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1. Constructing Delay Attractors and Non-delay Attractors by

Embedding Theory

1.1 Construction of non-delayed attractors

For a general dynamical system with n state variables, the system state observed at m time

points during its evolution at equal time intervals τ can be represented as a set of time series

�(�) = [�1(�), �2(�), . . . , �n(�)]T, � = �0, �0 + �, . . . , �0 + (� − 1)� . After a sufficiently long

period of time, the system will reach stability and all states of the system will converge to a

compact manifold V. The box-counting dimension of the system attractor A contained in the

manifold V is denoted as d (d is usually small). Whitney embedding theorem and generalized

embedding theorem indicate that for any function ℎk with at least second-order smoothness on

A, the mapping �<hk>: A → ℝ�:

�<hk> = (ℎ1(�), ℎ2(�), . . . , ℎk(�))

is generally an embedding when E ≥2d+1. This means that as long as the embedding dimension

E is sufficiently large, the dynamics of the original high-dimensional system can be reconstructed

through the non-delayed embedding of the observed variables. The reconstructed non-delayed

attractor is a diffeomorphism with the original attractor manifold, but does not contain time-lag

information, so it cannot be directly used for predicting future states.

1.2 Construction of multi-view delay attractors

In order to synchronize the future dynamics of multiple state variables in a predictive system,

we consider an embedding consisting of multiple system variables with different delays. Let ϕ

represent a flow corresponding to an n-dimensional dynamical system. The generalized delay

embedding theorem shows that under appropriate assumptions on the system, the mapping

�<ℎk, �> = (ℎ1(�), ℎ2(�), . . . , ℎk(�)), A → ℝ� driven by smooth functions ℎk with delay is

also generally an embedding. A function with delay refers to a function ℎi that allows for a delay

under ϕ, that is, it can be expressed as ℎi = ��(ℎj) . Therefore, by selecting an appropriate

embedding dimension, we can obtain a differential homeomorphism from the original attractor

manifold to a delay embedding space consisting of multiple variables and their lags. Similar to the



single-variable delay embedding constructed based on Takens' embedding theory, the attractor

manifold under generalized delay embedding also retains the dynamical information of the

original system and also contains information about the future dynamics of time delays. However,

unlike Takens' delay embedding, generalized delay embedding can have multiple different delay

embedding manifolds at the same embedding dimension. These delay embedding manifolds

reconstruct the dynamics of the same original high-dimensional system from different

perspectives, so we collectively refer to them as multi-view delay embeddings. Note that another

classic work based on the generalized delay embedding theorem is multi-view embedding (MVE).

MVE generates multiple mappings that contain at least one non-delay variable as effective

embeddings, and predicts the target variable through the neighborhood points on the attractor in

the embedding space. Our method also considers multiple effective embeddings, but the prediction

is completely completed through information transformation between delay manifolds and

non-delay manifolds, without regard to the local topology of the attractor itself. This is the

essential difference between our method and the classic method of MVE.

Fig.S1 Information transformation based on the isomorphism between manifolds.

1.3 Non-delayed attractors as predictors

In order to achieve the prediction of system dynamics, our goal is to directly predict the state

points that contain future values in the multi-view delayed attractor. The multi-view delayed

attractor and the original attractor manifold are diffeomorphic, and they maintain a topological

isomorphism relationship between them. On the other hand, the non-delayed attractor based on the



generalized embedding theorem is also diffeomorphic to the original attractor manifold. The

transfer of the isomorphism relationship implies that there is a smooth one-to-one mapping

between the delayed attractor and the non-delayed attractor. If the one-to-one mapping between

the two is determined, it is possible to predict the system dynamics after the observation time

range by converting the state points on the attractor. For each view of the delayed attractor, our

method uses strong correlation variables to construct a non-delayed embedding based on mutual

information, and replaces the embedding manifold with the original attractor manifold as a

predictor for the delayed attractor. The non-delayed part of each set of attractors undergoing

information conversion retains the dynamical information of the original system in different forms,

and has high correlation with the delayed part.

2. Reservoir Computing

Reservoir computing is a time-series oriented recurrent neural network variant model used in

this work. This method evolved from Echo State Networks (ESNs)[4] and Liquid State Machines

(LSMs)[5], alleviating the slow convergence rate and the vanishing and exploding gradients

problems that exist in general RNN models. As a special type of recurrent neural network,

reservoir computing uses a sparse randomly connected recurrent network to replace the

intermediate hidden layer in the classical neural network architecture, thereby simplifying the

complexity of the model. When using reservoir computing, we first construct a stochastic network

with sparse topology, and complex functions can be achieved by training only a linear output layer

during the model training phase. The reservoir computing model consists of three parts: an input

layer, an output layer, and a reservoir for internal processing. Taking the N-dimensional

observation data of an observation system as the input variable, a reservoir computing model with

M-dimensional state variables, i.e. M internal neurons, and L-dimensional output variables has the

following values at time t for the input unit, internal processing unit, and output unit:

�(�) = [�1(�), �2(�), . . . , ��(�)]�

�(�) = [�1(�), �2(�), . . . , ��(�)]�

�(�) = [�1(�), �2(�), . . . , ��(�)]�

The state equation and output equation of the RC model used in this article can be given by



the following equation:

�(� + 1) = � �res
res �(�) + �inp

res �(�) + �bias
res

��(� + 1) = �res
out �(� + 1) + �bias

out

Where, � = [�1, �2…��] represents the internal neuron activation function, and the

hyperbolic tangent function is used here. All weight matrices to the reservoir �res are randomly

initialized with a uniform distribution and do not change after generation. The weight matrix to the

output �out needs to be trained using known observed time series data.

The training process of the RC network can be divided into two stages: the sampling stage and

the weight computation stage. In the sampling stage, the initial state of the network is randomly

selected, and the general zero initialisation is adopted here, i.e. �(0) = � . The input samples at

time t are added to the reservoir through the input-reservoir weight matrix �inp
res , and the internal

state of the reservoir and the model output are calculated and collected according to the state

equation and output equation in turn. In this stage, the output variable y(t) and the internal state

variable x(t) of the reservoir network are sampled, which are used to subsequently complete the

calculation of the reservoir-output weight matrix. In the weight computation stage, the output

weight matrix is calculated based on the internal state matrix of the reservoir and the expected

target matrix obtained by connecting the variables collected during the sampling stage. Off-line

training is used to calculate the output weight matrix, which is equivalent to solving the

optimization problem min
�

(�� − ��)2 . The matrix � consists of all observed reservoir states,

and the matrix �� consists of all observed expected outputs at given time t. Tikhonov regression is

used for regularization when optimizing the output weight matrix �out , and the optimal solution

can be computed directly by the Moore-Penrose pseudo-inverse.

Based on the known information of the observation system and the final goal of the prediction

task, the complete N-dimensional state variables of the observed system are used as input

variables at the input end of the RC model, and the output variables at the output end of the model

are vectorized prediction target matrices. With the MVIT framework, the output and input ends of

the reservoir can be divided according to the coordinates of the selected delayed attractor and the

corresponding non-delayed attractor, that is adopting parallel reservoir computing to efficiently

predict high-dimensional systems. Parallel reservoir computing[13] uses a family of RC models in

parallel, each model will be used to predict the evolution of a part of the system state, and all other



states that interact with this part of the state are provided at the input end of the reservoir network.

This model utilizes local interactions between variables, using multiple small reservoirs instead of

a large-scale reservoir network, thereby decoupling large-scale prediction tasks. After determining

the input variable ��(�) and the desired output matrix ��� based on the attractor coordinates, the

output weight matrix parameters of each RC model during model training are independently

calculated according to an optimization problem with Tikhonov regularization.

3. Datasets Details

3.1 Coupled Lorenz System
To verify the ability of our method to capture the dynamics of high-dimensional nonlinear

systems, we first consider a coupled Lorenz system as a benchmark. The i-th (i=1,2,...,N) coupled
subsystem is given by the following equation:

��� =− �[�� − �� + �
�=1

�

���
(�,�)(�� − ��)]�

��� = ��� − �� − ����,

��� =− ��� + ����.

where the parameters are set to typical values, i.e., σ = 10, ρ = 28, β =8/3. The elements of the
adjacency matrix a in the Lorenz system coupling network take on either a value of 0 or 1,
depending on whether direct relationships have been established between subsystems. The
adjacency matrix is defined as:

��� =
1 � < �, � = � + 1;
1 � = �, � = 1;
0 ��ℎ������.

This implies that all variables within the system are coupled, and such coupling is transmitted
through strong interactions between adjacent subsystems. The coupling strength is set at C = 0.01.
In the experiment depicted in Figure 2 of the main text, N = 30, thus the system comprises a total
of 90 variables. We generate random system initial values within the range [0, 10-6], and sample
data at time intervals of t = 0.01.

3.2 Lorenz-96 System
Another benchmark model considered in our work is the Lorenz-96 system[1], which serves

a classic model to study nonlinear dynamics and chaotic phenomena. The model is introduced by
Edward N. Lorenz in 1996 to simulate the interactions and evolution of atmospheric circulation.

The Lorenz96 model consists of a set of interacting variables, typically denoted as x1,x2,...,xN,
represent different spatial positions or states within the system. The evolution of each variable is
described by the following dynamical equation:



���
��

= (��+1 − ��−2)��−1 − �� + �,

where i=1,...,N and �−1 := ��−1 and ��+1 := �1 . ��±1 represents the neighboring state of
variable �� , and F is an external driving force. This equation signifies that each variable is
influenced by its neighboring variables and driven by an external force. It has been discovered that
the Lorenz96 model exhibits unpredictable and highly chaotic behavior when the value of the
driving force F is within a certain range[2,3].

In our work, we set the parameter F=8, which implies that the system's evolution will display
complex chaotic phenomena. The total number of variables, denoted as N, can be adjusted to
reflect the desired level of complexity in the model. Given the dimension N, we generate
an N-dimensional time series with a time interval of ∆t=0.01 using the fourth-order Runge-Kutta
method based on the N-dimensional equations of the Lorenz96 system, and the multivariate time
series served as our observation of the system.

4. Comparison Methods

We compare ALM with the following methods.

·MA: The Moving Average (MA) model is a commonly used time series analysis method in the
fields of economics and statistics. It is utilized for forecasting and analyzing data that exhibit
random fluctuations and trends over time.The MA model is based on the concept of moving
averages, where past observed values are weighted and averaged to predict future values. It
calculates the weighted average of these values to predict future values. The model assumes that
the current error is a linear combination of past errors. The general form of the MA(q) model can
be represented as:

�� =
��−1 + ��−2 + … + ��−�

�
.

where q denotes the number of past observed values used in the model.

·ARIMA[6]: The Autoregressive Integrated Moving Average (ARIMA) model is a widely used

time series analysis method that combines autoregressive (AR), moving average (MA), and

differencing components. It is a versatile model capable of capturing both the autoregressive and

moving average properties of a time series, as well as handling non-stationary data through

differencing. The general form of the ARIMAmodel is ARIMA(p, d, q):

Δ� �� = � + �1∆� ��−1 + … + ��∆� ��−� + �� + �1��−1 + ����−�,

where p represents the order of the autoregressive component, d represents the degree of

differencing, and q represents the order of the moving average component. The autoregressive

component (AR) models the linear relationship between the current value and a certain number of



past values, while the moving average component (MA) models the linear relationship between

the current value and a certain number of past errors. The differencing component (I) is used to

transform non-stationary data into stationary data by taking differences between consecutive

observations.

·VAR[7]: The Vector Autoregressive (VAR) model is a multivariate time series analysis method
used to analyze and forecast the interdependencies among multiple variables. It extends the
Autoregressive (AR) model to multiple variables, allowing for a more comprehensive analysis of
their relationships. The form of the VAR model can be represented as VAR(p):

�� = � +
�=1

�

����−�� + ��,

where p represents the order of the lagged variables. In a VAR(p) model, each variable is
regressed on its own lagged values and the lagged values of all other variables in the system. This
allows for the modeling of dynamic relationships and feedback mechanisms between the
variables.

·VARM[8]: The Vector Autoregressive Moving Average with Exogenous Variables (VARMAX)

model is an extension of the Vector Autoregressive (VAR) model that incorporates both lagged

variables and exogenous variables. The basic process of VARMAX includes the autoregressive

process, the moving average process, and the independent exogenous terms (other unmodeled

inputs). VARMAX is a multi-variable method and the basic form of VARMAX(p,q) is

�� = � + ��� +
�=1

�

����−�� +
�=1

�

����−�� + ��,

where � is a constant vector, �� is an autoregressive coefficients matrix, �� is exogenous

predictor variables, � is a regression coefficient matrix, �� is a moving average matrix, and ��

is random Gaussian innovation.

· SVR[9]: Support Vector Regression (SVR) is a powerful machine learning model used for
regression tasks. It is an extension of Support Vector Machines (SVM) and is particularly effective
when dealing with non-linear relationships between variables. SVR differs from traditional
regression models by incorporating the concept of a margin. It aims to find a hyperplane that
maximizes the margin while allowing for a certain level of error tolerance. The form of the SVR
model can be represented as:

� = ��� + � + ��� �(�� , �)

Where � represents the predicted output, � is the input vector, ��� is the weight vector, � is



the bias term, ��is the Lagrange multiplier associated with each training sample ��, and �(�� , �)
is the kernel function, which measures the similarity between �� and �.

·LSTM[10]: Long Short-Term Memory (LSTM) is currently one of the most widely used deep
learning model in the field of time series analysis. The LSTM model consists of several key
components, including the input gate, forget gate, output gate, and cell state. These components
work together to control the flow of information and determine what information should be stored,
forgotten, and outputted at each time step. LSTM model can be summarized as follows:

ℎ�, �� = ����(��, ℎ�−1, ��−1)

In this equation, �� represents the input at time step t, ℎ� is the hidden state at time step t, and ��

is the cell state at time step t. The hidden state and cell state jointly capture the information learned
from the previous time steps and pass it to the current time step.

·GRU[11]: Gated Recurrent Unit (GRU) is a type of recurrent neural network that widely used in
sequential data modeling tasks. It has fewer parameters compared to other RNN variants, such as
LSTM, making it computationally more efficient. GRU model can be represented as follows:

�� = �(��[ℎ�−1, ��])
�� = �(��[ℎ�−1, ��])

ℎ� = (1 − ��) ⊙ ℎ�−1 + �� ⊙ ��

where �� represents the input at time step t, ℎ� is the hidden state at time step t, �� is the update
gate, �� is the reset gate, and �� is the candidate activation. �� and �� are the weight
matrices associated with the update gate and reset gate, respectively. � denotes the sigmoid
activation function, and ⊙ represents element-wise multiplication. The update gate determines
how much of the previous hidden state should be combined with the candidate activation. It
controls the flow of information from the previous time step to the current time step. The reset
gate regulates how much of the previous hidden state should be forgotten. It decides which
information from the past is relevant for the current time step.

·tRC: Traditional reservoir computing (tRC) was used as a standard reservoir computing model
for comparison. The dynamic of the system is parameterized by a tRC model with a large sparse
network as a reservoir, and multi-step prediction results are generated through the closed-loop
evolution of tRC. The tRC model for comparison was set to the same hyperparameters with the
MVIT-PRC model (except for the size of the reservoir network).

·PRC[13]: Parallel reservoir computing (PRC) uses a family of RC models in parallel, each model
will be used to predict the evolution of a part of the system state. PRC was used as a comparison
method in this work to evaluate the predictive potential of the MVIT framework. The parallelized
reservoir computing models generate local predictions of subsystem states and generate multi-step
prediction results through closed-loop evolution. The PRC model for comparison was set to the
same hyperparameters with the MVIT-PRC model.

·ALM[12]: Anticipated Learning Machine (ALM) is a novel deep learning method that combines
delayed embedding theory and neural network framework.The core of the ALM model is the
spatial-temporal information-transformation equation (STI equation), which is based on Takens'



embedding theorem. Through the STI equation, ALM transforms the recent information into the
future dynamical system of the target variables. ALM can simulate a large number of randomly
selected non-delayed attractors using the Dropout strategy to train AL neural networks to
accurately and robustly reconstruct the system dynamics and make multi-step predictions through
iterative training. Based on the nonlinear dynamics rather than the traditional statistics, ALM
represents a new paradigm of machine learning which is dynamics-oriented.

5. Supplemental Figures

5.1 The prediction of the coupled Lorenz system

Fig.S2 Our framework achieves 15 step prediction results on a 90 dimensional coupled Lorenz
system. We train a prediction model with a 15th-order delay using 30 observations of the system
as known information. There are only 15 valid sample pairs available for learning. Our multi
perspective information conversion mechanism effectively expands available information in this
data shortage situation.



5.2 The prediction of San Francisco Traffic Dataset

Fig.S3 Synchronous prediction results of multi-view joint prediction model for the other three
dimensions on San Francisco traffic dataset.



5.3 The prediction of NN5 Dataset

Fig.S4 Synchronous prediction results of multi-view joint prediction model for the other three
dimensions on NN5 dataset.



5.4 The prediction of Electricity Dataset

Fig.S5 Synchronous prediction results of multi-view joint prediction model for the other two
dimensions on Electricity dataset.



5.5 The prediction of Solar Energy Dataset

Fig.S6 Synchronous prediction results of multi-view joint prediction model for the other two
dimensions on Solar Energy dataset.



5.6 The prediction of Hospital Dataset

Fig.S7 Synchronous prediction results of multi-view joint prediction model for the other three
dimensions on Hospital dataset.



5.7 Comparison between Multi-View and Single-View

Fig.S8 Comparison of prediction performance between multi-view models and separate
single-view models in the Lorenz 96 system. (a-d) The absolute errors between the mean of the
final predictions and the true observations of two kinds of models on three dimensions of a
subsystem in a 144-dimensional Lorenz 96 system. (e-f) the box plot of RMSEs and MAEs for 50
independent experiments.

(a) (b)

(c)

(e) (f)

(d)



Fig.S8 Comparison of prediction performance between multi-view models and separate
single-view models. The prediction results of two kinds of models on three dimensions of a
subsystem in a 90-dimensional coupled Lorenz system.
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Fig.S9 Comparison of prediction performance between multi-view models and separate
single-view models. The prediction results of two kinds of models on four dimensions of a
subsystem in a 144-dimensional Lorenz-96 system.
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6. Supplemental Tables

6.1 The estimated box dimension in datasets
Table S1 The estimated box dimension in selected systems

The box-counting dimensions are approximately estimated by using the R package
“Rdimtools”

Dataset
Number of observed

variables
Box dimension (d)

The 90-dimensional coupled

Lorenz systems
90 2.62

The 144-dimensional

Lorenz-96 systems
144 3.27

San Francisco Traffic 862 4.78

NN5 Dataset 111 3.67

Electricity Dataset 321 1.34

Solar Energy Dataset 137 2.06

Hospital Dataset 767 3.09



6.2 The performances of prediction methods on the 90D coupled

Lorenz system

Table S2 Results on 3 dimensions within a subsystem (E=10+1)

(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.013 0.044 0.734 1.162 0.786 0.08 0.176 0.092 0.21 0.37 1.177

0.018 0.037 0.133 0.476 0.767 0.037 0.017 0.096 0.267 0.189 0.288

0.034 0.197 1.555 2.107 1.067 0.203 0.497 0.405 2.417 1.138 2.604

Average

0.022 0.092 0.807 1.249 0.873 0.107 0.23 0.198 0.964 0.566 1.356

(b) MAE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.01 0.032 0.627 1.113 0.688 0.059 0.136 0.056 0.15 0.331 1.141

0.015 0.025 0.104 0.466 0.703 0.03 0.016 0.06 0.248 0.162 0.255

0.031 0.14 1.301 1.967 0.878 0.17 0.367 0.231 2.383 1.029 2.602

Average

0.019 0.066 0.677 1.182 0.756 0.086 0.173 0.116 0.927 0.507 1.333

(c) PCC

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.991 0.683 -0.883 -0.947 -0.82 0.861 -0.55 0.247 0.791 -0.81 0.656

0.999 0.994 0.876 0.946 0.984 0.945 0.998 0.851 -0.588 -0.864 -0.9

0.999 0.985 -0.992 -0.984 -0.886 0.893 0.473 0.215 -0.623 -0.008 0.977

Average

0.997 0.887 -0.333 -0.328 -0.241 0.9 0.307 0.437 -0.14 -0.561 0.244

*The performance metrics include the values of the root mean square error (RMSE), mean absolute
error (MAE) and the Pearson correlation coefficient (PCC). The RMSE and MAE was normalized by
the standard deviation of the known observed data (the same applied to Table S3-Table S12).



Table S3 Results on 3 dimensions within a subsystem (E=15+1)

(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.029 0.095 0.566 1.283 1.115 0.155 0.122 0.051 0.077 0.183 1.032

0.056 0.116 0.241 0.457 0.889 0.159 0.066 0.206 0.355 0.364 0.383

0.05 0.497 2.053 2.62 1.836 0.198 0.691 0.641 0.85 1.325 2.72

Average

0.045 0.236 0.953 1.453 1.28 0.171 0.293 0.299 0.427 0.624 1.379

(b) MAE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.022 0.072 0.511 1.241 0.984 0.119 0.095 0.035 0.052 0.134 0.977

0.047 0.079 0.186 0.447 0.833 0.106 0.045 0.136 0.31 0.319 0.343

0.035 0.358 1.82 2.451 1.509 0.169 0.497 0.481 0.711 1.205 2.714

Average

0.035 0.169 0.839 1.38 1.109 0.132 0.212 0.217 0.358 0.553 1.345

(c) PCC

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.942 0.721 -0.062 -0.264 0.102 0.185 0.552 0.624 0.139 0.001 0.112

0.997 0.967 0.842 0.876 0.935 0.729 0.98 0.992 -0.732 -0.652 -0.763

0.999 0.877 -0.947 -0.964 -0.933 0.954 0.167 0.776 -0.544 0.856 0.957

Average

0.98 0.855 -0.056 -0.118 0.035 0.623 0.566 0.797 -0.379 0.068 0.102



Table S4 Results on 3 dimensions within a subsystem (E=20+1)

(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.037 0.136 0.326 1.303 1.329 0.268 0.841 0.45 0.258 0.392 0.923

0.069 0.263 0.494 0.404 0.867 0.309 0.585 0.091 0.386 0.466 0.535

0.133 0.89 2.147 2.997 2.568 0.275 1.492 0.297 1.459 1.582 2.893

Average

0.079 0.429 0.989 1.568 1.588 0.284 0.973 0.279 0.701 0.813 1.45

(b) MAE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.029 0.108 0.297 1.27 1.194 0.202 0.586 0.312 0.216 0.312 0.847

0.047 0.177 0.403 0.369 0.821 0.216 0.455 0.062 0.288 0.379 0.465

0.114 0.653 1.911 2.816 2.137 0.23 0.99 0.196 1.303 1.439 2.874

Average

0.063 0.313 0.87 1.485 1.384 0.216 0.68 0.19 0.602 0.71 1.396

(c) PCC

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.988 0.949 0.367 0.333 0.666 -0.421 0.921 0.932 -0.024 -0.615 -0.326

0.987 0.893 -0.851 0.792 0.811 0.725 0.996 0.956 0.472 0.308 -0.647

0.999 0.396 -0.912 -0.945 -0.949 0.956 -0.56 0.95 -0.422 0.869 0.919

Average

0.991 0.746 -0.465 0.06 0.176 0.42 0.452 0.946 0.009 0.187 -0.018



6.3 The performances of prediction methods on the 90D coupled

Lorenz system with noise

Table S5 Results on 3 dimensions within a subsystem (E=10+1)

(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.165 0.469 0.936 0.681 0.42 0.13 0.41 0.168 0.29 0.559 1.119

0.062 0.146 0.178 0.6 0.459 0.191 0.11 0.193 0.341 0.251 0.277

0.093 0.773 1.871 0.742 0.925 0.466 1.436 0.921 1.779 0.594 2.555

Average

0.107 0.463 0.995 0.674 0.601 0.262 0.652 0.427 0.804 0.468 1.317

(b) MAE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.132 0.462 0.914 0.632 0.369 0.087 0.366 0.125 0.288 0.524 1.118

0.048 0.117 0.115 0.56 0.431 0.173 0.097 0.158 0.326 0.234 0.245

0.065 0.701 1.712 0.635 0.834 0.438 1.296 0.823 1.615 0.549 2.533

Average

0.082 0.427 0.914 0.609 0.545 0.233 0.586 0.369 0.743 0.436 1.299

(c) PCC

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.742 0.179 0.057 -0.843 -0.703 0.669 -0.347 0.061 -0.535 0.738 -0.133

0.975 -0.414 0.228 0.989 0.98 0.535 0.78 0.765 -0.873 0.972 -0.354

0.99 0.322 -0.974 -0.485 -0.535 0.811 -0.939 -0.522 -0.945 0.549 0.235

Average

0.902 0.029 -0.23 -0.113 -0.086 0.672 -0.169 0.102 -0.784 0.753 -0.084



6.4 The performances of prediction methods on the 144D Lorenz-96

system

Table S6 Results on 4 dimensions within a subsystem (E=15+1)

(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.079 0.637 1.547 1.229 1.21 0.389 0.241 0.184 1.644 1.746 1.582

0.034 0.236 0.439 1.031 1.107 0.129 0.068 0.052 0.346 0.283 0.079

0.027 0.936 2.363 3.101 3.176 0.111 0.162 0.039 0.355 0.544 1.9

0.068 1.503 3.474 4.164 4.209 0.246 0.245 0.759 1.206 1.726 3.356

Average

0.052 0.765 1.778 2.407 2.478 0.21 0.166 0.196 0.765 0.886 1.416

(b) MAE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.059 0.504 1.32 1.087 1.069 0.314 0.22 0.122 1.487 1.424 1.421

0.026 0.19 0.409 1.019 1.084 0.088 0.051 0.033 0.312 0.248 0.072

0.02 0.706 2.126 3.023 3.1 0.095 0.158 0.028 0.283 0.513 1.821

0.058 1.17 2.941 3.807 3.85 0.2 0.223 0.496 1.037 1.224 2.979

Average

0.04 0.594 1.566 2.296 2.361 0.162 0.149 0.129 0.671 0.723 1.301

(c) PCC

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.999 0.982 -0.934 0.87 0.629 0.968 0.999 0.998 -0.898 -0.984 -0.673

0.998 -0.961 0.796 0.697 0.455 0.986 0.999 0.996 -0.893 -0.886 0.605

0.999 0.968 -0.971 -0.9 -0.719 0.992 0.998 0.999 0.995 0.999 -0.804

0.999 0.986 -0.916 -0.794 -0.583 0.996 0.997 0.981 0.752 0.522 -0.631

Average

0.999 0.494 -0.506 -0.032 -0.055 0.985 0.998 0.994 -0.011 -0.087 -0.376



6.5 The performances of prediction methods on the 144D Lorenz-96

system with noise

Table S7 Results on 4 dimensions within a subsystem (E=15+1)

(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.734 1.203 3.103 1.889 1.044 0.779 0.804 1.67 2.344 1.921 0.895

0.318 0.605 0.56 2.184 0.886 0.46 0.694 1.362 0.587 0.738 0.767

0.386 2.326 2.455 4.06 3.234 1.163 2.079 2.858 2.299 3.304 3.45

1.187 3.091 3.69 2.827 2.963 1.374 1.47 2.498 5.144 3.908 3.062

Average

0.612 1.747 2.156 3.249 2.136 0.964 1.395 2.323 2.245 2.364 2.124

(b) MAE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.611 1.091 2.52 1.51 0.896 0.699 0.673 1.511 1.822 1.85 0.736

0.209 0.6 0.373 2.133 0.87 0.452 0.675 1.299 0.519 0.641 0.755

0.368 2.259 2.299 3.964 3.162 1.109 2.003 2.749 2.259 2.84 3.422

0.822 2.719 3.369 2.32 2.535 1.266 1.278 2.207 4.651 3.645 2.65

Average

0.463 1.645 1.856 3.048 2.011 0.914 1.309 2.18 2.03 2.114 2.016

(c) PCC

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.762 -0.094 0.332 -0.758 -0.78 0.684 0.563 0.432 0.145 0.646 -0.478

0.434 0.341 0.175 -0.535 0.441 0.457 0.781 0.427 0.011 -0.094 -0.451

0.936 0.2 0.068 -0.156 -0.701 0.658 -0.407 -0.142 0.766 -0.142 0.69

0.792 0.297 0.106 -0.163 -0.651 0.445 0.784 0.656 0.458 0.433 -0.326

Average

0.731 0.186 0.17 -0.403 -0.423 0.561 0.430 0.343 0.345 0.211 -0.141



6.6 The performances of prediction methods on San Francisco Traffic

Dataset

Table S8 Results in 4 locations (E=10+1)

(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.236 1.22 1.385 1.247 1.215 1.08 0.565 1.212 1.387 1.392 1.062

0.355 0.307 0.399 0.413 0.426 0.491 0.331 1.016 0.308 0.367 0.307

0.545 1.345 1.325 1.452 1.487 1.136 1.017 1.049 1.554 1.559 1.2

0.192 0.949 1.71 1.906 1.953 0.774 1.026 1.171 1.897 1.93 1.737

Average

0.332 0.955 1.205 1.254 1.27 0.87 0.735 1.112 1.286 1.312 1.076

(b) MAE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.187 1.118 1.292 1.147 1.115 0.882 0.37 1.073 1.287 1.266 0.986

0.312 0.262 0.281 0.343 0.389 0.34 0.289 0.968 0.23 0.257 0.221

0.461 1.275 1.232 1.396 1.429 0.699 0.836 0.916 1.504 1.509 1.112

0.127 0.892 1.621 1.859 1.907 0.671 0.971 1.115 1.852 1.879 1.703

Average

0.272 0.887 1.106 1.186 1.21 0.648 0.616 1.018 1.218 1.228 1.006

(c) PCC

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.921 -0.247 0.125 -0.324 -0.209 0.273 0.331 -0.608 0.037 0.093 0.431

0.889 0.094 -0.209 -0.496 -0.553 0.678 0.445 0.567 -0.32 -0.481 -0.335

0.965 -0.122 0.032 -0.457 -0.377 0.18 0.235 0.176 -0.173 -0.162 0.109

0.8 -0.369 -0.427 -0.377 -0.376 0.519 -0.544 -0.115 -0.348 -0.099 -0.368

Average

0.894 -0.161 -0.12 -0.413 -0.379 0.412 0.117 0.005 -0.201 -0.162 -0.041



6.7 The performances of prediction methods on Solar Energy Dataset

Table S9 Results on 3 sites (E=10+1)

(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.033 0.105 0.216 0.726 0.651 0.186 0.684 0.636 0.727 0.797 0.253

0.125 0.206 0.506 0.767 0.79 0.176 0.373 0.311 0.353 0.216 0.213

0.172 0.289 0.391 0.352 0.27 0.213 1.108 1.278 1.34 1.112 1.074

Average

0.20 0.343 0.371 0.615 0.57 0.192 0.722 0.742 0.807 0.708 0.514

(b) MAE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.024 0.086 0.21 0.638 0.572 0.165 0.676 0.557 0.701 0.776 0.216

0.11 0.169 0.467 0.708 0.738 0.114 0.367 0.273 0.318 0.194 0.185

0.144 0.252 0.28 0.321 0.243 0.177 1.085 1.242 1.248 0.91 1.021

Average

0.092 0.169 0.319 0.556 0.518 0.152 0.709 0.691 0.755 0.627 0.474

(c) PCC

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.953 -0.373 0.818 0.919 0.905 0.113 0.479 -0.494 -0.811 -0.414 -0.866

0.886 -0.959 0.937 0.992 0.986 0.003 -0.081 -0.17 -0.418 0.645 -0.877

0.982 0.833 -0.701 0.9 0.897 0.951 0.52 -0.677 -0.811 -0.993 -0.683

Average

0.94 -0.166 0.351 0.937 0.929 0.356 0.306 -0.447 -0.68 -0.254 -0.809



6.8 The performances of prediction methods on NN5 Dataset

Table S10 Results of 4 daily withdrawal amounts (E=10+1)

(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.385 2.851 0.97 1.177 1.045 0.641 1.755 1.605 1.447 1.223 1.177

0.164 1.798 0.457 0.721 0.678 0.609 1.001 0.7 1.184 0.68 0.778

0.51 3.301 0.747 1.064 1.059 1.322 1.56 0.778 1.73 0.407 1.146

0.112 0.325 0.245 0.313 0.266 0.229 0.492 0.257 0.23 0.477 0.347

Average

0.293 2.069 0.605 0.819 0.762 0.7 1.202 0.835 1.148 0.697 0.862

(b) MAE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.292 2.743 0.866 1.049 0.935 0.474 1.557 1.42 1.082 0.931 1.052

0.122 1.657 0.345 0.636 0.611 0.484 0.958 0.601 0.979 0.547 0.717

0.401 3.117 0.592 0.792 0.704 1.088 1.336 0.711 1.307 0.308 0.877

0.075 0.281 0.209 0.271 0.214 0.196 0.453 0.21 0.196 0.403 0.303

Average

0.223 1.95 0.503 0.687 0.616 0.56 1.076 0.736 0.891 0.547 0.737

(c) PCC

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.986 0.261 0.6 0.372 0.318 0.803 -0.373 0.555 0.323 0.591 0.135

0.979 0.457 0.811 0.376 0.421 0.776 -0.368 0.605 -0.112 0.562 -0.433

0.966 0.4 0.821 0.377 0.445 0.609 -0.48 0.884 -0.015 0.938 -0.268

0.972 0.429 0.698 0.583 0.597 0.756 -0.549 0.708 0.722 -0.31 -0.622

Average

0.976 0.387 0.732 0.427 0.445 0.736 -0.442 0.688 0.23 0.445 -0.297



6.9 The performances of prediction methods on Electricity Dataset

Table S11 Results on 4 customers (E=10+1)

(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.375 0.879 0.847 0.629 0.623 0.966 0.724 1.359 0.814 0.653 1.747

0.369 0.976 0.767 1.555 1.506 1.392 0.902 3.108 0.498 0.583 0.696

0.508 0.296 0.555 0.432 0.333 0.706 0.32 0.649 0.502 0.439 0.759

0.698 1.343 1.886 1.892 1.894 0.699 2.021 2.523 1.299 2.088 2.004

Average

0.488 0.874 1.014 1.127 1.089 0.941 0.992 1.91 0.778 0.941 1.301

(b) MAE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.275 0.679 0.754 0.52 0.516 0.964 0.517 1.066 0.632 0.5 1.651

0.278 0.854 0.661 1.371 1.322 1.390 0.79 2.755 0.419 0.497 0.557

0.438 0.235 0.438 0.371 0.281 0.705 0.265 0.541 0.428 0.364 0.699

0.558 1.207 1.716 1.717 1.696 0.693 1.814 1.977 1.146 1.865 1.826

Average

0.388 0.744 0.892 0.995 0.954 0.938 0.846 1.585 0.656 0.807 1.183

(c) PCC

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.96 -0.498 0.789 -0.371 -0.473 -0.296 0.505 -0.191 0.94 0.936 0.355

0.892 -0.404 0.862 -0.498 -0.72 0.541 0.581 0.192 0.892 0.871 0.436

0.722 0.304 0.193 0.436 0.524 -0.554 -0.136 -0.17 0.643 0.627 0.308

0.781 -0.745 -0.873 -0.861 -0.832 0.314 0.15 0.172 -0.055 -0.914 -0.351

Average

0.839 -0.336 0.243 -0.323 -0.375 0.001 0.275 0.001 0.605 0.38 0.187



6.10 The performances of prediction methods on Hospital Dataset

Table S12 Results on 4 research targets (E=10+1)

(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.443 0.645 1.03 0.892 0.763 0.836 0.608 0.742 1.739 1.502 1.075

0.33 0.421 1.022 0.954 0.811 0.929 0.392 0.946 1.544 0.585 1.036

0.619 1.11 1.035 1.192 1.153 0.95 0.956 1.249 1.036 1.098 1.071

0.517 0.864 1.011 0.816 0.752 1.073 0.767 0.721 0.832 1.002 0.864

Average

0.477 0.76 1.024 0.963 0.87 0.947 0.681 0.914 1.288 1.047 1.011

(b) MAE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.309 0.547 0.885 0.759 0.653 0.631 0.477 0.66 1.52 1.344 0.941

0.275 0.338 0.9 0.848 0.685 0.794 0.328 0.891 1.394 0.479 0.946

0.555 0.992 0.867 1.042 1.03 0.706 0.828 0.96 0.938 0.962 0.964

0.426 0.725 0.845 0.661 0.608 0.881 0.64 0.59 0.681 0.823 0.715

Average

0.391 0.651 0.874 0.828 0.744 0.753 0.568 0.775 1.133 0.902 0.892

(c) PCC

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.932 0.262 0.46 0.551 0.604 0.433 0.62 0.812 0.312 0.167 0.223

0.718 0.013 -0.048 0.226 0.282 0.189 0.675 0.548 0.356 0.495 -0.026

0.821 -0.253 0.204 0.098 -0.194 0.066 -0.337 -0.265 -0.14 0.04 -0.136

0.414 0.257 -0.342 -0.116 -0.195 0.31 0.14 -0.213 0.225 0.384 -0.106

Average

0.721 0.07 0.068 0.19 0.124 0.249 0.275 0.221 0.188 0.271 -0.011
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