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Supplement 1: Regarding your inquiry on the acquisition of self-energy:
1. Initial Self-Energy: The initial self-energy (input at the start of the calculation) is derived based on perturbation theory. Due to the convergence of subsequent iterations, it progressively approaches the true value as the computational cycles increase.
2. Cellular Self-Energy: To describe the effect of surrounding cellulars on a specific cellular, we introduce the cellular Weiss field:

.




Combined with the Dyson equation=–, a self-consistent set of equations linking the cellular self-energy  and the cellular Weiss field is established. The final self-energy is obtained by iteratively solving these equations until convergence. In this work, the convergence loop for the self-energy employs one million (1,000,000) iterations. The simplified computational workflow is as follows:
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First, the self-energy is obtained through perturbation theory. Then,  is derived using . The impurity solver (in this work, the Continuous-Time Quantum Monte Carlo (CT-QMC) method) is employed to compute , and the Dyson equation is subsequently applied to update the self-energy. These steps are repeated until the self-energy converges.


Supplement 2: Computational workflow of the Cellular Dynamical Mean Field Theory (CDMFT)
[image: ]
A schematic flowchart of the Cellular Dynamical Mean Field Theory (CDMFT) is presented below, where the impurity solver employs the Continuous-Time Quantum Monte Carlo (CT-QMC) method. The computational workflow is summarized as follows:
1) 
Use perturbation theory to obtain an initial self-energy .
2) 

Use the formula  to calculate .
3) 

Input  into the impurity solver (e.g., the continuous-time Monte Carlo method), and solve to obtain .
4) 


Use =– to update the new self-energy.
5) 
Repeat steps 2) to 4) until  converges within the required precision.
6) After the self-energy converges, compute physical quantities (e.g., density of states, double occupancy) using additional post-processing procedures.
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