
Active inference as a unified model of collision avoidance

behavior in human drivers: Supplementary Material

Julian F. Schumann, Johan Engström, Leif Johnson, Matthew O’Kelly,
Jens Kober, Arkady Zgonnikov

1 Active Inference Framework

To model the behavior of human drivers in different scenarios, we combine Active Inference and Evidence
Accumulation. For sake of either notation, we use the shorthand of b1:B = {bi|i ∈ {1, . . . , B}}. Addi-
tionally, while the predicted beliefs about states q̃s(sτ) and observations q̃o(oτ) for τ > t depend on the
current belief q(st) and the chosen policy πt (sequence of planned actions), so that the correct notation
would be q̃s(sτ |πt, q(st)) and q̃o(oτ |πt, q(st)) respectively, we will use the shorthand expressions q̃s(sτ)
and q̃o(oτ) to improve readability.

1.1 Generative process and Generative model

The basic concept of active inference is the idea that a human agent does not know the actual mechanism
underlying their surrounding world (called generative process), but instead relies on an internal model
(the so called generative model) approximating the true world. These describe how the true state of the
world (ηt), a state of the agents’ belief about the world (st)), the agent’s actions (at), and the observations
of the true world ot at a time t interact with each other. Here, the generative process consists out of two
parts:

• The true transition probability p̂(ηt+1|ηt,at). It describes how a certain action at time t influences the
future world state.

• The true observation probability p̂(ot|ηt). It describes how likely it is that a certain observation can
be perceived given the current state of the world.

Meanwhile, the generative model consists out of two parts as well.

• The internal state transition probability p(st+1|st,at,θs), which might be parameterized by θs.
• The internal observation probability p(ot|st,θo), which might be parameterized by θo.

The second main idea of active inference is that an agent is uncertain about its belief about the world
st, meaning that instead of a single values, we instead assume that the agent holds a probabilistic belief,
denoted by q(st). In general, the agent could also have some uncertainty regarding the generative model
itself (i.e., there is a probabilistic belief q(θ) about the general model ’s parameters θ = {θo,θs}), but
we will not include this assumption in favor of a computationally more efficient model. We represent
stochastic beliefs q(st) by N = 75 equally likely representative samples St = st,1:N .

Given a world with the previous state ηt−1, an belief St−1, and a chosen action at−1, we can update
those in the following way:

1

1. We randomly sample our future world state ηt using the transition probability of the generative process:

ηt ∼ p̂(η′|ηt−1,at−1) (1)

2. We generate the observations ot that the agent makes. Under the assumption that the uncertainties
in the generative process are negligible compared to the uncertainties in the generative model, we use
the expected value:

ot = Ep̂(o′|ηt)o
′ (2)

3. We lastly have to update the internal belief of the agent. Here, using variational inference, we get:

q(st) ∝ p(ot|st,θo)Eq(st−1)p(st|st−1,at−1,θs)

∝ p(ot|st,θo) qA(st)
(3)

To apply this to our sample based belief representation, we first generate the updated samples
SA,t = sA,t,1:N that represent qA(st) and follow from the internal state transition probability
p(st|st−1,at−1,θs), with sA,t,n ∼ p(s′|st−1,n,at−1,θs). One can then get an explicit approximation
for qA(st) using a Kernel Density Estimate (KDE) based on SA,t, which can be expressed as

qA(st) ≈
1

N

N∑
n=1

N (st|sA,t,n,ΣA,t) . (4)

At this point, with qA and p(o|s) both known, one could generate the updated belief samples St with
a form of the Metropolis Hastings algorithm, which is however computationally inefficient.

Instead, a faster update is possible, as long as there exists a bijective mapping L under which
p(o|s) can be expressed as a normal distribution:

p(ot|st,θo) = N (L(ot)|µ(L(ot)) + L(Ast + b),Σ(L(ot))) |det JL(ot)|
= N (L(Ast + b)|L(ot)− µ(L(ot)),Σ(L(ot))) |det JL(ot)|

(5)

Then, instead doing our update over s directly, we can instead do it over sL,t = L(Ast + b). Namely,
we can use a KDE to instead calculate qL,A(sL,t), where with sL,A,t,n = L(AsA,t,n + b) we get

qL,A(sL,t) ≈
1

N

N∑
n=1

N (sL,t|sL,A,t,n,ΣL,A,t) . (6)

Substituting (6) and (5) then allows us to express qL(sL,t) as a Gaussian multi mixture model, from
which sampling SL,t is trivial:

q(st) ∝ p(ot|st,θo) qA(st)
⇐⇒ qL(sL,t) ∝ N (sL,t|L(ot)− µ(L(ot)),Σ(L(ot))) qL,A(sL,t)

∝∼
N∑

n=1

N (sL,t|L(ot)− µ(L(ot)),Σ(L(ot)))N (sL,t|sL,A,t,n,ΣL,A,t)

∝∼
N∑

n=1

wt,n N (sL,t|µt,n,Σt)

(7)

with µo = L(ot)− µ(L(ot))

Σt =
(
Σ−1

L,A,t +Σ(L(ot))
−1
)−1

2

µt,n = Σt

(
Σ−1

L,A,tsL,A,t,n +Σ(L(ot))
−1µo

)
(8)

wt,n ∝ exp

(
1

2
(sL,A,t,n − µo)

T
(ΣL,A,t +Σ(L(ot)))

−1
(sL,A,t,n − µo)

)
.

After sampling sL,t,1:N from the GMM, we can get our final sample St = st,1:N with st,n =
A−1

(
L−1(sL,t,n)− b

)
.

If A is not full rank, we will have to simply assume that the distribution q(st) orthogonally to the
image of A will be identical to the one in qA(st). However, it must be noted that in our simulations
A will be the identity matrix.

In the update of our model, we use a time step size of ∆t = 0.2 s

1.2 Expected Free Energy

After the agent updates its internal belief q(s), it then has to generate a new policy πt = at:(t+H−1)

(with at = [πt]1) over a prediction horizon of H time steps (we use H = 30 in our implementation). In
general active inference, it is postulated that such a plan is selected based on the minimization of the
expected free energy G, here defined using the preference function p(o):

G(πt|q(st)) =
t+H∑

τ=t+1

g(πt, q(st), τ)

=

t+H∑
τ=t+1

−Eq̃o(oτ)pn(oτ) ln p(oτ)︸ ︷︷ ︸
Pragmatic value gpragm

−
(
H(q̃o(oτ))− Eq̃s(sτ)H(p(oτ |sτ ,θo))

)︸ ︷︷ ︸
Epistemic value gepist

(9)

Here, the normative probability pn is used to implement some norm-conditioned belief about the likelihood
of observations (i.e., while some observation oτ might be kinematically equally likely to others in Õτ ,
it might be perceived as less likely because it violates some norms, such as driving on the wrong side
of the road). We call this use of pn an norm-conditioned particle filter. It must be noted that it could
be argued that such beliefs are better implemented directly in the state transition function, this would
require a much more detailed balancing of pn, complicating the fitting of the model. Therefore, for reasons
of simplicity, we chose the current approach. Meanwhile, q̃s(sτ) and q̃o(oτ) correspond to the beliefs that
the agents predicts for internal states and observations when following a certain policy, with

q̃s(sτ) = Eq̃s(sτ−1)p(sτ |sτ−1,aτ−1,θs)

q̃o(oτ) = Eq̃s(sτ)p(oτ |sτ ,θo)
(10)

We use again our sample based approach for belief representation, with S̃τ = sτ,1:N representing q̃s(st)

(with sτ,n ∼ p(s′|sτ−1,n,aτ−1,θs)) and Õτ = oτ,1:N approximating q̃o(oτ) (where oτ,n ∼ p(o′|sτ,n,θo)).
For the initial step of τ = t+ 1, we can assume that S̃t = St. Based on this, one can then calculate the
expected free energy g at one timestep with

g(πt, q(st), τ) ≈−

∑
oτ∈Õτ

pn(oτ) ln p(oτ)∑
oτ∈Õτ

pn(oτ)

−

H (q̃o(oτ))−
1

N

∑
sτ∈S̃τ

H (p(o′|sτ ,θo))

 ,

(11)

3

where we use the approximation

H (q̃o(oτ)) = H
(
Eq̃s(sτ)p(oτ |sτ ,θo)

)
= − 1

N

∑
oτ∈Õτ

ln

 1

N

∑
sτ∈S̃τ

p(oτ |sτ ,θo)

 (12)

To maximize G, we use the Cross Entropy Method (CEM) for model predictive control, which is an
iterative method over k ∈ 1, . . . ,K with K = 20:

1. We define a distribution pπ,k(πt) = N (πt|µπ,t,k−1,diag(σ
2
π,t,k−1)) over the policy space, from which

we sample the M = 100 policies πt,k,1:M from pπ,k(πt) and calculate the respective expected free
energy (after adjusting for pedals with freal) Gt,k,m = G(freal(πt,k,m), q(st)) (see (11)).

2. We select the β = 0.1 ∈ [0, 1] percent samples πt,k,1:M with the lowest expected free energy.
3. We update our distribution, where µπ,t,k and σπ,t,k are the mean and standard deviation of the

aforementioned βM selected best plans.

For the first iteration, we choose µπ,t,0 = 0, while we choose as standard deviations in σπ,t,0 value of
5ms−2 for accelerations a and 0.1 s−1 for steering rates ω. The final policy is then selected as

πt = freal

(
argmin

m∈{1,...,M}
G(freal(πt,K,m), q(st))

)
. (13)

Here, freal is used to prevent unrealistically control inputs.

1.3 Evidence Accumulation

Commonly, the policy πt is re-chosen at every timestep. However, research has shown that humans tend
to make decisions (such a changing preselected policies) only if there is enough evidence supporting such
a decision, in a process called evidence accumulation. Here, we implement this concept by having the
agent accumulate evidence Et towards the need for selecting a new policy. The agent then updates its
policy in the following way:

1. We our previous policy πt−1, resulting in π̃t, with [π̃t]1:H−1 = [πt−1]2:H , and only optimize the last
needed time step [π̃t]H with the method described in 1.2.

2. We calculate the evidence for choosing a new plan based on the normalized, negative pragmatic value
(i.e., the surprise), with

ϵt = ϵ(π̃t|q(st)) = Hmax
o′

ln p(o′) −
t+H∑

τ=t+1

Eq̃o(oτ) ln p(oτ ,aτ−1) . (14)

We then update our accumulated surprise with Et = Et−1+λϵt, where we use a drift rate of λ = 10−5.9.
3. If we see that Et ≥ 1, then we optimize the full policy πt using the method described in 1.2, and set

Et = 0. Otherwise, we use the continued policy π̃t as our current policy πt

2 Specific Models

While the previous section described our general framework for using active inference, this section will
detail the exact generative process and generative model we used in our scenarios.

4

2.1 State transition probability

When implementing the model, we use for the state transition function of both the generative process
and the generative model a common bicycle model B. In this, model each vehicle can be defined by
three parameters, its width d, its front length lf and its rear length lr. Additionally, the kinematic
state of each agent then consists of its position markers x and y, its longitudinal speed v, its current
heading angle θ and steering angle δ (x = {x, y, v, θ, δ}). Each agent is then controlled by the acceleration
along ∈ [−amax, amax] and steering rate ω ∈ [−ωmax, ωmax] with amax = 8ms−2 and ωmax = 1.22 s−1

(u = {along, ω}). One then can get the differential equation ẋ = B(x,u):

ẋ = v cos (θ + β)

ẏ = v sin (θ + β)

v̇ = ktire along

θ̇ =
v

lf + lr
tan (ktire δ) cos (β)

δ̇ =

{
0 sgn(ω)sgn(δ)

ktire
> 1

ω Otherwise

with β = arctan

(
lr

lf + lr
tan (ktire δ)

)
(15)

Here, we use ktire and δ̂ to represent the limitations imposed by the tire friction:

ktire =
amax

max

{
amax,

√
a[long]2 +

(
v2

lf+lr
δ
)2} (16)

In each scenario, where we model the ego agent in interaction with the other agents V = {V1, V2, . . .},
we then can generally find the control actions a = uego and η = o = s = {xν ,uν |ν ∈ {ego} ∪ V }. We
assume that the generative process is deterministic, which allows us to get the following, where fB(x,u)
describes the usage of Heun’s methods to propagate the state forward according to equation (15):

p̂(η′|η,a) = δ
(
x′
ego − fB (xego,a)

)
δ
(
u′
ego − a

)∏
ν∈V

δ (x′
ν − fB (xν ,uν)) δ (u

′
ν − uν,preset)

(17)

Here, the next control inputs uν,preset are predefined to allow the other vehicle to follow a prescribed
trajectory, which depends on the scenario (see 3.1 and 3.2). Meanwhile, some uncertainty is involved in
the generative model :

p(s′|s,a,θs) = δ
(
x′
ego − fB (xego,a)

)
δ
(
u′
ego − a

)∏
ν∈V

δ (x′
ν − fB (xν ,uν))N

(
u′
ν |uν ,diag(σ

2
u)
) (18)

In our model, we assume σu = σu,0 = [3ms−2, 0.4575 s−1] when updating our belief (see (3)) and

σu = 0.2fv
(
Eq̃o(o)pn(o)

)
σu,0 (19)

5

when predicting future states during model evaluation (see (10)). Here, pn is the weighting used in
equation (11), with

fv(p) =
1

2max {min {p, 0.505} , 0.01} − 0.01
: [0, 1] → [1, 10] (20)

being used to give the agent less certainty in its belief about the future state of the other vehicle if its
current state violates traffic norms.

2.2 Observation probability

For the generative process, we assume that observations are exact.

p̂(o′|η) = δ (o′ − η) (21)

For the generative model meanwhile, we use a observation probability that follows the style laid out in
equation (5). Here, we implement the looming based perception using the bijective mapping {xego,φ} =
L(xego,xOV,uOV|a) with φ = {φ, φ̇, φ̈, yOV, θOV, δOV, ωOV}, where looming angle φ, looming φ̇, and
looming rate φ̈ are calculated as:

φ ≈ 2 arctan

(
d

2(xOV − xego)

)
φ̇ ≈ −d (vOV cos(θOV)− vego)

(xOV − xego)2 +
1
4d

2

φ̈ ≈ d

(xOV − xego)2 +
1
4d

2

(
along,ego − aOV cos(θOV) +

2(xOV − xego) (vOV cos(θOV)− vego)
2

(xOV − xego)2 +
1
4d

2

)
.

(22)

It must be noted that this mapping is a rough one-dimensional estimate assuming that θego ≈ 0. However,
looming based perception update is the only used if the other agent is roughly in front of it, as it
unreasonable to assume that the ego vehicle would perceive the other vehicle directly with their eyes if
it is not in front of them. So technically, we find that:

if in the actual world state η where

L(o|a) = L(xego,xOV,uOV|a) =

{
{xego,φ} xOV − xego > lr + lf

xego,xOV,uOV Otherwise
(23)

As our state and observation states s and o overlap, in Equation (5), we use A = I and b = 0. we also
have to implement the looming threshold, for which we use the function µ(oL). Given a looming threshold
of φ̇0 = 0.002 15 s−1, we can define here:

µ(oL) =

{
µloom (oL) (xOV − xego > lr + lf) ∧ (|φ̇| ≤ φ̇0)

0 Otherwise
(24)

6

with

µloom (oL) =



0
0
0
0
0
0
φ̇

φ̈− d
(xOV−xego)2+

1
4d

2 aego

0
0
0
0



T

. (25)

Meanwhile, we also have to define the function Σ(oL) = diag
(
σ (oL)

2
)
, where

σ (oL) = {σego,σOV (oL)} (26)

with
σego =

{
0.0002m, 0.000 001m, 0.0002ms−1, 0.000 001, 0.000 001

}
(27)

and

σOV (oL) =





0.0002m

0.000 02m

0.0002ms−1

0.0002

0.002

0.000 02ms−2

0.002 s−1



T

xOV − xego < lr + lf



0.000 01

0.000 01 s−1

0.000 001 s−2

0.000 02m

0.0002

0.002

0.002 s−1



T

(xOV − xego > lr + lf) ∧ (|φ̇| > φ̇0)



0.000 01

0.0043 s−1

0.000 43 s−2

0.000 02m

0.0002

0.002

0.002 s−1



T

(xOV − xego > lr + lf) ∧ (|φ̇| ≤ φ̇0)

(28)

2.3 Control limits

We also want to limit the acceleration and deceleration patterns not achievable by actual human input.
To this end, we use freal (equation (13)), which in our case will use two functions, fpedal and fjerk. fpedal

7

prevents unrealistically fast switching between gas and brake pedals, by setting for an acceleration along,τ :

fpedal(along,τ) =

{
a0 (along,τ−1 − a0)(along,τ − a0) < 0

aτ otherwise
(29)

It must be noted that in our current model we assume that the acceleration observed when releasing both
pedals is a0 = −0.1ms−2, to approximate the fact that with neutral pedals, wind and roll resistances will
lead to some decelerations.

Meanwhile, fjerk tries to implement realistic speeds at which the pedals can be pressed and released,
by limiting the jerks applied:

fjerk(along,τ) = min {along,τ−1 + jmin∆t,max {along,τ , along,τ−1 + jmax∆t}} (30)

For the jerk limits, we use:

jmin =

{
−5ms−3 (along,τ−1 − along,τ−2) < 0 ∧ (along,τ − along,τ−1) > 0

−30ms−3 otherwise

jmax =


0ms−3 (along,τ−1 − along,τ−2) > 0 ∧ (along,τ − along,τ−1) < 0{
5ms−3 along,τ ≥ 0

15ms−3 along,τ < 0
otherwise

(31)

Both those functions are applied recursively, with

[freal(π)]τ = fpedal
(
fjerk

(
fpedal

(
[freal(π)]τ−1

)))
(32)

2.4 Preference function

We use the following preference function p when minimizing the expected free energy G (see (11)):

p(o) = N (vego|v0, σv)N (along,ego|0, σa)N (ωego|0, σω)plat(yego)pcoll(o)psafe(o) (33)

Here,

plat(yego) = T
(
yrel (yego) |

w − d

2
, gLC , gLL

)
(34)

with the triangular function T :

T (x|x0, p1, p2) ∝

{
exp

(
|x|
x0

p1

)
|x| ≤ x0

exp(p2) otherwise
(35)

We also need to define the collision preference pcoll:

pcoll(oτ) = min{pcoll(oτ−1), fcoll(oτ)} (36)

This minimum is here so that all timesteps following upon a collision are still punished, as the model
itself has no collision mechanics, allowing vehicles to phase through each other. We than get the collision
preference at a single timestep fcoll, where we have collision condition C(o) = |yOV − yego| ≤ 1.15 d ∧

8

|xOV − xego| ≤ 1.15 (lf + lr):

fcoll(o) =


exp

(
gC

(
0.2 + 0.8

vego−vOV cos(θego−θOV)
10ms−1

))
C(o){

1 xOV − xego ≤ lr + lf

N
(

φ̇
φ |0.2 s

−1, στ−1

)
Otherwise

Otherwise
. (37)

Here, the mean for the normal distribution over τ−1 = φ̇
φ is taken from Markkula et al. [1]. In the collision

cases (C(o)), we adjust the collision cost based on the collision speed, as it is likely that human agents
prefere to collide with lower impact velocities, if a collision cannot be avoided.

Lastly, we define psafe, where we mainly consider the feasibility of braking when in a car following
scenario:

psafe(oτ) =

{
exp

(
1
2gC

(
0.2 + 0.8

vego−vOV cos(θego−θOV)
10ms−1

))
Cbrake(o) ∧ aego, req < −amax

1 Otherwise
(38)

Here, the condition Cbrake for being in a car following scenario is defined as:

Cbrake(o) = (|yOV − yego| ≤ 1.15 d) ∧ (xOV − xego ≥ (lf + lr)) ∧ (sgn(vego) sgn (vOV cos(θOV)) ≥ 0) (39)

Meanwhile, aego, req is the required deceleration applied after a reation time of treact needed to avoid a
collision if the other vehicle suddenly started to accelerate towards/brake in front of the ego vehicle with
aOV,test = min{along,OV, aOV,min}.

aego, req = −1

2

max{vego,react, 0}2

max{dego,react − 1.15 (lf + lr), 0}
vego,react = vego +min{along,ego, 0} treact

dego,react =

(
xOV − 1

2

v2OV

aOV,test

)
−
(
xego + vego treact +

1

2
min{along,ego, 0} t2react

) (40)

The preference function can then be parameterized by the eight parameters σv = 0.5ms−1, σa =
0.1ms−2, σω = 0.02 s−1, στ−1 = 0.125 s−1, gLC = −1000, gLL = −5000, gC = −10000, treact = 1 s.
Meanwhile, depending on the simulation, we choose aOV,min so that the given initial distance and speed
would result in stable car following, with lower bound of amin = −amax = −8ms−2. Specifically, we
simulate a one-lane front-to-rear scenario with a leading other vehicle at constant velocity v0 for multiple
values of aOV,min. For each simulation, we then extract the steady-state following distance that the agent
chose for following, and the corresponding time gap. When then given a velocity v0 and desired following
distance or desired time gap, we use linear interpolation to extract the corresponding value of aOV,min

from the given data points.
While our framework is aimed to be as generalizable as possible, there are still some changes in

between our two models. Namely, when calculating the yrel from equation (40), we have to represent that
in the front-to-rear scenario both lanes go in one direction, while in the lateral incursion scenario, the
left lane is designed for oncoming traffic.

3 Specific scenarios

3.1 Front-to-rear scenario

The first scenario, which models the response of a driver to the leading other vehicle suddenly braking,
contains two vehicles (V = {ego,OV}).

9

Initial state

In this scenario, there are 12 initial condition, with xego,0 = {0m, 0m, v0, 0, 0} and xOV,0 =
{v0∆ttgp,0 + lf + lr, 0m, v0, 0, 0}, with ∆ttgp,0 ∈ {0.5 s, 1.0 s, 1.5 s, 2.0 s, 2.5 s, 3.0 s, 3.5 s} and v0 ∈
{10ms−1, 15ms−1, 25ms−1, 35ms−1}. Meanwhile, we assume a lane width w = 3.65m, and vehicle sizes
of d = 1.72m, lf = 2.1m, and lr = 2.1m.

Other vehicles behavior

In this scenario, we set uOV,preset so that the other vehicle will drive straight on for exactly 5 s, after which
it will start to decelerate, applying a jerk of −10ms−3 until reaching an acceleration value of −6ms−2.
It will keep this acceleration until it comes to a standstill.

Lateral preference

Here, we calculate the lateral relative position yrel from equation (40) as:

yrel (yego) =


yego yego ≤ w−d

2
w−d
2

w−d
2 < yego ≤ w+d

2

yego − w w+d
2 < yego

(41)

Norm conditioning

We define the normative probability pn(o) (see (11)) in the following way, that punishes moving into the
left lane (p = 0.02) or leaving the road (p = 0.01) :

pn(o) =


1 −w−d

2 ≤ yOV ≤ w−d
2

0.02 w−d
2 ≤ yOV < 3w−d

2

0.01 Otherwise

(42)

Given the usage of pn(o) as a weighing function, it is excusable to not normalize it here.

3.2 Lateral incursion scenario

The second scenario also only contains out of two vehicles (V = {ego,OV}).

Initial state

In this scenario, there is a single initial condition, with xego,0 = {0m, 0m, v0, 0, 0} and xOV,0 =
{300m, 0m, v0, π, 0} (the initial velocities v0 = 17.88ms−1 correspond to 40mph). Lane width and vehicle
size are identical to the front-to-rear scenario (see 3.1)

Other vehicle’s behavior

The other vehicle’s path is preprogrammed in a manner that it start turning to the left when the time
to collision ((xOV − xego)/(vOV + vego)) falls below 5.15 s. This turn will last for 3.3 s, at which point the
other vehicle’s front left corner should start crossing the central lane marker, after which the other vehicle
will follow a straight path. Following [2], we run this scenario in 3 different variants, where after 5.15 s
seconds, we perceive yOV = −0.4w (Steep incursion), yOV = 0m (Medium incursion), or yOV = 0.45w
(Shallow incursion) (see Figure 1).

10

a Steep
Markkula et al.
Simulated

2.0

2.5

3.0

3.5

0 1 2 3

y t
a
r
in

[m
]

t in [s]

b Medium
Markkula et al.
Simulated

0 1 2 3
t in [s]

c Shallow
Markkula et al.
Simulated

0 1 2 3
t in [s]

Fig. 1: The different maneuvers by the other vehicle. The orange line represents the trajectory used in
our simulation, while the blue line corresponds to the original experiment [2]. t = 0 corresponds to the
start of the maneuver, while the horizontal velocity stays constant. Afterwards, the model continues along
a straight line with constant velocity.

.

Lateral preference

Here, we calculate the lateral relative position yrel from equation (40) as:

yrel (yego) =


yego yego ≤ w−d

2
w−d
2

w−d
2 < yego ≤ 3w−d

2

yego − w 3w−d
2 < yego

(43)

Norm conditioning

We define the normative probability pn(o) (see (11)) in the following way, that punishes moving into the
opposite lane (p = 0.02), and punishes leaving the road even more (p = 0.01) :

pn(o) =


1 w+d

2 ≤ yOV ≤ 3w−d
2

0.02 −w−d
2 ≤ yOV < w+d

2

0.01 Otherwise

(44)

Given the usage of pn(o) as a weighing function, it is excusable to not normalize it here.

4 Benign scenario

This is a variation of the lateral incursion scenario, where the other vehicle just drives along its lane
without any change in direction or speed. Specifically, we start the vehicles at an initial distance of 150m,
both driving with 15ms−1. Those simulations are repeated 20 times for both the full proposed model as
well as the one without the norm conditioned particle filter. As seen in Figure 2, the full model – with
one very jumpy exception – does not deviate from its desired state in response to the other agent. This
is much different in the model without norm conditioning, where the vehicles either move to the right,
or brake, or do both. With such behavior not very realistic in everyday driving scenarios, those results
highlight the need for the norm-conditioned particle filter. Of course, it must be noted that similar results
without the norm-conditioned particle filter could be achieved by simply removing the prediction noise,
but it was shown in the main text that that is essential for realistic collision avoidance behavior.

11

5 10 15 20

-2
-1

0
1

Velocity vego [ms−1]

L
a
te
ra

l
p
o
si
ti
o
n

y
e
g
o
[m

]

Starting condition

Full Model

Model with no norm conditioning

a b
5

1
0

1
5

2
0

V
e
lo
c
it
y
v
e
g
o
[m

s
−

1
]

0 2 4 6

-2
-1

0
1

Time t [s]

L
a
te
ra

l
p
o
si
ti
o
n

y
e
g
o
[m

]

Fig. 2: Results in the 20 repetitions of the non-incursion scenario, for both the model with norm condi-
tioned particle filter (blue) and without (red). a) Change of longitudinal velocity vego and lateral position
yego of simulated agents over time. b) The kinematic state of the ego vehicle at the point in time when
passing the oncoming other vehicle.

References

[1] G. Markkula, J. Engström, J. Lodin, J. Bärgman, T. Victor, A farewell to brake reaction times?
Kinematics-dependent brake response in naturalistic rear-end emergencies. Accident Analysis &
Prevention 95, 209–226 (2016). https://doi.org/10.1016/j.aap.2016.07.007. URL https://www.
sciencedirect.com/science/article/pii/S0001457516302366

[2] L. Johnson, J. Engström, A. Srinivasan, I. Özturk, G. Markkula, Looking for an out: Affordances,
uncertainty and collision avoidance behavior of human drivers (2025). URL https://arxiv.org/abs/
2505.14842

12

https://doi.org/10.1016/j.aap.2016.07.007
https://www.sciencedirect.com/science/article/pii/S0001457516302366
https://www.sciencedirect.com/science/article/pii/S0001457516302366
https://arxiv.org/abs/2505.14842
https://arxiv.org/abs/2505.14842

	Active Inference Framework
	Generative process and Generative model
	Expected Free Energy
	Evidence Accumulation

	Specific Models
	State transition probability
	Observation probability
	Control limits
	Preference function

	Specific scenarios
	Front-to-rear scenario
	Initial state
	Other vehicles behavior
	Lateral preference
	Norm conditioning

	Lateral incursion scenario
	Initial state
	Other vehicle's behavior
	Lateral preference
	Norm conditioning

	Benign scenario

