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Experimental Section

Selenium powder (Se, 99.999%), thiourea (CN2H4S, 99.0%), tungsten trioxide (WOsg,
98%), hydrazine hydrate (N2Hs-H2O, 80%), ammonium fluoride (NH4F, 98.0%),
Nickel sulfide (NiS, 99.9%), Nickel selenide (NiSe, 99.9%), tungsten Sulfide (WS,
99.9%), tungsten Selenide (WSe2, 99.9%), Potassium hydroxide (KOH, 90%) and 5
wt.% Nafion solution were all purchased from Adamas Chemical Reagent Co. Ltd.
Ethanol (CH3CH20H, > 99.8%), acetone (CH3COCHS3, > 99.5%), and isopropyl
alcohol (C3HgO, > 99.8%), hydrochloric acid (HCl, 37%) were purchased from
Kermel (Tianjin, China). All chemicals were used as received without further
purification. The deionized (DI) water was produced by an ultrapure water system
(Millipore).

Synthesis of W-NiS.

To synthesize W-NIiS, the same condition as mentioned above except no selenium
powder in the W-NiSo.sSeo.s prepared process.

Synthesis of W-NiSe.

To synthesize W-NiSe, the same condition as mentioned above except no thiourea
powder in the W-NiSosSeo.s prepared process.

Synthesis of NiSosSeos.

In a typical synthesis of the NiSosSeos, to remove the nickel oxides on the NF surface,
the NF was soaked in 1 M HCI solution firstly, then washed with DI water, acetone
and ethanol in turns. The NF was dried in a vacuum oven to avoid reoxidation. In

detail, 0.288 g selenium powder was firstly dissolved in 6 ml hydrazine hydrate and
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then added 0.278 g thiourea and 0.4 g ammonium fluoride. At last, 15 ml ethanol and
9 ml water were added. After stirring for 0.5 h, the obtained solution with a dried NF
(1 x 2.5 cm?) was put into a 50 ml Teflon-lined stainless autoclave to process the
solvothermal reaction at 200 °C for 20 h. After cooling to the room temperature, the
obtained NiSos5Seos nanorod@nanosheet hybrid (NiSosSeos) was washed with DI
water for three times then frozen drying. To convert the above sample to the
corresponding NiSxSei-x, changing the relevant S: Se molar ratio®.

Synthesis of NiS.

To synthesize NiS, the same condition as mentioned above except no selenium
powder in the NiSosSeo s prepared process.

Synthesis of NiSe.

To synthesize NiSe, the same condition as mentioned above except no thiourea
powder in the NiSosSeo s prepared process.

Calculation of eq filling.

The temperature-dependent magnetizations (M-T) for the prepared samples were
performed under H = 1 kOe. The total effective magnetic moment (pefr) can be
obtained by Wefr = \/ﬁus through =T liner fitting result, in which C is Curie
constant and obtained from the magnetizations (y = M/H) above 150 K according to
Curie-Weiss law?.

For Ni ions, per can also be calculated from the relationship®:

Heff = gHB\/SLS(SLS + DVis + S, (Sps + DVys

where g is g factor, Sis(=0) and Sns(=2) are the S value, and Vs and Vus(=1-V.s) are
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the volume fractions for Ni%* ions. Therefore, using above two values, the ey electron
(x) can be further calculated by x = Sis * Vs +Shs * Vhs.

Calculation of turnover frequencies (TOFs)

The TOFs per metal site were calculated according to the hypothesis that all metal
atoms (W and Ni) of the nanomaterials served as active sites and contacted with the
electrolyte. The following formula was applied to calculate the turnover frequency
(TOFs) per active site in NiSosSeos*:

# toal hydrogen turnover /cm? geomrtric aera

TOFs = o= - :
# active sites /cm?® geomrtric aera

# toal oxygen turnover /em? geomrtric aera
TOFs =

# active sites /cm? geomrtric acra
In addition, the calculated TOFs for W-NiSosSeos require another equation®:
TOFscal = TOFSNEXNE + TOFSW(l - XNI)

number of active Ni atoms (mol)

Xni = . .
N total number of active Ni and W atoms (mol)

According to the above mentioned hypothesis, all the active sites were accessible to
the electrolyte. Therefore, in the practical condition, it is needed to note that the

number of practical active sites are considered to be lower than the theoretical value.
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65  Supplementary Fig. 1 SEM images of the W-NiSo5Seos at the different stages of the

66  hydrothermal process (a) 5 h; (b) 10 h; (c) 15 h and (d) 20 h.
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Supplementary Fig. 2 XRD patterns of the W-NiSosSeos at different stages of the

hydrothermal process (I) 5 h; (II) 10 h; (IIT) 15 h; (IV) 20 h; (V) 24 h.
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Supplementary Fig. 3 The formation energy of prepared samples.
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74
75 Supplementary Fig. 4 XRD patterns of W-NiSo5Seos and NiSosSeo s.
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Supplementary Fig. 5 (a-c) SEM images at different magnifications; (d)EDX
spectrum of the W-NiSo5Seos.

From high magnification SEM, we can see that the nanorod is wrapped by nanosheets
and the diameter locates about 260 nm. From low magnification SEM, it can be seen
that the nanorods are uniform and evenly grown on nickel foam skeleton. The atomic
ratio of W: Ni: S: Se was 1.73: 49.67: 24.28: 24.32 from EDX (Supplementary Table

1).
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Supplementary Fig. 6 Line-scanning intensity profile obtained from the area

highlighted with the yellow arrow in regions as shown in Fig. 1f.
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Supplementary Fig. 7 XRD patterns of (a) W-NiS and NiS; (b) W-NiSe and NiSe.
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Supplementary Fig. 8 The TEM, HRTEM, HAADF-STEM image

W-NiS and (c-d) W-NiSe.

of the (a-b)
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97  Supplementary Fig. 9 The XPS survey spectra of the W-NiSo.5Seos and NiSgsSeos.
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100  Supplementary Fig. 10 The calculated average oxidation state of W in W-NiSg5Seos

101  from XAS.
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Supplementary Fig. 11 Fourier transformed EXAFS spectra of the W-NiSo5Seo s at

the W Ls-edge (scatter points) and the theoretical fits (solid lines).
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108  Supplementary Fig. 12 Fourier transformed EXAFS spectra of the (a) NiSosSeos and
109  (b) W-NiSo5Seos at the Ni K-edge (scatter points) and the theoretical fits (solid lines).
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Supplementary Fig. 13 HRTEM images and corresponding FFT patterns (insets) for
(a) virgin NiSosSeos and (b) W-NiSosSeos. The subtle distortion regions are marked

by the orange lines in the Supplementary Fig. 13b.
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Supplementary Fig. 14 (a) Temperature dependent magnetization under H=1 kOe; (b)

Temperature dependent inverse susceptibilities fitted by Curie-Weiss law, and

calculated (c) effective magnetic moment (petf) and (d) eq occupancy of W-NiSo.5Seos

and NiSosSeos. (¢) Schematic representations of the formation mechanism for the

subtle distortion of atomic arrangement through the incorporated heterogeneous spin

states.
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HER electrocatalysis.
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129  Supplementary Fig. 16 (a-b) Typical cyclic voltammograms at the scan rates ranging
130  from 5 to 200 mV s * of the NiSosSeos and W-NiSosSeos with different values, the
131  scanning potential range is from 0.37 to 0.47 V vs RHE; (b) Linear fitting of the

132 capacitive current densities vs the scan rates.
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Supplementary Fig. 17 XRD characterizations of the W-NiSosSeos after HER

stability test.
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138  Supplementary Fig. 18 High-resolution XPS characterizations of the W-NiSosSeos

139  before and after HER stability test. (a) W 4f; (b) Ni 2p; (c) S 2p; and (d) Se 3d.
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Supplementary Fig. 19 TEM and HRTEM images of the W-NiSosSeos after HER

stability test.
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144
145  Supplementary Fig. 20 HADDF-STEM images of the W-NiSosSeos after HER

146  stability test.
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Supplementary Fig. 21 Nyquist plots of the W-NiSgsSeos and NiSosSeos for the

OER electrocatalysis.
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152  Supplementary Fig. 22 TOF value of the W-NiSo5Seos and previous reports for the
153  OER electrocatalysis (Table S7).
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156  Supplementary Fig. 23 XRD characterizations of the W-NiSosSeos after OER
157  stability test.
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159
160  Supplementary Fig. 24 High-resolution XPS characterizations of the W-NiSosSeos

161  before and after OER stability test. (a) W 4f; (b) Ni 2p; (c) S 2p; and (d) Se 3d.

162
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Supplementary Fig. 25 TEM and HRTEM images of the W-NiSosSeos after OER

stability test.
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Supplementary Fig. 26 Theoretical and experimental gas volume versus time of

W-NiSo5Seos for the overall water-splitting process.
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172  Supplementary Fig. 27 HER electrocatalytic properties of the prepared samples. (a)
173  Polarization curves; (b) The corresponding Tafel plots derived from the polarization

174  curves; (c) Nyquist plots of the NiS, W-NiS, NiSe and W-NiSe.
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Supplementary Fig. 28 OER electrocatalytic properties of the prepared samples. (a)

Polarization curves; (b) The corresponding Tafel plots derived from the polarization

curves; (¢) Nyquist plots of the NiS, W-NiS, NiSe and W-NiSe.
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Supplementary Fig. 29 Polarization curves for the overall water splitting using the

NiS, W-NiS, NiSe and W-NiSe as both the anode and cathode electrodes.
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Supplementary Fig. 30 (a) The side-view schematic model of the NiSgsSeos; (b) The

top-view schematic model of the NiSo 5Seo s.
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Supplementary Fig. 31 (a) The side-view schematic model of the W-NiSosSeos; (b)

The top-view schematic model of the W-NiSo.5Seo.s.



192
193

194

195

Supplementary Fig. 32 Side-view schematic model of the NiSosSeos (Ni and Se site)

with H* adsorbed on its surface.
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Supplementary Fig. 33 Side-view schematic model of the W-NiSo5Seos (W, Ni and

Se site) with H* adsorbed on its surface.
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Supplementary Fig. 34 Calculation of the exchange current density, jo, of (a)
W-NiSo5Seos and (b) Pt/C catalysts by the linear fitting of Tafel plot.
The calculated jo of W-NiSosSeos is 8.574x10* A cm™. The calculated jo of Pt/C is

3.728x10* A cm, which agrees well with the reported data®.
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W-NiSo:5Seos and NiSosSeos during OER process at 0 V.



214  Supplementary Table 1 The atomic ratio of W: Ni: S: Se of W-NiSo5Seos at different

215  stages of the hydrothermal process (I) 5 h; (I) 10 h; (IIT) 15 h; (IV) 20 h; (V) 24 h.

W: Ni: S: Se ratio from EDX (at.%)

I -:954.23:45.77: -

I -:52.89: 35.83: 11.28
I -153.75: 23.01: 23.24
v -152.74: 24.01: 23.25
A% 1.73: 49.67: 24.28: 24.32

216
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218

Supplementary Table 2 The atomic ratio of W: Ni of W-NiSg5Seqs samples.

W: Ni W: Ni W: Ni
ratio from ICP  ratio from EDX  ratio from XPS

(at.%) (at.%) (at.%)

W-NiSo5Seos 3.06: 96.94 3.37: 96.63 6.48: 93.52




219  Supplementary Table 3 The atomic ratio of W: Ni: S: Se of NiS, W-NiS, NiSe and

220  W-NiSe samples.

W: Ni: S: Se ratio from EDX (at.%)

NiS - 52.11: 47.89: -
W-NiS 1.51: 49.44: 49.05: -
NiSe -1 49.93: -: 50.07
W-NiSe 1.95: 48.98: -: 48.98

221



222  Supplementary Table 4 Chemical composition and electrocatalytic performance of

223  W-NiSps5Seos, NiSosSeos, W-NiS, NiS, W-NiSe and NiSe catalysts.

Samples W-NiSosSeos NiSosSegs NiS  W-NiS  NiSe W-NiSe
Nw HER (mV) 39 72 196 105 152 75
Nwo HER (MV) 106 169 342 241 280 207
Tafel HER
51 79 128 99 113 83
(mV dec™)
Rct HER (QQ) 0.23 0.72 3.53 113 315 1.29
nw OER (MmV) 171 257 342 279 330 237
Nwo OER (MV) 239 331 445 370 412 311
Tafel OER
41 62 97 73 90 57
(mV dec™)
Rct OER () 0.65 1.95 697 281 455 195
Cai (mF cm?) 138.6 109.3 - - - -
N1 water splitting (V) 1.44 1.56 1.78 1.61 1.71 1.55
1100 Water splitting (V) 1.55 1.74 2.01 1.82 1.94 1.74

224



225 Supplementary Table 5 Comparison of the HER performances between

226  W-NiSosSeos in this work and other reported electrocatalysts.

Materials Overpotent Tafel Current TOF Ref.
ial (mV density (smV)
(mV) dec?) (mAcm)

W-NiSo.5S€05 39/106/129 51 10/100/300 1.105/200  This

5.316/135 work
Co-NG-MW 175 80 10 0.385/100 7
Co-NG 147 82 10 1.189/200 8
MoiN:C> 132 90 10 1.46/150 9
Co-SAS-HOPNC 137 52 10 3.8/200 10
Ni-C-N NSs 60.9 32 10 6.67/200 11
NiFeS-1/NF 269 69 10 0.052/180 12
NiFe-1/NF 180 53 10 0.021/180 12
NisS2/NF 69 39 10 0.0067/180 12
Ni-doped graphene 50 45 10 0.8/300 13
Ru SAs@PN 41/71 38 20/50 1.67/25 14
Mo-SAC 132 68 10 0.148/50 15
Pt SAS/AG 12 29.33 10 0.325/12 16
Mo-C09Ss@C 98 90.3 10 0.5/98 17
NisPs NPs 49 98 10 0.063/100 18
P-doped Mo.C@C 47 71 10 0.02/100 19

227



228  Supplementary Table 6 The XPS peak position of W, Ni, S and Se for the

229  W-NiSo5Seos before and after HER/OER stability.

W: Ni ratio from EDX (at.%)

W-NiSo.5S€05 3.37: 96.63
HER 3.11: 96.89
OER 2.74: 97.26

230



231  Supplementary Table 7 Comparison of the OER performances between

232  W-NiSosSeos in this work and other reported electrocatalysts.

Materials Overpo Tafel Current Scan TOF Ref.
tential  (mV  density rate (st

(mV) dec?) (mAcm?) (mVs?)

W-NiSo:5Seo5s 171 41 10 5 0.052/150  This

1.85/250 work

NiO/Co30:@NC 240 73 10 5 0.49/350 20
CoFeWOx 231 32 10 5 0.54/300 21
CoFeWOx-R 249 38 10 5 0.28/300 21
CoFeOx 303 47 10 5 0.014/300 21
CoOx 342 57 10 5 0.0031/300 21
CoFeWOx-A 332 64 10 5 0.021/300 21
RuOx 324 70 10 5 0.011/300 21
NiFeS-1/NF 230 55 10 5 0.52/320 12
NiFe-1/NF 370 74 10 5 0.38/320 12
NizS2/NF 400 97 10 5 0.035/320 12
Gd-CoB 230 42 10 5 - 22
Co-Mo-P/CoNWs 270 60 20 5 - 23
Ni-ZIF/Ni-B@nf 234 57 10 5 - 24
Ni/NiFeMoOx/NF 255 35 10 5 - 25
Ir/Ni(OH)2 224 41 10 5 - 26

233



234 Supplementary Table 8 Comparison of the water splitting performances between

235  W-NiSosSeos in this work and other reported electrocatalysts.

Materials Electrolyte  Potential  Current density Ref.
(V) (mA cm?)

W-NiSo.5S€05 1M KOH 1.44 10 This work
NisS2/NF 1 M KOH 1.577 10 27
Ni@NiO/NF 1 M KOH 1.71 10 28
CoSx/NisS2/NF 1 M KOH 1.572 10 29
NiS/NiS,/NF 1 M KOH 1.62 10 30
Ni—Nio2MoosN/NF 1 M KOH 1.49 10 31
FeCo2S4/NF 1 M KOH 1.63 10 32
NiSe2/NF 1 M KOH 1.64 10 33
MoS2—NisS2 1 M KOH 1.5 10 34
NiFe-Se/C 1 M KOH 1.68 10 35
NiS, NiS> 1 M KOH 1.58 10 36
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