VAET case, where wg = g2 =72 =0 and
v1 =~ =0.025w. (B) Transfer rate spectra for the non-degenerate case (w1 > ws) with (V, g1, g2, w2) =
(0.125,0.005,0.005,0.6)w;. Similarly, red and green data correspond to (y1,7v2) = (0.025,0.005)w; and
(0.025,0.075)w;, respectively. Blue data are the same as in (A). The solid curves show the transfer rates
obtained from the exponential fits of the master equation dynamics, while the point markers are their corre-
sponding first-order FGR predictions from Eq. (S7).

dom of the eigenstates (non-displaced Fock states), and thus the associated line broadening does
not require any correction factor (C' = 1). More importantly, since the first-order processes in the
VAET regime only require an excitation from one of the two available vibrational modes in the
two-mode system, the spectral width of the transfer resonance is exactly equal to the dissipation
rate of the relevant mode, analogous to a two-level system undergoing dissipation'?. Similarly,
the number of participating phonons and their corresponding dissipation rates determine the spec-
tral widths of the multi-phonon exchange resonances through the convolution of the Lorentzian
distributions associated with the relevant vibrational levels. This is different from the broadening
in CT, where the effective linewidth is independent of the amount of involved vibrational quanta

and is common for all the resonances that transfer excitation from the donor to the acceptor two-

dimensional potential energy wells.
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Moreover, Eq. (S7) suggests that there is an asymmetry of the transfer rates between the res-
onances associated with exothermic (E;r > 0) and endothermic (E;r < 0) transfers at low
temperatures, also observed in Ref. [10]. However, in the very low-temperature regime (n;; ~ 0),
we can further simplify the expression by considering only the terms associated with the phonon-

gain resonances (exothermic transfers). Thus, the formula for the single-phonon transfer rates is

reduced to:
% 2 2
1
ké“) =27 '26 Z Dny1Pro; Z |gj|25nsznkI (njf + ]‘>5njF7nd+1L(EIF7 ’Vj)' (S8)
nir,Nir 7j=1
na2r,n2F

In Fig. S3, we plot the transfer rates given by the time constants of the master equation dynam-
ics (solid curves) and the first-order FGR calculations (point markers). The blue data corresponds
to the single-mode system, whereas the red and green data include the additional vibrational mode
with weak and strong dissipation, respectively. Unlike CT, where the introduction of the second
mode directly modifies the wavefunction overlaps and, in turn, the effective coupling strength be-
tween the donor and acceptor sites, the contributions of the second mode to the transfer rates in
the VAET regime are different. Since the FGR predictions in Eqgs. (S7) and (S8) are probabilis-
tically additive for the allowed transitions, the presence of the additional mode can increase the
overall transfer rates of the system when the two vibrational modes are degenerate, as shown in
Fig. S3A. However, when the two modes have sufficiently different frequencies, a new transfer
resonance enabled by the second mode emerges but has a negligible effect on the transfer rate
associated with the first-mode resonance, which is equivalent to that of the single-mode resonance
(see Fig. S3B). Similar to CT, in the VAET regime, the dissipation rate of the second vibrational

mode controls the trade-off between the transfer rate enhancement and increased robustness.

2
Although the total transfer rates are given by kp = 27 ‘Z;’;:l Cém)‘ pr(ET), the complexity
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of the analytical expression of the transfer rates grows with the order of perturbation m. Since
the effects of higher-order contributions are minimal due to the suppressive nature of perturba-
tive calculations, it is therefore sufficient to consider only the numerical results of the first-order
contributions for our discussion above (kp =~ k;(Tl )). However, it is worth noting that higher-order
perturbations can give rise to energy-exchange processes involving more than one phonon excita-
tion. For instance, the second-order contributions allow two-phonon exchange processes, whose

transfer rates for |2¢| >0 are described by:

2
2

VAE
=27 Z PryPror |7
nir,nNIF
nar,n2f
2
g njr(njr—1) (njr+1)(n;r+2)
X 9ilty, (a2 S oo | L(Eypi27:
{; 9 kF kT [(26‘1‘00]')2@)]2 GFTT 2+ (QG—WJ)QOJJZ GFMG1+2 ( IF ’V])
9192 ‘2 (26 — wy)wy + (26 — wo)ws
+ ‘ A (Tl1]—|— )(n21+ ) ( (2€—w1)w1(2€—w2)w2 1Fn1r+1%ngp nor+1

(26 — wi)wi — (2 + wa)wy
(26 — wy)w1(2€ + wo)ws

2
+ (nll + 1)”2] < > 5n1F,n11+16n2F,n21—1 (59)

(26 — wo)we — (2€ + wq)wy
(2€ + w1 )w1 (26 — wo)wo

2
) 5”1F7n11 -1 6”217’"2[—1

2
+ nir(nor + 1) < > Onypmar—10m0mmar+1

(2€ + wy)wy + (2€ + wa)wo
(2€ + w1 )w1(2€ + wa)ws

+ nynog (

L(Err, 1 + 72)} .

For completeness, in the expression above, we include the negative energy input resonances
(2 < 0) even if they are suppressed in the case of low temperatures investigated in this work.
There are two classes of two-phonon exchange processes here: single-mode exchange and double-
mode exchange!!. In the former type, two phonons from a specific vibrational mode participate
in the exchange, while the latter class consists of processes in which one phonon from each mode

contributes to the two-phonon-assisted processes.
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Another difference between the CT and VAET regimes is related to high-AFE transfers. In
the CT regime, both the initial temperature and displacement-dependent Franck-Condon factors
determine whether highly excited processes are allowed. However, in the VAET regime, multi-
phonon exchange processes are always suppressed due to the progressively decreasing coupling
strengths with respect to the orders of perturbative calculations.

Alternatively to the perturbation analysis, we can use the non-interacting blip approximation to
track the spin dynamics of VAET, as described below in Supplementary Information IV. Despite
its closed-form formula, its evaluation heavily relies on the complexity of the spectral density

function describing the environmental influences on the pure spin systems.

IV. SOLUTION FOR VAET UNDER NIBA

In this section, we derive a closed-form solution for open-system VAET under the non-

interacting blip approximation (NIBA) by considering the following spin-boson model*!*:

AFE — i S
Hg, = 70’2 + Vo, + kz; ?02 <CL£ + ak) + ;wkalak’ (S10)

where, in the continuum limit, the couplings between the spin and each bosonic mode and
the frequencies of the infinite bosonic bath are characterized by the spectral density J (w) =

Ty, A2 (w — wy,). It has also been shown in Ref. [15] that if the spectral density takes the form:

2
J(w>=ng( L - L )2), (S11)
i=1

Y2+ (wi — wim)2 Y2 + (Wi + Wim

with ;, w;, and g; defined in the main text and w;,, = \/w? — 77, the spin dynamics generated
by the spin-boson model in Eq. (S10) is equivalent to that generated by the dissipative LVCM
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system described by Eq. (2) in the main text under the conditions v; < w;,, and v; < kgT; for

kgT; = kgT = 1/ (the same temperature for all bosonic bath modes).

Given the above spectral density function, the coupling strength between the spin and each
bosonic bath mode is characterized by ¢;, which is small when compared to w;, E, and V in
the VAET regime. Therefore, it is appropriate to apply the weak-coupling approximation with

NIBA*!*, The vibronic coupling terms in Eq. (S10) can then be canceled out by applying a uni-

tary transformation U = exp (>, ag(al — ag)) with aj, = —%2—’;02, such that the transformed
Hamiltonian becomes:
"HU = AE + _—iB — iB T
U U—TO'Z—FV(O' e +o o )—I—Zwkakak, (§12)
k

where the operator B = io, ), é—i (aL — ay). We then follow the procedure in the Supplementary

Information of Ref. [16] and write down the spin equations of motion in the Heisenberg picture:

ooy = 2V (ogePV — ofemBU),
00}, =iAEo), —iVo, gV, (S13)

where o, ;7 and o are the time-dependent Pauli operators in the Heisenberg picture. We can solve
for o, in terms of o 5 from the second equation and substitute the solution into the first equation.

By taking the expectation value, we get:
Oi(o,) = —2V2/ ds(o.) (s) e P (e BE)iBUY 4 1y ¢, (S14)
0

With NIBA, we suppose that the bath evolution is decoupled from that of the spin such that
the expectation value (e*iB(S)eiB(t» can approximately be calculated by considering the evolu-

14



tion of the bosonic modes under the free bath Hamiltonian Ek wkazak. Assuming each bath
mode is at equilibrium with a temperature kg7 and utilizing the second-order cumulant expansion

{exp X) — exp (X + £ Var (X)), we have:
(7 PeFO) = exp (—iQ1 (t — 5)) exp (Qa (t = 5)), (S15)
where

Q1(r) = ! /00 dwJ (W) sin (W) /w?,

Q2 (1) = 71T/oo dwJ(w) (cos (wr) — 1) coth (Bw/2) /w?. (S16)

By inserting Eq. (S15) into Eq. (S14), the equation of motion for (c.) takes the form of a convo-

lution with a kernel function f(7):

0y (0.) = / dsf (t - $) (02) (5)

f (1) =—4V?cos (Q, (1) — AET)e), (S17)

which can be formally solved using the Laplace transform:

(0.) () = L7 [m] , (S18)

where f(¢) = £[f(7)] is the Laplace transform of the kernel function f.
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V. INTERFERENCE EFFECTS IN TWO-MODE VAET

To better understand the interference effects in two-mode VAET systems leading to the en-
hancement at w; + wy resonance in the main text, we examine the zero-temperature case (pn]. =0 =

1, pn;;20 = 0) in Eq. (S10), which gives the rates of transfer between the eigenstates in Eq. S5 for

AE = \/(wl + CUQ)2 - V2 = Edual and AE = (2&)7,)2 - V2 = Eéingle:

VE, 1 1\]?
k2 (Baya) = 2 | P27 Zdual (20 2V (B S19
T ( d 1) ™ |:(UJ1+(.U2)2 w1 + Wy ( dual, V1 +’)/2)7 ( )
217 i 2
2) ¢ i 9V Ejngle V2 i
k;)(Esingle) =27 (2wi)2g w; L(Esingle7 272)7 (SZO)

respectively. When w; = wy = w, g1 = g2 = g, and 71 = 72 = 7, Egs. (S19) and (S20)

give K (Equal) = 2 x B2 (E;

tingle)> €Xplaining the enhancement at the second resonance of the

degenerate two-mode VAET compared to its single-mode counterpart, as observed in Fig. 4A.

Similarly, for w; > ws and ¢g; < w;, we get k(TQ )(Edual) > k‘%2 )(Ei

single

), as observed in Fig. 4C.

VI. BEYOND TWO-MODE LVCM

Here, we show how the conclusions of our work on the two-mode models can be straightfor-
wardly extended to the three-mode models and presumably to multi-mode models with ¢ > 3
with Figs. S4 and S5. Similar to the degenerate two-mode CT process, the presence of the addi-
tional vibrational mode in the degenerate three-mode CT case increases the phase-space volume of
the hybridized energy surfaces (now three-dimensional), which leads to a wider A F region with
monotonically increasing transfer rates and sharper peaks at high-AF (> 5w) resonances corre-
sponding to the release of the initially trapped population in the three-dimensional upper adiabatic

states (see Fig. S4A). Meanwhile, as shown in Fig. S4B, when the vibrational energies are not all
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Figure S4. Transfer rates for different numbers of vibrational modes involved in CT. (A) Transfer
rate spectra for the degenerate case (w1 = wy = w3 = w) with (V,g;,7) = (0.2,1,0.02)w for i = 1,2,
and 3. (B) Transfer rate spectra for the non-degenerate case (w1 > wo > ws) with (V, g1,71,we,ws) =
(0.125,1,0.025,0.625, 0.375)w1, (g2,72) = (1,0.020)ws, and (g3,v3) = (1,0.033)ws. In both cases, the
solid curves represent the transfer rates calculated from Eq. (2) using the definition in Eq. (3) with the same
additional decoherences used in the main text. The blue, red, and green curves are the numerical results of
the CT systems with one vibrational mode (¢ = 1 only), two vibrational modes (z = 1 and 2), and three
vibrational modes (z = 1, 2, and 3), respectively.

equal, the transfer rate spectrum features a smooth transfer profile similar to that of two-mode CT
except for the slightly increased rates, which can be explained by the additional transfer channels

provided by the third vibrational mode.

In the case of three-mode VAET, the vibrational degrees of freedom provide access to three os-
cillator baths from which units of different phonon energies can be taken to assist the transfer and
thus enable many combinative pathways for transfer resonances to occur, as shown in Fig. S5B.
With degeneracy across the vibrational modes, the linear combinations of energy supply for the
two-phonon resonance (2w; = 2wy = 2w3 = Wy + we = wy + W3 = wy + w3 = 2w) drastically
increase the transfer rates beyond the two-mode VAET (2w; = 2ws = wy + we = 2w). How-

ever, compared to two-mode VAET, there is again a slight decrease in the transfer rate of the first
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Figure S5. Transfer rates for different numbers of vibrational modes involved in VAET. (A) Transfer
rate spectra for the degenerate case (w1 = we = w3 = w) with (V, g;,7;) = (0.2,0.2,0.04)w fori = 1,2,
and 3. (B) Transfer rate spectra for the non-degenerate case (wy > ws > wo) with (V] g1,v1,ws,w3) =
(0.2,0.2,0.04,0.4,0.6)w1, (g2,72) = (0.2,0.04)ws, and (g3, v3) = (0.2,0.04)ws. In both cases, the solid
curves represent the transfer rates calculated from Eq. (2) using the definition in Eq. (3) with the same
additional decoherences used in the main text. The blue, red, and green curves are the numerical results of
the VAET systems with one vibrational mode (i = 1 only), two vibrational modes (¢ = 1 and 2), and three
vibrational modes (+ = 1, 2, and 3), respectively.

resonance due to the extra broadening caused by the dissipation of the additional mode.

While the same intuition on the two-phonon resonances can be applied to the third and higher-
order resonances for expected increases in the transfer rates, low-temperature VAET systems limit
the transfers to few-phonon-assisted processes. As concluded in the main text, the numerical
results for the three-mode systems support the generalization of the roles of mode degeneracy and
vibronic coupling strength in two-mode LVCM to systems with a higher number of vibrational

modes than 2 in both phenomenological regimes (CT and VAET).

VII. VAET-CT CROSSOVER

In this section, we investigate a low-temperature single-mode LVCM system with all the system

parameters fixed except for the vibronic coupling strength to understand the role of displacement in
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Figure S6. VAET-CT crossover in single-mode LVCM. (A) Schematic diagram illustrating the two types
of transfer dynamics in single-mode models. (B) Transfer rate spectra with (V~;) = (0.2, 0.05)w at various
values of g/w. All curves show the transfer rates calculated from Eq. (2) using the definition in Eq. (3).

transitioning the transfer dynamics between distinct characteristic regimes, such as VAET and CT
(see Fig. S6A). For consistency, we choose the electronic coupling strength to be larger than the

dissipation rate. We compare the transfer rate spectra for different values of g/w = {0.1,0.5,1, 2}

in Fig. S6B.

At small g/w = 0.1, the system undergoes VAET dynamics, showing the expected sharp trans-
fer resonance at AE = \/oﬂ—i(%/)2 from the single-phonon assisted process. As g/w increases,
the vibrational state of the system becomes effectively displaced, giving rise to non-negligible
transfer rates at resonances associated with higher-order phonon-assisted processes. However,
when g ~ w, the displaced LVCM system becomes an adiabatic CT system, leading to monotoni-
cally increasing transfer rates at low AE and sharp resonances at higher AE' (see the results with
g/w = 0.5 and 1 in Fig. S6B). From these observations, we suppose that g ~ 0.5w is the crossover
between VAET and CT. Therefore, in this work, we associate systems with g;/w; < 0.5 to non-

perturbative VAET and systems with g;/w; 2 1 to non-perturbative CT, all with strong electronic
coupling (|[V'| ~ \;/4).

As we further increase g/w, the system progressively evolves into the nonadiabatic regime of

CT, where discernible resonance peaks are recovered across the transfer rate spectrum. Differently
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from VAET, these resonances occur at integer multiples of w, and the position of the strongest

resonance depends on the displacement between the donor and acceptor potential energy surfaces.

The two distinct regimes within CT, nonadiabatic and adiabatic transfers, are determined by the

relative strengths of the electronic coupling to the reorganization energy of the system and the

dissipation rate of the vibrational mode, which have been studied in Refs. [1, 6].
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