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1. Constructing Delay Attractors and Non-delay Attractors by
Embedding Theory

1.1 Construction of non-delayed attractors

For a general dynamical system with »n state variables, the system state observed at m time
points during its evolution at equal time intervals t can be represented as a set of time series
O=1[10) 20).... vOXI", = 0, 0+ +..., o+ ( —1) . After a sufficiently long
period of time, the system will reach stability and all states of the system will converge to a
compact manifold V. The box-counting dimension of the system attractor &4 contained in the
manifold V is denoted as d (d is usually small). Whitney embedding theorem and generalized
embedding theorem indicate that for any function | with at least second-order smoothness on
of; the mapping < > A —
<h>= (10 ) 20 ) ()
is generally an embedding when £ =2d+1. This means that as long as the embedding dimension
E is sufficiently large, the dynamics of the original high-dimensional system can be reconstructed
through the non-delayed embedding of the observed variables. The reconstructed non-delayed
attractor is a diffeomorphism with the original attractor manifold, but does not contain time-lag

information, so it cannot be directly used for predicting future states.

1.2 Construction of multi-view delay attractors

In order to synchronize the future dynamics of multiple state variables in a predictive system,
we consider an embedding consisting of multiple system variables with different delays. Let ¢
represent a flow corresponding to an n-dimensional dynamical system. The generalized delay
embedding theorem shows that under appropriate assumptions on the system, the mapping

< >=010) 20)s (), A — driven by smooth functions | with delay is
also generally an embedding. A function with delay refers to a function ; that allows for a delay
under ¢, that is, it can be expressed as ;= ( j). Therefore, by selecting an appropriate
embedding dimension, we can obtain a differential homeomorphism from the original attractor

manifold to a delay embedding space consisting of multiple variables and their lags. Similar to the



single-variable delay embedding constructed based on Takens' embedding theory, the attractor
manifold under generalized delay embedding also retains the dynamical information of the
original system and also contains information about the future dynamics of time delays. However,
unlike Takens' delay embedding, generalized delay embedding can have multiple different delay
embedding manifolds at the same embedding dimension. These delay embedding manifolds
reconstruct the dynamics of the same original high-dimensional system from different
perspectives, so we collectively refer to them as multi-view delay embeddings. Note that another
classic work based on the generalized delay embedding theorem is multi-view embedding (MVE).
MVE generates multiple mappings that contain at least one non-delay variable as effective
embeddings, and predicts the target variable through the neighborhood points on the attractor in
the embedding space. Our method also considers multiple effective embeddings, but the prediction
is completely completed through information transformation between delay manifolds and
non-delay manifolds, without regard to the local topology of the attractor itself. This is the

essential difference between our method and the classic method of MVE.
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Fig.S1 Information transformation based on the isomorphism between manifolds.

1.3 Non-delayed attractors as predictors

In order to achieve the prediction of system dynamics, our goal is to directly predict the state
points that contain future values in the multi-view delayed attractor. The multi-view delayed
attractor and the original attractor manifold are diffeomorphic, and they maintain a topological

isomorphism relationship between them. On the other hand, the non-delayed attractor based on the



generalized embedding theorem is also diffeomorphic to the original attractor manifold. The
transfer of the isomorphism relationship implies that there is a smooth one-to-one mapping
between the delayed attractor and the non-delayed attractor. If the one-to-one mapping between
the two is determined, it is possible to predict the system dynamics after the observation time
range by converting the state points on the attractor. For each view of the delayed attractor, our
method uses strong correlation variables to construct a non-delayed embedding based on mutual
information, and replaces the embedding manifold with the original attractor manifold as a
predictor for the delayed attractor. The non-delayed part of each set of attractors undergoing
information conversion retains the dynamical information of the original system in different forms,

and has high correlation with the delayed part.

2. Reservoir Computing

Reservoir computing is a time-series oriented recurrent neural network variant model used in
this work. This method evolved from Echo State Networks (ESNs)™ and Liquid State Machines
(LSMs)P, alleviating the slow convergence rate and the vanishing and exploding gradients
problems that exist in general RNN models. As a special type of recurrent neural network,
reservoir computing uses a sparse randomly connected recurrent network to replace the
intermediate hidden layer in the classical neural network architecture, thereby simplifying the
complexity of the model. When using reservoir computing, we first construct a stochastic network
with sparse topology, and complex functions can be achieved by training only a linear output layer
during the model training phase. The reservoir computing model consists of three parts: an input
layer, an output layer, and a reservoir for internal processing. Taking the N-dimensional
observation data of an observation system as the input variable, a reservoir computing model with
M-dimensional state variables, i.e. M internal neurons, and L-dimensional output variables has the
following values at time ¢ for the input unit, internal processing unit, and output unit:

=010 20)..... (O]
O=0[10) 20)-... O]
O =010 20).-... ()]

The state equation and output equation of the RC model used in this article can be given by



the following equation:

(+D= (2 O+ & O+ &)

(+1= [ (+D+

Where, =[ 1 2.. ] represents the internal neuron activation function, and the

hyperbolic tangent function is used here. All weight matrices to the reservoir ' are randomly

initialized with a uniform distribution and do not change after generation. The weight matrix to the
output  °“needs to be trained using known observed time series data.

The training process of the RC network can be divided into two stages: the sampling stage and

the weight computation stage. In the sampling stage, the initial state of the network is randomly

selected, and the general zero initialisation is adopted here, i.e. (0) = . The input samples at

res
inp »

time ¢ are added to the reservoir through the input-reservoir weight matrix and the internal
state of the reservoir and the model output are calculated and collected according to the state
equation and output equation in turn. In this stage, the output variable y(t) and the internal state
variable x(t) of the reservoir network are sampled, which are used to subsequently complete the
calculation of the reservoir-output weight matrix. In the weight computation stage, the output
weight matrix is calculated based on the internal state matrix of the reservoir and the expected

target matrix obtained by connecting the variables collected during the sampling stage. Off-line

training is used to calculate the output weight matrix, which is equivalent to solving the

optimization problem min(  — )?. The matrix consists of all observed reservoir states,

and the matrix ~ consists of all observed expected outputs at given time ¢. Tikhonov regression is
used for regularization when optimizing the output weight matrix ~ °“t, and the optimal solution
can be computed directly by the Moore-Penrose pseudo-inverse.

Based on the known information of the observation system and the final goal of the prediction
task, the complete N-dimensional state variables of the observed system are used as input
variables at the input end of the RC model, and the output variables at the output end of the model
are vectorized prediction target matrices. With the MVIT framework, the output and input ends of
the reservoir can be divided according to the coordinates of the selected delayed attractor and the
corresponding non-delayed attractor, that is adopting parallel reservoir computing to efficiently
predict high-dimensional systems. Parallel reservoir computing!!®) uses a family of RC models in

parallel, each model will be used to predict the evolution of a part of the system state, and all other



states that interact with this part of the state are provided at the input end of the reservoir network.
This model utilizes local interactions between variables, using multiple small reservoirs instead of
a large-scale reservoir network, thereby decoupling large-scale prediction tasks. After determining
the input variable () and the desired output matrix based on the attractor coordinates, the
output weight matrix parameters of each RC model during model training are independently

calculated according to an optimization problem with Tikhonov regularization.

3. Datasets Details

3.1 Coupled Lorenz System

To verify the ability of our method to capture the dynamics of high-dimensional nonlinear
systems, we first consider a coupled Lorenz system as a benchmark. The i-th (i=1,2,...,N) coupled

subsystem is given by the following equation:

= [ -+ -

where the parameters are set to typical values, i.e., 0 = 10, p = 28,  =8/3. The elements of the
adjacency matrix a in the Lorenz system coupling network take on either a value of 0 or 1,
depending on whether direct relationships have been established between subsystems. The

adjacency matrix is defined as:

1 < , = +1,
=11 =, =1
0

This implies that all variables within the system are coupled, and such coupling is transmitted
through strong interactions between adjacent subsystems. The coupling strength is set at C = 0.01.
In the experiment depicted in Figure 2 of the main text, N = 30, thus the system comprises a total
of 90 variables. We generate random system initial values within the range [0, 10°], and sample

data at time intervals of t = 0.01.

3.2 Lorenz-96 System

Another benchmark model considered in our work is the Lorenz-96 system[1], which serves
a classic model to study nonlinear dynamics and chaotic phenomena. The model is introduced by
Edward N. Lorenz in 1996 to simulate the interactions and evolution of atmospheric circulation.

The Lorenz96 model consists of a set of interacting variables, typically denoted as xi,X2,...,XN,
represent different spatial positions or states within the system. The evolution of each variable is

described by the following dynamical equation:



—=( = —2) a— + .,

where i=1,...N and _;:= _; and +#1:= 1. a1 represents the neighboring state of
variable , and F is an external driving force. This equation signifies that each variable is
influenced by its neighboring variables and driven by an external force. It has been discovered that
the Lorenz96 model exhibits unpredictable and highly chaotic behavior when the value of the
driving force F is within a certain range[2,3].

In our work, we set the parameter F=8, which implies that the system's evolution will display
complex chaotic phenomena. The total number of variables, denoted as N, can be adjusted to
reflect the desired level of complexity in the model. Given the dimension N, we generate
an N-dimensional time series with a time interval of At=0.01 using the fourth-order Runge-Kutta
method based on the N-dimensional equations of the Lorenz96 system, and the multivariate time
series served as our observation of the system.

4. Comparison Methods

We compare ALM with the following methods.

* MA: The Moving Average (MA) model is a commonly used time series analysis method in the
fields of economics and statistics. It is utilized for forecasting and analyzing data that exhibit
random fluctuations and trends over time.The MA model is based on the concept of moving
averages, where past observed values are weighted and averaged to predict future values. It
calculates the weighted average of these values to predict future values. The model assumes that
the current error is a linear combination of past errors. The general form of the MA(q) model can

be represented as:
1+ o+ +

where q denotes the number of past observed values used in the model.

* ARIMA®: The Autoregressive Integrated Moving Average (ARIMA) model is a widely used
time series analysis method that combines autoregressive (AR), moving average (MA), and
differencing components. It is a versatile model capable of capturing both the autoregressive and
moving average properties of a time series, as well as handling non-stationary data through

differencing. The general form of the ARIMA model is ARIMA(p, d, q):

A = + A _j+.+ A _+ + 4, 1+ _,
where p represents the order of the autoregressive component, d represents the degree of

differencing, and q represents the order of the moving average component. The autoregressive

component (AR) models the linear relationship between the current value and a certain number of



past values, while the moving average component (MA) models the linear relationship between
the current value and a certain number of past errors. The differencing component (I) is used to
transform non-stationary data into stationary data by taking differences between consecutive

observations.

* VARUI: The Vector Autoregressive (VAR) model is a multivariate time series analysis method
used to analyze and forecast the interdependencies among multiple variables. It extends the
Autoregressive (AR) model to multiple variables, allowing for a more comprehensive analysis of
their relationships. The form of the VAR model can be represented as VAR(p):

where p represents the order of the lagged variables. In a VAR(p) model, each variable is
regressed on its own lagged values and the lagged values of all other variables in the system. This
allows for the modeling of dynamic relationships and feedback mechanisms between the

variables.

* VARME: The Vector Autoregressive Moving Average with Exogenous Variables (VARMAX)
model is an extension of the Vector Autoregressive (VAR) model that incorporates both lagged
variables and exogenous variables. The basic process of VARMAX includes the autoregressive
process, the moving average process, and the independent exogenous terms (other unmodeled

inputs). VARMAX is a multi-variable method and the basic form of VARMAX(p,q) is

= + + _+ _+
=1 =1
where is a constant vector, is an autoregressive coefficients matrix, is exogenous
predictor variables,  is a regression coefficient matrix, is a moving average matrix, and

is random Gaussian innovation.

* SVRPL: Support Vector Regression (SVR) is a powerful machine learning model used for
regression tasks. It is an extension of Support Vector Machines (SVM) and is particularly effective
when dealing with non-linear relationships between variables. SVR differs from traditional
regression models by incorporating the concept of a margin. It aims to find a hyperplane that
maximizes the margin while allowing for a certain level of error tolerance. The form of the SVR
model can be represented as:

= + + (,)

Where  represents the predicted output,  is the input vector, is the weight vector,  is



the bias term, is the Lagrange multiplier associated with each training sample ,and ( , )
is the kernel function, which measures the similarity between  and

* LSTM['%: Long Short-Term Memory (LSTM) is currently one of the most widely used deep

learning model in the field of time series analysis. The LSTM model consists of several key
components, including the input gate, forget gate, output gate, and cell state. These components
work together to control the flow of information and determine what information should be stored,
forgotten, and outputted at each time step. LSTM model can be summarized as follows:

' = ( [ ] —1)
In this equation, represents the input at time step t, is the hidden state at time step t, and
is the cell state at time step t. The hidden state and cell state jointly capture the information learned

from the previous time steps and pass it to the current time step.

* GRUM"!I: Gated Recurrent Unit (GRU) is a type of recurrent neural network that widely used in
sequential data modeling tasks. It has fewer parameters compared to other RNN variants, such as

LSTM, making it computationally more efficient. GRU model can be represented as follows:

= (C [ - D
= (C[- D
=1- ) 1+
where represents the input at time step t, is the hidden state at time step t, is the update
gate, is the reset gate, and is the candidate activation. and are the weight

matrices associated with the update gate and reset gate, respectively.  denotes the sigmoid
activation function, and © represents element-wise multiplication. The update gate determines
how much of the previous hidden state should be combined with the candidate activation. It
controls the flow of information from the previous time step to the current time step. The reset
gate regulates how much of the previous hidden state should be forgotten. It decides which

information from the past is relevant for the current time step.

* tRC: Traditional reservoir computing (tRC) was used as a standard reservoir computing model
for comparison. The dynamic of the system is parameterized by a tRC model with a large sparse
network as a reservoir, and multi-step prediction results are generated through the closed-loop
evolution of tRC. The tRC model for comparison was set to the same hyperparameters with the
MVIT-PRC model (except for the size of the reservoir network).

* PRC!3L: Parallel reservoir computing (PRC) uses a family of RC models in parallel, each model
will be used to predict the evolution of a part of the system state. PRC was used as a comparison
method in this work to evaluate the predictive potential of the MVIT framework. The parallelized
reservoir computing models generate local predictions of subsystem states and generate multi-step
prediction results through closed-loop evolution. The PRC model for comparison was set to the

same hyperparameters with the MVIT-PRC model.

* ALMI'"2!: Anticipated Learning Machine (ALM) is a novel deep learning method that combines
delayed embedding theory and neural network framework.The core of the ALM model is the

spatial-temporal information-transformation equation (STI equation), which is based on Takens'



embedding theorem. Through the STI equation, ALM transforms the recent information into the
future dynamical system of the target variables. ALM can simulate a large number of randomly
selected non-delayed attractors using the Dropout strategy to train AL neural networks to
accurately and robustly reconstruct the system dynamics and make multi-step predictions through
iterative training. Based on the nonlinear dynamics rather than the traditional statistics, ALM

represents a new paradigm of machine learning which is dynamics-oriented.

5. Supplemental Figures

5.1 The prediction of the coupled Lorenz system
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Fig.S2 Our framework achieves 15 step prediction results on a 90 dimensional coupled Lorenz
system. We train a prediction model with a 15th-order delay using 30 observations of the system
as known information. There are only 15 valid sample pairs available for learning. Our multi
perspective information conversion mechanism effectively expands available information in this

data shortage situation.



5.2 The prediction of San Francisco Traffic Dataset
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Fig.S3 Synchronous prediction results of multi-view joint prediction model for the other three
dimensions on San Francisco traffic dataset.



5.3 The prediction of NN5 Dataset
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Fig.S4 Synchronous prediction results of multi-view joint prediction model for the other three
dimensions on NNS5 dataset.



5.4 The prediction of Electricity Dataset
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Fig.S5 Synchronous prediction results of multi-view joint prediction model for the other two
dimensions on Electricity dataset.



5.5 The prediction of Solar Energy Dataset
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Fig.S6 Synchronous prediction results of multi-view joint prediction model for the other two

dimensions on Solar Energy dataset.



5.6 The prediction of Hospital Dataset
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Fig.S7 Synchronous prediction results of multi-view joint prediction model for the other three

dimensions on Hospital dataset.



5.7 Comparison between Multi-View and Single-View
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Fig.S8 Comparison of prediction performance between multi-view models and separate

single-view models in the Lorenz 96 system. (a-d) The absolute errors between the mean of the

final predictions and the true observations of two kinds of models on three dimensions of a
subsystem in a 144-dimensional Lorenz 96 system. (e-f) the box plot of RMSEs and MAEs for 50

independent experiments.



12 1
21 X Vou
10
0-
i 81
-4
6 -
-6
Isolated
Multi-view 41
—-8- Joint
Ground Truth
1 345678 910 1 345 6 10
Step Step
38
36
34
32
30 1
28 -
Z24
26 -
1 345 6 7 8 910

Step

Fig.S8 Comparison of prediction performance between multi-view models and separate
single-view models. The prediction results of two kinds of models on three dimensions of a

subsystem in a 90-dimensional coupled Lorenz system.
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6. Supplemental Tables

6.1 The estimated box dimension in datasets

Table S1 The estimated box dimension in selected systems

Number of observed
Dataset Box dimension (d)
variables

The 90-dimensional coupled

90 2.62
Lorenz systems
The 144-dimensional
144 3.27
Lorenz-96 systems
San Francisco Traffic 862 4.78
NNS5 Dataset 111 3.67
Electricity Dataset 321 1.34
Solar Energy Dataset 137 2.06
Hospital Dataset 767 3.09

The box-counting dimensions are approximately estimated by using the R package
“Rdimtools”



6.2 The performances of prediction methods on the 90D coupled

Lorenz system

Table S2 Results on 3 dimensions within a subsystem (E=10+1)
(a) RMSE
MVPRC ARIMA MA VAR VARM ALM (RC PRC LSTM GRU SVR
0.013 0.044 0.734 1.162 0.786 0.08 0.176 0.092 0.21 0.37 1.177
0.018 0.037 0.133 0476 0.767 0.037 0.017 0.096 0.267 0.189 0.288
0.034 0.197 1.555 2.107 1.067 0203 0.497 0.405 2417 1.138 2.604
Average
0.022 0.092 0.807 1249 0873 0.107 0.23 0.198 0.964 0.566 1.356
(b) MAE
MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR
0.01 0.032 0.627 1.113 0.688  0.059 0.136 0.056 0.15 0.331 1.141
0.015 0.025 0.104 0466 0.703 0.03 0.016 0.06 0248 0.162 0.255
0.031 0.14 1.301 1.967 0.878 0.17 0.367 0.231 2383 1.029 2.602
Average
0.019 0.066 0.677 1.182 0.756 0.086 0.173 0.116 0927 0.507 1.333
(¢) PCC
MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR
0.991 0.683  -0.883 -0947 -0.82 0.861 -0.55 0247 0.791 -0.81 0.656
0.999 0.994 0.876 0946 0984 0945 0998 0.851 -0.588 -0.864 -0.9
0.999 0.985 -0992 -0984 -0.886 0.893 0473 0215 -0.623 -0.008 0.977
Average
0.997 0.887  -0.333 -0.328 -0.241 0.9 0.307 0437 -0.14 -0.561 0.244

*The performance metrics include the values of the root mean square error (RMSE), mean absolute
error (MAE) and the Pearson correlation coefficient (PCC). The RMSE and MAE was normalized by
the standard deviation of the known observed data (the same applied to Table S3-Table S12).



Table S3  Results on 3 dimensions within a subsystem (E=15+1)

(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.029 0.095 0.566 1.283 1.115 0.155 0.122 0.051 0.077 0.183 1.032

0.056 0.116 0.241 0.457 0.889 0.159 0.066 0.206 0355 0.364 0.383

0.05 0.497 2.053  2.62 1.836  0.198 0.691 0.641 0.85 1325 272

Average

0.045 0.236 0953 1.453 1.28 0.171 0.293 0.299 0427 0.624 1.379

(b) MAE

MVPRC ARIMA MA VAR VARM ALM t(RC PRC LSTM GRU SVR

0.022 0.072  0.511 1.241 0.984 0.119 0.095 0.035 0.052 0.134 0.977

0.047 0.079  0.186  0.447 0.833 0.106 0.045 0.136 031 0319 0.343

0.035 0.358 1.82  2.451 1.509 0.169 0497 0481 0.711 1205 2.714

Average

0.035 0.169  0.839 1.38 1.109 0.132 0.212 0.217 0.358 0.553 1.345

(¢) PCC

MVPRC ARIMA MA VAR VARM ALM (tRC PRC LSTM GRU SVR

0.942 0.721 -0.062 -0.264 0.102 0.185 0.552 0.624 0.139 0.001 0.112

0.997 0.967 0.842 0.876 0.935 0.729 098 0992 -0.732 -0.652 -0.763

0.999 0.877 -0.947 -0964 -0933 0954 0.167 0.776 -0.544 0.856 0.957

Average

0.98 0.855 -0.056 -0.118 0.035 0.623 0.566 0.797 -0.379 0.068 0.102




Table S4

Results on 3 dimensions within a subsystem (E=20+1)

(a) RMSE
MVPRC ARIMA MA VAR VARM ALM (RC PRC LSTM GRU SVR
0.037 0.136 0.326 1.303 1.329 0.268 0.841 045 0258 0.392 0.923
0.069 0.263 0.494 0.404 0.867 0309 0.585 0.091 0.386 0.466 0.535
0.133 0.89 2.147 2.997 2.568 0275 1.492 0.297 1459 1.582 2.893
Average
0.079 0.429 0989 1.568 1.588 0.284 0973 0.279 0.701 0.813 1.45
(b) MAE
MVPRC ARIMA MA VAR VARM ALM t(RC PRC LSTM GRU SVR
0.029 0.108  0.297 1.27 1.194 0.202 0586 0312 0216 0312 0.847
0.047 0.177 0.403  0.369 0.821 0.216 0.455 0.062 0.288 0379 0.465
0.114 0.653 1911 2.816 2.137 0.23 099 0.196 1303 1439 2874
Average
0.063 0.313 0.87 1.485 1.384  0.216 0.68 0.19  0.602 0.71 1.396
(¢) PCC
MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR
0.988 0.949 0.367 0.333 0.666 -0.421 0921 0932 -0.024 -0.615 -0.326
0.987 0.893 -0.851 0.792 0.811 0.725 0.996 0.956 0472 0.308 -0.647
0.999 0396 -0912 -0945 -0949 0956 -0.56 0.95 -0422 0.869 0919
Average
0.991 0.746 -0.465 0.06 0.176 042 0452 0946 0.009 0.187 -0.018




6.3 The performances of prediction methods on the 90D coupled

Lorenz system with noise

Table S5 Results on 3 dimensions within a subsystem (E=10+1)

(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.165 0.469 0936 0.681 042 013 041 0.168 0.29 0.559 1.119

0.062 0.146 0.178 0.6 0.459 0.191 0.11 0.193 0341 0.251 0.277

0.093 0.773 1.871 0.742 0.925 0466 1436 0921 1.779 0.594 2.555

Average

0.107 0463 0995 0.674 0.601 0.262 0.652 0.427 0.804 0.468 1.317

(b) MAE

MVPRC ARIMA MA VAR VARM ALM t(RC PRC LSTM GRU SVR

0.132 0462 0914 0.632 0.369 0.087 0.366 0.125 0.288 0.524 1.118

0.048 0.117  0.115 0.56 0.431 0.173 0.097 0.158 0326 0.234 0.245

0.065 0.701 1.712  0.635 0.834 0438 1.296 0.823 1.615 0.549 2.533

Average

0.082 0.427 0914 0.609 0.545 0.233 0.586 0369 0.743 0436 1.299

(¢) PCC

MVPRC ARIMA MA VAR VARM ALM (tRC PRC LSTM GRU SVR

0.742 0.179  0.057 -0.843 -0.703 0.669 -0.347 0.061 -0.535 0.738 -0.133

0.975 -0.414  0.228  0.989 0.98 0.535 0.78 0.765 -0.873 0.972 -0.354

0.99 0.322 -0974 -0.485 -0.535 0.811 -0.939 -0.522 -0.945 0.549 0.235

Average

0.902 0.029 -0.23 -0.113 -0.086 0.672 -0.169 0.102 -0.784 0.753 -0.084




6.4 The performances of prediction methods on the 144D Lorenz-96

system

Table S6 Results on 4 dimensions within a subsystem (E=15+1)

(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.079 0.637 1.547 1.229 1.21 0389 0.241 0.184 1.644 1.746 1.582

0.034 0.236 0.439 1.031 1.107 0.129 0.068 0.052 0.346 0.283 0.079

0.027 0.936 2363 3.101 3.176  0.111 0.162 0.039 0.355 0.544 1.9

0.068 1.503 3.474 4.164 4209 0246 0245 0.759 1206 1.726 3.356

Average

0.052 0.765 1.778 2.407 2478 021 0.166 0.196 0.765 0.886 1.416

(b) MAE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.059 0.504 1.32 1.087 1.069 0314 022 0.122 1.487 1424 1421

0.026 0.19 0.409 1.019 1.084 0.088 0.051 0.033 0312 0.248 0.072

0.02 0.706 2.126 3.023 3.1 0.095 0.158 0.028 0.283 0.513 1.821
0.058 1.17 2.941 3.807 3.85 0.2 0.223 049 1.037 1224 2979
Average

0.04 0.594 1.566 2.296 2361 0.162 0.149 0.129 0.671 0.723 1.301

(¢) PCC

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.999 0.982 -0.934 0.87 0.629 0968 0.999 0.998 -0.898 -0.984 -0.673

0.998 -0.961 0.796  0.697 0.455 0986 0.999 0.996 -0.893 -0.886 0.605

0.999 0.968 -0.971 -09 -0.719 0992 0998 0.999 0995 0999 -0.804

0.999 0986 -0916 -0.794 -0.583 0.996 0.997 0981 0.752 0.522 -0.631

Average

0.999 0494 -0.506 -0.032 -0.055 0.985 0.998 0994 -0.011 -0.087 -0.376




6.5 The performances of prediction methods on the 144D Lorenz-96

system with noise

Table S7 Results on 4 dimensions within a subsystem (E=15+1)

(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.734 1.203 3.103 1.889 1.044 0.779 0.804 1.67 2344 1921 0.895

0.318 0.605 0.56 2.184 0.886 046 0.694 1.362 0.587 0.738 0.767

0.386 2326 2455  4.06 3.234 1.163 2.079 2.858 2.299 3304 345

1.187 3.091  3.69 2.827 2963 1374 147 2498 5.144 3908 3.062

Average

0.612 1.747 2.156 3.249 2.136 0964 1395 2323 2245 2364 2.124

(b) MAE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.611 1.091 252 1.5l 0.896 0.699 0.673 1511 1.822 1.85 0.736

0.209 0.6 0373 2.133 0.87 0.452 0.675 1.299 0.519 0.641 0.755

0.368 2.259 2299 3.964 3.162 1.109 2.003 2.749 2259 2.84 3422

0.822 2.719 3369 232 2.535 1.266 1.278 2207 4.651 3.645  2.65

Average

0.463 1.645 1.856 3.048 2.011 0914 1309 2.18 2.03 2114 2.016

(¢) PCC

MVPRC ARIMA MA VAR VARM ALM (tRC PRC LSTM GRU SVR

0.762 -0.094 0.332 -0.758 -0.78 0.684 0.563 0.432 0.145 0.646 -0.478

0.434 0.341 0.175 -0.535 0.441 0457 0.781 0.427 0.011 -0.094 -0.451

0.936 0.2 0.068 -0.156 -0.701 0.658 -0.407 -0.142 0.766 -0.142 0.69

0.792 0.297 0.106 -0.163 -0.651 0.445 0.784 0.656 0.458 0.433 -0.326

Average

0.731 0.186  0.17 -0.403 -0.423 0.561 0430 0343 0345 0211 -0.141




6.6 The performances of prediction methods on San Francisco Traffic

Dataset

Table S8 Results in 4 locations (E=10+1)
(a) RMSE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.236 .22 1.385 1.247 1.215 1.08 0565 1.212 1.387 1.392 1.062

0.355 0.307 0399 0.413 0426 0491 0331 1.016 0.308 0367 0.307

0.545 1.345 1325 1.452 1.487 1.136 1.017 1.049 1.554 1.559 1.2

0.192 0.949 1.71  1.906 1.953 0.774 1.026 1.171 1.897 1.93 1.737

Average

0.332 0.955 1.205 1.254 1.27 087 0.735 1.112 1.286 1312 1.076

(b) MAE

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.187 1.118 1.292 1.147 1.115 0.882 037 1.073 1287 1.266 0.986

0.312 0.262 0.281 0.343 0.389  0.34 0.289 0.968 0.23  0.257 0.221

0.461 1.275 1.232 1.396 1.429 0.699 0.836 0916 1504 1.509 1.112

0.127 0.892 1.621 1.859 1.907 0.671 0971 1.115 1.852 1.879 1.703

Average

0.272 0.887 1.106 1.186 1.21 0.648 0.616 1.018 1.218 1.228 1.006

(¢) PCC

MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR

0.921 -0.247  0.125 -0.324  -0.209 0.273 0331 -0.608 0.037 0.093 0.431

0.889 0.094 -0.209 -0.496 -0.553 0.678 0.445 0567 -032 -0.481 -0.335

0.965 -0.122  0.032 -0457 -0377 0.18 0.235 0.176 -0.173 -0.162 0.109

0.8 -0.369 -0.427 -0.377 -0376 0519 -0.544 -0.115 -0.348 -0.099 -0.368

Average

0.894 -0.161  -0.12 -0413 -0379 0412 0.117 0.005 -0.201 -0.162 -0.041




6.7 The performances of prediction methods on Solar Energy Dataset

Table S9 Results on 3 sites (E=10+1)

(a) RMSE
MVPRC ARIMA MA VAR VARM ALM (RC PRC LSTM GRU SVR
0.033 0.105 0.216 0.726 0.651 0.186 0.684 0.636 0.727 0.797 0.253
0.125 0.206 0.506 0.767 0.79 0.176 0.373 0.311 0.353 0.216 0.213
0.172 0.289 0.391 0.352 0.27 0.213 1.108 1.278 1.34  1.112 1.074
Average
0.20 0.343 0371 0.615 0.57 0.192 0.722 0.742 0.807 0.708 0.514
(b) MAE
MVPRC ARIMA MA VAR VARM ALM t(RC PRC LSTM GRU SVR
0.024 0.086 0.21  0.638 0.572  0.165 0.676 0557 0.701 0.776  0.216
0.11 0.169 0.467 0.708 0.738 0.114 0367 0273 0318 0.194 0.185
0.144 0.252 0.28 0.321 0.243  0.177 1.085 1.242 1.248 091 1.021
Average
0.092 0.169  0.319 0.556 0.518 0.152 0.709 0.691 0.755 0.627 0.474
(¢) PCC
MVPRC ARIMA MA VAR VARM ALM (RC PRC LSTM GRU SVR
0.953 -0.373  0.818 0.919 0905 0.113 0479 -0.494 -0.811 -0.414 -0.866
0.886 -0.959  0.937  0.992 0.986 0.003 -0.081 -0.17 -0.418 0.645 -0.877
0.982 0.833 -0.701 0.9 0.897 0.951 0.52 -0.677 -0.811 -0.993 -0.683
Average
0.94 -0.166  0.351  0.937 0929 0356 0306 -0.447 -0.68 -0.254 -0.809




6.8 The performances of prediction methods on NN5 Dataset

Table S10 Results of 4 daily withdrawal amounts (E=10+1)

(a) RMSE
MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR
0.385 2.851 0.97 1.177 1.045 0.641 1.755 1.605 1.447 1.223 1.177
0.164 1.798 0.457 0.721 0.678 0.609 1.001 0.7 1.184  0.68 0.778
0.51 3.301 0.747 1.064 1.059 1322 1.56 0.778 1.73  0.407 1.146
0.112 0.325 0.245 0.313 0.266 0.229 0.492 0.257 0.23 0.477 0.347
Average
0.293 2.069 0.605 0.819 0.762 0.7 1202 0.835 1.148 0.697 0.862
(b) MAE
MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR
0.292 2.743  0.866 1.049 0.935 0474 1.557 142 1.082 0.931 1.052
0.122 1.657 0.345 0.636 0.611 0484 0958 0.601 0979 0.547 0.717
0.401 3.117 0592  0.792 0.704 1.088 1.336 0.711 1307 0.308 0.877
0.075 0.281 0.209 0.271 0.214 0.196 0.453 0.21 0.196 0.403 0.303
Average
0.223 1.95 0.503 0.687 0.616 0.56 1.076 0.736 0.891 0.547 0.737
(¢) PCC
MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR
0.986 0.261 0.6 0.372 0.318 0.803 -0.373 0.555 0.323 0.591 0.135
0.979 0.457 0.811 0.376 0.421 0.776 -0.368 0.605 -0.112 0.562 -0.433
0.966 04 0.821 0.377 0.445 0.609 -048 0.884 -0.015 0.938 -0.268
0.972 0.429 0.698 0.583 0.597 0.756 -0.549 0.708 0.722 -0.31 -0.622
Average
0.976 0.387 0.732 0.427 0.445 0.736 -0.442 0.688 0.23  0.445 -0.297




6.9 The performances of prediction methods on Electricity Dataset

Table S11 Results on 4 customers (E=10+1)

(a) RMSE
MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR
0.375 0.879 0.847 0.629 0.623 0966 0.724 1.359 0.814 0.653 1.747
0.369 0.976 0.767 1.555 1.506 1392 0902 3.108 0.498 0.583 0.696
0.508 0.296 0.555 0.432 0.333 0.706 032 0.649 0.502 0.439 0.759
0.698 1.343 1.886 1.892 1.894 0.699 2.021 2.523 1.299 2.088 2.004
Average
0.488 0.874 1.014 1.127 1.089 0.941 0.992 191 0.778 0.941 1.301
(b) MAE
MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR
0.275 0.679 0.754  0.52 0.516 0964 0.517 1.066 0.632 0.5 1.651
0.278 0.854 0.661 1.371 1.322 1390 0.79 2.755 0419 0.497 0.557
0.438 0.235 0438 0.371 0.281 0.705 0.265 0.541 0.428 0.364 0.699
0.558 1.207 1.716 1.717 1.696 0.693 1.814 1.977 1.146 1.865 1.826
Average
0.388 0.744 0.892 0.995 0.954 0938 0.846 1.585 0.656 0.807 1.183
(¢) PCC
MVPRC ARIMA MA VAR VARM ALM (RC PRC LSTM GRU SVR
0.96 -0.498 0.789 -0.371 -0.473 -0.296 0.505 -0.191 0.94 0936 0.355
0.892 -0.404 0.862 -0.498 -0.72  0.541 0.581 0.192 0.892 0.871 0.436
0.722 0.304 0.193 0.436 0.524 -0.554 -0.136 -0.17 0.643 0.627 0.308
0.781 -0.745 -0.873 -0.861 -0.832 0.314 0.15 0.172 -0.055 -0.914 -0.351
Average
0.839 -0.336  0.243 -0.323 -0.375 0.001 0.275 0.001 0.605 0.38 0.187




6.10 The performances of prediction methods on Hospital Dataset

Table S12  Results on 4 research targets (E=10+1)

(a) RMSE
MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR
0.443 0.645 1.03 0.892 0.763 0.836 0.608 0.742 1.739 1.502 1.075
0.33 0.421 1.022 0.954 0.811 0929 0392 0.946 1.544 0.585 1.036
0.619 1.11  1.035 1.192 1.153 0.95 0956 1.249 1.036 1.098 1.071
0.517 0.864 1.011 0.816 0.752 1.073 0.767 0.721 0.832 1.002 0.864
Average
0.477 0.76  1.024 0.963 0.87 0947 0.681 0914 1.288 1.047 1.011
(b) MAE
MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR
0.309 0.547 0.885 0.759 0.653 0.631 0.477  0.66 1.52 1.344 0941
0.275 0.338 0.9 0.848 0.685 0.794 0328 0.891 1.394 0.479 0.946
0.555 0.992 0.867 1.042 1.03 0.706 0.828  0.96 0.938 0.962 0.964
0.426 0.725 0.845 0.661 0.608 0.881 0.64 059 0.681 0.823 0.715
Average
0.391 0.651 0.874 0.828 0.744 0.753 0568 0.775 1.133 0.902 0.892
(¢) PCC
MVPRC ARIMA MA VAR VARM ALM tRC PRC LSTM GRU SVR
0.932 0.262 0.46 0.551 0.604 0.433 0.62 0.812 0.312 0.167 0.223
0.718 0.013 -0.048 0.226 0.282 0.189 0.675 0.548 0.356 0.495 -0.026
0.821 -0.253  0.204 0.098 -0.194 0.066 -0.337 -0.265 -0.14 0.04 -0.136
0.414 0.257 -0.342 -0.116 -0.195 0.1 0.14 -0.213 0.225 0.384 -0.106
Average
0.721 0.07  0.068 0.19 0.124 0.249 0275 0.221 0.188 0.271 -0.011
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