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Double Perturbation Treatment for Degenerate States 

In this section, in order to obtain the energies of the spin Hamiltonian having the sizable zero-field splitting 

(ZFS), electron-Zeeman and hyperfine terms, we consider the Rayleigh–Schrödinger perturbation for the 

energies and states of a Hamiltonian (ℋ) composed of a non-perturbed term (H0: a rank-2 ZFS Hamiltonian 

in this work) and two perturbing terms (H1 and H2: the electron-Zeeman and hyperfine structure Hamiltonians, 

respectively, in this work). Note that the non-perturbed term is not the electron-Zeeman term which is 

regarded as a non-perturbed one in putative and conventional high-field approximation treatments. The 

current approach is termed a Zeeman perturbation treatment, which is not common but has a big advantage 

over the putative ones in many aspects, exemplifying the derivation of the analytical expressions for bridging 

the gap between a true spin Hamiltonian and fictitious spin-1/2 Hamiltonian relationships, as described in 

this work. 

     The Hamiltonian ℋ is in the following form of 

ℋ = 𝐻0 + 𝜆𝐻1 + 𝜇𝐻2 (1)  

ℋ|Ψ𝑛,𝛼⟩ = 𝐸𝑛,𝛼|Ψ𝑛,𝛼⟩ (2)  

where the energy eigenvalues of the non-perturbed Hamiltonian 𝜀𝑛
(0)

 are assumed to be gn-th degenerate. 

𝐻0 |𝜑𝑛,𝛼
(0)⟩ = 𝜀𝑛

(0) |𝜑𝑛,𝛼
(0)⟩  (𝛼 = 1, 2,… , 𝑔𝑛) (3)  

This assumption is underlain by the Kramers’ degeneracy for the electronic spin systems with half-integer 

spin quantum numbers. The wavefunctions and the energies can be expanded as follows: 

|Ψ𝑛,𝛼⟩ = |𝜑𝑛,𝛼
(0)⟩ + 𝜆 |𝜑𝑛,𝛼

(10)⟩ + 𝜇 |𝜑𝑛,𝛼
(01)⟩ + 𝜆2 |𝜑𝑛,𝛼

(20)⟩ + 𝜆𝜇 |𝜑𝑛,𝛼
(11)⟩ + 𝜇2 |𝜑𝑛,𝛼

(02)⟩ +⋯ (4)  

𝐸𝑛,𝛼 = 𝜀𝑛
(0) + 𝜆𝜀𝑛,𝛼

(10) + 𝜇𝜀𝑛,𝛼
(01) + 𝜆2𝜀𝑛,𝛼

(20) + 𝜆𝜇𝜀𝑛,𝛼
(11) + 𝜇2𝜀𝑛,𝛼

(02) +⋯ (5)  

In the equations above, a factor of 1/2 is omitted from the quadratic perturbation parameter. Supposing an 

application to the spin Hamiltonian, the matrix elements of H1 expanded by the wavefunctions 

|𝜑𝑛,𝛼
(0)⟩ (𝛼 = 1, 2,… , 𝑔𝑛), having the same eigenenergy 𝜀𝑛

(0)
, are assumed as 

⟨𝜑𝑛,𝛽
(0)|𝐻1|𝜑𝑛,𝛼

(0)⟩ = 0 (6)  

for any β ≠ α. As described below, the matrix elements of the electron-Zeeman Hamiltonian have non-zero 

values between the eigenstates belonging the different eigenvalues. Degenerate perturbation treatment has to 

be applied to the second perturbing term (H2). 

     The eigenstates of the non-perturbed Hamiltonian |𝜑𝑛,𝛼
(0)⟩ is orthonormal and complete, as given in the 

following. 

⟨𝜑𝑛,𝛼
(0)|𝜑𝑚,𝛽

(0) ⟩ = 𝛿𝑛𝑚𝛿𝛼𝛽 (7)  

∑∑|𝜑𝑛,𝛼
(0)⟩ ⟨𝜑𝑛,𝛼

(0)|

𝑔𝑛

𝛼=1

∞

𝑛=0

= 1 (8)  

Also, the projection operator to the n-th eigenstate is defined as follows: 
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𝑃𝑛 =∑ |𝜑𝑛,𝛼
(0)
⟩ ⟨𝜑𝑛,𝛼

(0)
|

𝑔𝑛

𝛼=1

 (9)  

From eqs. (8) and (9), we obtain 

∑𝑃𝑛

∞

𝑛=0

= 1 (10)  

     The new basis set |𝜙𝑛,𝛼
(0)⟩ is made from |𝜑𝑛,𝛼

(0)⟩ by using a unitary transformation. 

|𝜙𝑛,𝛼
(0)⟩ = ∑ 𝑐𝑛𝛼

𝛽 |𝜑𝑛,𝛽
(0)⟩

𝑔𝑛

𝛽=1

 (11)  

The coefficients cn,α
β is the α-th row and β-th column matrix elements of gn × gn unitary matrix. The new 

basis |𝜙𝑛,𝛼
(0)
⟩ is also the eigenstate of the non-perturbed Hamiltonian: 

𝐻0 |𝜙𝑛,𝛼
(0)
⟩ = 𝜀𝑛

(0)
|𝜙𝑛,𝛼
(0)
⟩  (𝛼 = 1, 2,… , 𝑔𝑛) (12)  

Also, |𝜙𝑛,𝛼
(0)⟩ satisfies the orthonormality condition in the following,  

⟨𝜙𝑛,𝛼
(0)|𝜙𝑚,𝛽

(0) ⟩ = 𝛿𝑛𝑚𝛿𝛼𝛽 (13)  

and the completeness.  

∑∑|𝜙𝑛,𝛼
(0)⟩

𝑔𝑛

𝛼=1

⟨𝜙𝑛,𝛼
(0)|

∞

𝑛=0

= 1 (14)  

Then, the wavefunctions can be rewritten by using |𝜙𝑛,𝛼
(0)⟩: 

|Ψ𝑛,𝛼⟩ = |𝜙𝑛,𝛼
(0)⟩ + 𝜆 |𝜑𝑛,𝛼

(10)⟩ + 𝜇 |𝜑𝑛,𝛼
(01)⟩ + 𝜆2 |𝜑𝑛,𝛼

(20)⟩ + 𝜆𝜇 |𝜑𝑛,𝛼
(11)⟩ + 𝜇2 |𝜑𝑛,𝛼

(02)⟩ + 𝜆3 |𝜑𝑛,𝛼
(30)⟩

+ 𝜆2𝜇 |𝜑𝑛,𝛼
(21)⟩ + 𝜆𝜇2 |𝜑𝑛,𝛼

(12)⟩ + 𝜇3 |𝜑𝑛,𝛼
(03)⟩ + ⋯ 

(15)  

Substituting eqs. (1), (5) and (15) to the time-independent Schrödinger equation eq. (2) yields 

(𝐻0 + 𝜆𝐻1 + 𝜇𝐻2) (|𝜙𝑛,𝛼
(0)⟩ + 𝜆 |𝜑𝑛,𝛼

(10)⟩ + 𝜇 |𝜑𝑛,𝛼
(01)⟩ + 𝜆2 |𝜑𝑛,𝛼

(20)⟩ + 𝜆𝜇 |𝜑𝑛,𝛼
(11)⟩ + 𝜇2 |𝜑𝑛,𝛼

(02)⟩

+ 𝜆3 |𝜑𝑛,𝛼
(30)⟩ + 𝜆2𝜇 |𝜑𝑛,𝛼

(21)⟩ + 𝜆𝜇2 |𝜑𝑛,𝛼
(12)⟩ + 𝜇3 |𝜑𝑛,𝛼

(03)⟩ + ⋯) 
(16)  
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= (𝜀𝑛
(0)
+ 𝜆𝜀𝑛,𝛼

(10)
+ 𝜇𝜀𝑛,𝛼

(01)
+ 𝜆2𝜀𝑛,𝛼

(20)
+ 𝜆𝜇𝜀𝑛,𝛼

(11)
+ 𝜇2𝜀𝑛,𝛼

(02)
+ 𝜆3𝜀𝑛,𝛼

(30)
+ 𝜆2𝜇𝜀𝑛,𝛼

(21)
+ 𝜆𝜇2𝜀𝑛,𝛼

(12)

+ 𝜇3𝜀𝑛,𝛼
(03) +⋯)(|𝜙𝑛,𝛼

(0)⟩ + 𝜆 |𝜑𝑛,𝛼
(10)⟩ + 𝜇 |𝜑𝑛,𝛼

(01)⟩ + 𝜆2 |𝜑𝑛,𝛼
(20)⟩ + 𝜆𝜇 |𝜑𝑛,𝛼

(11)⟩

+ 𝜇2 |𝜑𝑛,𝛼
(02)⟩ + 𝜆3 |𝜑𝑛,𝛼

(30)⟩ + 𝜆2𝜇 |𝜑𝑛,𝛼
(21)⟩ + 𝜆𝜇2 |𝜑𝑛,𝛼

(12)⟩ + 𝜇3 |𝜑𝑛,𝛼
(03)⟩ + ⋯) 

The coefficients of both the sides of eq. (16) are compared in the order of λ and μ, giving the following  

zeroth 𝐻0 |𝜙𝑛,𝛼
(0)⟩ = 𝜀𝑛

(0) |𝜙𝑛,𝛼
(0)⟩ (17)  

λ 𝐻0 |𝜑𝑛,𝛼
(10)
⟩ + 𝐻1 |𝜙𝑛,𝛼

(0)
⟩ = 𝜀𝑛

(0)
|𝜑𝑛,𝛼
(10)
⟩ + 𝜀𝑛,𝛼

(10)
|𝜙𝑛,𝛼
(0)
⟩ (18)  

μ 𝐻0 |𝜑𝑛,𝛼
(01)⟩ + 𝐻2 |𝜙𝑛,𝛼

(0)⟩ = 𝜀𝑛
(0) |𝜑𝑛,𝛼

(01)⟩ + 𝜀𝑛,𝛼
(01) |𝜙𝑛,𝛼

(0)⟩ (19)  

λ2 𝐻0 |𝜑𝑛,𝛼
(20)⟩ + 𝐻1 |𝜑𝑛,𝛼

(10)⟩ = 𝜀𝑛
(0) |𝜑𝑛,𝛼

(20)⟩ + 𝜀𝑛,𝛼
(10) |𝜑𝑛,𝛼

(10)⟩ + 𝜀𝑛,𝛼
(20) |𝜙𝑛,𝛼

(0)⟩ (20)  

λμ 𝐻0 |𝜑𝑛,𝛼
(11)⟩ + 𝐻1 |𝜑𝑛,𝛼

(01)⟩ + 𝐻2 |𝜑𝑛,𝛼
(10)⟩

= 𝜀𝑛
(0) |𝜑𝑛,𝛼

(11)⟩ + 𝜀𝑛,𝛼
(10) |𝜑𝑛,𝛼

(01)⟩ + 𝜀𝑛,𝛼
(01) |𝜑𝑛,𝛼

(10)⟩ + 𝜀𝑛,𝛼
(11) |𝜙𝑛,𝛼

(0)⟩ 

(21)  

μ2 𝐻0 |𝜑𝑛,𝛼
(02)⟩ + 𝐻2 |𝜑𝑛,𝛼

(01)⟩ = 𝜀𝑛
(0) |𝜑𝑛,𝛼

(02)⟩ + 𝜀𝑛,𝛼
(01) |𝜑𝑛,𝛼

(01)⟩ + 𝜀𝑛,𝛼
(02) |𝜙𝑛,𝛼

(0)⟩ (22)  

     The relationship of the zeroth-order, eq. (17), is equivalent to eq. (12). 

     λ: We calculate the energy 𝜀𝑛,𝛼
(10)

. ⟨𝜑𝑚,𝛽
(0) | is multiplied to both the sides of eq. (18) from the left. 

⟨𝜑𝑚,𝛽
(0) |𝐻0|𝜑𝑛,𝛼

(10)⟩ + ⟨𝜑𝑚,𝛽
(0) |𝐻1|𝜙𝑛,𝛼

(0)⟩ = 𝜀𝑛
(0) ⟨𝜑𝑚,𝛽

(0) |𝜑𝑛,𝛼
(10)⟩ + 𝜀𝑛,𝛼

(10) ⟨𝜑𝑚,𝛽
(0) |𝜙𝑛,𝛼

(0)⟩ (23)  

Using Schrödinger equation of the non-perturbed Hamiltonian eq. (3) and eq. (24), 

⟨𝜑𝑚,𝛽
(0) |𝜙𝑛,𝛼

(0)⟩ = 𝑐𝑛𝛼
𝛽𝛿𝑚𝑛 (24)  

eq. (23) is rewritten as follows,  
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𝜀𝑛,𝛼
(10)𝑐𝑛𝛼

𝛽𝛿𝑚𝑛 =∑𝑐𝑛𝛼
𝛾 ⟨𝜑𝑚,𝛽

(0) |𝐻1|𝜑𝑛,𝛾
(0)⟩

𝑔𝑛

𝛾=1

+ (𝜀𝑚
(0) − 𝜀𝑛

(0)
) ⟨𝜑𝑚,𝛽

(0) |𝜑𝑛,𝛼
(10)⟩ (25)  

When m = n, eq. (25) is  

𝜀𝑛,𝛼
(10)𝑐𝑛𝛼

𝛽 =∑𝑐𝑛𝛼
𝛾 ⟨𝜑𝑛,𝛽

(0)|𝐻1|𝜑𝑛,𝛾
(0)⟩

𝑔𝑛

𝛾=1

 (26)  

And if β ≠ γ, ⟨𝜑𝑛,𝛽
(0)|𝐻1|𝜑𝑛,𝛾

(0)⟩ = 0 due to (6), then 

𝜀𝑛,𝛼
(10) = ⟨𝜑𝑛,𝛽

(0)|𝐻1|𝜑𝑛,𝛽
(0)⟩ (27)  

     Next, we consider the first-order correction of the wavefunction. Multiplying ⟨𝜙𝑚,𝛽
(0)
| to both the sides 

of eq. (18) from the left yields 

⟨𝜙𝑚,𝛽
(0) |𝐻0|𝜑𝑛,𝛼

(10)⟩ + ⟨𝜙𝑚,𝛽
(0) |𝐻1|𝜙𝑛,𝛼

(0)⟩ = 𝜀𝑛
(0) ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(10)⟩ + 𝜀𝑛,𝛼

(10) ⟨𝜙𝑚,𝛽
(0) |𝜙𝑛,𝛼

(0)⟩ (28)  

Using the orthonormality condition (eq. (13)), 

𝜀𝑛,𝛼
(10)𝛿𝑛𝑚𝛿𝛼𝛽 = ⟨𝜙𝑚,𝛽

(0) |𝐻1|𝜙𝑛,𝛼
(0)⟩ + (𝜀𝑚

(0) − 𝜀𝑛
(0)
) ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(10)⟩ (29)  

Thus, when m ≠ n, 

⟨𝜙𝑚,𝛽
(0) |𝜑𝑛,𝛼

(10)⟩ = −
⟨𝜙𝑚,𝛽
(0) |𝐻1|𝜙𝑛,𝛼

(0)⟩

𝜀𝑚
(0) − 𝜀𝑛

(0)
 (30)  

This is one of the coefficients of the perturbed wavefunctions in the first order. 

     μ: Multiplying ⟨𝜑𝑚,𝛽
(0) | to both the sides of eq. (19) from the left yields 

⟨𝜑𝑚,𝛽
(0) |𝐻0|𝜑𝑛,𝛼

(01)⟩ + ⟨𝜑𝑚,𝛽
(0) |𝐻2|𝜙𝑛,𝛼

(0)⟩ = 𝜀𝑛
(0) ⟨𝜑𝑚,𝛽

(0) |𝜑𝑛,𝛼
(01)⟩ + 𝜀𝑛,𝛼

(01) ⟨𝜑𝑚,𝛽
(0) |𝜙𝑛,𝛼

(0)⟩ (31)  

Using Schrödinger equation of the non-perturbed Hamiltonian eq. (3) and eq. (24), eq. (31) is given as  

𝜀𝑛,𝛼
(01)𝑐𝑛𝛼

𝛽𝛿𝑚𝑛 =∑𝑐𝑛𝛼
𝛾 ⟨𝜑𝑚,𝛽

(0) |𝐻2|𝜑𝑛,𝛾
(0)⟩

𝑔𝑛

𝛾=1

+ (𝜀𝑚
(0) − 𝜀𝑛

(0)
) ⟨𝜑𝑚,𝛽

(0) |𝜑𝑛,𝛼
(01)⟩ (32)  

When m = n, eq. (32) is 

𝜀𝑛,𝛼
(01)𝑐𝑛𝛼

𝛽 =∑𝑐𝑛𝛼
𝛾 ⟨𝜑𝑛,𝛽

(0)|𝐻2|𝜑𝑛,𝛾
(0)⟩

𝑔𝑛

𝛾=1

 (33)  

Equation (33) can be expanded as follows: 
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𝜀𝑛,𝛼
(01)
𝑐𝑛𝛼

1 = 𝑐𝑛𝛼
1 ⟨𝜑𝑛,1

(0)
|𝐻2|𝜑𝑛,1

(0)
⟩ + 𝑐𝑛𝛼

2 ⟨𝜑𝑛,1
(0)
|𝐻2|𝜑𝑛,2

(0)
⟩ + ⋯+ 𝑐𝑛𝛼

𝑔 ⟨𝜑𝑛,1
(0)
|𝐻2|𝜑𝑛,𝑔

(0)
⟩ 

𝜀𝑛,𝛼
(01)𝑐𝑛𝛼

2 = 𝑐𝑛𝛼
2 ⟨𝜑𝑛,2

(0)|𝐻2|𝜑𝑛,1
(0)⟩ + 𝑐𝑛𝛼

2 ⟨𝜑𝑛,2
(0)|𝐻2|𝜑𝑛,2

(0)⟩ + ⋯+ 𝑐𝑛𝛼
𝑔 ⟨𝜑𝑛,2

(0)|𝐻2|𝜑𝑛,𝑔
(0)⟩ 

⋮ 

𝜀𝑛,𝛼
(01)𝑐𝑛𝛼

𝑔 = 𝑐𝑛𝛼
𝑔 ⟨𝜑𝑛,𝑔

(0)|𝐻2|𝜑𝑛,1
(0)⟩ + 𝑐𝑛𝛼

2 ⟨𝜑𝑛,𝑔
(0)|𝐻2|𝜑𝑛,2

(0)⟩ + ⋯+ 𝑐𝑛𝛼
𝑔 ⟨𝜑𝑛,𝑔

(0)|𝐻2|𝜑𝑛,𝑔
(0)⟩ 

(34)  

where gn is represented as just g. Equation (34) can be represented in the following matrix form: 

(

 
 
 
 

⟨𝜑𝑛,1
(0)|𝐻2|𝜑𝑛,1

(0)⟩ ⟨𝜑𝑛,1
(0)|𝐻2|𝜑𝑛,2

(0)⟩

⟨𝜑𝑛,2
(0)
|𝐻2|𝜑𝑛,1

(0)
⟩ ⟨𝜑𝑛,2

(0)
|𝐻2|𝜑𝑛,2

(0)
⟩

⋯ ⟨𝜑𝑛,1
(0)|𝐻2|𝜑𝑛,𝑔

(0)⟩

⋯ ⟨𝜑𝑛,2
(0)
|𝐻2|𝜑𝑛,𝑔

(0)
⟩

⋮ ⋮

⟨𝜑𝑛,𝑔
(0)
|𝐻2|𝜑𝑛,1

(0)
⟩ ⟨𝜑𝑛,𝑔

(0)
|𝐻2|𝜑𝑛,2

(0)
⟩

⋱ ⋮

⋯ ⟨𝜑𝑛,𝑔
(0)
|𝐻2|𝜑𝑛,𝑔

(0)
⟩)

 
 
 
 

(

𝑐𝑛𝛼
1

𝑐𝑛𝛼
2

⋮
𝑐𝑛𝛼

𝑔

) = 𝜀𝑛,𝛼
(01)(

𝑐𝑛𝛼
1

𝑐𝑛𝛼
2

⋮
𝑐𝑛𝛼

𝑔

) (35)  

In this equation, the matrix elements of the left-hand side are the second perturbing Hamiltonian expanded 

by the original wavefunctions with the eigenvalue 𝜀𝑛
(0)

 . That is, ⟨𝜑𝑛,𝛽
(0)|𝐻2|𝜑𝑛,𝛾

(0)⟩  forms gn × gn Hermite 

matrix whose eigenvalue is 𝜀𝑛,𝛼
(01)

. Therefore，𝜀𝑛,𝛼
(01)

 is the solution of the secular equation: 

|

|

⟨𝜑𝑛,1
(0)|𝐻2|𝜑𝑛,1

(0)⟩ − 𝑥 ⟨𝜑𝑛,1
(0)|𝐻2|𝜑𝑛,2

(0)⟩

⟨𝜑𝑛,2
(0)|𝐻2|𝜑𝑛,1

(0)⟩ ⟨𝜑𝑛,2
(0)|𝐻2|𝜑𝑛,2

(0)⟩ − 𝑥

⋯ ⟨𝜑𝑛,1
(0)|𝐻2|𝜑𝑛,𝑔

(0)⟩

⋯ ⟨𝜑𝑛,2
(0)|𝐻2|𝜑𝑛,𝑔

(0)⟩

⋮ ⋮

⟨𝜑𝑛,𝑔
(0)|𝐻2|𝜑𝑛,1

(0)⟩ ⟨𝜑𝑛,𝑔
(0)|𝐻2|𝜑𝑛,2

(0)⟩

⋱ ⋮

⋯ ⟨𝜑𝑛,𝑔
(0)|𝐻2|𝜑𝑛,𝑔

(0)⟩ − 𝑥

|

|

= 0 (36)  

Supposing the degeneracy is removed by the perturbation in the first order. Then, cn,α
β’s are determined and 

thus |𝜙𝑛,𝛼
(0)⟩ is also determined. ⟨𝜙𝑚,𝛽

(0) | is multiplied to both the sides of eq. (18) from the left.  

⟨𝜙𝑚,𝛽
(0) |𝐻0|𝜑𝑛,𝛼

(01)⟩ + ⟨𝜙𝑚,𝛽
(0) |𝐻2|𝜙𝑛,𝛼

(0)⟩ = 𝜀𝑛
(0) ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(01)⟩ + 𝜀𝑛,𝛼

(01) ⟨𝜙𝑚,𝛽
(0) |𝜙𝑛,𝛼

(0)⟩ (37)  

Using the orthonormality conditions (eq. (13)), eq. (37) is described as  

𝜀𝑛,𝛼
(01)𝛿𝑛𝑚𝛿𝛼𝛽 = ⟨𝜙𝑚,𝛽

(0) |𝐻2|𝜙𝑛,𝛼
(0)⟩ + (𝜀𝑚

(0) − 𝜀𝑛
(0)
) ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(01)⟩ (38)  

When m ≠ n, 

⟨𝜙𝑚,𝛽
(0) |𝜑𝑛,𝛼

(01)⟩ = −
⟨𝜙𝑚,𝛽
(0) |𝐻2|𝜙𝑛,𝛼

(0)⟩

𝜀𝑚
(0) − 𝜀𝑛

(0)
 (39)  

     |Ψ𝑛,𝛼⟩ is represented as follows by using the perturbation in the first order, with the completeness (eq. 

(14)): 

|Ψ𝑛,𝛼⟩ = |𝜙𝑛,𝛼
(0)⟩ + 𝜆 |𝜑𝑛,𝛼

(10)⟩ + 𝜇 |𝜑𝑛,𝛼
(01)⟩ + (higher order)  
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|𝜑𝑛,𝛼⟩ = |𝜙𝑛,𝛼
(0)⟩ + 𝜆 ∑ ∑ |𝜙𝑚,𝛽

(0) ⟩ ⟨𝜙𝑚,𝛽
(0) |𝜑𝑛,𝛼

(10)⟩

𝑔𝑚

𝛽=1

∞

𝑚=0

+ 𝜇 ∑∑ |𝜙𝑚,𝛽
(0) ⟩ ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(01)⟩

𝑔𝑚

𝛽=1

∞

𝑚=0

+ (higher order) 

 

|𝜑𝑛,𝛼⟩ = |𝜙𝑛,𝛼
(0)⟩ + 𝜆 [∑ |𝜙𝑛,𝛽

(0)⟩ ⟨𝜙𝑛,𝛽
(0)|𝜑𝑛,𝛼

(10)⟩

𝑔𝑛

𝛽=1

+ ∑ ′∑ |𝜙𝑚,𝛽
(0) ⟩ ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(10)⟩

𝑔𝑚

𝛽=1

∞

𝑚=0

]

+ 𝜇 [∑ |𝜙𝑛,𝛽
(0)⟩ ⟨𝜙𝑛,𝛽

(0)|𝜑𝑛,𝛼
(01)⟩

𝑔𝑛

𝛽=1

+ ∑ ′∑ |𝜙𝑚,𝛽
(0) ⟩ ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(01)⟩

𝑔𝑚

𝛽=1

∞

𝑚=0

]

+ (higher order) 

(40)  

Here, ∑ ′𝑚  means that the summation will be calculated except m = n. ⟨𝜙𝑚,𝛽
(0)
|𝜑𝑛,𝛼
(10)
⟩ and ⟨𝜙𝑚,𝛽

(0)
|𝜑𝑛,𝛼
(01)
⟩ in 

eq. (40) have been determined from eqs. (30) and (39), respectively, however, ⟨𝜙𝑛,𝛽
(0)|𝜑𝑛,𝛼

(10)⟩  and 

⟨𝜙𝑛,𝛽
(0)|𝜑𝑛,𝛼

(01)⟩ will have been calculated the relationships in the second order described below. 

     λ2: Multiplying ⟨𝜙𝑚,𝛽
(0) | the both hands of eq. (20) from the left yields 

⟨𝜙𝑚,𝛽
(0) |𝐻0|𝜑𝑛,𝛼

(20)⟩ + ⟨𝜙𝑚,𝛽
(0) |𝐻1|𝜑𝑛,𝛼

(10)⟩

= 𝜀𝑛
(0) ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(20)⟩ + 𝜀𝑛,𝛼

(10) ⟨𝜙𝑚,𝛽
(0) |𝜑𝑛,𝛼

(10)⟩ + 𝜀𝑛,𝛼
(20) ⟨𝜙𝑚,𝛽

(0) |𝜙𝑛,𝛼
(0)⟩ 

(41)  

Using the zeroth-order relationship (eq. (12)) and the orthonormality condition (eq. (13)), 

𝜀𝑛,𝛼
(20)𝛿𝑛𝑚𝛿𝛼𝛽 = ⟨𝜙𝑚,𝛽

(0) | (𝐻1 − 𝜀𝑛,𝛼
(10)
) |𝜑𝑛,𝛼

(10)⟩ + (𝜀𝑚
(0) − 𝜀𝑛

(0)
) ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(20)⟩ (42)  

Supposing m = n, then 

𝜀𝑛,𝛼
(20)𝛿𝛼𝛽 = ⟨𝜙𝑛,𝛽

(0)| (𝐻1 − 𝜀𝑛,𝛼
(10)
) |𝜑𝑛,𝛼

(10)⟩ (43)  

Supposing m = n in eq. (29), eq. (44) is obtained. 

𝜀𝑛,𝛼
(10)𝛿𝛼𝛽 = ⟨𝜙𝑛,𝛽

(0)|𝐻1|𝜙𝑛,𝛼
(0)⟩ (44)  

Multiplying ⟨𝜙𝑛,𝛼
(0)| to the both hands of eq. (44) from right and summation is taken for α, we have 

∑𝜀𝑛,𝛼
(10)𝛿𝛼𝛽 ⟨𝜙𝑛,𝛼

(0)|

𝑔𝑛

𝛼=1

= ∑⟨𝜙𝑛,𝛽
(0)|𝐻1|𝜙𝑛,𝛼

(0)⟩ ⟨𝜙𝑛,𝛼
(0)|

𝑔𝑛

𝛼=1

 (45)  
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⇔ 𝜀𝑛,𝛽
(10)

⟨𝜙𝑛,𝛽
(0)
| = ⟨𝜙𝑛,𝛽

(0)
|𝐻1𝑃𝑛 (46)  

The right-hand side of eq. (43) can be written as 

⟨𝜙𝑛,𝛽
(0)| (𝐻1𝑃𝑛 − 𝜀𝑛,𝛼

(10)
) |𝜑𝑛,𝛼

(10)⟩ + ⟨𝜙𝑛,𝛽
(0)|𝐻1(1 − 𝑃𝑛)|𝜑𝑛,𝛼

(10)⟩ (47)  

And using eq. (46), the first term of eq. (47) is given as  

(𝜀𝑛,𝛽
(10) − 𝜀𝑛,𝛼

(10)
) ⟨𝜙𝑛,𝛽

(0)|𝜑𝑛,𝛼
(10)⟩ (48)  

Notice that 

1 − 𝑃𝑛 = ∑ ′𝑃𝑚

∞

𝑚=0

 (49)  

and using eq. (30), the second term of eq. (47) is given as  

∑ ′⟨𝜙𝑛,𝛽
(0)
|𝐻1𝑃𝑚|𝜑𝑛,𝛼

(10)
⟩

∞

𝑚=0

= ∑ ′∑⟨𝜙𝑛,𝛽
(0)
|𝐻1|𝜙𝑚,𝛾

(0)
⟩ ⟨𝜙𝑚,𝛾

(0)
|𝜑𝑛,𝛼
(10)
⟩

𝑔𝑚

𝛾=1

∞

𝑚=0

= −∑ ′∑
⟨𝜙𝑛,𝛽
(0)|𝐻1|𝜙𝑚,𝛾

(0) ⟩ ⟨𝜙𝑚,𝛾
(0) |𝐻1|𝜙𝑛,𝛼

(0)⟩

𝜀𝑚
(0) − 𝜀𝑛

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

 

(50)  

It is worth mentioning that the denominator is not zero because the summation for m eliminates m = n. 

Replacing the right-hand side of eq. (43) to eqs. (48) and (50) yields 

𝜀𝑛,𝛼
(20)𝛿𝛼𝛽 = (𝜀𝑛,𝛽

(10) − 𝜀𝑛,𝛼
(10)
) ⟨𝜙𝑛,𝛽

(0)|𝜑𝑛,𝛼
(10)⟩ − ∑ ′∑

⟨𝜙𝑛,𝛽
(0)|𝐻1|𝜙𝑚,𝛾

(0) ⟩ ⟨𝜙𝑚,𝛾
(0) |𝐻1|𝜙𝑛,𝛼

(0)⟩

𝜀𝑚
(0) − 𝜀𝑛

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

 (51)  

𝜀𝑛,𝛼
(20)

 can be obtained supposing α = β in eq. (51): 

𝜀𝑛,𝛼
(20) = ∑ ′∑

|⟨𝜙𝑛,𝛼
(0)|𝐻1|𝜙𝑚,𝛾

(0) ⟩|
2

𝜀𝑛
(0) − 𝜀𝑚

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

 (52)  

Supposing α ≠ β in eq. (51) yields 

⟨𝜙𝑛,𝛽
(0)|𝜑𝑛,𝛼

(10)⟩ =
1

𝜀𝑛,𝛽
(10) − 𝜀𝑛,𝛼

(10)
∑ ′∑

⟨𝜙𝑛,𝛽
(0)|𝐻1|𝜙𝑚,𝛾

(0) ⟩ ⟨𝜙𝑚,𝛾
(0) |𝐻1|𝜙𝑛,𝛼

(0)⟩

𝜀𝑚
(0) − 𝜀𝑛

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

 (53)  

Equation (53) is the one of the coefficients of the perturbed wavefunctions in the first order, which have not 

been determined in eq. (40). 

     μ2: Multiplying ⟨𝜙𝑚,𝛽
(0) | to the both hands of eq. (22) from the left yields 
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⟨𝜙𝑚,𝛽
(0)
|𝐻0|𝜑𝑛,𝛼

(02)
⟩ + ⟨𝜙𝑚,𝛽

(0)
|𝐻2|𝜑𝑛,𝛼

(01)
⟩

= 𝜀𝑛
(0) ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(02)⟩ + 𝜀𝑛,𝛼

(01) ⟨𝜙𝑚,𝛽
(0) |𝜑𝑛,𝛼

(01)⟩ + 𝜀𝑛,𝛼
(02) ⟨𝜙𝑚,𝛽

(0) |𝜙𝑛,𝛼
(0)⟩ 

(54)  

Using the zeroth-order relationship eq. (12) and the orthonormality condition eq. (13), eq. (54) is 

𝜀𝑛,𝛼
(02)𝛿𝑛𝑚𝛿𝛼𝛽 = ⟨𝜙𝑚,𝛽

(0) | (𝐻2 − 𝜀𝑛,𝛼
(01)
) |𝜑𝑛,𝛼

(01)⟩ + (𝜀𝑚
(0) − 𝜀𝑛

(0)
) ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(02)⟩ (55)  

Supposing m = n, 

𝜀𝑛,𝛼
(02)𝛿𝛼𝛽 = ⟨𝜙𝑛,𝛽

(0)| (𝐻2 − 𝜀𝑛,𝛼
(01)
) |𝜑𝑛,𝛼

(01)⟩ (56)  

An equation is obtained supposing m = n in eq. (38): 

𝜀𝑛,𝛼
(01)
𝛿𝛼𝛽 = ⟨𝜙𝑛,𝛽

(0)
|𝐻2|𝜙𝑛,𝛼

(0)
⟩ (57)  

Multiplying ⟨𝜙𝑛,𝛼
(0)
| to the both hands of eq. (57) from right and summation is taken for α, we have 

𝜀𝑛,𝛽
(01) ⟨𝜙𝑛,𝛽

(0)| = ⟨𝜙𝑛,𝛽
(0)|𝐻2𝑃𝑛 (58)  

The right-hand side of eq. (56) can be rewritten as 

⟨𝜙𝑛,𝛽
(0)| (𝐻2𝑃𝑛 − 𝜀𝑛,𝛼

(01)
) |𝜑𝑛,𝛼

(01)⟩ + ⟨𝜙𝑛,𝛽
(0)|𝐻2(1 − 𝑃𝑛)|𝜑𝑛,𝛼

(01)⟩ (59)  

Using eq. (58), the first term of eq. (59) is 

(𝜀𝑛,𝛽
(01)

− 𝜀𝑛,𝛼
(01)
) ⟨𝜙𝑛,𝛽

(0)
|𝜑𝑛,𝛼
(01)
⟩ (60)  

Using eq. (39) with attention to eq. (49), 

∑ ′⟨𝜙𝑛,𝛽
(0)|𝐻2𝑃𝑚|𝜑𝑛,𝛼

(01)⟩

∞

𝑚=0

= ∑ ′∑⟨𝜙𝑛,𝛽
(0)|𝐻2|𝜙𝑚,𝛾

(0) ⟩ ⟨𝜙𝑚,𝛾
(0) |𝜑𝑛,𝛼

(01)⟩

𝑔𝑚

𝛾=1

∞

𝑚=0

  

= −∑ ′∑
⟨𝜙𝑛,𝛽
(0)|𝐻2|𝜙𝑚,𝛾

(0) ⟩ ⟨𝜙𝑚,𝛾
(0) |𝐻2|𝜙𝑛,𝛼

(0)⟩

𝜀𝑚
(0) − 𝜀𝑛

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

 (61)  

Substituting the right-hand side of eq. (56) to eqs. (60) and (61) yields 

𝜀𝑛,𝛼
(02)𝛿𝛽𝛼 = (𝜀𝑛,𝛽

(01) − 𝜀𝑛,𝛼
(01)
) ⟨𝜙𝑛,𝛽

(0)|𝜑𝑛,𝛼
(01)⟩ − ∑ ′∑

⟨𝜙𝑛,𝛽
(0)|𝐻2|𝜙𝑚,𝛾

(0) ⟩ ⟨𝜙𝑚,𝛾
(0) |𝐻2|𝜙𝑛,𝛼

(0)⟩

𝜀𝑚
(0) − 𝜀𝑛

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

 (62)  

We obtain 𝜀𝑛,𝛼
(02)

 supposing α = β in eq. (62). 

𝜀𝑛,𝛼
(02) = ∑ ′∑

|⟨𝜙𝑛,𝛼
(0)|𝐻2|𝜙𝑚,𝛾

(0) ⟩|
2

𝜀𝑛
(0) − 𝜀𝑚

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

 (63)  

Supposing α ≠ β in eq. (62) yields 
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⟨𝜙𝑛,𝛽
(0)
|𝜑𝑛,𝛼
(01)
⟩ =

1

𝜀𝑛,𝛽
(01)

− 𝜀𝑛,𝛼
(01)

∑ ′∑
⟨𝜙𝑛,𝛽
(0)
|𝐻2|𝜙𝑚,𝛾

(0)
⟩ ⟨𝜙𝑚,𝛾

(0)
|𝐻2|𝜙𝑛,𝛼

(0)
⟩

𝜀𝑚
(0)
− 𝜀𝑛

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

 (64)  

Equation (64) is also one of the coefficients of the perturbed wavefunctions in the first order, which have not 

been determined in eq. (40). Using the completeness (eq. (14)), the wavefunction |Ψ𝑛,𝛼⟩ is in first order: 

|Ψ𝑛,𝛼⟩ = |𝜙𝑛,𝛼
(0)⟩ (1 + 𝜆 |𝜙𝑛,𝛼

(0)⟩ ⟨𝜙𝑛,𝛼
(0)|𝜑𝑛,𝛼

(10)⟩ + 𝜇 |𝜙𝑛,𝛼
(0)⟩ ⟨𝜙𝑛,𝛼

(0)|𝜑𝑛,𝛼
(01)⟩)

+ 𝜆 [∑ ′ |𝜙𝑛,𝛽
(0)⟩ ⟨𝜙𝑛,𝛽

(0)|𝜑𝑛,𝛼
(10)⟩

𝑔𝑛

𝛽=1

+ ∑ ′∑ |𝜙𝑚,𝛽
(0) ⟩ ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(10)⟩

𝑔𝑚

𝛽=1

∞

𝑚=0

]

+ 𝜇 [∑ ′ |𝜙𝑛,𝛽
(0)
⟩ ⟨𝜙𝑛,𝛽

(0)
|𝜑𝑛,𝛼
(01)
⟩

𝑔𝑛

𝛽=1

+ ∑ ′∑ |𝜙𝑚,𝛽
(0)
⟩ ⟨𝜙𝑚,𝛽

(0)
|𝜑𝑛,𝛼
(01)
⟩

𝑔𝑚

𝛽=1

∞

𝑚=0

]

+ (higher order) 

 

|𝜑𝑛,𝛼⟩ = exp (𝜆 ⟨𝜙𝑛,𝛼
(0)
|𝜑𝑛,𝛼
(10)
⟩ + 𝜇 ⟨𝜙𝑛,𝛼

(0)
|𝜑𝑛,𝛼
(01)
⟩) {|𝜙𝑛,𝛼

(0)
⟩

+ 𝜆 [∑ ′ |𝜙𝑛,𝛽
(0)
⟩ ⟨𝜙𝑛,𝛽

(0)
|𝜑𝑛,𝛼
(10)
⟩

𝑔𝑛

𝛽=1

+ ∑ ′∑ |𝜙𝑚,𝛽
(0)
⟩ ⟨𝜙𝑚,𝛽

(0)
|𝜑𝑛,𝛼
(10)
⟩

𝑔𝑚

𝛽=1

∞

𝑚=0

]

+ 𝜇 [∑ ′ |𝜙𝑛,𝛽
(0)⟩ ⟨𝜙𝑛,𝛽

(0)|𝜑𝑛,𝛼
(01)⟩

𝑔𝑛

𝛽=1

+ ∑ ′∑ |𝜙𝑚,𝛽
(0) ⟩ ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(01)⟩

𝑔𝑚

𝛽=1

∞

𝑚=0

]}

+ (higher order) 

(65)  

where the prime (´) on the summation for β means that the summation will be calculated except β = α. 

Applying the normality for the wavefunction in the first order ⟨Ψ𝑛,𝛼|Ψ𝑛,𝛼⟩ = 1 + (higher order), we have 

⟨𝜙𝑛,𝛼
(0)|𝜑𝑛,𝛼

(10)⟩ = 0 (66)  

⟨𝜙𝑛,𝛼
(0)|𝜑𝑛,𝛼

(01)⟩ = 0 (67)  

Therefore, the normalized wavefunction in the first order can be obtained by using eqs. (30), (39), (53), (60), 

(66), and (67): 
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|Ψ𝑛,𝛼⟩ = |𝜙𝑛,𝛼
(0)⟩ + 𝜆 [∑ ′ |𝜙𝑛,𝛽

(0)⟩
1

𝜀𝑛,𝛽
(10)

− 𝜀𝑛,𝛼
(10)

∑ ′∑
⟨𝜙𝑛,𝛽
(0)
|𝐻1|𝜙𝑚,𝛾

(0)
⟩ ⟨𝜙𝑚,𝛾

(0)
|𝐻1|𝜙𝑛,𝛼

(0)
⟩

𝜀𝑚
(0)
− 𝜀𝑛

(0)

𝑔𝑛

𝛾=1

∞

𝑚=0

𝑔𝑛

𝛽=1

− ∑ ′∑ |𝜙𝑚,𝛽
(0) ⟩

⟨𝜙𝑚,𝛽
(0) |𝐻1|𝜙𝑛,𝛼

(0)⟩

𝜀𝑚
(0)
− 𝜀𝑛

(0)

𝑔𝑚

𝛽=1

∞

𝑚=0

]

+ 𝜇 [∑ ′ |𝜙𝑛,𝛽
(0)⟩

1

𝜀𝑛,𝛽
(01)

− 𝜀𝑛,𝛼
(01)

∑ ′∑
⟨𝜙𝑛,𝛽
(0)|𝐻2|𝜙𝑚,𝛾

(0) ⟩ ⟨𝜙𝑚,𝛾
(0) |𝐻2|𝜙𝑛,𝛼

(0)⟩

𝜀𝑚
(0)
− 𝜀𝑛

(0)

𝑔𝑛

𝛾=1

∞

𝑚=0

𝑔𝑛

𝛽=1

− ∑ ′∑ |𝜙𝑚,𝛽
(0) ⟩

⟨𝜙𝑚,𝛽
(0) |𝐻2|𝜙𝑛,𝛼

(0)⟩

𝜀𝑚
(0)
− 𝜀𝑛

(0)

𝑔𝑚

𝛽=1

∞

𝑚=0

] + (higher order) 

(68)  

     λμ: Multiplying ⟨𝜙𝑚,𝛽
(0)
| to the both hands of eq. (21) from the left yields 

⟨𝜙𝑚,𝛽
(0) |𝐻0|𝜑𝑛,𝛼

(11)⟩ + ⟨𝜙𝑚,𝛽
(0) |𝐻1|𝜑𝑛,𝛼

(01)⟩ + ⟨𝜙𝑚,𝛽
(0) |𝐻2|𝜑𝑛,𝛼

(10)⟩

= 𝜀𝑛
(0) ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(11)⟩ + 𝜀𝑛,𝛼

(10) ⟨𝜙𝑚,𝛽
(0) |𝜑𝑛,𝛼

(01)⟩ + 𝜀𝑛,𝛼
(01) ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(10)⟩

+ 𝜀𝑛,𝛼
(11) ⟨𝜙𝑚,𝛽

(0) |𝜙𝑛,𝛼
(0)⟩ 

(69)  

Using the zeroth-order relationship eq. (12) and the orthonormality conditions, eq. (13), eq. (69) is 

𝜀𝑛,𝛼
(11)
𝛿𝑛𝑚𝛿𝛼𝛽 = ⟨𝜙𝑚,𝛽

(0)
| (𝐻1 − 𝜀𝑛,𝛼

(10)
) |𝜑𝑛,𝛼

(01)
⟩ + ⟨𝜙𝑚,𝛽

(0)
| (𝐻2 − 𝜀𝑛,𝛼

(01)
) |𝜑𝑛,𝛼

(10)
⟩

+ (𝜀𝑚
(0) − 𝜀𝑛

(0)
) ⟨𝜙𝑚,𝛽

(0) |𝜑𝑛,𝛼
(11)⟩ 

(70)  

Supposing m = n, eq. (70) is described as  

𝜀𝑛,𝛼
(11)𝛿𝛽𝛼 = ⟨𝜙𝑛,𝛽

(0)| (𝐻1 − 𝜀𝑛,𝛼
(10)
) |𝜑𝑛,𝛼

(01)⟩ + ⟨𝜙𝑛,𝛽
(0)| (𝐻2 − 𝜀𝑛,𝛼

(01)
) |𝜑𝑛,𝛼

(10)⟩ (71)  

The right-hand side of eq. (71) can be divided as follows: 

⟨𝜙𝑛,𝛽
(0)| (𝐻1 − 𝜀𝑛,𝛼

(10)
) |𝜑𝑛,𝛼

(01)⟩ = ⟨𝜙𝑛,𝛽
(0)| (𝐻1𝑃𝑛 − 𝜀𝑛,𝛼

(10)
) |𝜑𝑛,𝛼

(01)⟩ + ⟨𝜙𝑛,𝛽
(0)|𝐻1(1 − 𝑃𝑛)|𝜑𝑛,𝛼

(01)⟩ (72)  

⟨𝜙𝑛,𝛽
(0)| (𝐻2 − 𝜀𝑛,𝛼

(01)
) |𝜑𝑛,𝛼

(10)⟩ = ⟨𝜙𝑛,𝛽
(0)| (𝐻2𝑃𝑛 − 𝜀𝑛,𝛼

(01)
) |𝜑𝑛,𝛼

(10)⟩ + ⟨𝜙𝑛,𝛽
(0)|𝐻2(1 − 𝑃𝑛)|𝜑𝑛,𝛼

(10)⟩ (73)  

Using eqs. (46) and (48), the first term of the right-hand side of eqs. (72) and (73) is 

⟨𝜙𝑛,𝛽
(0)| (𝐻1𝑃𝑛 − 𝜀𝑛,𝛼

(10)
) |𝜑𝑛,𝛼

(01)⟩ = (𝜀𝑛,𝛽
(10) − 𝜀𝑛,𝛼

(10)
) ⟨𝜙𝑛,𝛽

(0)|𝜑𝑛,𝛼
(01)⟩ (74)  

⟨𝜙𝑛,𝛽
(0)| (𝐻2𝑃𝑛 − 𝜀𝑛,𝛼

(01)
) |𝜑𝑛,𝛼

(10)⟩ = (𝜀𝑛,𝛽
(01) − 𝜀𝑛,𝛼

(01)
) ⟨𝜙𝑛,𝛽

(0)|𝜑𝑛,𝛼
(10)⟩ (75)  

Using eqs. (30) and (39) with attention to eq. (49), the second term in the right-hand side of eqs. (72) and 
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(73) are 

⟨𝜙𝑛,𝛽
(0)|𝐻1(1 − 𝑃𝑛)|𝜑𝑛,𝛼

(01)⟩ = ∑ ′∑⟨𝜙𝑛,𝛽
(0)|𝐻1|𝜙𝑚,𝛾

(0) ⟩

𝑔𝑚

𝛾=1

⟨𝜙𝑚,𝛾
(0) |𝜑𝑛,𝛼

(01)⟩

∞

𝑚=0

= −∑ ′∑
⟨𝜙𝑛,𝛽
(0)
|𝐻1|𝜙𝑚,𝛾

(0)
⟩ ⟨𝜙𝑚,𝛾

(0)
|𝐻2|𝜙𝑛,𝛼

(0)
⟩

𝜀𝑚
(0)
− 𝜀𝑛

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

 

(76)  

⟨𝜙𝑛,𝛽
(0)|𝐻2(1 − 𝑃𝑛)|𝜑𝑛,𝛼

(10)⟩ = ∑ ′∑⟨𝜙𝑛,𝛽
(0)|𝐻2|𝜙𝑚,𝛾

(0) ⟩

𝑔𝑚

𝛾=1

⟨𝜙𝑚,𝛾
(0) |𝜑𝑛,𝛼

(10)⟩

∞

𝑚=0

= −∑ ′∑
⟨𝜙𝑛,𝛽
(0)
|𝐻2|𝜙𝑚,𝛾

(0)
⟩ ⟨𝜙𝑚,𝛾

(0)
|𝐻1|𝜙𝑛,𝛼

(0)
⟩

𝜀𝑚
(0)
− 𝜀𝑛

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

 

(77)  

Replacing the terms of eq. (71) to eqs. (74)–(77) yields 

𝜀𝑛,𝛼
(11)𝛿𝛽𝛼 = (𝜀𝑛,𝛽

(10) − 𝜀𝑛,𝛼
(10)
) ⟨𝜙𝑛,𝛽

(0)|𝜑𝑛,𝛼
(01)⟩ − ∑ ′∑

⟨𝜙𝑛,𝛽
(0)|𝐻1|𝜙𝑚,𝛾

(0) ⟩ ⟨𝜙𝑚,𝛾
(0) |𝐻2|𝜙𝑛,𝛼

(0)⟩

𝜀𝑚
(0) − 𝜀𝑛

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

+ (𝜀𝑛,𝛽
(01) − 𝜀𝑛,𝛼

(01)
) ⟨𝜙𝑛,𝛽

(0)|𝜑𝑛,𝛼
(10)⟩ − ∑ ′∑

⟨𝜙𝑛,𝛽
(0)|𝐻2|𝜙𝑚,𝛾

(0) ⟩ ⟨𝜙𝑚,𝛾
(0) |𝐻1|𝜙𝑛,𝛼

(0)⟩

𝜀𝑚
(0) − 𝜀𝑛

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

 

(78)  

𝜀𝑛,𝛼
(11)

 can be obtained supposing α = β in eq. (78). 

𝜀𝑛,𝛼
(11) = ∑ ′∑

⟨𝜙𝑛,𝛼
(0)
|𝐻1|𝜙𝑚,𝛾

(0)
⟩ ⟨𝜙𝑚,𝛾

(0)
|𝐻2|𝜙𝑛,𝛼

(0)
⟩

𝜀𝑛
(0) − 𝜀𝑚

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

+ ∑ ′∑
⟨𝜙𝑛,𝛼
(0)
|𝐻2|𝜙𝑚,𝛾

(0)
⟩ ⟨𝜙𝑚,𝛾

(0)
|𝐻1|𝜙𝑛,𝛼

(0)
⟩

𝜀𝑛
(0) − 𝜀𝑚

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

 (79)  

     Eventually, the perturbed energies can be obtained in the second order with substituting eqs. (27), (52), 

(63) and (79) to eq. (14). 

𝐸𝑛,𝛼 = 𝜀𝑛
(0) + ⟨𝜑𝑛,𝛼

(0)|𝐻1|𝜑𝑛,𝛼
(0)⟩ + 𝜀𝑛,𝛼

(01) + ∑ ′∑
|⟨𝜙𝑛,𝛼

(0)|𝐻1|𝜙𝑚,𝛾
(0) ⟩|

2

𝜀𝑛
(0) − 𝜀𝑚

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

+ ∑ ′∑
⟨𝜙𝑛,𝛼
(0)|𝐻1|𝜙𝑚,𝛾

(0) ⟩ ⟨𝜙𝑚,𝛾
(0) |𝐻2|𝜙𝑛,𝛼

(0)⟩

𝜀𝑛
(0) − 𝜀𝑚

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

+ ∑ ′∑
⟨𝜙𝑛,𝛼
(0)|𝐻2|𝜙𝑚,𝛾

(0) ⟩ ⟨𝜙𝑚,𝛾
(0) |𝐻1|𝜙𝑛,𝛼

(0)⟩

𝜀𝑛
(0) − 𝜀𝑚

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

+ ∑ ′∑
|⟨𝜙𝑛,𝛼

(0)|𝐻2|𝜙𝑚,𝛾
(0) ⟩|

2

𝜀𝑛
(0) − 𝜀𝑚

(0)

𝑔𝑚

𝛾=1

∞

𝑚=0

+ (higher order) 

(80)  

here, 𝜀𝑛,𝛼
(01)

 is an eigenvalue of the matrix given below 
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(

 
 
 
 

⟨𝜑𝑛,1
(0)
|𝐻2|𝜑𝑛,1

(0)
⟩ ⟨𝜑𝑛,1

(0)
|𝐻2|𝜑𝑛,2

(0)
⟩

⟨𝜑𝑛,2
(0)
|𝐻2|𝜑𝑛,1

(0)
⟩ ⟨𝜑𝑛,2

(0)
|𝐻2|𝜑𝑛,2

(0)
⟩

⋯ ⟨𝜑𝑛,1
(0)
|𝐻2|𝜑𝑛,𝑔

(0)
⟩

⋯ ⟨𝜑𝑛,2
(0)
|𝐻2|𝜑𝑛,𝑔

(0)
⟩

⋮ ⋮

⟨𝜑𝑛,𝑔
(0)|𝐻2|𝜑𝑛,1

(0)⟩ ⟨𝜑𝑛,𝑔
(0)|𝐻2|𝜑𝑛,2

(0)⟩

⋱ ⋮

⋯ ⟨𝜑𝑛,𝑔
(0)|𝐻2|𝜑𝑛,𝑔

(0)⟩)

 
 
 
 

 (81)  

 

Exact Analytical Energies for S = 3/2 

The full spin-Hamiltonian are composed of the ZFS, the electron-Zeeman and the hyperfine structure terms 

in the following: 

𝐻 = 𝑺 ∙ 𝐃 ∙ 𝑺 + 𝛽𝑺 ∙ 𝐠 ∙ 𝑩 + 𝑺 ∙ 𝐀 ∙ 𝑰 

where D, g and A are the zero-field, g- and hyperfine tensors, respectively, S and I are the electron and the 

nuclear spin operator, respectively, and β is the Bohr magneton. Through the discussion, the D-, g- and A-

tensors are assumed collinear. Additionally, the external magnetic field is parallel to the z-axis of the principal 

coordinate system. Under these assumptions, the spin-Hamiltonian H can be represented as 

𝐻 = 𝐷 [𝑆𝑧
2 −

1

3
𝑆(𝑆 + 1)] + 𝐸(𝑆𝑥

2 − 𝑆𝑦
2) + 𝛽𝑆𝑧𝑔𝑧𝐵 + 𝑆𝑥𝐴𝑥𝐼𝑥 + 𝑆𝑦𝐴𝑦𝐼𝑦 + 𝑆𝑧𝐴𝑧𝐼𝑧 

where D and E are the ZFS parameters. When the external magnetic field is parallel to the x- or y-axis of the 

principal coordinate system, the corresponding energies can be obtained by the cyclic permutation 

relationships for D and E as given in the following [1-4]. 

𝐷 →
1

2
(3𝐸 − 𝐷), 𝐸 → −

1

2
(𝐸 + 𝐷) if 𝑩 ∥ 𝑥 

𝐷 → −
1

2
(3𝐸 + 𝐷),𝐸 →

1

2
(𝐸 + 𝐷) if 𝑩 ∥ 𝑦 

 

1. I = 1/2 case 

a) Exact diagonalization treatment  

The full spin Hamiltonian for the spin quartet state with one I = 1/2 nucleus and the static magnetic field 

along the z-axis can be represented as a matrix in terms of the {|MS, MI>} basis set as follows:   

𝐻
full

𝑆=
3
2,𝐼=

1
2 = 

 |+3/2, +1/2> |+3/2, –1/2> |+1/2, +1/2> |+1/2, –1/2> |–1/2, +1/2> |–1/2, +1/2> |–3/2, +1/2> |–3/2, +1/2> 

<+3/2, +1/2| 

𝐷 +
3

2
𝑔𝑧𝛽𝐵

+
3

4
𝐴𝑧 

0 0 √3

4
(𝐴𝑥 − 𝐴𝑦) √3𝐸 0 0 0 

<+3/2, –1/2| 0 

𝐷 +
3

2
𝑔𝑧𝛽𝐵

−
3

4
𝐴𝑧 

√3

4
(𝐴𝑥 + 𝐴𝑦) 0 0 √3𝐸 0 0 

<+1/2, +1/2| 0 √3

4
(𝐴𝑥 + 𝐴𝑦) 

−𝐷 +
1

2
𝑔𝑧𝛽𝐵

+
1

4
𝐴𝑧 

0 0 
1

2
(𝐴𝑥 − 𝐴𝑦) √3𝐸 0 
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<+1/2, –1/2| √3

4
(𝐴𝑥 − 𝐴𝑦) 0 0 

−𝐷 +
1

2
𝑔𝑧𝛽𝐵

−
1

4
𝐴𝑧 

1

2
(𝐴𝑥 + 𝐴𝑦) 0 0 √3𝐸 

<–1/2, +1/2| √3𝐸 0 0 
1

2
(𝐴𝑥 + 𝐴𝑦) 

−𝐷 −
1

2
𝑔𝑧𝛽𝐵

−
1

4
𝐴𝑧 

0 0 √3

4
(𝐴𝑥 − 𝐴𝑦) 

<–1/2, +1/2| 0 √3𝐸 
1

2
(𝐴𝑥 − 𝐴𝑦) 0 0 

−𝐷 −
1

2
𝑔𝑧𝛽𝐵

+
1

4
𝐴𝑧 

√3

4
(𝐴𝑥 + 𝐴𝑦) 0 

<–3/2, +1/2| 0 0 √3𝐸 0 0 √3

4
(𝐴𝑥 + 𝐴𝑦) 

𝐷 −
3

2
𝑔𝑧𝛽𝐵

−
3

4
𝐴𝑧 

0 

<–3/2, –1/2| 0 0 0 √3𝐸 
√3

4
(𝐴𝑥 − 𝐴𝑦) 0 0 

𝐷 −
3

2
𝑔𝑧𝛽𝐵

+
3

4
𝐴𝑧 

The matrix can be divided into two 4 × 4 matrices. Exploiting two particular basis sets of {|+3/2, +1/2>, |+1/2, 

–1/2>, |–1/2, +1/2>, |–3/2, –1/2>} (MS + MI = ±2 or 0) and {|+3/2, –1/2>, |+1/2, +1/2>, |–1/2, –1/2>, |–3/2, 

+1/2>} (MS + MI = ±1) give the two 4 × 4 matrices, both of which can be analytically and exactly solved. 

The basis sets are spin-conjugate each other, which are intrinsic to the properties of half-integer spins. The 

former basis set gives the following 4 × 4 matrix denoted by “full, 1”:  

𝐻
full,1

𝑆=
3
2,𝐼=

1
2 =

(

 
 
 
 
 
 
𝐷 +

3

2
𝑔𝑧𝛽𝐵 +

3

4
𝐴𝑧

√3

4
(𝐴𝑥 − 𝐴𝑦)

√3

4
(𝐴𝑥 − 𝐴𝑦) −𝐷 +

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧

√3𝐸 0
1

2
(𝐴𝑥 + 𝐴𝑦) √3𝐸

√3𝐸
1

2
(𝐴𝑥 + 𝐴𝑦)

0 √3𝐸

−𝐷 −
1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧

√3

4
(𝐴𝑥 − 𝐴𝑦)

√3

4
(𝐴𝑥 − 𝐴𝑦) 𝐷 −

3

2
𝑔𝑧𝛽𝐵 +

3

4
𝐴𝑧)

 
 
 
 
 
 

 

The corresponding secular equation is given as  

𝑥4 + 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0 = 0 

with 

𝑎3 = −𝐴𝑧 

𝑎2 = −2(𝐷
2 + 3𝐸2) −

5

2
(𝑔𝑧𝛽𝐵)

2 −
5

8
𝐴𝑥

2 +
1

4
𝐴𝑥𝐴𝑦 −

5

8
𝐴𝑦

2 − 2𝐷𝐴𝑧 −
1

8
𝐴𝑧
2 

𝑎1 = −4𝐷(𝑔𝑧𝛽𝐵)
2 +

1

2
𝐷𝐴𝑥

2 −
3

2
𝐸𝐴𝑥

2 + 𝐷𝐴𝑥𝐴𝑦 +
1

2
𝐷𝐴𝑦

2 +
3

2
𝐸𝐴𝑦

2 + 𝐷2𝐴𝑧 + 3𝐸
2𝐴𝑧 −

3

4
𝐴𝑧(𝑔𝑧𝛽𝐵)

2

+
9

16
𝐴𝑥
2𝐴𝑧 +

3

8
𝐴𝑥𝐴𝑦𝐴𝑧 +

9

16
𝐴𝑦

2𝐴𝑧 + 𝐷𝐴𝑧
2 +

3

16
𝐴𝑧
3 
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𝑎0 = (𝐷
2 + 3𝐸2)2 −

5

2
𝐷2(𝑔𝑧𝛽𝐵)

2 +
9

2
𝐸2(𝑔𝑧𝛽𝐵)

2 +
9

16
(𝑔𝑧𝛽𝐵)

4 +
1

8
𝐷2𝐴𝑥

2 +
3

2
𝐷𝐸𝐴𝑥

2 −
9

8
𝐸2𝐴𝑥

2

+
9

32
𝐴𝑥

2(𝑔𝑧𝛽𝐵)
2 +

9

256
𝐴𝑥

4 −
5

4
𝐷2𝐴𝑥𝐴𝑦 +

9

4
𝐸2𝐴𝑥𝐴𝑦 +

27

16
𝐴𝑥𝐴𝑦(𝑔𝑧𝛽𝐵)

2 −
9

64
𝐴𝑥

3𝐴𝑦

+
1

8
𝐷2𝐴𝑦

2 −
3

2
𝐷𝐸𝐴𝑦

2 −
9

8
𝐸2𝐴𝑦

2 +
9

32
𝐴𝑦

2(𝑔𝑧𝛽𝐵)
2 +

27

128
𝐴𝑥
2𝐴𝑦

2 −
9

64
𝐴𝑥𝐴𝑦

3

+
9

256
𝐴𝑦

4 + 2𝐷3𝐴𝑧 + 6𝐷𝐸
2𝐴𝑧 −

3

2
𝐷(𝑔𝑧𝛽𝐵)

2𝐴𝑧 +
9

8
𝐸𝐴𝑥

2𝐴𝑧 −
3

2
𝐷𝐴𝑥𝐴𝑦𝐴𝑧

−
9

8
𝐸𝐴𝑦

2𝐴𝑧 +
11

8
𝐷2𝐴𝑧

2 +
9

8
𝐸2𝐴𝑧

2 −
9

32
𝐴𝑧
2(𝑔𝑧𝛽𝐵)

2 −
9

128
𝐴𝑥

2𝐴𝑧
2 −

27

64
𝐴𝑥𝐴𝑦𝐴𝑧

2

−
9

128
𝐴𝑦

2𝐴𝑧
2 +

3

8
𝐷𝐴𝑧

3 +
9

256
𝐴𝑧
4 

In order to eliminate the x3 term as usual, replacing x to x + Az/4 yields 

𝑥4 + 𝑝0𝑥
2 + 𝑞0𝑥 + 𝑟0 = 0 (*) 

with 

𝑝0 = −2(𝐷
2 + 3𝐸2) −

5

2
(𝑔𝑧𝛽𝐵)

2 −
5

8
𝐴𝑥
2 +

1

4
𝐴𝑥𝐴𝑦 −

5

8
𝐴𝑦

2 − 2𝐷𝐴𝑧 −
1

2
𝐴𝑧
2 

𝑞0 = −4𝐷(𝑔𝑧𝛽𝐵)
2 +

1

2
𝐷𝐴𝑥

2 −
3

2
𝐸𝐴𝑥

2 + 𝐷𝐴𝑥𝐴𝑦 +
1

2
𝐷𝐴𝑦

2 +
3

2
𝐸𝐴𝑦

2 − 2𝐴𝑧(𝑔𝑧𝛽𝐵)
2 +

1

4
𝐴𝑥
2𝐴𝑧

+
1

2
𝐴𝑥𝐴𝑦𝐴𝑧 +

1

4
𝐴𝑦

2𝐴𝑧 

𝑟0 = (𝐷
2 + 3𝐸2)2 −

5

2
𝐷2(𝑔𝑧𝛽𝐵)

2 +
9

2
𝐸2(𝑔𝑧𝛽𝐵)

2 +
9

16
(𝑔𝑧𝛽𝐵)

4 +
1

8
𝐷2𝐴𝑥

2 +
3

2
𝐷𝐸𝐴𝑥

2 −
9

8
𝐸2𝐴𝑥

2

+
9

32
𝐴𝑥

2(𝑔𝑧𝛽𝐵)
2 +

9

256
𝐴𝑥

4 −
5

4
𝐷2𝐴𝑥𝐴𝑦 +

9

4
𝐸2𝐴𝑥𝐴𝑦 +

27

16
𝐴𝑥𝐴𝑦(𝑔𝑧𝛽𝐵)

2 −
9

64
𝐴𝑥

3𝐴𝑦

+
1

8
𝐷2𝐴𝑦

2 −
3

2
𝐷𝐸𝐴𝑦

2 −
9

8
𝐸2𝐴𝑦

2 +
9

32
𝐴𝑦

2(𝑔𝑧𝛽𝐵)
2 +

27

128
𝐴𝑥
2𝐴𝑦

2 −
9

64
𝐴𝑥𝐴𝑦

3

+
9

256
𝐴𝑦

4 + 2𝐷3𝐴𝑧 + 6𝐷𝐸
2𝐴𝑧 −

5

2
𝐷(𝑔𝑧𝛽𝐵)

2𝐴𝑧 +
1

8
𝐷𝐴𝑥

2𝐴𝑧 +
3

4
𝐸𝐴𝑥

2𝐴𝑧

−
5

4
𝐷𝐴𝑥𝐴𝑦𝐴𝑧 +

1

8
𝐷𝐴𝑦

2𝐴𝑧 −
3

4
𝐸𝐴𝑦

2𝐴𝑧 +
3

2
𝐷2𝐴𝑧

2 +
3

2
𝐸2𝐴𝑧

2 −
5

8
𝐴𝑧
2(𝑔𝑧𝛽𝐵)

2

+
1

32
𝐴𝑥

2𝐴𝑧
2 −

5

16
𝐴𝑥𝐴𝑦𝐴𝑧

2 +
1

32
𝐴𝑦

2𝐴𝑧
2 +

1

2
𝐷𝐴𝑧

3 +
1

16
𝐴𝑧
4 

The quartic equation (*) can be rewritten by using a parameter u (≠ 0) as 

(𝑥2 +
𝑝0 + 𝑢

2
)
2

− 𝑢 (𝑥 −
𝑞0
2𝑢
)
2

= 0 

Comparing the coefficients of the two quartic equations gives us the resolvent cubic equation about u. 

𝑝0
2

4
−
𝑞0
2

4𝑢
+
𝑝0𝑢

2
+
𝑢2

4
= 𝑟0 
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𝑢3 + 2𝑝0𝑢
2 + (𝑝0

2 − 4𝑟0)𝑢 = 𝑞
2 

In order to eliminate the u2 term, replacing u with u – 2p0/3 yields 

𝑢3 =
1

3
(𝑝0

2 + 12𝑟0)𝑢 +
1

27
(2𝑝0

3 − 27𝑝0𝑟0 + 72𝑞0
2) 

According to the Viete’s method [5, 6], one of the solutions of the cubic equation above is 

𝑢0 = 2𝑠0 cos (
1

3
arccos

𝑡0
2𝑠0
) −

2𝑝0
3

 

with 

𝑠0 =
1

3
√𝑝02 + 12𝑟0 

𝑡0 =
2𝑝0

3 − 72𝑝0𝑟0 + 27𝑞0
2

3𝑝02 + 36𝑟0
 

Then, the quartic equation can be factorized to two quadratic equations as follows; 

{(𝑥2 +
𝑝0 + 𝑢0
2

) + √𝑢0 (𝑥 −
𝑞0
2𝑢0

)} {(𝑥2 +
𝑝0 + 𝑢0
2

) − √𝑢0 (𝑥 −
𝑞0
2𝑢0

)} = 0 

Finally, the exact analytical solutions of the quartic equation are 

𝑥 =
1

2
(±1√𝑢0±2√−2𝑝0 − 𝑢0∓1

2𝑞0

√𝑢0
) +

𝐴𝑧
4

 

The double signs ±1 and ±2 can be taken freely, affording four eigenvalues. Therefore, the energy eigenvalues 

are given in the following; 

𝐸1 =
1

2
(−√𝑢0 +√−2𝑝0 − 𝑢0 +

2𝑞0

√𝑢0
) +

𝐴𝑧
4

 

for the |+3/2, +1/2>-dominant state, 

𝐸2 =
1

2
(−√𝑢0 −√−2𝑝0 − 𝑢0 +

2𝑞0

√𝑢0
) +

𝐴𝑧
4

 

for the |–3/2, –1/2>-dominant state 

𝐸3 =
1

2
(√𝑢0 +√−2𝑝0 − 𝑢0 −

2𝑞0

√𝑢0
) +

𝐴𝑧
4

 

for the |+1/2, –1/2>-dominant state, and 

𝐸4 =
1

2
(√𝑢0 −√−2𝑝0 − 𝑢0 −

2𝑞0

√𝑢0
) +

𝐴𝑧
4

 

for the |–1/2, +1/2>-dominant state when D < 0. 

     Now we analytically derive the exact expressions for the eigenfunctions composed of the four spin 

conjugate states. According to Denton and co-workers [7], the square of the jth element of the eigenvector 
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corresponding to the eigenvalue Ei of the Hermitian matrix can be described as follows 

|𝑣𝑖,𝑗|
2
∏ (𝐸𝑖 − 𝐸𝑘)

𝑛

𝑘=1;𝑘≠𝑖

=∏(𝐸𝑖 − 𝑥𝑗,𝑘)

𝑛−1

𝑘=1

 

where vij is the coefficient to determine, and xj,k is the eigenvalues of the minor Mj of the Hermitian formed 

by removing the jth row and column. In the case of the spin Hamiltonian, the spin conjugate eigenfunctions 

Ψi corresponding to the eigenvalue Ei can be described as 

Ψ𝑖 = 𝛼𝑖 |+
3

2
, +
1

2
⟩ + 𝛽𝑖 |+

1

2
,−
1

2
⟩ + 𝛾𝑖 |−

1

2
, +
1

2
⟩ + 𝛿𝑖 |−

3

2
,−
1

2
⟩ 

where αn, βn, γn and δn correspond to vn1, vn2, vn3 and vn4, respectively. By using the formula, we calculate α1, 

β2, γ3 and δ4, which are the diagonal element of the unitary matrix for diagonalizing the spin Hamiltonian 

matrix. 

|𝛼1|
2 =

(𝐸1 − 𝑥1,0)(𝐸1 − 𝑥1,1)(𝐸1 − 𝑥1,2)

(𝐸1 − 𝐸2)(𝐸1 − 𝐸3)(𝐸1 − 𝐸4)
 

|𝛽2|
2 =

(𝐸2 − 𝑥2,0)(𝐸2 − 𝑥2,1)(𝐸2 − 𝑥2,2)

(𝐸2 − 𝐸1)(𝐸2 − 𝐸3)(𝐸2 − 𝐸4)
 

|𝛾3|
2 =

(𝐸3 − 𝑥3,0)(𝐸3 − 𝑥3,1)(𝐸3 − 𝑥3,2)

(𝐸3 − 𝐸1)(𝐸3 − 𝐸2)(𝐸3 − 𝐸4)
 

|𝛿4|
2 =

(𝐸4 − 𝑥4,0)(𝐸4 − 𝑥4,1)(𝐸4 − 𝑥4,2)

(𝐸4 − 𝐸1)(𝐸4 − 𝐸2)(𝐸4 − 𝐸3)
 

     In order to determine the element of the eigenvectors, we define the following matrixes, 

𝑀1 =

(

 
 
 
 
−𝐷 +

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧

1

2
(𝐴𝑥 + 𝐴𝑦) √3𝐸

1

2
(𝐴𝑥 + 𝐴𝑦) −𝐷 −

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧

√3

4
(𝐴𝑥 − 𝐴𝑦)

√3𝐸
√3

4
(𝐴𝑥 − 𝐴𝑦) 𝐷 −

3

2
𝑔𝑧𝛽𝐵 +

3

4
𝐴𝑧)

 
 
 
 

 

𝑀2 =

(

 
 
 
 
𝐷 +

3

2
𝑔𝑧𝛽𝐵 +

3

4
𝐴𝑧 √3𝐸 0

√3𝐸 −𝐷 −
1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧

√3

4
(𝐴𝑥 − 𝐴𝑦)

0
√3

4
(𝐴𝑥 − 𝐴𝑦) 𝐷 −

3

2
𝑔𝑧𝛽𝐵 +

3

4
𝐴𝑧)

 
 
 
 

 

𝑀3 =

(

 
 
 
 
𝐷 +

3

2
𝑔𝑧𝛽𝐵 +

3

4
𝐴𝑧

√3

4
(𝐴𝑥 − 𝐴𝑦) 0

√3

4
(𝐴𝑥 − 𝐴𝑦) −𝐷 +

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 √3𝐸

0 √3𝐸 𝐷 −
3

2
𝑔𝑧𝛽𝐵 +

3

4
𝐴𝑧)
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𝑀4 =

(

 
 
 
 
𝐷 +

3

2
𝑔𝑧𝛽𝐵 +

3

4
𝐴𝑧

√3

4
(𝐴𝑥 − 𝐴𝑦) √3𝐸

√3

4
(𝐴𝑥 − 𝐴𝑦) −𝐷 +

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧

1

2
(𝐴𝑥 + 𝐴𝑦)

√3𝐸
1

2
(𝐴𝑥 + 𝐴𝑦) −𝐷 −

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧)

 
 
 
 

 

and the secular equation corresponding to each matrix above is given by the following cubic equation; 

𝑥3 + 𝑝𝑖𝑥
2 + 𝑞𝑖𝑥 + 𝑟𝑖 = 0 (𝑖 = 1,2,3,4) 

with 

𝑝1 = 𝐷 +
3

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 

𝑞1 = −(𝐷
2 + 3𝐸2) −

1

4
(𝑔𝑧𝛽𝐵)

2 + 3𝐷𝑔𝑧𝛽𝐵 −
3

2
𝐷𝐴𝑧 +

3

4
𝑔𝑧𝛽𝐵𝐴𝑧 −

7

16
𝐴𝑥
2 −

1

8
𝐴𝑥𝐴𝑦 −

7

16
𝐴𝑦

2 +
3

4
𝐴𝑧
2 

𝑟1 = −𝐷(𝐷
2 + 3𝐸2) −

3

8
(𝑔𝑧𝛽𝐵)

3 +
1

4
𝐷(𝑔𝑧𝛽𝐵)

2 +
3

2
(𝐷 + 𝐸)(𝐷 − 𝐸)𝑔𝑧𝛽𝐵 −

9

32
𝑔𝑧𝛽𝐵𝐴𝑥

2

+
1

16
(𝐷 − 12𝐸)𝐴𝑥

2 −
15

16
𝑔𝑧𝛽𝐵𝐴𝑥𝐴𝑦 +

7

8
𝐷𝐴𝑥𝐴𝑦 −

9

32
𝑔𝑧𝛽𝐵𝐴𝑦

2 +
1

16
(𝐷 + 12𝐸)𝐴𝑦

2

+
3

16
(𝑔𝑧𝛽𝐵)

2𝐴𝑧 +
3

4
𝐷𝑔𝑧𝛽𝐵𝐴𝑧 −

1

4
(5𝐷2 + 3𝐸2)𝐴𝑧 +

9

64
𝐴𝑥
2𝐴𝑧 +

15

32
𝐴𝑥𝐴𝑦𝐴𝑧

+
9

64
𝐴𝑦

2𝐴𝑧 +
13

32
𝑔𝑧𝛽𝐵𝐴𝑧

2 −
7

16
𝐷𝐴𝑧

2 −
3

64
𝐴𝑧
3 

 

𝑝2 = −𝐷 +
1

2
𝑔𝑧𝛽𝐵 −

5

4
𝐴𝑧 

𝑞2 = −(𝐷
2 + 3𝐸2) −

9

4
(𝑔𝑧𝛽𝐵)

2 − 𝐷𝑔𝑧𝛽𝐵 −
1

2
𝐷𝐴𝑧 −

3

4
𝑔𝑧𝛽𝐵𝐴𝑧 −

3

16
𝐴𝑥

2 +
3

8
𝐴𝑥𝐴𝑦 −

3

16
𝐴𝑦

2 +
3

16
𝐴𝑧
2 

𝑟2 = 𝐷(𝐷
2 + 3𝐸2) −

9

8
(𝑔𝑧𝛽𝐵)

3 −
9

4
𝐷(𝑔𝑧𝛽𝐵)

2 +
1

2
(𝐷 + 3𝐸)(𝐷 − 3𝐸)𝑔𝑧𝛽𝐵 +

9

32
𝑔𝑧𝛽𝐵𝐴𝑥

2 +
3

16
𝐷𝐴𝑥

2

−
9

16
𝑔𝑧𝛽𝐵𝐴𝑥𝐴𝑦 −

3

8
𝐷𝐴𝑥𝐴𝑦 +

9

32
𝑔𝑧𝛽𝐵𝐴𝑦

2 +
3

16
𝐷𝐴𝑦

2 −
9

16
(𝑔𝑧𝛽𝐵)

2𝐴𝑧 +
3

4
𝐷𝑔𝑧𝛽𝐵𝐴𝑧

+
1

4
(7𝐷2 + 9𝐸2)𝐴𝑧 +

9

64
𝐴𝑥

2𝐴𝑧 −
9

32
𝐴𝑥𝐴𝑦𝐴𝑧 +

9

64
𝐴𝑦

2𝐴𝑧 +
9

32
𝑔𝑧𝛽𝐵𝐴𝑧

2 +
15

16
𝐷𝐴𝑧

2

+
9

64
𝐴𝑧
3 

 

𝑝3 = −𝐷 −
1

2
𝑔𝑧𝛽𝐵 −

5

4
𝐴𝑧 

𝑞3 = −(𝐷
2 + 3𝐸2) −

9

4
(𝑔𝑧𝛽𝐵)

2 + 𝐷𝑔𝑧𝛽𝐵 −
1

2
𝐷𝐴𝑧 +

3

4
𝑔𝑧𝛽𝐵𝐴𝑧 −

3

16
𝐴𝑥

2 +
3

8
𝐴𝑥𝐴𝑦 −

3

16
𝐴𝑦

2 +
3

16
𝐴𝑧
2 
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𝑟3 = 𝐷(𝐷
2 + 3𝐸2) +

9

8
(𝑔𝑧𝛽𝐵)

3 −
9

4
𝐷(𝑔𝑧𝛽𝐵)

2 −
1

2
(𝐷 + 3𝐸)(𝐷 − 3𝐸)𝑔𝑧𝛽𝐵 −

9

32
𝑔𝑧𝛽𝐵𝐴𝑥

2 +
3

16
𝐷𝐴𝑥

2

+
9

16
𝑔𝑧𝛽𝐵𝐴𝑥𝐴𝑦 −

3

8
𝐷𝐴𝑥𝐴𝑦 −

9

32
𝑔𝑧𝛽𝐵𝐴𝑦

2 +
3

16
𝐷𝐴𝑦

2 −
9

16
(𝑔𝑧𝛽𝐵)

2𝐴𝑧 −
3

4
𝐷𝑔𝑧𝛽𝐵𝐴𝑧

+
1

4
(7𝐷2 + 9𝐸2)𝐴𝑧 +

9

64
𝐴𝑥

2𝐴𝑧 −
9

32
𝐴𝑥𝐴𝑦𝐴𝑧 +

9

64
𝐴𝑦

2𝐴𝑧 −
9

32
𝑔𝑧𝛽𝐵𝐴𝑧

2 +
15

16
𝐷𝐴𝑧

2

+
9

64
𝐴𝑧
3 

 

𝑝4 = 𝐷 −
3

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 

𝑞4 = −(𝐷
2 + 3𝐸2) −

1

4
(𝑔𝑧𝛽𝐵)

2 − 3𝐷𝑔𝑧𝛽𝐵 −
3

2
𝐷𝐴𝑧 −

3

4
𝑔𝑧𝛽𝐵𝐴𝑧 −

7

16
𝐴𝑥
2 −

1

8
𝐴𝑥𝐴𝑦 −

7

16
𝐴𝑦

2 +
3

4
𝐴𝑧
2 

𝑟4 = −𝐷(𝐷
2 + 3𝐸2) +

3

8
(𝑔𝑧𝛽𝐵)

3 +
1

4
𝐷(𝑔𝑧𝛽𝐵)

2 −
3

2
(𝐷 + 𝐸)(𝐷 − 𝐸)𝑔𝑧𝛽𝐵 +

9

32
𝑔𝑧𝛽𝐵𝐴𝑥

2

+
1

16
(𝐷 − 12𝐸)𝐴𝑥

2 +
15

16
𝑔𝑧𝛽𝐵𝐴𝑥𝐴𝑦 +

7

8
𝐷𝐴𝑥𝐴𝑦 +

9

32
𝑔𝑧𝛽𝐵𝐴𝑦

2 +
1

16
(𝐷 + 12𝐸)𝐴𝑦

2

+
3

16
(𝑔𝑧𝛽𝐵)

2𝐴𝑧 −
3

4
𝐷𝑔𝑧𝛽𝐵𝐴𝑧 −

1

4
(5𝐷2 + 3𝐸2)𝐴𝑧 +

9

64
𝐴𝑥
2𝐴𝑧 +

15

32
𝐴𝑥𝐴𝑦𝐴𝑧

+
9

64
𝐴𝑦

2𝐴𝑧 −
13

32
𝑔𝑧𝛽𝐵𝐴𝑧

2 −
7

16
𝐷𝐴𝑧

2 −
3

64
𝐴𝑧
3 

 

The cubic equation (i = 1, 2, 3, 4) 

𝑥3 + 𝑝𝑖𝑥
2 + 𝑞𝑖𝑥 + 𝑟𝑖 = 0 (𝑖 = 1, 2, 3, 4) 

is transformed as follows; 

𝑥3 = (
𝑝𝑖
2 − 3𝑞𝑖
3

)𝑥 −
2𝑝𝑖

3 − 9𝑝𝑖𝑞𝑖 + 27𝑟𝑖
27

 

by substituting x to x – pi/3. Then, the solutions of the cubic equations are represented as follows; 

𝑥𝑖,𝑚 = 2𝑠𝑖 cos [
1

3
arccos (

𝑡𝑖
2𝑠𝑖
) +

2𝑚𝜋

3
] −
𝑝𝑖
3
 (𝑚 = 0, 1, 2) 

with 

𝑠𝑖 =
√𝑝𝑖2 − 3𝑞𝑖

3
 

𝑡𝑖 = −
2𝑝𝑖

3 − 9𝑝𝑖𝑞𝑖 + 27𝑟𝑖
3𝑝𝑖2 − 9𝑞𝑖

 

     For n = 1 (MS = +3/2 and MI = +1/2)，𝛼1 = 𝑟𝛼1 = √|𝑣1,1|
2
 (real). 
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{
 
 
 
 

 
 
 
 (𝐷 +

3

2
𝑔𝑧𝛽𝐵 +

3

4
𝐴𝑧 − 𝐸1) 𝑟𝛼1 +

√3

4
(𝐴𝑥 − 𝐴𝑦)𝛽1 + √3𝐸𝛾1 = 0  — (A1)

√3

4
(𝐴𝑥 − 𝐴𝑦)𝑟𝛼1 + (−𝐷 +

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 − 𝐸1)𝛽1 +

1

2
(𝐴𝑥 + 𝐴𝑦)𝛾1 + √3𝐸𝛿1 = 0 — (B1)

√3𝐸𝑟𝛼1 +
1

2
(𝐴𝑥 + 𝐴𝑦)𝛽1 + (−𝐷 −

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 − 𝐸1) 𝛾1 +

√3

4
(𝐴𝑥 − 𝐴𝑦)𝛿1 = 0 — (C1)

√3𝐸𝛽1 +
√3

4
(𝐴𝑥 − 𝐴𝑦)𝛾1 + (𝐷 −

3

2
𝑔𝑧𝛽𝐵 +

3

4
𝐴𝑧 − 𝐸1) 𝛿1 = 0 — (D1)

 

(B1)×
1

4
(𝐴𝑥 − 𝐴𝑦) 

√3

16
(𝐴𝑥 − 𝐴𝑦)

2
𝑟𝛼1 +

1

4
(𝐴𝑥 − 𝐴𝑦) (−𝐷 +

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 − 𝐸1) 𝛽1 +

1

8
(𝐴𝑥

2 − 𝐴𝑦
2)𝛾1

+
√3

4
𝐸(𝐴𝑥 − 𝐴𝑦)𝛿1 = 0 — (E1) 

(C1)× 𝐸 

√3𝐸2𝑟𝛼1 +
1

2
𝐸(𝐴𝑥 + 𝐴𝑦)𝛽1 + 𝐸 (−𝐷 −

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 − 𝐸1) 𝛾1 +

√3

4
𝐸(𝐴𝑥 − 𝐴𝑦)𝛿1 = 0 — (F1) 

(E1) – (F1) 

√3

16
[(𝐴𝑥 − 𝐴𝑦)

2
− 16𝐸2] 𝑟𝛼1 +

1

4
[(𝐴𝑥 − 𝐴𝑦) (−𝐷 +

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 − 𝐸1) − 2𝐸(𝐴𝑥 + 𝐴𝑦)] 𝛽1

+ [
1

8
(𝐴𝑥

2 − 𝐴𝑦
2) − 𝐸 (−𝐷 −

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 − 𝐸1)] 𝛾1 = 0 — (G1) 

(A1)× √3 [(𝐴𝑥 − 𝐴𝑦) (−𝐷 +
1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 − 𝐸1) − 2𝐸(𝐴𝑥 + 𝐴𝑦)] 

√3(𝐷 +
3

2
𝑔𝑧𝛽𝐵 +

3

4
𝐴𝑧 − 𝐸1) [(𝐴𝑥 − 𝐴𝑦) (−𝐷 +

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 − 𝐸1) − 2𝐸(𝐴𝑥 + 𝐴𝑦)] 𝑟𝛼1

+
3

4
(𝐴𝑥 − 𝐴𝑦) [(𝐴𝑥 − 𝐴𝑦) (−𝐷 +

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 − 𝐸1) − 2𝐸(𝐴𝑥 + 𝐴𝑦)] 𝛽1

+ 3𝐸 [(𝐴𝑥 − 𝐴𝑦) (−𝐷 +
1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 − 𝐸1) − 2𝐸(𝐴𝑥 + 𝐴𝑦)] 𝛾1 = 0 — (H1) 

(G1)× 3(𝐴𝑥 − 𝐴𝑦) 

3√3

16
(𝐴𝑥 − 𝐴𝑦) [(𝐴𝑥 − 𝐴𝑦)

2
− 16𝐸2] 𝑟𝛼1

+
3

4
(𝐴𝑥 − 𝐴𝑦) [(𝐴𝑥 − 𝐴𝑦) (−𝐷 +

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 − 𝐸1) − 2𝐸(𝐴𝑥 + 𝐴𝑦)]𝛽1

+ 3(𝐴𝑥 − 𝐴𝑦) [
1

8
(𝐴𝑥

2 − 𝐴𝑦
2) − 𝐸 (−𝐷 −

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 − 𝐸1)] 𝛾1 = 0 — (I1) 

Applying (H1) – (I1) yields 

𝛾1 =
𝑛𝑢𝑚𝑒𝑟(𝛾1)

𝑑𝑒𝑛𝑜𝑚(𝛾1)
𝑟𝛼1 
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where 

𝑛𝑢𝑚𝑒𝑟(𝛾1) = 3√3(𝐴𝑥 − 𝐴𝑦) [(𝐴𝑥 − 𝐴𝑦)
2
− 16𝐸2]

− 16√3(𝐷 +
3

2
𝑔𝑧𝛽𝐵 +

3

4
𝐴𝑧 − 𝐸1) [(𝐴𝑥 − 𝐴𝑦) (−𝐷 +

1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 − 𝐸1)

− 2𝐸(𝐴𝑥 + 𝐴𝑦)] 

𝑑𝑒𝑛𝑜𝑚(𝛾1) = 48𝐸 [(𝐴𝑥 − 𝐴𝑦) (−𝐷 +
1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 − 𝐸1) − 2𝐸(𝐴𝑥 + 𝐴𝑦)]

− 6(𝐴𝑥 − 𝐴𝑦) [𝐴𝑥
2 − 𝐴𝑦

2 − 8𝐸 (−𝐷 −
1

2
𝑔𝑧𝛽𝐵 −

1

4
𝐴𝑧 − 𝐸1)] 

From (A1) we obtain 

𝛽1 = −
4√3(𝐷 +

3
2
𝑔𝑧𝛽𝐵 +

3
4
𝐴𝑧 − 𝐸1) + 12𝐸

𝑛𝑢𝑚𝑒𝑟(𝛾1)
𝑑𝑒𝑛𝑜𝑚(𝛾1)

3(𝐴𝑥 − 𝐴𝑦)
𝑟𝛼1 

Finally, from (D1) we obtain 

𝛿1 =
−4√3𝐸𝛽1 − √3(𝐴𝑥 − 𝐴𝑦)𝛾1

4𝐷 − 6𝑔𝑧𝛽𝐵 + 3𝐴𝑧 − 𝐸1
 

     For the basis sets of {|+3/2, –1/2>, |+1/2, +1/2>, |–1/2, –1/2>, |–3/2, +1/2>} (MS + MI = ±1), the 

corresponding spin Hamiltonian is written as 

𝐻
full,2

𝑆=
3
2,𝐼=

1
2 =

(

 
 
 
 
 
 
𝐷 +

3

2
𝑔𝑧𝛽𝐵 −

3

4
𝐴𝑧

√3

4
(𝐴𝑥 + 𝐴𝑦)

√3

4
(𝐴𝑥 + 𝐴𝑦) −𝐷 +

1

2
𝑔𝑧𝛽𝐵 +

1

4
𝐴𝑧

√3𝐸 0
1

2
(𝐴𝑥 − 𝐴𝑦) √3𝐸

√3𝐸
1

2
(𝐴𝑥 − 𝐴𝑦)

0 √3𝐸

−𝐷 −
1

2
𝑔𝑧𝛽𝐵 +

1

4
𝐴𝑧

√3

4
(𝐴𝑥 + 𝐴𝑦)

√3

4
(𝐴𝑥 + 𝐴𝑦) 𝐷 −

3

2
𝑔𝑧𝛽𝐵 +

3

4
𝐴𝑧)

 
 
 
 
 
 

 

The secular quartic equation above, which is the counterpart Hamiltonian based on the spin conjugate 

function, can be established by replacing Ay and Az to –Ay and –Az, respectively, of the counterpart of 𝐻
full,1

𝑆=
3
2,𝐼=

1
2. 

Thus, the eigenvalues Ei (i = 5,6,7,8) are given as 

𝐸1
𝐴𝑦=−𝐴𝑦,𝐴𝑧=−𝐴𝑧
→            𝐸5 

for the |+3/2, –1/2>-dominant state, 

𝐸2
𝐴𝑦=−𝐴𝑦,𝐴𝑧=−𝐴𝑧
→            𝐸6 

for the |–3/2, +1/2>-dominant state. 

𝐸3
𝐴𝑦=−𝐴𝑦,𝐴𝑧=−𝐴𝑧
→            𝐸7 

for the |+1/2, +1/2>-dominant state, and 

𝐸4
𝐴𝑦=−𝐴𝑦,𝐴𝑧=−𝐴𝑧
→            𝐸8 

for the |–1/2, –1/2>-dominant state. 
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b) Double perturbation approach  

The perturbation approach for the case of the spin quartet state with I = 1/2 does not necessarily encourage 

to merit attention, but it is worth comparing the accuracy of the double perturbation treatment with the exact 

analytical treatment. In this context, we note that our Zeeman perturbation approach applied to the cases 

without hyperfine interactions affords extremely accurate analytical expressions for the eigenvalues and 

functions. The spin Hamiltonian for the ZFS terms, which come from the spin–spin and spin–orbit 

interactions in the cases of S ≥ 1, is taken as the non-perturbed Hamiltonian. The matrix representation of the 

rank-2 ZFS Hamiltonian in terms of the basis set (|MS, MI> = |+3/2, +1/2>, |+1/2, +1/2>, |–1/2, +1/2>, |–3/2, 

+1/2>) is given as  

𝐻
zfs

𝑆=32 =

(

 
 
𝐷 0
0 −𝐷

√3𝐸 0

0 √3𝐸

√3𝐸 0

0 √3𝐸

−𝐷 0
0 𝐷

)

 
 

 

The eigenvalues and the corresponding eigen spin wavefunctions are given, respectively in the following: 

𝜀
±32,+

1
2

(0) = Δ 𝜑
±32,+

1
2

(0) = cos𝜃 |±
3

2
,+
1

2
⟩ + sin 𝜃 |∓

1

2
, +
1

2
⟩ 

𝜀
±12,+

1
2

(0) = −Δ 𝜑
±12,+

1
2

(0) = cos𝜃 |±
1

2
, +
1

2
⟩ − sin 𝜃 |∓

3

2
,+
1

2
⟩ 

where 

Δ = √𝐷2 + 3𝐸2 

and 

tan2𝜃 =
√3𝐸

𝐷
 

It is noted that the half-integer spin S = 3/2 results in the degeneracy in the absence of the static magnetic 

field and this gives complexity in treating the hyperfine structure terms, which is underlain by the spin 

conjugate properties. 

     First, {|𝜑𝑀𝑆,𝑀𝐼
(0) ⟩} are divided to two subspaces corresponding to the eigenvalues; 

{|𝜑
+32,+

1
2

(0) ⟩ , |𝜑
+32,−

1
2

(0) ⟩ , |𝜑
−32,+

1
2

(0) ⟩ , |𝜑
−32,−

1
2

(0) ⟩} (eigenvalue Δ) 

{|𝜑
+12,+

1
2

(0) ⟩ , |𝜑
+12,−

1
2

(0) ⟩ , |𝜑
−12,+

1
2

(0) ⟩ , |𝜑
−12,−

1
2

(0) ⟩} (eigenvalue − Δ) 

For simplicity, we rewrite the notation of the eigenfunctions as follows; 

{|𝜑
+32,+

1
2

(0) ⟩ , |𝜑
+32,−

1
2

(0) ⟩ , |𝜑
−32,+

1
2

(0) ⟩ , |𝜑
−32,−

1
2

(0) ⟩} → {|+,1⟩, |+,2⟩, |+,3⟩, |+,4⟩} 

{|𝜑
+12,+

1
2

(0) ⟩ , |𝜑
+12,−

1
2

(0) ⟩ , |𝜑
−12,+

1
2

(0) ⟩ , |𝜑
−12,−

1
2

(0) ⟩} → {|−,1⟩, |−,2⟩, |−,3⟩, |−,4⟩} 

     The matrix elements of the hyperfine structure Hamiltonian in the basis of |MS, MI> are given as 
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⟨𝑀𝑆
′ , 𝑀𝐼

′|𝐻hfs|𝑀𝑆,𝑀𝐼⟩ =

{
 
 

 
 

𝛿𝑀𝑆𝑀𝑆′𝛿𝑀𝐼𝑀𝐼
′𝑀𝑆𝑀𝐼𝐴𝑧𝑧

1

16
𝛿𝑀𝑆𝑀𝑆′∓1𝛿𝑀𝐼𝑀𝐼

′∓1√15 − 4𝑀𝑆𝑀𝑆
′√3− 4𝑀𝐼𝑀𝐼

′(𝐴𝑥𝑥 − 𝐴𝑦𝑦)

1

16
𝛿𝑀𝑆𝑀𝑆′∓1𝛿𝑀𝐼𝑀𝐼

′±1√15 − 4𝑀𝑆𝑀𝑆
′√3− 4𝑀𝐼𝑀𝐼

′(𝐴𝑥𝑥 + 𝐴𝑦𝑦)

 

According to the degenerate perturbation theory, the first-order corrections for the energy of the hyperfine 

structure Hamiltonian (𝜀+,𝛼
(01)
 (𝛼 = 1,2,3,4)) which belong to the group of the positive energy eigenvalue are 

given as the eigenvalues of the following matrix: 

𝐻hfs
+ =

(

 

⟨+,1|𝐻hfs|+,1⟩ ⟨+,1|𝐻hfs|+,2⟩

⟨+,2|𝐻hfs|+,1⟩ ⟨+,2|𝐻hfs|+,2⟩

⟨+,1|𝐻hfs|+,3⟩ ⟨+,1|𝐻hfs|+,4⟩

⟨+,2|𝐻hfs|+,3⟩ ⟨+,2|𝐻hfs|+,4⟩

⟨+,3|𝐻hfs|+,1⟩ ⟨+,3|𝐻hfs|+,2⟩

⟨+,4|𝐻hfs|+,1⟩ ⟨+,4|𝐻hfs|+,2⟩

⟨+,3|𝐻hfs|+,3⟩ ⟨+,3|𝐻hfs|+,4⟩

⟨+,4|𝐻hfs|+,3⟩ ⟨+,4|𝐻hfs|+,4⟩)

  

where each matrix element can be calculated in the following; 

⟨+,1|𝐻hfs|+,1⟩ = ⟨+,4|𝐻hfs|+,4⟩ =
𝐴𝑧
4
(1 + 2 cos2𝜃) 

⟨+,2|𝐻hfs|+,2⟩ = ⟨+,3|𝐻hfs|+,3⟩ = −
𝐴𝑧
4
(1 + 2 cos2𝜃) 

⟨+,1|𝐻hfs|+,4⟩ = ⟨+,4|𝐻hfs|+,1⟩ =
1

2
sin 𝜃 [√3(𝐴𝑥 − 𝐴𝑦) cos𝜃 + (𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨+,2|𝐻hfs|+,3⟩ = ⟨+,3|𝐻hfs|+,2⟩ =
1

2
sin 𝜃 [√3(𝐴𝑥 + 𝐴𝑦) cos𝜃 + (𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

The other elements are zero. Thus, the matrix can be divided to two 2 × 2 matrixes with the basis of {|+, 1>, 

|+, 4>} and {|+, 2>, |+, 3>}. The secular determinants are as follows; for the {|+, 1>, |+, 4>} basis set, 

|

𝐴𝑧
4
(1 + 2 cos2𝜃) − 𝑥

1

2
sin 𝜃 [√3(𝐴𝑥 − 𝐴𝑦) cos𝜃 + (𝐴𝑥 + 𝐴𝑦) sin 𝜃]

1

2
sin 𝜃 [√3(𝐴𝑥 − 𝐴𝑦) cos𝜃 + (𝐴𝑥 + 𝐴𝑦) sin 𝜃]

𝐴𝑧
4
(1 + 2 cos 2𝜃) − 𝑥

| = 0 

and for the {|+, 2>, |+, 4>} basis set, 

|
−
𝐴𝑧
4
(1 + 2 cos2𝜃) − 𝑥

1

2
sin 𝜃 [√3(𝐴𝑥 + 𝐴𝑦) cos𝜃 + (𝐴𝑥 − 𝐴𝑦) sin 𝜃]

1

2
sin 𝜃 [√3(𝐴𝑥 + 𝐴𝑦) cos𝜃 + (𝐴𝑥 − 𝐴𝑦) sin 𝜃] −

𝐴𝑧
4
(1 + 2 cos 2𝜃) − 𝑥

| = 0 

From the first secular equation, we obtain 

𝜀+,1
(01)

=
1

4
{𝐴𝑧 + 2𝐴𝑧 cos2𝜃

+ 2√sin2 𝜃 [2(𝐴𝑥
2 − 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) + (𝐴𝑥
2 − 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 + √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]} 

𝜀+,4
(01)

=
1

4
{𝐴𝑧 + 2𝐴𝑧 cos2𝜃

− 2√sin2 𝜃 [2(𝐴𝑥
2 − 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) + (𝐴𝑥
2 − 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 + √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]} 
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From the second secular equation, we obtain 

𝜀+,2
(01)

=
1

4
{−𝐴𝑧 − 2𝐴𝑧 cos2𝜃

+ 2√sin2 𝜃 [2(𝐴𝑥
2 + 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) + (𝐴𝑥
2 + 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 + √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]} 

𝜀+,3
(01)

=
1

4
{−𝐴𝑧 − 2𝐴𝑧 cos2𝜃

− 2√sin2 𝜃 [2(𝐴𝑥
2 + 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) + (𝐴𝑥
2 + 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 + √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]} 

     Similarly, the first-order corrections for the energy of the hyperfine structure Hamiltonian 

(𝜀−,𝛼
(01) (𝛼 = 1,2,3,4)) which belong to the group of the negative energy eigenvalue are the eigenvalues of the 

following matrix: 

𝐻hfs
− =

(

 

⟨−,1|𝐻hfs|−,1⟩ ⟨−,1|𝐻hfs|−,2⟩

⟨−,2|𝐻hfs|−,1⟩ ⟨−,2|𝐻hfs|−,2⟩

⟨−,1|𝐻hfs|−,3⟩ ⟨−,1|𝐻hfs|−,4⟩

⟨−,2|𝐻hfs|−,3⟩ ⟨−,2|𝐻hfs|−,4⟩

⟨−,3|𝐻hfs|−,1⟩ ⟨−,3|𝐻hfs|−,2⟩

⟨−,4|𝐻hfs|−,1⟩ ⟨−,4|𝐻hfs|−,2⟩

⟨−,3|𝐻hfs|−,3⟩ ⟨−,3|𝐻hfs|−,4⟩

⟨−,4|𝐻hfs|−,3⟩ ⟨−,4|𝐻hfs|−,4⟩)

  

with each matrix element represented as follows: 

⟨−,1|𝐻hfs|−,1⟩ = ⟨−,4|𝐻hfs|−,4⟩ = −
𝐴𝑧
4
(1 − 2 cos2𝜃) 

⟨−,2|𝐻hfs|−,2⟩ = ⟨−,3|𝐻hfs|−,3⟩ =
𝐴𝑧
4
(1 − 2 cos2𝜃) 

⟨−,1|𝐻hfs|−,4⟩ = ⟨−,4|𝐻hfs|−,1⟩ =
1

2
cos𝜃 [(𝐴𝑥 − 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨−,2|𝐻hfs|−,3⟩ = ⟨−,3|𝐻hfs|−,2⟩ =
1

2
cos𝜃 [(𝐴𝑥 + 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

The other elements are zero. Thus, the matrix also can be divided to two 2 × 2 matrixes with the basis of 

{|–, 1>, |–, 4>} and {|–, 2>, |–, 3>}. The secular determinants are as follows; for the {|–, 1>, |–, 4>} basis set, 

|
−
𝐴𝑧
4
(1 − 2 cos2𝜃) − 𝑥

1

2
cos𝜃 [(𝐴𝑥 − 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 + 𝐴𝑦) sin 𝜃]

1

2
cos𝜃 [(𝐴𝑥 − 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 + 𝐴𝑦) sin 𝜃] −

𝐴𝑧
4
(1 − 2 cos 2𝜃) − 𝑥

| = 0 

And for the {|–, 2>, |–, 4>} basis set, 

|

𝐴𝑧
4
(1 − 2 cos2𝜃) − 𝑥

1

2
cos𝜃 [(𝐴𝑥 + 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 − 𝐴𝑦) sin 𝜃]

1

2
cos𝜃 [(𝐴𝑥 + 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 − 𝐴𝑦) sin 𝜃]

𝐴𝑧
4
(1 − 2 cos 2𝜃) − 𝑥

| = 0 

From the first secular equation, we obtain 
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𝜀−,1
(01)

=
1

4
{−𝐴𝑧 + 2𝐴𝑧 cos2𝜃

+ 2√cos2 𝜃 [2(𝐴𝑥
2 + 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) − (𝐴𝑥
2 + 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 − √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]} 

𝜀−,4
(01)

=
1

4
{−𝐴𝑧 + 2𝐴𝑧 cos2𝜃

− 2√cos2 𝜃 [2(𝐴𝑥
2 + 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) − (𝐴𝑥
2 + 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 − √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]} 

From the second secular equation, we obtain 

𝜀−,2
(01)

=
1

4
{𝐴𝑧 − 2𝐴𝑧 cos 2𝜃

+ 2√cos2 𝜃 [2(𝐴𝑥
2 − 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) − (𝐴𝑥
2 − 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 − √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]} 

𝜀−,3
(01)

=
1

4
{𝐴𝑧 − 2𝐴𝑧 cos 2𝜃

− 2√cos2 𝜃 [2(𝐴𝑥
2 − 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) − (𝐴𝑥
2 − 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 − √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]} 

     The second-order correction for the energy of the hyperfine structure Hamiltonian ( 𝜀𝜎,𝛼
(02) (𝜎 =

+,−;  𝛼 = 1, 2, 3, 4)) can be written as 

𝜀±,𝛼
(02) = ∑

|⟨±, 𝛼|𝐻hfs|∓, 𝛽⟩|
2

𝜀±
(0) − 𝜀∓

(0)

4

𝛽=1

 

Both the upper and lower signs should be chosen in the double sign. The non-zero matrix elements of 𝐻hfs 

expanded to the basis belonging different eigenspaces are as follows: 

⟨+,1|𝐻hfs|−,2⟩ = ⟨−,2|𝐻hfs|+,1⟩ =
√3

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

1

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

⟨+,1|𝐻hfs|−,3⟩ = ⟨−,3|𝐻hfs|+,1⟩ = −
𝐴𝑧
2
sin 2𝜃 

⟨+,2|𝐻hfs|−,1⟩ = ⟨−,1|𝐻hfs|+,2⟩ =
√3

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

1

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

⟨+,2|𝐻hfs|−,4⟩ = ⟨−,4|𝐻hfs|+,2⟩ =
𝐴𝑧
2
sin 2𝜃 

⟨+,3|𝐻hfs|−,1⟩ = ⟨−,1|𝐻hfs|+,3⟩ =
𝐴𝑧
2
sin 2𝜃 



 S25 

⟨+,3|𝐻hfs|−,4⟩ = ⟨−,4|𝐻hfs|+,3⟩ =
√3

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

1

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

⟨+,4|𝐻hfs|−,2⟩ = ⟨−,2|𝐻hfs|+,4⟩ = −
𝐴𝑧
2
sin 2𝜃 

⟨+,4|𝐻hfs|−,3⟩ = ⟨−,3|𝐻hfs|+,4⟩ =
√3

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

1

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

Therefore, 

𝜀+,1
(02) =

|⟨−,2|𝐻hfs|+,1⟩|
2 + |⟨−,3|𝐻hfs|+,1⟩|

2

2∆

=
1

2∆
{[
√3

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

1

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} 

𝜀+,2
(02)

=
|⟨−,1|𝐻hfs|+,2⟩|

2 + |⟨−,4|𝐻hfs|+,2⟩|
2

2∆

=
1

2∆
{[
√3

4
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

1

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} 

𝜀+,3
(02) =

|⟨−,1|𝐻hfs|+,3⟩|
2 + |⟨−,4|𝐻hfs|+,3⟩|

2

2∆

=
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

√3

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

1

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

𝜀+,4
(02) =

|⟨−,2|𝐻hfs|+,4⟩|
2 + |⟨−,3|𝐻hfs|+,4⟩|

2

2∆

=
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

√3

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

1

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,1
(02) =

|⟨+,2|𝐻hfs|−,1⟩|
2 + |⟨+,3|𝐻hfs|−,1⟩|

2

−2∆

= −
1

2∆
{[
√3

4
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

1

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} 

𝜀−,2
(02) =

|⟨+,1|𝐻hfs|−,2⟩|
2 + |⟨+,4|𝐻hfs|−,2⟩|

2

−2∆

= −
1

2∆
{[
√3

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

1

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} 

𝜀−,3
(02) =

|⟨+,1|𝐻hfs|−,3⟩|
2 + |⟨+,4|𝐻hfs|−,3⟩|

2

2∆

= −
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

√3

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

1

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 
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𝜀−,4
(02) =

|⟨+,2|𝐻hfs|−,4⟩|
2 + |⟨+,3|𝐻hfs|−,4⟩|

2

2∆

= −
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

√3

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

1

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

     In order to calculate the first-order corrections for the energy of the electron-Zeeman Hamiltonian, 

𝐻
eZ

𝑆=
3
2 = 𝑔𝑧𝛽𝑆𝑧𝐵 is also expanded by |𝜎, 𝛼⟩ (𝜎 = +,−;  𝛼 = 1, 2, 3, 4): 

⟨+,1|𝐻eZ|+,1⟩ = ⟨+,2|𝐻eZ|+,2⟩ =
𝑔𝑧𝛽𝐵

2
(3 cos2 𝜃 − sin2 𝜃) 

⟨+,3|𝐻eZ|+,3⟩ = ⟨+,4|𝐻eZ|+,4⟩ = −
𝑔𝑧𝛽𝐵

2
(3 cos2 𝜃 − sin2 𝜃) 

⟨+,𝛽|𝐻eZ|+, 𝛼⟩ = ⟨+, 𝛼|𝐻eZ|+, 𝛽⟩ = 0 (𝛼 ≠ 𝛽) 

⟨−,1|𝐻eZ|−,1⟩ = ⟨−,2|𝐻eZ|−,2⟩ =
𝑔𝑧𝛽𝐵

2
(cos2 𝜃 − 3 sin2 𝜃) 

⟨−,3|𝐻eZ|−,3⟩ = ⟨−,4|𝐻eZ|−,4⟩ = −
𝑔𝑧𝛽𝐵

2
(cos2 𝜃 − 3 sin2 𝜃) 

⟨−,𝛽|𝐻eZ|−, 𝛼⟩ = ⟨−, 𝛼|𝐻eZ|−, 𝛽⟩ = 0 (𝛼 ≠ 𝛽) 

Thus, the first-order corrections for the energy of the electron-Zeeman Hamiltonian are as follows: 

𝜀
+32,𝑀𝐼

(10) =
𝑔𝑧𝛽𝐵

2
(3 cos2 𝜃 − sin2 𝜃) 

𝜀
+12,𝑀𝐼

(10) =
𝑔𝑧𝛽𝐵

2
(cos2 𝜃 − 3 sin2 𝜃) 

𝜀
−12,𝑀𝐼

(10) = −
𝑔𝑧𝛽𝐵

2
(cos2 𝜃 − 3 sin2 𝜃) 

𝜀
−32,𝑀𝐼

(10) = −
𝑔𝑧𝛽𝐵

2
(3 cos2 𝜃 − sin2 𝜃) 

     In order to calculate the second-order correction for the electron-Zeeman Hamiltonian, the non-

diagonal components of the electron-Zeeman Hamiltonian are obtained. 

⟨+,1|𝐻eZ|−,3⟩ = ⟨−,3|𝐻eZ|+,1⟩ = −2𝑔𝑧𝛽𝐵 sin 𝜃 cos𝜃 

⟨+,2|𝐻eZ|−,4⟩ = ⟨−,4|𝐻eZ|+,2⟩ = −2𝑔𝑧𝛽𝐵 sin 𝜃 cos𝜃 

⟨+,3|𝐻eZ|−,1⟩ = ⟨−,1|𝐻eZ|+,3⟩ = 2𝑔𝑧𝛽𝐵 sin 𝜃 cos𝜃 

⟨+,4|𝐻eZ|−,2⟩ = ⟨−,2|𝐻eZ|+,4⟩ = 2𝑔𝑧𝛽𝐵 sin 𝜃 cos𝜃 

The other elements are zero. Therefore, 

𝜀
+32,𝑀𝐼

(20) =
2(𝑔𝑧𝛽𝐵)

2 sin2 𝜃 cos2 𝜃

√𝐷2 + 3𝐸2
 

𝜀
−32,𝑀𝐼

(20) =
2(𝑔𝑧𝛽𝐵)

2 sin2 𝜃 cos2 𝜃

√𝐷2 + 3𝐸2
 

𝜀
+12,𝑀𝐼

(20) = −
2(𝑔𝑧𝛽𝐵)

2 sin2 𝜃 cos2 𝜃

√𝐷2 + 3𝐸2
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𝜀
−12,𝑀𝐼

(20)
= −

2(𝑔𝑧𝛽𝐵)
2 sin2 𝜃 cos2 𝜃

√𝐷2 + 3𝐸2
 

     From the double perturbation theory, the correction for the energy in the case of λ = 1 and μ = 1 can be 

represented as 

𝜀𝑛
(11)

= ∑
⟨𝑛|𝐻1|𝑚⟩⟨𝑚|𝐻2|𝑛⟩ + ⟨𝑛|𝐻2|𝑚⟩⟨𝑚|𝐻1|𝑛⟩

𝜀𝑛
(0) − 𝜀𝑚

(0)

𝑚≠𝑛

 

In this case, H1 and H2 are the electron Zeeman and hyperfine structure Hamiltonians, respectively. Thus, 

𝜀+,1
(11)

=
⟨+,1|𝐻eZ|−,3⟩⟨−,3|𝐻hfs|+,1⟩ + ⟨+,1|𝐻hfs|−,3⟩⟨−,3|𝐻eZ|+,1⟩

𝜀+
(0)
− 𝜀−

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,2
(11)

=
⟨+,2|𝐻eZ|−,4⟩⟨−,4|𝐻hfs|+,2⟩ + ⟨+,2|𝐻hfs|−,4⟩⟨−,4|𝐻eZ|+,2⟩

𝜀+
(0)
− 𝜀−

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,1
(11) =

⟨−,1|𝐻eZ|+,3⟩⟨+,3|𝐻hfs|−,1⟩ + ⟨−,1|𝐻hfs|+,3⟩⟨+,3|𝐻eZ|−,1⟩

𝜀−
(0) − 𝜀+

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,2
(11) =

⟨−,2|𝐻eZ|+,4⟩⟨+,4|𝐻hfs|−,2⟩ + ⟨−,2|𝐻hfs|+,4⟩⟨+,4|𝐻eZ|−,2⟩

𝜀−
(0) − 𝜀+

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,3
(11) =

⟨−,3|𝐻eZ|+,1⟩⟨+,1|𝐻hfs|−,3⟩ + ⟨−,3|𝐻hfs|+,1⟩⟨+,1|𝐻eZ|−,3⟩

𝜀−
(0) − 𝜀+

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,4
(11) =

⟨−,4|𝐻eZ|+,2⟩⟨+,2|𝐻hfs|−,4⟩ + ⟨−,4|𝐻hfs|+,2⟩⟨+,2|𝐻eZ|−,4⟩

𝜀−
(0) − 𝜀+

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,3
(11) =

⟨+,3|𝐻eZ|−,1⟩⟨−,1|𝐻hfs|+,3⟩ + ⟨+,3|𝐻hfs|−,1⟩⟨−,1|𝐻eZ|+,3⟩

𝜀+
(0) − 𝜀−

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,4
(11)

=
⟨+,4|𝐻eZ|−,2⟩⟨−,2|𝐻hfs|+,4⟩ + ⟨+,4|𝐻hfs|−,2⟩⟨−,2|𝐻eZ|+,4⟩

𝜀+
(0) − 𝜀−

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

The perturbed energies in the second order are: 

𝐸+32,+
1
2

= √𝐷2 + 3𝐸2 +
𝑔𝑧𝛽𝐵

2
(3 cos2 𝜃 − sin2 𝜃) +

2(𝑔𝑧𝛽𝐵)
2 sin2 𝜃 cos2 𝜃

√𝐷2 + 3𝐸2

+
1

4
{𝐴𝑧 + 2𝐴𝑧 cos2𝜃

+ 2√sin2 𝜃 [2(𝐴𝑥
2 − 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) + (𝐴𝑥
2 − 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 + √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]} 

+
1

2∆
{[
√3

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

1

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} +

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
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𝐸+32,−
1
2

= √𝐷2 + 3𝐸2 +
𝑔𝑧𝛽𝐵

2
(3 cos2 𝜃 − sin2 𝜃) +

2(𝑔𝑧𝛽𝐵)
2 sin2 𝜃 cos2 𝜃

√𝐷2 + 3𝐸2

+
1

4
{−𝐴𝑧 − 2𝐴𝑧 cos 2𝜃

+ 2√sin2 𝜃 [2(𝐴𝑥
2 + 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) + (𝐴𝑥
2 + 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 + √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]}

+
1

2∆
{[
√3

4
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

1

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝐸+12,+
1
2
= −√𝐷2 + 3𝐸2 +

𝑔𝑧𝛽𝐵

2
(cos2 𝜃 − 3 sin2 𝜃) −

2(𝑔𝑧𝛽𝐵)
2 sin2 𝜃 cos2 𝜃

√𝐷2 + 3𝐸2
+

=
1

4
{𝐴𝑧 − 2𝐴𝑧 cos 2𝜃

+ 2√cos2 𝜃 [2(𝐴𝑥
2 − 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) − (𝐴𝑥
2 − 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 − √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]}

−
1

2∆
{[
√3

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

1

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝐸+12,−
1
2

= −√𝐷2 + 3𝐸2 +
𝑔𝑧𝛽𝐵

2
(cos2 𝜃 − 3 sin2 𝜃) −

2(𝑔𝑧𝛽𝐵)
2 sin2 𝜃 cos2 𝜃

√𝐷2 + 3𝐸2

+
1

4
{−𝐴𝑧 + 2𝐴𝑧 cos2𝜃

+ 2√cos2 𝜃 [2(𝐴𝑥
2 + 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) − (𝐴𝑥
2 + 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 − √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]} 

−
1

2∆
{[
√3

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

1

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} +

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝐸−12,+
1
2

= −√𝐷2 + 3𝐸2 −
𝑔𝑧𝛽𝐵

2
(cos2 𝜃 − 3 sin2 𝜃) −

2(𝑔𝑧𝛽𝐵)
2 sin2 𝜃 cos2 𝜃

√𝐷2 + 3𝐸2

+
1

4
{−𝐴𝑧 + 2𝐴𝑧 cos2𝜃

− 2√cos2 𝜃 [2(𝐴𝑥
2 + 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) − (𝐴𝑥
2 + 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 − √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]}

−
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

√3

4
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

1

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} −
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
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𝐸−12,−
1
2

= −√𝐷2 + 3𝐸2 −
𝑔𝑧𝛽𝐵

2
(cos2 𝜃 − 3 sin2 𝜃) −

2(𝑔𝑧𝛽𝐵)
2 sin2 𝜃 cos2 𝜃

√𝐷2 + 3𝐸2

+
1

4
{𝐴𝑧 − 2𝐴𝑧 cos2𝜃

− 2√cos2 𝜃 [2(𝐴𝑥
2 − 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) − (𝐴𝑥
2 − 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 − √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]}

−
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

√3

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

1

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} +
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝐸−32,+
1
2

= √𝐷2 + 3𝐸2 −
𝑔𝑧𝛽𝐵

2
(3 cos2 𝜃 − sin2 𝜃) +

2(𝑔𝑧𝛽𝐵)
2 sin2 𝜃 cos2 𝜃

√𝐷2 + 3𝐸2

+
1

4
{−𝐴𝑧 − 2𝐴𝑧 cos 2𝜃

− 2√sin2 𝜃 [2(𝐴𝑥
2 + 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) + (𝐴𝑥
2 + 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 + √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]}

+
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

√3

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

1

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} +
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝐸−32,−
1
2

= √𝐷2 + 3𝐸2 −
𝑔𝑧𝛽𝐵

2
(3 cos2 𝜃 − sin2 𝜃) +

2(𝑔𝑧𝛽𝐵)
2 sin2 𝜃 cos2 𝜃

√𝐷2 + 3𝐸2

+
1

4
{𝐴𝑧 + 2𝐴𝑧 cos2𝜃

− 2√sin2 𝜃 [2(𝐴𝑥
2 − 𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) + (𝐴𝑥
2 − 4𝐴𝑥𝐴𝑦 + 𝐴𝑦

2) cos2𝜃 + √3(𝐴𝑥
2 − 𝐴𝑦

2) sin 2𝜃]}

+
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

√3

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

1

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} −
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

 

2. I = 3/2 case 

The matrix elements of the hyperfine structure Hamiltonian in the basis of |MS, MI> are 

⟨𝑀𝑆
′ ,𝑀𝐼

′|𝐻hfs|𝑀𝑆, 𝑀𝐼⟩ =

{
 
 

 
 

𝛿𝑀𝑆𝑀𝑆′𝛿𝑀𝐼𝑀𝐼′𝑀𝑆𝑀𝐼𝐴𝑧𝑧
1

16
𝛿𝑀𝑆𝑀𝑆′∓1𝛿𝑀𝐼𝑀𝐼′∓1√15 − 4𝑀𝑆𝑀𝑆

′√15 − 4𝑀𝐼𝑀𝐼
′(𝐴𝑥𝑥 − 𝐴𝑦𝑦)

1

16
𝛿𝑀𝑆𝑀𝑆′∓1𝛿𝑀𝐼𝑀𝐼′±1√15 − 4𝑀𝑆𝑀𝑆

′√15 − 4𝑀𝐼𝑀𝐼
′(𝐴𝑥𝑥 + 𝐴𝑦𝑦)

 

     The secular equation of the full spin Hamiltonian (including the zero-field splitting, the electron-

Zeeman and the hyperfine terms) is factorized into two octic equations, for which we do not have general 

solutions. Therefore, the extremely exact energies relevant to the equations can be obtained by applying the 

double perturbation approach. 

     The matrix representation of the rank-2 ZFS Hamiltonian is the same as that in the case of I = 1/2, and 
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thus the energy eigenvalues and the spin eigenstates have already been shown. 

     Similar to the I = 1/2 case, the set of the spin eigenfunctions, {|𝜑𝑀𝑆 ,𝑀𝐼
(0) ⟩}, is divided into two subspaces 

corresponding to the eigenvalues; 

{|𝜑
+32,+

3
2

(0) ⟩ , |𝜑
+32,+

1
2

(0) ⟩ , |𝜑
+32,−

1
2

(0) ⟩ , |𝜑
+32,−

3
2

(0) ⟩ , |𝜑
−32,+

3
2

(0) ⟩ , |𝜑
−32,+

1
2

(0) ⟩ , |𝜑
−32,−

1
2

(0) ⟩ , |𝜑
−32,−

3
2

(0) ⟩} (eigenvalue Δ) 

{|𝜑
+12,+

3
2

(0) ⟩ , |𝜑
+12,+

1
2

(0) ⟩ , |𝜑
+12,−

1
2

(0) ⟩ , |𝜑
+12,−

3
2

(0) ⟩ , |𝜑
−12,+

3
2

(0) ⟩ , |𝜑
−12,+

1
2

(0) ⟩ , |𝜑
−12,−

1
2

(0) ⟩ , |𝜑
−12,−

3
2

(0) ⟩} (eigenvalue − Δ) 

For simplicity, we rewrite the notation of the eigenfunctions as follows for simplicity. 

{|𝜑
+32,+

3
2

(0) ⟩ , |𝜑
+32,+

1
2

(0) ⟩ , |𝜑
+32,−

1
2

(0) ⟩ , |𝜑
+32,−

3
2

(0) ⟩ , |𝜑
−32,+

3
2

(0) ⟩ , |𝜑
−32,+

1
2

(0) ⟩ , |𝜑
−32,−

1
2

(0) ⟩ , |𝜑
−32,−

3
2

(0) ⟩}

→ {|+,1⟩, |+,2⟩, |+,3⟩, |+,4⟩, |+,5⟩, |+,6⟩, |+,7⟩, |+,8⟩} 

{|𝜑
+12,+

3
2

(0)
⟩ , |𝜑

+12,+
1
2

(0)
⟩ , |𝜑

+12,−
1
2

(0)
⟩ , |𝜑

+12,−
3
2

(0)
⟩ , |𝜑

−12,+
3
2

(0)
⟩ , |𝜑

−12,+
1
2

(0)
⟩ , |𝜑

−12,−
1
2

(0)
⟩ , |𝜑

−12,−
3
2

(0)
⟩}

→ {|−,1⟩, |−,2⟩, |−,3⟩, |−,4⟩, |−,5⟩, |−,6⟩, |−,7⟩, |−,8⟩} 

According to the degenerate perturbation theory, similarly to the I = 1/2 case the first-order corrections for 

the energies of the hyperfine structure Hamiltonian which belong to the group of the positive eigenenergy 

(𝜀+,𝛼
(01) (𝛼 = 1,⋯ ,8)) are the eigenvalues of the 8 × 8 matrix, which can be divided into two 4 × 4 matrixes 

represented as follows: 

𝐻hfs
+,1 =

(

 

⟨+,1|𝐻hfs|+,1⟩ ⟨+,1|𝐻hfs|+,3⟩

⟨+,3|𝐻hfs|+,1⟩ ⟨+,3|𝐻hfs|+,3⟩

⟨+,1|𝐻hfs|+,6⟩ ⟨+,1|𝐻hfs|+,8⟩

⟨+,3|𝐻hfs|+,6⟩ ⟨+,3|𝐻hfs|+,8⟩

⟨+,6|𝐻hfs|+,1⟩ ⟨+,6|𝐻hfs|+,3⟩

⟨+,8|𝐻hfs|+,1⟩ ⟨+,8|𝐻hfs|+,3⟩

⟨+,6|𝐻hfs|+,6⟩ ⟨+,6|𝐻hfs|+,8⟩

⟨+,8|𝐻hfs|+,6⟩ ⟨+,8|𝐻hfs|+,8⟩)

  

𝐻hfs
+,2 =

(

 

⟨+,2|𝐻hfs|+,2⟩ ⟨+,2|𝐻hfs|+,4⟩

⟨+,4|𝐻hfs|+,2⟩ ⟨+,4|𝐻hfs|+,4⟩

⟨+,2|𝐻hfs|+,5⟩ ⟨+,2|𝐻hfs|+,7⟩

⟨+,4|𝐻hfs|+,5⟩ ⟨+,4|𝐻hfs|+,7⟩

⟨+,5|𝐻hfs|+,2⟩ ⟨+,5|𝐻hfs|+,4⟩

⟨+,7|𝐻hfs|+,2⟩ ⟨+,7|𝐻hfs|+,4⟩

⟨+,5|𝐻hfs|+,5⟩ ⟨+,5|𝐻hfs|+,7⟩

⟨+,7|𝐻hfs|+,5⟩ ⟨+,7|𝐻hfs|+,7⟩)

  

where each matrix element can be calculated as 

⟨+,1|𝐻hfs|+,1⟩ = ⟨+,8|𝐻hfs|+,8⟩ =
3𝐴𝑧
4
(1 + 2 cos 2𝜃) 

⟨+,2|𝐻hfs|+,2⟩ = ⟨+,7|𝐻hfs|+,7⟩ =
𝐴𝑧
4
(1 + 2 cos2𝜃) 

⟨+,3|𝐻hfs|+,3⟩ = ⟨+,6|𝐻hfs|+,6⟩ = −
𝐴𝑧
4
(1 + 2 cos2𝜃) 

⟨+,4|𝐻hfs|+,4⟩ = ⟨+,5|𝐻hfs|+,5⟩ = −
3𝐴𝑧
4
(1 + 2 cos 2𝜃) 

⟨+,1|𝐻hfs|+,6⟩ = ⟨+,6|𝐻hfs|+,1⟩ = ⟨+,3|𝐻hfs|+,8⟩ = ⟨+,8|𝐻hfs|+,3⟩

=
1

2
sin 𝜃 [3(𝐴𝑥 − 𝐴𝑦) cos𝜃 + √3(𝐴𝑥 + 𝐴𝑦) sin 𝜃] 
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⟨+,2|𝐻hfs|+,5⟩ = ⟨+,5|𝐻hfs|+,2⟩ = ⟨+,4|𝐻hfs|+,7⟩ = ⟨+,7|𝐻hfs|+,4⟩

=
1

2
sin 𝜃 [3(𝐴𝑥 + 𝐴𝑦) cos𝜃 + √3(𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

⟨+,2|𝐻hfs|+,7⟩ = ⟨+,7|𝐻hfs|+,2⟩ = sin 𝜃 [√3(𝐴𝑥 − 𝐴𝑦) cos𝜃 + (𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨+,3|𝐻hfs|+,6⟩ = ⟨+,6|𝐻hfs|+,3⟩ = sin 𝜃 [√3(𝐴𝑥 + 𝐴𝑦) cos𝜃 + (𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

The other elements are zero. 

𝐻hfs
+,1 =

(

 

⟨+,1|𝐻hfs|+,1⟩ 0

0 ⟨+,3|𝐻hfs|+,3⟩

⟨+,1|𝐻hfs|+,6⟩ 0
⟨+,3|𝐻hfs|+,6⟩ ⟨+,3|𝐻hfs|+,8⟩

⟨+,6|𝐻hfs|+,1⟩ ⟨+,6|𝐻hfs|+,3⟩

0 ⟨+,8|𝐻hfs|+,3⟩

⟨+,6|𝐻hfs|+,6⟩ 0

0 ⟨+,8|𝐻hfs|+,8⟩)

  

𝐻hfs
+,2 =

(

 

⟨+,2|𝐻hfs|+,2⟩ 0

0 ⟨+,4|𝐻hfs|+,4⟩

⟨+,2|𝐻hfs|+,5⟩ ⟨+,2|𝐻hfs|+,7⟩

0 ⟨+,4|𝐻hfs|+,7⟩

⟨+,5|𝐻hfs|+,2⟩ 0
⟨+,7|𝐻hfs|+,2⟩ ⟨+,7|𝐻hfs|+,4⟩

⟨+,5|𝐻hfs|+,5⟩ 0

0 ⟨+,7|𝐻hfs|+,7⟩)

  

while the first-order corrections for the energy, which belong to the group of the negative eigenenergy 

(𝜀−,𝛼
(01) (𝛼 = 1,⋯ ,8)), are the eigenvalues of the 4 × 4 matrixes represented as follows: 

𝐻hfs
−,1 =

(

 

⟨−,1|𝐻hfs|−,1⟩ ⟨−,1|𝐻hfs|−,3⟩

⟨−,3|𝐻hfs|−,1⟩ ⟨−,3|𝐻hfs|−,3⟩

⟨−,1|𝐻hfs|−,6⟩ ⟨−,1|𝐻hfs|−,8⟩

⟨−,3|𝐻hfs|−,6⟩ ⟨−,3|𝐻hfs|−,8⟩

⟨−,6|𝐻hfs|−,1⟩ ⟨−,6|𝐻hfs|−,3⟩

⟨−,8|𝐻hfs|−,1⟩ ⟨−,8|𝐻hfs|−,3⟩

⟨−,6|𝐻hfs|−,6⟩ ⟨−,6|𝐻hfs|−,8⟩

⟨−,8|𝐻hfs|−,6⟩ ⟨−,8|𝐻hfs|−,8⟩)

  

𝐻hfs
−,2 =

(

 

⟨−,2|𝐻hfs|−,2⟩ ⟨−,2|𝐻hfs|−,4⟩

⟨−,4|𝐻hfs|−,2⟩ ⟨−,4|𝐻hfs|−,4⟩

⟨−,2|𝐻hfs|−,5⟩ ⟨−,2|𝐻hfs|−,7⟩

⟨−,4|𝐻hfs|−,5⟩ ⟨−,4|𝐻hfs|−,7⟩

⟨−,5|𝐻hfs|−,2⟩ ⟨−,5|𝐻hfs|−,4⟩

⟨−,7|𝐻hfs|−,2⟩ ⟨−,7|𝐻hfs|−,4⟩

⟨−,5|𝐻hfs|−,5⟩ ⟨−,5|𝐻hfs|−,7⟩

⟨−,7|𝐻hfs|−,5⟩ ⟨−,7|𝐻hfs|−,7⟩)

  

⟨−,1|𝐻hfs|−,1⟩ = ⟨−,8|𝐻hfs|−,8⟩ =
3𝐴𝑧
4
(−1 + 2 cos2𝜃) 

⟨−,2|𝐻hfs|−,2⟩ = ⟨−,7|𝐻hfs|−,7⟩ =
𝐴𝑧
4
(−1 + 2 cos2𝜃) 

⟨−,3|𝐻hfs|−,3⟩ = ⟨−,6|𝐻hfs|−,6⟩ =
𝐴𝑧
4
(1 − 2 cos2𝜃) 

⟨−,4|𝐻hfs|−,4⟩ = ⟨−,5|𝐻hfs|−,5⟩ =
3𝐴𝑧
4
(1 − 2 cos 2𝜃) 

⟨−,1|𝐻hfs|−,6⟩ = ⟨−,6|𝐻hfs|−,1⟩ = ⟨−,3|𝐻hfs|−,8⟩ = ⟨−,8|𝐻hfs|−,3⟩

=
1

2
cos 𝜃 [√3(𝐴𝑥 − 𝐴𝑦) cos𝜃 − 3(𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨−,2|𝐻hfs|−,5⟩ = ⟨−,5|𝐻hfs|−,2⟩ = ⟨−,4|𝐻hfs|−,7⟩ = ⟨−,7|𝐻hfs|−,4⟩

=
1

2
cos 𝜃 [√3(𝐴𝑥 + 𝐴𝑦) cos𝜃 − 3(𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

⟨−,2|𝐻hfs|−,7⟩ = ⟨−,7|𝐻hfs|−,2⟩ = cos𝜃 [(𝐴𝑥 − 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨−,3|𝐻hfs|−,6⟩ = ⟨−,6|𝐻hfs|−,3⟩ = cos𝜃 [(𝐴𝑥 + 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 − 𝐴𝑦) sin 𝜃] 
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𝐻hfs
−,1 =

(

 

⟨−,1|𝐻hfs|−,1⟩ 0

0 ⟨−,3|𝐻hfs|−,3⟩

⟨−,1|𝐻hfs|−,6⟩ 0
⟨−,3|𝐻hfs|−,6⟩ ⟨−,3|𝐻hfs|−,8⟩

⟨−,6|𝐻hfs|−,1⟩ ⟨−,6|𝐻hfs|−,3⟩

0 ⟨−,8|𝐻hfs|−,3⟩

⟨−,6|𝐻hfs|−,6⟩ 0

0 ⟨−,8|𝐻hfs|−,8⟩)

  

𝐻hfs
−,2 =

(

 

⟨−,2|𝐻hfs|−,2⟩ 0

0 ⟨−,4|𝐻hfs|−,4⟩

⟨−,2|𝐻hfs|−,5⟩ ⟨−,2|𝐻hfs|−,7⟩

0 ⟨−,4|𝐻hfs|−,7⟩

⟨−,5|𝐻hfs|−,2⟩ 0
⟨−,7|𝐻hfs|−,2⟩ ⟨−,7|𝐻hfs|−,4⟩

⟨−,5|𝐻hfs|−,5⟩ 0

0 ⟨−,7|𝐻hfs|−,7⟩)

  

The secular quartic equations can be factorized to two quadratic equations. The first-order corrections are 

given as the solutions of the following quadratic equation: 

𝑥2 + 𝑎𝑖𝑥 + 𝑏𝑖 = 0 (𝑖 = 1,⋯ , 8) 

In the equation, i = 1 and 2, 3 and 4, 5 and 6, and 7 and 8 come from 𝐻hfs
+,1

, 𝐻hfs
+,2

, 𝐻hfs
−,1

, 𝐻hfs
−,2

, respectively. 

The solutions of the quadratic equation above are 

𝑥 =
−𝑎𝑖 ±√𝑎𝑖

2 − 4𝑏𝑖
2

 (𝑖 = 1,⋯ , 8) 

The coefficients of the quadratic equation are in the following: 

𝑎1 =
1

2
(𝐴𝑥 − 𝐴𝑦 − 𝐴𝑧) −

1

2
(𝐴𝑥 − 𝐴𝑦 + 2𝐴𝑧) cos 2𝜃 +

√3

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

𝑏1 = −
9

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
3

8
(𝐴𝑥

2 + 2𝐴𝑥𝐴𝑦 + 𝐴𝑦
2 − 𝐴𝑥𝐴𝑧 + 𝐴𝑦𝐴𝑧 − 2𝐴𝑧

2) cos 2𝜃

+
3

16
(𝐴𝑥

2 − 4𝐴𝑥𝐴𝑦 + 𝐴𝑦
2 + 2𝐴𝑥𝐴𝑧 − 2𝐴𝑦𝐴𝑧 − 2𝐴𝑧

2) cos4𝜃

−
3√3

8
(𝐴𝑥

2 − 𝐴𝑦
2 + 𝐴𝑥𝐴𝑧 + 𝐴𝑦𝐴𝑧) sin 2𝜃

+
3√3

16
(𝐴𝑥

2 − 𝐴𝑦
2 − 2𝐴𝑥𝐴𝑧 − 2𝐴𝑦𝐴𝑧) sin 4𝜃 

 

𝑎2 =
1

2
(−𝐴𝑥 + 𝐴𝑦 − 𝐴𝑧) +

1

2
(𝐴𝑥 − 𝐴𝑦 − 2𝐴𝑧) cos2𝜃 −

1

2
√3(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

𝑏2 = −
9

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
3

8
(𝐴𝑥

2 + 2𝐴𝑥𝐴𝑦 + 𝐴𝑦
2 + 𝐴𝑥𝐴𝑧 − 𝐴𝑦𝐴𝑧 − 2𝐴𝑧

2) cos 2𝜃

+
3

16
(𝐴𝑥

2 − 4𝐴𝑥𝐴𝑦 + 𝐴𝑦
2 − 2𝐴𝑥𝐴𝑧 + 2𝐴𝑦𝐴𝑧 − 2𝐴𝑧

2) cos4𝜃

−
3√3

8
(𝐴𝑥

2 − 𝐴𝑦
2 − 𝐴𝑥𝐴𝑧 − 𝐴𝑦𝐴𝑧) sin 2𝜃

+
3√3

16
(𝐴𝑥

2 − 𝐴𝑦
2 + 2𝐴𝑥𝐴𝑧 + 2𝐴𝑦𝐴𝑧) sin 4𝜃 

 

𝑎3 =
1

2
(𝐴𝑥 + 𝐴𝑦 + 𝐴𝑧) −

1

2
(𝐴𝑥 + 𝐴𝑦 − 2𝐴𝑧) cos 2𝜃 +

√3

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 
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𝑏3 = −
9

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
3

8
(𝐴𝑥

2 − 2𝐴𝑥𝐴𝑦 + 𝐴𝑦
2 + 𝐴𝑥𝐴𝑧 + 𝐴𝑦𝐴𝑧 − 2𝐴𝑧

2) cos 2𝜃

+
3

16
(𝐴𝑥

2 + 4𝐴𝑥𝐴𝑦 + 𝐴𝑦
2 − 2𝐴𝑥𝐴𝑧 − 2𝐴𝑦𝐴𝑧 − 2𝐴𝑧

2) cos4𝜃

−
3√3

8
(𝐴𝑥

2 − 𝐴𝑦
2 − 𝐴𝑥𝐴𝑧 + 𝐴𝑦𝐴𝑧) sin 2𝜃

+
3√3

16
(𝐴𝑥

2 − 𝐴𝑦
2 + 2𝐴𝑥𝐴𝑧 − 2𝐴𝑦𝐴𝑧) sin 4𝜃 

 

𝑎4 =
1

2
(−𝐴𝑥 − 𝐴𝑦 + 𝐴𝑧) +

1

2
(𝐴𝑥 + 𝐴𝑦 + 2𝐴𝑧) cos 2𝜃 +

√3

2
(−𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

𝑏4 = −
9

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
3

8
(𝐴𝑥

2 − 2𝐴𝑥𝐴𝑦 + 𝐴𝑦
2 − 𝐴𝑥𝐴𝑧 − 𝐴𝑦𝐴𝑧 − 2𝐴𝑧

2) cos 2𝜃

+
3

16
(𝐴𝑥

2 + 4𝐴𝑥𝐴𝑦 + 𝐴𝑦
2 + 2𝐴𝑥𝐴𝑧 + 2𝐴𝑦𝐴𝑧 − 2𝐴𝑧

2) cos4𝜃

−
3√3

8
(𝐴𝑥

2 − 𝐴𝑦
2 + 𝐴𝑥𝐴𝑧 − 𝐴𝑦𝐴𝑧) sin 2𝜃

+
3√3

16
(𝐴𝑥

2 − 𝐴𝑦
2 − 2𝐴𝑥𝐴𝑧 + 2𝐴𝑦𝐴𝑧) sin 4𝜃 

Actually, the coefficients for i = 2, 3 and 4 can be obtained from {a1, b1, c1, d1} with replacing Ax and Ay to –

Ax and –Ay, Ax and Az to –Ax and –Az, and Ay and Az to –Ay and –Az, respectively. 

     For the negative counterpart: 

𝑎5 =
1

2
(−𝐴𝑥 − 𝐴𝑦 + 𝐴𝑧) −

1

2
(𝐴𝑥 + 𝐴𝑦 + 2𝐴𝑧) cos2𝜃 +

√3

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

𝑏5 = −
9

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) −
3

8
(𝐴𝑥

2 − 2𝐴𝑥𝐴𝑦 + 𝐴𝑦
2 − 𝐴𝑥𝐴𝑧 − 𝐴𝑦𝐴𝑧 − 2𝐴𝑧

2) cos 2𝜃

+
3

16
(𝐴𝑥

2 + 4𝐴𝑥𝐴𝑦 + 𝐴𝑦
2 + 2𝐴𝑥𝐴𝑧 + 2𝐴𝑦𝐴𝑧 − 2𝐴𝑧

2) cos4𝜃

+
3√3

8
(𝐴𝑥

2 − 𝐴𝑦
2 + 𝐴𝑥𝐴𝑧 − 𝐴𝑦𝐴𝑧) sin 2𝜃

+
3√3

16
(𝐴𝑥

2 − 𝐴𝑦
2 − 2𝐴𝑥𝐴𝑧 + 2𝐴𝑦𝐴𝑧) sin 4𝜃 

 

𝑎6 =
1

2
(𝐴𝑥 + 𝐴𝑦 + 𝐴𝑧) +

1

2
(𝐴𝑥 + 𝐴𝑦 − 2𝐴𝑧) cos 2𝜃 +

√3

2
(−𝐴𝑥 + 𝐴𝑦) sin 2𝜃 
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𝑏6 = −
9

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
3

8
(−𝐴𝑥

2 + 2𝐴𝑥𝐴𝑦 − 𝐴𝑦
2 − 𝐴𝑥𝐴𝑧 − 𝐴𝑦𝐴𝑧 + 2𝐴𝑧

2) cos2𝜃

+
3

16
(𝐴𝑥

2 + 4𝐴𝑥𝐴𝑦 + 𝐴𝑦
2 − 2𝐴𝑥𝐴𝑧 − 2𝐴𝑦𝐴𝑧 − 2𝐴𝑧

2) cos 4𝜃

+
3√3

8
(𝐴𝑥

2 − 𝐴𝑦
2 − 𝐴𝑥𝐴𝑧 + 𝐴𝑦𝐴𝑧) sin 2𝜃

+
3√3

16
(𝐴𝑥

2 − 𝐴𝑦
2 + 2𝐴𝑥𝐴𝑧 − 2𝐴𝑦𝐴𝑧) sin 4𝜃 

 

𝑎7 =
1

2
(−𝐴𝑥 + 𝐴𝑦 − 𝐴𝑧) +

1

2
(−𝐴𝑥 + 𝐴𝑦 + 2𝐴𝑧) cos2𝜃 +

√3

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

𝑏7 = −
9

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
3

8
(−𝐴𝑥

2 − 2𝐴𝑥𝐴𝑦 − 𝐴𝑦
2 − 𝐴𝑥𝐴𝑧 + 𝐴𝑦𝐴𝑧 + 2𝐴𝑧

2) cos2𝜃

+
3

16
(𝐴𝑥

2 − 4𝐴𝑥𝐴𝑦 + 𝐴𝑦
2 − 2𝐴𝑥𝐴𝑧 + 2𝐴𝑦𝐴𝑧 − 2𝐴𝑧

2) cos 4𝜃

+
3√3

8
(𝐴𝑥

2 − 𝐴𝑦
2 − 𝐴𝑥𝐴𝑧 − 𝐴𝑦𝐴𝑧) sin 2𝜃

+
3√3

16
(𝐴𝑥

2 − 𝐴𝑦
2 + 2𝐴𝑥𝐴𝑧 + 2𝐴𝑦𝐴𝑧) sin 4𝜃 

 

𝑎8 =
1

2
(𝐴𝑥 − 𝐴𝑦 − 𝐴𝑧) +

1

2
(𝐴𝑥 − 𝐴𝑦 + 2𝐴𝑧) cos 2𝜃 +

√3

2
(−𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

𝑏8 = −
9

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
3

8
(−𝐴𝑥

2 − 2𝐴𝑥𝐴𝑦 − 𝐴𝑦
2 + 𝐴𝑥𝐴𝑧 − 𝐴𝑦𝐴𝑧 + 2𝐴𝑧

2) cos2𝜃

+
3

16
(𝐴𝑥

2 − 4𝐴𝑥𝐴𝑦 + 𝐴𝑦
2 + 2𝐴𝑥𝐴𝑧 − 2𝐴𝑦𝐴𝑧 − 2𝐴𝑧

2) cos 4𝜃

+
3√3

8
(𝐴𝑥

2 − 𝐴𝑦
2 + 𝐴𝑥𝐴𝑧 + 𝐴𝑦𝐴𝑧) sin 2𝜃

+
3√3

16
(𝐴𝑥

2 − 𝐴𝑦
2 − 2𝐴𝑥𝐴𝑧 − 2𝐴𝑦𝐴𝑧) sin 4𝜃 

Similarly, the coefficients for i = 6, 7 and 8 can be obtained from {a5, b5, c5, d5} with replacing Ax and Ay to 

–Ax and –Ay, Ax and Az to –Ax and –Az, and Ay and Az to –Ay and –Az, respectively. 

     The second-order corrections for the energy 𝜀𝜎,𝛼
(02) (𝜎 = +,−;  𝛼 = 1, 2, 3, 4) can be written as 

𝜀±,𝛼
(02) = ∑

|⟨±, 𝛼|𝐻hfs|∓, 𝛽⟩|
2

𝜀±
(0) − 𝜀∓

(0)

4

𝛽=1

 

Both the upper and lower signs should be chosen in the double sign. The non-zero matrix elements of 𝐻hfs 

expanded to the basis belonging different eigenspaces are in the following; 
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⟨+,1|𝐻hfs|−,2⟩ = ⟨−,2|𝐻hfs|+,1⟩ = ⟨+,3|𝐻hfs|−,4⟩ = ⟨−,4|𝐻hfs|+,3⟩ = ⟨−,5|𝐻hfs|+,6⟩ = ⟨+,6|𝐻hfs|−,5⟩

= ⟨−,7|𝐻hfs|+,8⟩ = ⟨+,8|𝐻hfs|−,7⟩ =
3

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

⟨+,2|𝐻hfs|−,1⟩ = ⟨−,1|𝐻hfs|+,2⟩ = ⟨+,4|𝐻hfs|−,3⟩ = ⟨−,3|𝐻hfs|+,4⟩ = ⟨−,6|𝐻hfs|+,5⟩ = ⟨+,5|𝐻hfs|−,6⟩

= ⟨−,8|𝐻hfs|+,7⟩ = ⟨+,7|𝐻hfs|−,8⟩ =
3

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

⟨+,2|𝐻hfs|−,3⟩ = ⟨−,3|𝐻hfs|+,2⟩ = ⟨−,6|𝐻hfs|+,7⟩ = ⟨+,7|𝐻hfs|−,6⟩

=
√3

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

1

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

⟨+,3|𝐻hfs|−,2⟩ = ⟨−,2|𝐻hfs|+,3⟩ = ⟨−,7|𝐻hfs|+,6⟩ = ⟨+,6|𝐻hfs|−,7⟩

=
√3

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

1

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

⟨+,1|𝐻hfs|−,5⟩ = ⟨−,5|𝐻hfs|+,1⟩ = ⟨−,4|𝐻hfs|+,8⟩ = ⟨+,8|𝐻hfs|−,4⟩ = −
3

2
𝐴𝑧 sin 2𝜃 

⟨+,2|𝐻hfs|−,6⟩ = ⟨−,6|𝐻hfs|+,2⟩ = ⟨−,3|𝐻hfs|+,7⟩ = ⟨+,7|𝐻hfs|−,3⟩ = −
𝐴𝑧
2
sin 2𝜃 

⟨+,3|𝐻hfs|−,7⟩ = ⟨−,7|𝐻hfs|+,3⟩ = ⟨−,2|𝐻hfs|+,6⟩ = ⟨+,6|𝐻hfs|−,2⟩ =
𝐴𝑧
2
sin 2𝜃 

⟨+,4|𝐻hfs|−,8⟩ = ⟨−,8|𝐻hfs|+,4⟩ = ⟨−,1|𝐻hfs|+,5⟩ = ⟨+,5|𝐻hfs|−,1⟩ =
3

2
𝐴𝑧 sin 2𝜃 

Therefore, 

𝜀+,1
(02) =

|⟨−,2|𝐻hfs|+,1⟩|
2 + |⟨−,5|𝐻hfs|+,1⟩|

2

2∆

=
1

2∆
{[
3

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

√3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
9

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀+,2
(02) =

|⟨−,1|𝐻hfs|+,2⟩|
2 + |⟨−,3|𝐻hfs|+,2⟩|

2 + |⟨−,6|𝐻hfs|+,2⟩|
2

2∆

=
1

2∆
{[
3

4
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

√3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
√3

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

1

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} 

𝜀+,3
(02) =

|⟨−,2|𝐻hfs|+,3⟩|
2 + |⟨−,4|𝐻hfs|+,3⟩|

2 + |⟨−,7|𝐻hfs|+,3⟩|
2

2∆

=
1

2∆
{[
√3

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

1

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
3

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} 
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𝜀+,4
(02) =

|⟨−,3|𝐻hfs|+,4⟩|
2 + |⟨−,8|𝐻hfs|+,4⟩|

2

2∆

=
1

2∆
{[
3

4
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

√3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
9

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀+,5
(02) =

|⟨−,1|𝐻hfs|+,5⟩|
2 + |⟨−,6|𝐻hfs|+,5⟩|

2

2∆

=
1

2∆
{
9

4
𝐴𝑧 sin

2 2𝜃 + [
3

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

𝜀+,6
(02) =

|⟨−,2|𝐻hfs|+,6⟩|
2 + |⟨−,5|𝐻hfs|+,6⟩|

2 + |⟨−,7|𝐻hfs|+,6⟩|
2

2∆

=
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

3

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
√3

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

1

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

𝜀+,7
(02) =

|⟨−,3|𝐻hfs|+,7⟩|
2 + |⟨−,6|𝐻hfs|+,7⟩|

2 + |⟨−,8|𝐻hfs|+,7⟩|
2

2∆

=
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

√3

2
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

1

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
3

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

𝜀+,8
(02) =

|⟨−,4|𝐻hfs|+,8⟩|
2 + |⟨−,7|𝐻hfs|+,8⟩|

2

2∆

=
1

2∆
{
9

4
𝐴𝑧
2 sin2 2𝜃 + [

3

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,1
(02) =

|⟨+,2|𝐻hfs|−,1⟩|
2 + |⟨+,5|𝐻hfs|−,1⟩|

2

−2∆

=
1

2∆
{[
3

4
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

√3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
9

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀−,2
(02) =

|⟨+,1|𝐻hfs|−,2⟩|
2 + |⟨+,3|𝐻hfs|−,2⟩|

2 + |⟨+,6|𝐻hfs|−,2⟩|
2

−2∆

=
1

2∆
{[
3

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

√3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
√3

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

1

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} 
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𝜀−,3
(02) =

|⟨+,2|𝐻hfs|−,3⟩|
2 + |⟨+,4|𝐻hfs|−,3⟩|

2 + |⟨+,7|𝐻hfs|−,3⟩|
2

−2∆

=
1

2∆
{[
√3

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

1

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
3

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} 

𝜀−,4
(02) =

|⟨+,3|𝐻hfs|−,4⟩|
2 + |⟨+,8|𝐻hfs|−,4⟩|

2

−2∆

=
1

2∆
{[
3

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

√3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
9

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀−,5
(02) =

|⟨+,1|𝐻hfs|−,5⟩|
2 + |⟨+,6|𝐻hfs|−,5⟩|

2

−2∆

=
1

2∆
{
9

4
𝐴𝑧
2 sin2 2𝜃 + [

3

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,6
(02) =

|⟨+,2|𝐻hfs|−,6⟩|
2 + |⟨+,5|𝐻hfs|−,6⟩|

2 + |⟨+,7|𝐻hfs|−,6⟩|
2

−2∆

=
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

3

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
√3

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

1

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,7
(02) =

|⟨+,3|𝐻hfs|−,7⟩|
2 + |⟨+,6|𝐻hfs|−,7⟩|

2 + |⟨+,8|𝐻hfs|−,7⟩|
2

−2∆

=
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

√3

2
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

1

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
3

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,8
(02) =

|⟨+,4|𝐻hfs|−,8⟩|
2 + |⟨+,7|𝐻hfs|−,8⟩|

2

−2∆

=
1

2∆
{
9

4
𝐴𝑧
2 sin2 2𝜃 + [

3

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

Noticeably, the first- and second-order corrections for the energy of the electron Zeeman Hamiltonian are the 

same as for the I = 1/2 case. In order to obtain the cross terms, let us remind the non-diagonal elements for 

the electron Zeeman Hamiltonian. 

⟨+,1|𝐻eZ|−,5⟩ = ⟨−,5|𝐻eZ|+,1⟩ = −𝑔𝑧𝛽𝐵 sin 2𝜃 

⟨+,2|𝐻eZ|−,6⟩ = ⟨−,6|𝐻eZ|+,2⟩ = −𝑔𝑧𝛽𝐵 sin 2𝜃 

⟨+,3|𝐻eZ|−,7⟩ = ⟨−,7|𝐻eZ|+,3⟩ = −𝑔𝑧𝛽𝐵 sin 2𝜃 

⟨+,4|𝐻eZ|−,8⟩ = ⟨−,8|𝐻eZ|+,2⟩ = −𝑔𝑧𝛽𝐵 sin 2𝜃 

⟨+,5|𝐻eZ|−,1⟩ = ⟨−,1|𝐻eZ|+,5⟩ = 𝑔𝑧𝛽𝐵 sin 2𝜃 

⟨+,6|𝐻eZ|−,2⟩ = ⟨−,2|𝐻eZ|+,6⟩ = 𝑔𝑧𝛽𝐵 sin 2𝜃 
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⟨+,7|𝐻eZ|−,3⟩ = ⟨−,3|𝐻eZ|+,7⟩ = 𝑔𝑧𝛽𝐵 sin 2𝜃 

⟨+,8|𝐻eZ|−,4⟩ = ⟨−,4|𝐻eZ|+,7⟩ = 𝑔𝑧𝛽𝐵 sin 2𝜃 

The cross terms are as follows:  

𝜀+,1
(11)

=
⟨+,1|𝐻eZ|−,5⟩⟨−,5|𝐻hfs|+,1⟩ + ⟨+,1|𝐻hfs|−,5⟩⟨−,5|𝐻eZ|+,1⟩

𝜀+
(0)
− 𝜀−

(0)
=
3𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,2
(11)

=
⟨+,2|𝐻eZ|−,6⟩⟨−,6|𝐻hfs|+,2⟩ + ⟨+,2|𝐻hfs|−,6⟩⟨−,6|𝐻eZ|+,2⟩

𝜀+
(0)
− 𝜀−

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,3
(11)

=
⟨+,3|𝐻eZ|−,7⟩⟨−,7|𝐻hfs|+,3⟩ + ⟨+,3|𝐻hfs|−,7⟩⟨−,7|𝐻eZ|+,3⟩

𝜀+
(0)
− 𝜀−

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,4
(11)

=
⟨+,4|𝐻eZ|−,8⟩⟨−,8|𝐻hfs|+,4⟩ + ⟨+,4|𝐻hfs|−,8⟩⟨−,8|𝐻eZ|+,4⟩

𝜀+
(0)
− 𝜀−

(0)
= −

3𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,1
(11) =

⟨−,1|𝐻eZ|+,5⟩⟨+,5|𝐻hfs|−,1⟩ + ⟨−,1|𝐻hfs|+,5⟩⟨+,5|𝐻eZ|−,1⟩

𝜀−
(0) − 𝜀+

(0)
= −

3𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,2
(11) =

⟨−,2|𝐻eZ|+,6⟩⟨+,6|𝐻hfs|−,2⟩ + ⟨−,2|𝐻hfs|+,6⟩⟨+,6|𝐻eZ|−,2⟩

𝜀−
(0) − 𝜀+

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,3
(11) =

⟨−,3|𝐻eZ|+,7⟩⟨+,7|𝐻hfs|−,3⟩ + ⟨−,3|𝐻hfs|+,7⟩⟨+,7|𝐻eZ|−,3⟩

𝜀−
(0) − 𝜀+

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,4
(11) =

⟨−,4|𝐻eZ|+,8⟩⟨+,8|𝐻hfs|−,4⟩ + ⟨−,4|𝐻hfs|+,8⟩⟨+,8|𝐻eZ|−,4⟩

𝜀−
(0) − 𝜀+

(0)
=
3𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,5
(11) =

⟨−,5|𝐻eZ|+,1⟩⟨+,1|𝐻hfs|−,5⟩ + ⟨−,5|𝐻hfs|+,1⟩⟨+,1|𝐻eZ|−,5⟩

𝜀−
(0) − 𝜀+

(0)
= −

3𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,6
(11)

=
⟨−,6|𝐻eZ|+,2⟩⟨+,2|𝐻hfs|−,6⟩ + ⟨−,6|𝐻hfs|+,2⟩⟨+,2|𝐻eZ|−,6⟩

𝜀−
(0) − 𝜀+

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,7
(11) =

⟨−,7|𝐻eZ|+,3⟩⟨+,3|𝐻hfs|−,7⟩ + ⟨−,7|𝐻hfs|+,3⟩⟨+,3|𝐻eZ|−,7⟩

𝜀−
(0) − 𝜀+

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,8
(11) =

⟨−,8|𝐻eZ|+,4⟩⟨+,4|𝐻hfs|−,8⟩ + ⟨−,8|𝐻hfs|+,4⟩⟨+,4|𝐻eZ|−,8⟩

𝜀−
(0) − 𝜀+

(0)
=
3𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,5
(11) =

⟨+,5|𝐻eZ|−,1⟩⟨−,1|𝐻hfs|+,5⟩ + ⟨+,5|𝐻hfs|−,1⟩⟨−,1|𝐻eZ|+,5⟩

𝜀+
(0) − 𝜀−

(0)
=
3𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,6
(11) =

⟨+,6|𝐻eZ|−,2⟩⟨−,2|𝐻hfs|+,6⟩ + ⟨+,6|𝐻hfs|−,2⟩⟨−,2|𝐻eZ|+,6⟩

𝜀+
(0) − 𝜀−

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,7
(11) =

⟨+,7|𝐻eZ|−,3⟩⟨−,3|𝐻hfs|+,7⟩ + ⟨+,7|𝐻hfs|−,3⟩⟨−,3|𝐻eZ|+,7⟩

𝜀+
(0)
− 𝜀−

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,8
(11) =

⟨+,8|𝐻eZ|−,4⟩⟨−,4|𝐻hfs|+,8⟩ + ⟨+,8|𝐻hfs|−,4⟩⟨−,4|𝐻eZ|+,8⟩

𝜀+
(0) − 𝜀−

(0)
= −

3𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

Thus, the perturbed energies for the case with I = 3/2 for the spin quartet state were explicitly obtained in the 

second order. To our knowledge the analytical expressions for the energies in terms of the Zeeman 

perturbation theory are for the first time given in this work, which are extremely accurate. 
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3. I = 5/2 case 

The matrix elements of the hyperfine structure Hamiltonian are as follows: 

⟨𝑀𝑆
′ , 𝑀𝐼

′|𝐻hfs|𝑀𝑆, 𝑀𝐼⟩ =

{
 
 

 
 

𝛿𝑀𝑆𝑀𝑆′𝛿𝑀𝐼𝑀𝐼′𝑀𝑆𝑀𝐼𝐴𝑧𝑧
1

16
𝛿𝑀𝑆𝑀𝑆′∓1𝛿𝑀𝐼𝑀𝐼

′∓1√15 − 4𝑀𝑆𝑀𝑆
′√35 − 4𝑀𝐼𝑀𝐼

′(𝐴𝑥𝑥 − 𝐴𝑦𝑦)

1

16
𝛿𝑀𝑆𝑀𝑆′∓1𝛿𝑀𝐼𝑀𝐼

′±1√15 − 4𝑀𝑆𝑀𝑆
′√35 − 4𝑀𝐼𝑀𝐼

′(𝐴𝑥𝑥 + 𝐴𝑦𝑦)

 

The matrix representation of the rank-2 ZFS Hamiltonian is the same as in the case of I = 1/2, and thus the 

energy eigenvalues and the spin eigenstates also have already been shown. 

     Similar to the I = 1/2 and 3/2 cases, {|𝜑𝑀𝑆 ,𝑀𝐼
(0) ⟩} are divided into two subspaces according to the sign 

of the eigenvalues; 

{
|𝜑
+32,+

5
2

(0) ⟩ , |𝜑
+32,+

3
2

(0) ⟩ , |𝜑
+32,+

1
2

(0) ⟩ , |𝜑
+32,−

1
2

(0) ⟩ , |𝜑
+32,−

3
2

(0) ⟩ , |𝜑
+32,−

5
2

(0) ⟩ ,

|𝜑
−32,+

5
2

(0)
⟩ , |𝜑

−32,+
3
2

(0)
⟩ , |𝜑

−32,+
1
2

(0)
⟩ , |𝜑

−32,−
1
2

(0)
⟩ , |𝜑

−32,−
3
2

(0)
⟩ , |𝜑

−32,−
5
2

(0)
⟩
} (eigenvalue Δ) 

{
|𝜑
+12,+

5
2

(0) ⟩ , |𝜑
+12,+

3
2

(0) ⟩ , |𝜑
+12,+

1
2

(0) ⟩ , |𝜑
+12,−

1
2

(0) ⟩ , |𝜑
+12,−

3
2

(0) ⟩ , |𝜑
+12,−

5
2

(0) ⟩ ,

|𝜑
−12,+

5
2

(0) ⟩ , |𝜑
−12,+

3
2

(0) ⟩ , |𝜑
−12,+

1
2

(0) ⟩ , |𝜑
−12,−

1
2

(0) ⟩ , |𝜑
−12,−

3
2

(0) ⟩ , |𝜑
−12,−

5
2

(0) ⟩
} (eigenvalue − Δ) 

The division into the two subspaces is due to the symmetry of the spin eigenfunctions involved. We rewrite 

the notation of the eigenfunctions as follows for simplicity. 

{
|𝜑
+32,+

5
2

(0) ⟩ , |𝜑
+32,+

3
2

(0) ⟩ , |𝜑
+32,+

1
2

(0) ⟩ , |𝜑
+32,−

1
2

(0) ⟩ , |𝜑
+32,−

3
2

(0) ⟩ , |𝜑
+32,−

5
2

(0) ⟩ ,

|𝜑
−32,+

5
2

(0) ⟩ , |𝜑
−32,+

3
2

(0) ⟩ , |𝜑
−32,+

1
2

(0) ⟩ , |𝜑
−32,−

1
2

(0) ⟩ , |𝜑
−32,−

3
2

(0) ⟩ , |𝜑
−32,−

5
2

(0) ⟩
}

→ {|+,1⟩, |+,2⟩, |+,3⟩, |+,4⟩, |+,5⟩, |+,6⟩, |+,7⟩, |+,8⟩, |+,9⟩, |+,10⟩, |+,11⟩, |+,12⟩} 

{
|𝜑
+12,+

5
2

(0) ⟩ , |𝜑
+12,+

3
2

(0) ⟩ , |𝜑
+12,+

1
2

(0) ⟩ , |𝜑
+12,−

1
2

(0) ⟩ , |𝜑
+12,−

3
2

(0) ⟩ , |𝜑
+12,−

5
2

(0) ⟩ ,

|𝜑
−12,+

5
2

(0) ⟩ , |𝜑
−12,+

3
2

(0) ⟩ , |𝜑
−12,+

1
2

(0) ⟩ , |𝜑
−12,−

1
2

(0) ⟩ , |𝜑
−12,−

3
2

(0) ⟩ , |𝜑
−12,−

5
2

(0) ⟩
}

→ {|−,1⟩, |−,2⟩, |−,3⟩, |−,4⟩, |−,5⟩, |−,6⟩, |−,7⟩, |−,8⟩, |−,9⟩, |−,10⟩, |−,11⟩, |−,12⟩} 

According to the degenerate perturbation theory, the first-order correction for the energy of the hyperfine 

structure Hamiltonian which belong to the group of the positive eigenenergy (𝜀+,𝛼
(01) (𝛼 = 1,⋯ ,12)) are the 

eigenvalues of the following matrix: 

𝐻hfs
+,1 =

(

 
 
 
 

⟨+,1|𝐻hfs|+,1⟩ ⟨+,1|𝐻hfs|+,3⟩

⟨+,3|𝐻hfs|+,1⟩ ⟨+,3|𝐻hfs|+,3⟩

⟨+,1|𝐻hfs|+,5⟩ ⟨+,1|𝐻hfs|+,8⟩

⟨+,3|𝐻hfs|+,5⟩ ⟨+,3|𝐻hfs|+,8⟩

⟨+,1|𝐻hfs|+,10⟩ ⟨+,1|𝐻hfs|+,12⟩

⟨+,3|𝐻hfs|+,10⟩ ⟨+,3|𝐻hfs|+,12⟩

⟨+,5|𝐻hfs|+,1⟩ ⟨+,5|𝐻hfs|+,3⟩

⟨+,8|𝐻hfs|+,1⟩ ⟨+,8|𝐻hfs|+,3⟩

⟨+,5|𝐻hfs|+,5⟩ ⟨+,5|𝐻hfs|+,8⟩

⟨+,8|𝐻hfs|+,5⟩ ⟨+,8|𝐻hfs|+,8⟩

⟨+,5|𝐻hfs|+,10⟩ ⟨+,5|𝐻hfs|+,12⟩

⟨+,8|𝐻hfs|+,10⟩ ⟨+,8|𝐻hfs|+,12⟩

⟨+,10|𝐻hfs|+,1⟩ ⟨+,10|𝐻hfs|+,3⟩

⟨+,12|𝐻hfs|+,1⟩ ⟨+,12|𝐻hfs|+,3⟩

⟨+,10|𝐻hfs|+,5⟩ ⟨+,10|𝐻hfs|+,8⟩

⟨+,12|𝐻hfs|+,5⟩ ⟨+,12|𝐻hfs|+,8⟩

⟨+,10|𝐻hfs|+,10⟩ ⟨+,10|𝐻hfs|+,12⟩

⟨+,12|𝐻hfs|+,10⟩ ⟨+,11|𝐻hfs|+,12⟩)

 
 
 
 

 

𝐻hfs
+,2 =

(

 
 
 
 

⟨+,2|𝐻hfs|+,2⟩ ⟨+,2|𝐻hfs|+,4⟩

⟨+,4|𝐻hfs|+,2⟩ ⟨+,4|𝐻hfs|+,4⟩

⟨+,2|𝐻hfs|+,6⟩ ⟨+,2|𝐻hfs|+,7⟩

⟨+,4|𝐻hfs|+,6⟩ ⟨+,4|𝐻hfs|+,7⟩

⟨+,2|𝐻hfs|+,9⟩ ⟨+,2|𝐻hfs|+,11⟩

⟨+,4|𝐻hfs|+,9⟩ ⟨+,4|𝐻hfs|+,11⟩

⟨+,6|𝐻hfs|+,2⟩ ⟨+,6|𝐻hfs|+,4⟩

⟨+,7|𝐻hfs|+,2⟩ ⟨+,7|𝐻hfs|+,4⟩

⟨+,6|𝐻hfs|+,6⟩ ⟨+,6|𝐻hfs|+,7⟩

⟨+,7|𝐻hfs|+,6⟩ ⟨+,7|𝐻hfs|+,7⟩

⟨+,6|𝐻hfs|+,9⟩ ⟨+,6|𝐻hfs|+,11⟩

⟨+,7|𝐻hfs|+,9⟩ ⟨+,7|𝐻hfs|+,11⟩

⟨+,9|𝐻hfs|+,2⟩ ⟨+,9|𝐻hfs|+,4⟩

⟨+,11|𝐻hfs|+,2⟩ ⟨+,11|𝐻hfs|+,4⟩

⟨+,9|𝐻hfs|+,6⟩ ⟨+,9|𝐻hfs|+,7⟩

⟨+,11|𝐻hfs|+,6⟩ ⟨+,11|𝐻hfs|+,7⟩

⟨+,9|𝐻hfs|+,9⟩ ⟨+,9|𝐻hfs|+,11⟩

⟨+,11|𝐻hfs|+,9⟩ ⟨+,11|𝐻hfs|+,11⟩)
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⟨+,1|𝐻hfs|+,1⟩ = ⟨+,12|𝐻hfs|+,12⟩ =
5

4
𝐴𝑧(1 + 2 cos2𝜃) 

⟨+,2|𝐻hfs|+,2⟩ = ⟨+,11|𝐻hfs|+,11⟩ =
3

4
𝐴𝑧(1 + 2 cos2𝜃) 

⟨+,3|𝐻hfs|+,3⟩ = ⟨+,10|𝐻hfs|+,10⟩ =
1

4
𝐴𝑧(1 + 2 cos2𝜃) 

⟨+,4|𝐻hfs|+,4⟩ = ⟨+,9|𝐻hfs|+,9⟩ = −
1

4
𝐴𝑧(1 + 2 cos 2𝜃) 

⟨+,5|𝐻hfs|+,5⟩ = ⟨+,8|𝐻hfs|+,8⟩ = −
3

4
𝐴𝑧(1 + 2 cos 2𝜃) 

⟨+,6|𝐻hfs|+,6⟩ = ⟨+,7|𝐻hfs|+,7⟩ = −
5

4
𝐴𝑧(1 + 2 cos 2𝜃) 

⟨+,1|𝐻hfs|+,8⟩ = ⟨+,8|𝐻hfs|+,1⟩ = ⟨+,5|𝐻hfs|+,12⟩ = ⟨+,12|𝐻hfs|+,5⟩

=
√5

2
sin 𝜃 [√3(𝐴𝑥 − 𝐴𝑦) cos𝜃 + (𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨+,2|𝐻hfs|+,7⟩ = ⟨+,7|𝐻hfs|+,2⟩ = ⟨+,6|𝐻hfs|+,11⟩ = ⟨+,11|𝐻hfs|+,6⟩

=
√5

2
sin 𝜃 [√3(𝐴𝑥 + 𝐴𝑦) cos𝜃 + (𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

⟨+,2|𝐻hfs|+,9⟩ = ⟨+,9|𝐻hfs|+,2⟩ = ⟨+,4|𝐻hfs|+,11⟩ = ⟨+,11|𝐻hfs|+,4⟩

= √2 sin 𝜃 [√3(𝐴𝑥 − 𝐴𝑦) cos𝜃 + (𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨+,3|𝐻hfs|+,8⟩ = ⟨+,8|𝐻hfs|+,3⟩ = ⟨+,5|𝐻hfs|+,10⟩ = ⟨+,10|𝐻hfs|+,5⟩

= √2 sin 𝜃 [√3(𝐴𝑥 + 𝐴𝑦) cos𝜃 + (𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

⟨+,3|𝐻hfs|+,10⟩ = ⟨+,10|𝐻hfs|+,3⟩ =
3

2
sin 𝜃 [√3(𝐴𝑥 − 𝐴𝑦) cos𝜃 + (𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨+,4|𝐻hfs|+,9⟩ = ⟨+,9|𝐻hfs|+,4⟩ =
3

2
sin 𝜃 [√3(𝐴𝑥 + 𝐴𝑦) cos𝜃 + (𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

while the first-order corrections of the energy which belongs to the group of the negative eigenenergy 

(𝜀−,𝛼
(01) (𝛼 = 1,⋯ ,12)) are the eigenvalues of the following matrix: 

𝐻hfs
−,1 =

(

 
 
 
 

⟨−,1|𝐻hfs|−,1⟩ ⟨−,1|𝐻hfs|−,3⟩

⟨−,3|𝐻hfs|−,1⟩ ⟨−,3|𝐻hfs|−,3⟩

⟨−,1|𝐻hfs|−,5⟩ ⟨−,1|𝐻hfs|−,8⟩

⟨−,3|𝐻hfs|−,5⟩ ⟨−,3|𝐻hfs|−,8⟩

⟨−,1|𝐻hfs|−,10⟩ ⟨−,1|𝐻hfs|−,12⟩

⟨−,3|𝐻hfs|−,10⟩ ⟨−,3|𝐻hfs|−,12⟩

⟨−,5|𝐻hfs|−,1⟩ ⟨−,5|𝐻hfs|−,3⟩

⟨−,8|𝐻hfs|−,1⟩ ⟨−,8|𝐻hfs|−,3⟩

⟨−,5|𝐻hfs|−,5⟩ ⟨−,5|𝐻hfs|−,8⟩

⟨−,8|𝐻hfs|−,5⟩ ⟨−,8|𝐻hfs|−,8⟩

⟨−,5|𝐻hfs|−,10⟩ ⟨−,5|𝐻hfs|−,12⟩

⟨−,8|𝐻hfs|−,10⟩ ⟨−,8|𝐻hfs|−,12⟩

⟨−,10|𝐻hfs|−,1⟩ ⟨−,10|𝐻hfs|−,3⟩

⟨−,12|𝐻hfs|−,1⟩ ⟨−,12|𝐻hfs|−,3⟩

⟨−,10|𝐻hfs|−,5⟩ ⟨−,10|𝐻hfs|−,8⟩

⟨−,12|𝐻hfs|−,5⟩ ⟨−,12|𝐻hfs|−,8⟩

⟨−,10|𝐻hfs|−,10⟩ ⟨−,10|𝐻hfs|−,12⟩

⟨−,12|𝐻hfs|−,10⟩ ⟨−,12|𝐻hfs|−,12⟩)

 
 
 
 

 

𝐻hfs
−,2 =

(

 
 
 
 

⟨−,2|𝐻hfs|−,2⟩ ⟨−,2|𝐻hfs|−,4⟩

⟨−,4|𝐻hfs|−,2⟩ ⟨−,4|𝐻hfs|−,4⟩

⟨−,2|𝐻hfs|−,6⟩ ⟨−,2|𝐻hfs|−,7⟩

⟨−,4|𝐻hfs|−,6⟩ ⟨−,4|𝐻hfs|−,7⟩

⟨−,2|𝐻hfs|−,9⟩ ⟨−,2|𝐻hfs|−,11⟩

⟨−,4|𝐻hfs|−,9⟩ ⟨−,4|𝐻hfs|−,11⟩

⟨−,6|𝐻hfs|−,2⟩ ⟨−,6|𝐻hfs|−,4⟩

⟨−,7|𝐻hfs|−,2⟩ ⟨−,7|𝐻hfs|−,4⟩

⟨−,6|𝐻hfs|−,6⟩ ⟨−,6|𝐻hfs|−,7⟩

⟨−,7|𝐻hfs|−,6⟩ ⟨−,7|𝐻hfs|−,7⟩

⟨−,6|𝐻hfs|−,9⟩ ⟨−,6|𝐻hfs|−,11⟩

⟨−,7|𝐻hfs|−,9⟩ ⟨−,7|𝐻hfs|−,11⟩

⟨−,9|𝐻hfs|−,2⟩ ⟨−,9|𝐻hfs|−,4⟩

⟨−,11|𝐻hfs|−,2⟩ ⟨−,11|𝐻hfs|−,4⟩

⟨−,9|𝐻hfs|−,6⟩ ⟨−,9|𝐻hfs|−,7⟩

⟨−,11|𝐻hfs|−,6⟩ ⟨−,11|𝐻hfs|−,7⟩

⟨−,9|𝐻hfs|−,9⟩ ⟨−,9|𝐻hfs|−,11⟩

⟨−,11|𝐻hfs|−,9⟩ ⟨−,11|𝐻hfs|−,11⟩)

 
 
 
 

 

⟨−,1|𝐻hfs|−,1⟩ = ⟨−,12|𝐻hfs|−,12⟩ =
5

4
𝐴𝑧(−1 + 2 cos 2𝜃) 
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⟨−,2|𝐻hfs|−,2⟩ = ⟨−,11|𝐻hfs|−,11⟩ =
3

4
𝐴𝑧(−1 + 2 cos 2𝜃) 

⟨−,3|𝐻hfs|−,3⟩ = ⟨−,10|𝐻hfs|−,10⟩ =
𝐴𝑧
4
(−1+ 2 cos2𝜃) 

⟨−,4|𝐻hfs|−,4⟩ = ⟨−,9|𝐻hfs|−,9⟩ =
𝐴𝑧
4
(1 − 2 cos2𝜃) 

⟨−,5|𝐻hfs|−,5⟩ = ⟨−,8|𝐻hfs|−,8⟩ =
3

4
𝐴𝑧(1 − 2 cos 2𝜃) 

⟨−,6|𝐻hfs|−,6⟩ = ⟨−,7|𝐻hfs|−,7⟩ =
5

4
𝐴𝑧(1 − 2 cos 2𝜃) 

⟨−,1|𝐻hfs|−,8⟩ = ⟨−,8|𝐻hfs|−,1⟩ = ⟨−,5|𝐻hfs|−,12⟩ = ⟨−,12|𝐻hfs|−,5⟩

=
√5

2
cos𝜃 [(𝐴𝑥 − 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨−,2|𝐻hfs|−,7⟩ = ⟨−,7|𝐻hfs|−,2⟩ = ⟨−,6|𝐻hfs|−,11⟩ = ⟨−,11|𝐻hfs|−,6⟩

=
√5

2
cos𝜃 [(𝐴𝑥 + 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

⟨−,2|𝐻hfs|−,9⟩ = ⟨−,9|𝐻hfs|−,2⟩ = ⟨−,4|𝐻hfs|−,11⟩ = ⟨−,11|𝐻hfs|−,4⟩

= √2 cos𝜃 [(𝐴𝑥 − 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨−,3|𝐻hfs|−,8⟩ = ⟨−,8|𝐻hfs|−,3⟩ = ⟨−,5|𝐻hfs|−,10⟩ = ⟨−,10|𝐻hfs|−,5⟩

= √2 cos𝜃 [(𝐴𝑥 + 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

⟨−,3|𝐻hfs|−,10⟩ = ⟨−,10|𝐻hfs|−,3⟩ =
3

2
cos𝜃 [(𝐴𝑥 − 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨−,4|𝐻hfs|−,9⟩ = ⟨−,9|𝐻hfs|−,4⟩ =
3

2
cos𝜃 [(𝐴𝑥 + 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

The other elements are zero. The secular equation can be factorized into two cubic equations in the form of 

𝑥3 + 𝑎𝑖𝑥
2 + 𝑏𝑖𝑥 + 𝑐𝑖 = 0 (𝑖 = 1,⋯ , 8) 

In the equation, i = 1 and 2, 3 and 4, 5 and 6, and 7 and 8 come from 𝐻hfs
+,1

, 𝐻hfs
+,2

, 𝐻hfs
−,1

, 𝐻hfs
−,2

, respectively. 

In order to eliminate x2 term, replacing x to x – ai/3 yields 

𝑥3 =
1

3
(𝑎𝑖

2 + 3𝑏𝑖)𝑥 −
1

27
(2𝑎𝑖

3 − 9𝑎𝑖𝑏𝑖 + 27𝑐𝑖) 

According to the Viete’s method [6], the solutions of the cubic equation are given as 

𝑥𝑛 = 2𝑝𝑖 cos [
1

3
arccos (

𝑞𝑖
2𝑝𝑖
) +

2𝑛𝜋

3
] −
𝑎𝑖
3
 (𝑛 = 0, 1, 2) 

with 

𝑝𝑖 =
1

3
√𝑎𝑖2 + 3𝑏𝑖  

𝑞𝑖 =
−2𝑎𝑖

3 + 9𝑎𝑖𝑏𝑖 − 27𝑐𝑖
3𝑎𝑖2 + 9𝑏𝑖

 

The set of the coefficients of the cubic equation {ai, bi, ci} is given in the following; 
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𝑎1 =
3

4
(𝐴𝑥 + 𝐴𝑦 − 𝐴𝑧) −

3

4
(𝐴𝑥 + 𝐴𝑦 + 2𝐴𝑧) cos 2𝜃 +

3√3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

𝑏1 = −
39

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
1

8
(13𝐴𝑥

2 − 6𝐴𝑥𝐴𝑦 + 13𝐴𝑦
2 − 3𝐴𝑥𝐴𝑧 − 3𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos2𝜃

+
1

16
(13𝐴𝑥

2 + 12𝐴𝑥𝐴𝑦 + 13𝐴𝑦
2 + 6𝐴𝑥𝐴𝑧 + 6𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos4𝜃

+
√3

8
(−13𝐴𝑥

2 + 13𝐴𝑦
2 − 3𝐴𝑥𝐴𝑧 + 3𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

16
(13𝐴𝑥

2 − 13𝐴𝑦
2 − 6𝐴𝑥𝐴𝑧 + 6𝐴𝑦𝐴𝑧) sin 4𝜃 

𝑐1 =
5

64
(−21𝐴𝑥

3 − 9𝐴𝑥
2𝐴𝑦 − 9𝐴𝑥𝐴𝑦

2 − 21𝐴𝑦
3 + 9𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 + 9𝐴𝑦
2𝐴𝑧 − 9𝐴𝑥𝐴𝑧

2

− 9𝐴𝑦𝐴𝑧
2 + 21𝐴𝑧

3)

+
45

64
(2𝐴𝑥

3 + 3𝐴𝑥
2𝐴𝑦 + 3𝐴𝑥𝐴𝑦

2 + 2𝐴𝑦
3 + 3𝐴𝑥

2𝐴𝑧 + 3𝐴𝑦
2𝐴𝑧 + 4𝐴𝑧

3) cos 2𝜃

+
45

64
(𝐴𝑥

3 − 3𝐴𝑥
2𝐴𝑦 − 3𝐴𝑥𝐴𝑦

2 + 𝐴𝑦
3 − 3𝐴𝑥

2𝐴𝑧 − 3𝐴𝑦
2𝐴𝑧 + 2𝐴𝑧

3) cos4𝜃

+
5

64
(−6𝐴𝑥

3 + 9𝐴𝑥
2𝐴𝑦 + 9𝐴𝑥𝐴𝑦

2 − 6𝐴𝑦
3 − 9𝐴𝑥

2𝐴𝑧 − 28𝐴𝑥𝐴𝑦𝐴𝑧 − 9𝐴𝑦
2𝐴𝑧

+ 9𝐴𝑥𝐴𝑧
2 + 9𝐴𝑦𝐴𝑧

2 + 6𝐴𝑧
3) cos 6𝜃

+
45√3

64
(−2𝐴𝑥

3 + 𝐴𝑥
2𝐴𝑦 − 𝐴𝑥𝐴𝑦

2 + 2𝐴𝑦
3 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 − 2𝐴𝑥𝐴𝑧

2

+ 2𝐴𝑦𝐴𝑧
2) sin 2𝜃

+
45√3

64
(𝐴𝑥

3 + 𝐴𝑥
2𝐴𝑦 − 𝐴𝑥𝐴𝑦

2 − 𝐴𝑦
3 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 − 2𝐴𝑥𝐴𝑧

2 + 2𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
45√3

64
(−𝐴𝑥

2𝐴𝑦 + 𝐴𝑥𝐴𝑦
2 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 − 𝐴𝑥𝐴𝑧

2 + 𝐴𝑦𝐴𝑧
2) sin 6𝜃 

 

𝑎2 =
3

4
(−𝐴𝑥 − 𝐴𝑦 − 𝐴𝑧) +

3

4
(𝐴𝑥 + 𝐴𝑦 − 2𝐴𝑧) cos2𝜃 −

3√3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

𝑏2 = −
39

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
1

8
(13𝐴𝑥

2 − 6𝐴𝑥𝐴𝑦 + 13𝐴𝑦
2 + 3𝐴𝑥𝐴𝑧 + 3𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos2𝜃

+
1

16
(13𝐴𝑥

2 + 12𝐴𝑥𝐴𝑦 + 13𝐴𝑦
2 − 6𝐴𝑥𝐴𝑧 − 6𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos4𝜃

−
√3

8
(13𝐴𝑥

2 − 13𝐴𝑦
2 − 3𝐴𝑥𝐴𝑧 + 3𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

16
(13𝐴𝑥

2 − 13𝐴𝑦
2 + 6𝐴𝑥𝐴𝑧 − 6𝐴𝑦𝐴𝑧) sin 4𝜃 
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𝑐2 =
5

64
(21𝐴𝑥

3 + 9𝐴𝑥
2𝐴𝑦 + 9𝐴𝑥𝐴𝑦

2 + 21𝐴𝑦
3 + 9𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 + 9𝐴𝑦
2𝐴𝑧 + 9𝐴𝑥𝐴𝑧

2 + 9𝐴𝑦𝐴𝑧
2

+ 21𝐴𝑧
3)

+
45

64
(−2𝐴𝑥

3 − 3𝐴𝑥
2𝐴𝑦 − 3𝐴𝑥𝐴𝑦

2 − 2𝐴𝑦
3 + 3𝐴𝑥

2𝐴𝑧 + 3𝐴𝑦
2𝐴𝑧 + 4𝐴𝑧

3) cos2𝜃

+
45

64
(−𝐴𝑥

3 + 3𝐴𝑥
2𝐴𝑦 + 3𝐴𝑥𝐴𝑦

2 − 𝐴𝑦
3 − 3𝐴𝑥

2𝐴𝑧 − 3𝐴𝑦
2𝐴𝑧 + 2𝐴𝑧

3) cos 4𝜃

+
5

64
(6𝐴𝑥

3 − 9𝐴𝑥
2𝐴𝑦 − 9𝐴𝑥𝐴𝑦

2 + 6𝐴𝑦
3 − 9𝐴𝑥

2𝐴𝑧 − 28𝐴𝑥𝐴𝑦𝐴𝑧 − 9𝐴𝑦
2𝐴𝑧 − 9𝐴𝑥𝐴𝑧

2

− 9𝐴𝑦𝐴𝑧
2 + 6𝐴𝑧

3) cos6𝜃

+
45√3

64
(2𝐴𝑥

3 − 𝐴𝑥
2𝐴𝑦 + 𝐴𝑥𝐴𝑦

2 − 2𝐴𝑦
3 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 + 2𝐴𝑥𝐴𝑧

2

− 2𝐴𝑦𝐴𝑧
2) sin 2𝜃

+
45√3

64
(−𝐴𝑥

3 − 𝐴𝑥
2𝐴𝑦 + 𝐴𝑥𝐴𝑦

2 + 𝐴𝑦
3 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 + 2𝐴𝑥𝐴𝑧

2

− 2𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
45√3

64
(𝐴𝑥

2𝐴𝑦 − 𝐴𝑥𝐴𝑦
2 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 + 𝐴𝑥𝐴𝑧

2 − 𝐴𝑦𝐴𝑧
2) sin 6𝜃 

 

𝑎3 =
3

4
(−𝐴𝑥 + 𝐴𝑦 + 𝐴𝑧) +

3

4
(𝐴𝑥 − 𝐴𝑦 + 2𝐴𝑧) cos2𝜃 −

3√3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

𝑏3 = −
39

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
1

8
(13𝐴𝑥

2 + 6𝐴𝑥𝐴𝑦 + 13𝐴𝑦
2 − 3𝐴𝑥𝐴𝑧 + 3𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos2𝜃

+
1

16
(13𝐴𝑥

2 − 12𝐴𝑥𝐴𝑦 + 13𝐴𝑦
2 + 6𝐴𝑥𝐴𝑧 − 6𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos4𝜃

+
√3

8
(−13𝐴𝑥

2 + 13𝐴𝑦
2 − 3𝐴𝑥𝐴𝑧 − 3𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

16
(13𝐴𝑥

2 − 13𝐴𝑦
2 − 6𝐴𝑥𝐴𝑧 − 6𝐴𝑦𝐴𝑧) sin 4𝜃 
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𝑐3 =
5

64
(21𝐴𝑥

3 − 9𝐴𝑥
2𝐴𝑦 + 9𝐴𝑥𝐴𝑦

2 − 21𝐴𝑦
3 − 9𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 − 9𝐴𝑦
2𝐴𝑧 + 9𝐴𝑥𝐴𝑧

2 − 9𝐴𝑦𝐴𝑧
2

− 21𝐴𝑧
3)

+
45

64
(−2𝐴𝑥

3 + 3𝐴𝑥
2𝐴𝑦 − 3𝐴𝑥𝐴𝑦

2 + 2𝐴𝑦
3 − 3𝐴𝑥

2𝐴𝑧 − 3𝐴𝑦
2𝐴𝑧 − 4𝐴𝑧

3) cos2𝜃

+
45

64
(−𝐴𝑥

3 − 3𝐴𝑥
2𝐴𝑦 + 3𝐴𝑥𝐴𝑦

2 + 𝐴𝑦
3 + 3𝐴𝑥

2𝐴𝑧 + 3𝐴𝑦
2𝐴𝑧 − 2𝐴𝑧

3) cos 4𝜃

+
5

64
(6𝐴𝑥

3 + 9𝐴𝑥
2𝐴𝑦 − 9𝐴𝑥𝐴𝑦

2 − 6𝐴𝑦
3 + 9𝐴𝑥

2𝐴𝑧 − 28𝐴𝑥𝐴𝑦𝐴𝑧 + 9𝐴𝑦
2𝐴𝑧 − 9𝐴𝑥𝐴𝑧

2

+ 9𝐴𝑦𝐴𝑧
2 − 6𝐴𝑧

3) cos6𝜃

+
45√3

64
(2𝐴𝑥

3 + 4𝐴𝑥
2𝐴𝑦 + 𝐴𝑥𝐴𝑦

2 + 2𝐴𝑦
3 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 + 2𝐴𝑥𝐴𝑧

2

+ 2𝐴𝑦𝐴𝑧
2) sin 2𝜃

+
45√3

64
(−𝐴𝑥

3 + 𝐴𝑥
2𝐴𝑦 + 𝐴𝑥𝐴𝑦

2 − 𝐴𝑦
3 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 + 2𝐴𝑥𝐴𝑧

2

+ 2𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
45√3

64
(−𝐴𝑥

2𝐴𝑦 − 𝐴𝑥𝐴𝑦
2 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 + 𝐴𝑥𝐴𝑧

2 + 𝐴𝑦𝐴𝑧
2) sin 6𝜃 

 

𝑎4 =
3

4
(𝐴𝑥 − 𝐴𝑦 + 𝐴𝑧) −

3

4
(𝐴𝑥 − 𝐴𝑦 − 2𝐴𝑧) cos 2𝜃 +

3√3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

𝑏4 = −
39

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
1

8
(13𝐴𝑥

2 + 6𝐴𝑥𝐴𝑦 + 13𝐴𝑦
2 + 3𝐴𝑥𝐴𝑧 − 3𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos2𝜃

+
1

16
(13𝐴𝑥

2 − 12𝐴𝑥𝐴𝑦 + 13𝐴𝑦
2 − 6𝐴𝑥𝐴𝑧 + 6𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos4𝜃

−
√3

8
(13𝐴𝑥

2 − 13𝐴𝑦
2 − 3𝐴𝑥𝐴𝑧 − 3𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

16
(13𝐴𝑥

2 − 13𝐴𝑦
2 + 6𝐴𝑥𝐴𝑧 + 6𝐴𝑦𝐴𝑧) sin 4𝜃 
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𝑐4 =
5

64
(−21𝐴𝑥

3 + 9𝐴𝑥
2𝐴𝑦 − 9𝐴𝑥𝐴𝑦

2 + 21𝐴𝑦
3 − 9𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 − 9𝐴𝑦
2𝐴𝑧 − 9𝐴𝑥𝐴𝑧

2

+ 9𝐴𝑦𝐴𝑧
2 − 21𝐴𝑧

3)

+
45

64
(2𝐴𝑥

3 − 3𝐴𝑥
2𝐴𝑦 + 3𝐴𝑥𝐴𝑦

2 − 2𝐴𝑦
3 − 3𝐴𝑥

2𝐴𝑧 − 3𝐴𝑦
2𝐴𝑧 − 4𝐴𝑧

3) cos 2𝜃

+
45

64
(𝐴𝑥

3 + 3𝐴𝑥
2𝐴𝑦 − 3𝐴𝑥𝐴𝑦

2 − 𝐴𝑦
3 + 3𝐴𝑥

2𝐴𝑧 + 3𝐴𝑦
2𝐴𝑧 − 2𝐴𝑧

3) cos4𝜃

+
5

64
(−6𝐴𝑥

3 − 9𝐴𝑥
2𝐴𝑦 + 9𝐴𝑥𝐴𝑦

2 + 6𝐴𝑦
3 + 9𝐴𝑥

2𝐴𝑧 − 28𝐴𝑥𝐴𝑦𝐴𝑧 + 9𝐴𝑦
2𝐴𝑧

+ 9𝐴𝑥𝐴𝑧
2 − 9𝐴𝑦𝐴𝑧

2 − 6𝐴𝑧
3) cos 6𝜃

+
45√3

64
(−2𝐴𝑥

3 − 𝐴𝑥
2𝐴𝑦 − 𝐴𝑥𝐴𝑦

2 − 2𝐴𝑦
3 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 − 2𝐴𝑥𝐴𝑧

2

− 2𝐴𝑦𝐴𝑧
2) sin 2𝜃

+
45√3

64
(𝐴𝑥

3 − 𝐴𝑥
2𝐴𝑦 − 𝐴𝑥𝐴𝑦

2 + 𝐴𝑦
3 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 − 2𝐴𝑥𝐴𝑧

2 − 2𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
45√3

64
(𝐴𝑥

2𝐴𝑦 + 𝐴𝑥𝐴𝑦
2 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 − 𝐴𝑥𝐴𝑧

2 − 𝐴𝑦𝐴𝑧
2) sin 6𝜃 

We note that the coefficients for i = 2, 3 and 4 can be obtained from {a1, b1, c1, d1} with replacing Ax and Ay 

to –Ax and –Ay, Ax and Az to –Ax and –Az, and Ay and Az to –Ay and –Az, respectively. 

     For the negative counterpart: 

𝑎5 =
3

4
(𝐴𝑥 − 𝐴𝑦 + 𝐴𝑧) +

3

4
(𝐴𝑥 − 𝐴𝑦 − 2𝐴𝑧) cos 2𝜃 +

3√3

4
(−𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

𝑏5 = −
39

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) −
1

8
(13𝐴𝑥

2 + 6𝐴𝑥𝐴𝑦 + 13𝐴𝑦
2 + 3𝐴𝑥𝐴𝑧 − 3𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos2𝜃

+
1

16
(13𝐴𝑥

2 − 12𝐴𝑥𝐴𝑦 + 13𝐴𝑦
2 − 6𝐴𝑥𝐴𝑧 + 6𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos4𝜃

+
√3

8
(13𝐴𝑥

2 − 13𝐴𝑦
2 − 3𝐴𝑥𝐴𝑧 − 3𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

16
(13𝐴𝑥

2 − 13𝐴𝑦
2 + 6𝐴𝑥𝐴𝑧 + 6𝐴𝑦𝐴𝑧) sin 4𝜃 
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𝑐5 =
5

64
(−21𝐴𝑥

3 + 9𝐴𝑥
2𝐴𝑦 − 9𝐴𝑥𝐴𝑦

2 + 21𝐴𝑦
3 − 9𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 − 9𝐴𝑦
2𝐴𝑧 − 9𝐴𝑥𝐴𝑧

2

+ 9𝐴𝑦𝐴𝑧
2 − 21𝐴𝑧

3)

+
45

64
(−2𝐴𝑥

3 + 3𝐴𝑥
2𝐴𝑦 − 3𝐴𝑥𝐴𝑦

2 + 2𝐴𝑦
3 + 3𝐴𝑥

2𝐴𝑧 + 3𝐴𝑦
2𝐴𝑧 + 4𝐴𝑧

3) cos2𝜃

+
45

64
(𝐴𝑥

3 + 3𝐴𝑥
2𝐴𝑦 − 3𝐴𝑥𝐴𝑦

2 − 𝐴𝑦
3 + 3𝐴𝑥

2𝐴𝑧 + 3𝐴𝑦
2𝐴𝑧 − 2𝐴𝑧

3) cos4𝜃

+
5

64
(6𝐴𝑥

3 + 9𝐴𝑥
2𝐴𝑦 − 9𝐴𝑥𝐴𝑦

2 − 6𝐴𝑦
3 − 9𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 − 9𝐴𝑦
2𝐴𝑧 − 9𝐴𝑥𝐴𝑧

2

+ 9𝐴𝑦𝐴𝑧
2 + 6𝐴𝑧

3) cos6𝜃

+
45√3

64
(2𝐴𝑥

3 + 𝐴𝑥
2𝐴𝑦 + 𝐴𝑥𝐴𝑦

2 + 2𝐴𝑦
3 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 + 2𝐴𝑥𝐴𝑧

2

+ 2𝐴𝑦𝐴𝑧
2) sin 2𝜃

+
45√3

64
(𝐴𝑥

3 − 𝐴𝑥
2𝐴𝑦 − 𝐴𝑥𝐴𝑦

2 + 𝐴𝑦
3 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 − 2𝐴𝑥𝐴𝑧

2 − 2𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
45√3

64
(−𝐴𝑥

2𝐴𝑦 − 𝐴𝑥𝐴𝑦
2 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 + 𝐴𝑥𝐴𝑧

2 + 𝐴𝑦𝐴𝑧
2) sin 6𝜃 

 

𝑎6 =
3

4
(−𝐴𝑥 + 𝐴𝑦 + 𝐴𝑧) +

3

4
(−𝐴𝑥 + 𝐴𝑦 − 2𝐴𝑧) cos2𝜃 +

3√3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

𝑏6 = −
39

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) −
1

8
(13𝐴𝑥

2 + 6𝐴𝑥𝐴𝑦 − 13𝐴𝑦
2 − 3𝐴𝑥𝐴𝑧 + 3𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos2𝜃

+
1

16
(13𝐴𝑥

2 − 12𝐴𝑥𝐴𝑦 + 13𝐴𝑦
2 + 6𝐴𝑥𝐴𝑧 − 6𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos4𝜃

+
√3

8
(13𝐴𝑥

2 − 13𝐴𝑦
2 + 3𝐴𝑥𝐴𝑧 + 3𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

16
(13𝐴𝑥

2 − 13𝐴𝑦
2 − 6𝐴𝑥𝐴𝑧 − 6𝐴𝑦𝐴𝑧) sin 4𝜃 
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𝑐6 =
5

64
(21𝐴𝑥

3 − 9𝐴𝑥
2𝐴𝑦 + 9𝐴𝑥𝐴𝑦

2 − 21𝐴𝑦
3 − 9𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 − 9𝐴𝑦
2𝐴𝑧 + 9𝐴𝑥𝐴𝑧

2 − 9𝐴𝑦𝐴𝑧
2

− 21𝐴𝑧
3)

+
45

64
(2𝐴𝑥

3 − 3𝐴𝑥
2𝐴𝑦 + 3𝐴𝑥𝐴𝑦

2 − 2𝐴𝑦
3 + 3𝐴𝑥

2𝐴𝑧 + 3𝐴𝑦
2𝐴𝑧 + 4𝐴𝑧

3) cos 2𝜃

+
45

64
(−𝐴𝑥

3 − 3𝐴𝑥
2𝐴𝑦 + 3𝐴𝑥𝐴𝑦

2 + 𝐴𝑦
3 + 3𝐴𝑥

2𝐴𝑧 + 3𝐴𝑦
2𝐴𝑧 − 2𝐴𝑧

3) cos 4𝜃

+
5

64
(−6𝐴𝑥

3 − 9𝐴𝑥
2𝐴𝑦 + 9𝐴𝑥𝐴𝑦

2 + 6𝐴𝑦
3 − 9𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 − 9𝐴𝑦
2𝐴𝑧

+ 9𝐴𝑥𝐴𝑧
2 − 9𝐴𝑦𝐴𝑧

2 + 6𝐴𝑧
3) cos 6𝜃

+
45√3

64
(−2𝐴𝑥

3 − 𝐴𝑥
2𝐴𝑦 − 𝐴𝑥𝐴𝑦

2 − 2𝐴𝑦
3 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 − 2𝐴𝑥𝐴𝑧

2

− 2𝐴𝑦𝐴𝑧
2) sin 2𝜃

+
45√3

64
(−𝐴𝑥

3 + 𝐴𝑥
2𝐴𝑦 + 𝐴𝑥𝐴𝑦

2 − 𝐴𝑦
3 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 + 2𝐴𝑥𝐴𝑧

2

+ 2𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
45√3

64
(𝐴𝑥

2𝐴𝑦 + 𝐴𝑥𝐴𝑦
2 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 − 𝐴𝑥𝐴𝑧

2 − 𝐴𝑦𝐴𝑧
2) sin 6𝜃 

 

𝑎7 =
3

4
(−𝐴𝑥 − 𝐴𝑦 − 𝐴𝑧) +

3

4
(−𝐴𝑥 − 𝐴𝑦 + 2𝐴𝑧) cos2𝜃 +

3√3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

𝑏7 = −
39

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) −
1

8
(13𝐴𝑥

2 − 6𝐴𝑥𝐴𝑦 + 13𝐴𝑦
2 + 3𝐴𝑥𝐴𝑧 + 3𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos2𝜃

+
1

16
(13𝐴𝑥

2 + 12𝐴𝑥𝐴𝑦 + 13𝐴𝑦
2 − 6𝐴𝑥𝐴𝑧 − 6𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos4𝜃

+
√3

8
(13𝐴𝑥

2 − 13𝐴𝑦
2 − 3𝐴𝑥𝐴𝑧 + 3𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

16
(13𝐴𝑥

2 − 13𝐴𝑦
2 + 6𝐴𝑥𝐴𝑧 − 6𝐴𝑦𝐴𝑧) sin 4𝜃 
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𝑐7 =
5

64
(21𝐴𝑥

3 + 9𝐴𝑥
2𝐴𝑦 + 9𝐴𝑥𝐴𝑦

2 + 21𝐴𝑦
3 + 9𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 + 9𝐴𝑦
2𝐴𝑧 + 9𝐴𝑥𝐴𝑧

2 + 9𝐴𝑦𝐴𝑧
2

+ 21𝐴𝑧
3)

+
45

64
(2𝐴𝑥

3 + 3𝐴𝑥
2𝐴𝑦 + 3𝐴𝑥𝐴𝑦

2 + 2𝐴𝑦
3 − 3𝐴𝑥

2𝐴𝑧 − 3𝐴𝑦
2𝐴𝑧 − 4𝐴𝑧

3) cos 2𝜃

+
45

64
(−𝐴𝑥

3 + 3𝐴𝑥
2𝐴𝑦 + 3𝐴𝑥𝐴𝑦

2 − 𝐴𝑦
3 − 3𝐴𝑥

2𝐴𝑧 − 3𝐴𝑦
2𝐴𝑧 + 2𝐴𝑧

3) cos 4𝜃

+
5

64
(−6𝐴𝑥

3 + 9𝐴𝑥
2𝐴𝑦 + 9𝐴𝑥𝐴𝑦

2 − 6𝐴𝑦
3 + 9𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 + 9𝐴𝑦
2𝐴𝑧

+ 9𝐴𝑥𝐴𝑧
2 + 9𝐴𝑦𝐴𝑧

2 − 6𝐴𝑧
3) cos 6𝜃

+
45√3

64
(−2𝐴𝑥

3 + 𝐴𝑥
2𝐴𝑦 − 𝐴𝑥𝐴𝑦

2 + 2𝐴𝑦
3 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 − 2𝐴𝑥𝐴𝑧

2

+ 2𝐴𝑦𝐴𝑧
2) sin 2𝜃

+
45√3

64
(−𝐴𝑥

3 − 𝐴𝑥
2𝐴𝑦 + 𝐴𝑥𝐴𝑦

2 + 𝐴𝑦
3 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 + 2𝐴𝑥𝐴𝑧

2

− 2𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
45√3

64
(−𝐴𝑥

2𝐴𝑦 + 𝐴𝑥𝐴𝑦
2 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 − 𝐴𝑥𝐴𝑧

2 + 𝐴𝑦𝐴𝑧
2) sin 6𝜃 

 

𝑎8 =
3

4
(𝐴𝑥 + 𝐴𝑦 − 𝐴𝑧) +

3

4
(𝐴𝑥 + 𝐴𝑦 + 2𝐴𝑧) cos 2𝜃 −

3√3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

𝑏8 = −
39

16
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) −
1

8
(13𝐴𝑥

2 − 6𝐴𝑥𝐴𝑦 + 13𝐴𝑦
2 − 3𝐴𝑥𝐴𝑧 − 3𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos2𝜃

+
1

16
(13𝐴𝑥

2 + 12𝐴𝑥𝐴𝑦 + 13𝐴𝑦
2 + 6𝐴𝑥𝐴𝑧 + 6𝐴𝑦𝐴𝑧 − 26𝐴𝑧

2) cos4𝜃

+
√3

8
(13𝐴𝑥

2 − 13𝐴𝑦
2 + 3𝐴𝑥𝐴𝑧 − 3𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

16
(13𝐴𝑥

2 − 13𝐴𝑦
2 − 6𝐴𝑥𝐴𝑧 + 6𝐴𝑦𝐴𝑧) sin 4𝜃 
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𝑐8 =
5

64
(−21𝐴𝑥

3 − 9𝐴𝑥
2𝐴𝑦 − 9𝐴𝑥𝐴𝑦

2 − 21𝐴𝑦
3 + 9𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 + 9𝐴𝑦
2𝐴𝑧 − 9𝐴𝑥𝐴𝑧

2

− 9𝐴𝑦𝐴𝑧
2 + 21𝐴𝑧

3)

+
45

64
(−2𝐴𝑥

3 − 3𝐴𝑥
2𝐴𝑦 − 3𝐴𝑥𝐴𝑦

2 − 2𝐴𝑦
3 − 3𝐴𝑥

2𝐴𝑧 − 3𝐴𝑦
2𝐴𝑧 − 4𝐴𝑧

3) cos2𝜃

+
45

64
(𝐴𝑥

3 − 3𝐴𝑥
2𝐴𝑦 − 3𝐴𝑥𝐴𝑦

2 + 𝐴𝑦
3 − 3𝐴𝑥

2𝐴𝑧 − 3𝐴𝑦
2𝐴𝑧 + 2𝐴𝑧

3) cos4𝜃

+
5

64
(6𝐴𝑥

3 − 9𝐴𝑥
2𝐴𝑦 − 9𝐴𝑥𝐴𝑦

2 + 6𝐴𝑦
3 + 9𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 + 9𝐴𝑦
2𝐴𝑧 − 9𝐴𝑥𝐴𝑧

2

− 9𝐴𝑦𝐴𝑧
2 − 6𝐴𝑧

3) cos6𝜃

+
45√3

64
(2𝐴𝑥

3 − 𝐴𝑥
2𝐴𝑦 + 𝐴𝑥𝐴𝑦

2 − 2𝐴𝑦
3 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 + 2𝐴𝑥𝐴𝑧

2

− 2𝐴𝑦𝐴𝑧
2) sin 2𝜃

+
45√3

64
(𝐴𝑥

3 + 𝐴𝑥
2𝐴𝑦 − 𝐴𝑥𝐴𝑦

2 − 𝐴𝑦
3 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 − 2𝐴𝑥𝐴𝑧

2 + 2𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
45√3

64
(𝐴𝑥

2𝐴𝑦 − 𝐴𝑥𝐴𝑦
2 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 + 𝐴𝑥𝐴𝑧

2 − 𝐴𝑦𝐴𝑧
2) sin 6𝜃 

Similarly to the coefficients for i = 2, 3 and 4, we note that those for i = 6, 7 and 8 can be obtained from {a5, 

b5, c5, d5} with replacing Ax and Ay to –Ax and –Ay, Ax and Az to –Ax and –Az, and Ay and Az to –Ay and –Az, 

respectively. 

     The second-order correction for the energy of the hyperfine structure Hamiltonian 𝜀𝜎,𝛼
(02) (𝜎 =

+,−;  𝛼 = 1,⋯ , 12) can be written as 

𝜀±,𝛼
(02) = ∑

|⟨±, 𝛼|𝐻hfs|∓, 𝛽⟩|
2

𝜀±
(0) − 𝜀∓

(0)

4

𝛽=1

 

Both the upper and lower signs should be chosen in the double sign. The non-zero matrix elements of Hhfs 

expanded to the basis belonging different eigenspaces are given in the following: 

⟨+,1|𝐻hfs|−,2⟩ = ⟨−,2|𝐻hfs|+,1⟩ = ⟨+,5|𝐻hfs|−,6⟩ = ⟨−,6|𝐻hfs|+,5⟩ = ⟨−,7|𝐻hfs|+,8⟩ = ⟨+,8|𝐻hfs|−,7⟩

= ⟨−,11|𝐻hfs|+,12⟩ = ⟨+,12|𝐻hfs|−,11⟩

=
√15

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

√5

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

⟨+,2|𝐻hfs|−,1⟩ = ⟨−,1|𝐻hfs|+,2⟩ = ⟨+,6|𝐻hfs|−,5⟩ = ⟨−,5|𝐻hfs|+,6⟩ = ⟨−,8|𝐻hfs|+,7⟩ = ⟨+,7|𝐻hfs|−,8⟩

= ⟨−,12|𝐻hfs|+,11⟩ = ⟨+,11|𝐻hfs|−,12⟩

=
√15

4
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

√5

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

⟨+,2|𝐻hfs|−,3⟩ = ⟨−,3|𝐻hfs|+,2⟩ = ⟨+,4|𝐻hfs|−,5⟩ = ⟨−,5|𝐻hfs|+,4⟩ = ⟨−,8|𝐻hfs|+,9⟩ = ⟨+,9|𝐻hfs|−,8⟩

= ⟨−,10|𝐻hfs|+,11⟩ = ⟨+,11|𝐻hfs|−,10⟩ =
√6

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√2

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 
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⟨+,3|𝐻hfs|−,2⟩ = ⟨−,2|𝐻hfs|+,3⟩ = ⟨+,5|𝐻hfs|−,4⟩ = ⟨−,4|𝐻hfs|+,5⟩ = ⟨−,9|𝐻hfs|+,8⟩ = ⟨+,8|𝐻hfs|−,9⟩

= ⟨−,11|𝐻hfs|+,10⟩ = ⟨+,10|𝐻hfs|−,11⟩ =
√6

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√2

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

⟨+,3|𝐻hfs|−,4⟩ = ⟨−,4|𝐻hfs|+,3⟩ = ⟨−,9|𝐻hfs|+,10⟩ = ⟨+,10|𝐻hfs|−,9⟩

=
3√3

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

⟨+,4|𝐻hfs|−,3⟩ = ⟨−,3|𝐻hfs|+,4⟩ = ⟨−,10|𝐻hfs|+,9⟩ = ⟨+,9|𝐻hfs|−,10⟩

=
3√3

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

⟨+,1|𝐻hfs|−,7⟩ = ⟨−,7|𝐻hfs|+,1⟩ = ⟨−,6|𝐻hfs|+,12⟩ = ⟨+,12|𝐻hfs|−,6⟩ = −
5

2
𝐴𝑧 sin 2𝜃 

⟨+,2|𝐻hfs|−,8⟩ = ⟨−,8|𝐻hfs|+,2⟩ = ⟨−,5|𝐻hfs|+,11⟩ = ⟨+,11|𝐻hfs|−,5⟩ = −
3

2
𝐴𝑧 sin 2𝜃 

⟨+,3|𝐻hfs|−,9⟩ = ⟨−,9|𝐻hfs|+,3⟩ = ⟨−,4|𝐻hfs|+,10⟩ = ⟨+,10|𝐻hfs|−,4⟩ = −
𝐴𝑧
2
sin 2𝜃 

⟨+,4|𝐻hfs|−,10⟩ = ⟨−,10|𝐻hfs|+,4⟩ = ⟨−,3|𝐻hfs|+,9⟩ = ⟨+,9|𝐻hfs|−,3⟩ =
𝐴𝑧
2
sin 2𝜃 

⟨+,5|𝐻hfs|−,11⟩ = ⟨−,11|𝐻hfs|+,5⟩ = ⟨−,2|𝐻hfs|+,8⟩ = ⟨+,8|𝐻hfs|−,2⟩ =
3

2
𝐴𝑧 sin 2𝜃 

⟨+,6|𝐻hfs|−,12⟩ = ⟨−,12|𝐻hfs|+,6⟩ = ⟨−,1|𝐻hfs|+,7⟩ = ⟨+,7|𝐻hfs|−,1⟩ =
5

2
𝐴𝑧 sin 2𝜃 

Therefore, the second-order corrections for the energy, 𝜀𝜎,𝛼
(02) (𝜎 = +,−;  𝛼 = 1,⋯ , 12)  are in the 

following: 

𝜀+,1
(02) =

|⟨−,2|𝐻hfs|+,1⟩|
2 + |⟨−,7|𝐻hfs|+,1⟩|

2

2∆

=
1

2∆
{[
√15

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√5

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
25

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀+,2
(02) =

|⟨−,1|𝐻hfs|+,2⟩|
2 + |⟨−,3|𝐻hfs|+,2⟩|

2 + |⟨−,8|𝐻hfs|+,2⟩|
2

2∆

=
1

2∆
{[
√15

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√5

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
√6

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√2

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
9

4
𝐴𝑧
2 sin2 2𝜃} 
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𝜀+,3
(02) =

|⟨−,2|𝐻hfs|+,3⟩|
2 + |⟨−,4|𝐻hfs|+,3⟩|

2 + |⟨−,9|𝐻hfs|+,3⟩|
2

2∆

=
1

2∆
{[
√6

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√2

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
3√3

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} 

𝜀+,4
(02) =

|⟨−,3|𝐻hfs|+,4⟩|
2 + |⟨−,5|𝐻hfs|+,4⟩|

2 + |⟨−,10|𝐻hfs|+,4⟩|
2

2∆

=
1

2∆
{[
3√3

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
√6

2
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

√2

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} 

𝜀+,5
(02)

=
|⟨−,4|𝐻hfs|+,5⟩|

2 + |⟨−,6|𝐻hfs|+,5⟩|
2 + |⟨−,11|𝐻hfs|+,5⟩|

2

2∆

=
1

2∆
{[
√6

2
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

√2

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
√15

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√5

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
9

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀+,6
(02) =

|⟨−,5|𝐻hfs|+,6⟩|
2 + |⟨−,12|𝐻hfs|+,6⟩|

2

2∆

=
1

2∆
{[
√15

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√5

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
25

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀+,7
(02) =

+|⟨−,1|𝐻hfs|+,7⟩|
2 + |⟨−,8|𝐻hfs|+,7⟩|

2

2∆

=
1

2∆
{
25

4
𝐴𝑧
2 sin2 2𝜃 + [

√15

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√5

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

𝜀+,8
(02) =

|⟨−,2|𝐻hfs|+,8⟩|
2 + |⟨−,7|𝐻hfs|+,8⟩|

2 + |⟨−,9|𝐻hfs|+,8⟩|
2

2∆

=
1

2∆
{
9

4
𝐴𝑧
2 sin2 2𝜃 + [

√15

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

√5

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
√6

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√2

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

𝜀+,9
(02) =

|⟨−,3|𝐻hfs|+,9⟩|
2 + |⟨−,8|𝐻hfs|+,9⟩|

2 + |⟨−,10|𝐻hfs|+,9⟩|
2

2∆

=
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

√6

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√2

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
3√3

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 
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𝜀+,10
(02) =

|⟨−,4|𝐻hfs|+,10⟩|
2 + |⟨−,9|𝐻hfs|+,10⟩|

2 + |⟨−,11|𝐻hfs|+,10⟩|
2

2∆

=
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

3√3

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
√6

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√2

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

𝜀+,11
(02) =

|⟨−,5|𝐻hfs|+,11⟩|
2 + |⟨−,10|𝐻hfs|+,11⟩|

2 + |⟨−,12|𝐻hfs|+,11⟩|
2

2∆

=
1

2∆
{
9

4
𝐴𝑧
2 sin2 2𝜃 + [

√6

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√2

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
√15

4
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

√5

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

𝜀+,12
(02)

=
|⟨−,6|𝐻hfs|+,12⟩|

2 + |⟨−,11|𝐻hfs|+,12⟩|
2

2∆

=
1

2∆
{
25

4
𝐴𝑧
2 sin2 2𝜃 + [

√15

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√5

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,1
(02) =

|⟨+,2|𝐻hfs|−,1⟩|
2 + |⟨+,7|𝐻hfs|−,1⟩|

2

−2∆

= −
1

2∆
{[
√15

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√5

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
25

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀−,2
(02) =

|⟨+,1|𝐻hfs|−,2⟩|
2 + |⟨+,3|𝐻hfs|−,2⟩|

2 + |⟨+,8|𝐻hfs|−,2⟩|
2

−2∆

= −
1

2∆
{[
√15

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√5

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
√6

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√2

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
9

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀−,3
(02) =

|⟨+,2|𝐻hfs|−,3⟩|
2 + |⟨+,4|𝐻hfs|−,3⟩|

2 + |⟨+,9|𝐻hfs|−,3⟩|
2

−2∆

= −
1

2∆
{[
√6

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√2

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
3√3

4
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} 

𝜀−,4
(02) =

|⟨+,3|𝐻hfs|−,4⟩|
2 + |⟨+,5|𝐻hfs|−,4⟩|

2 + |⟨+,10|𝐻hfs|−,4⟩|
2

−2∆

= −
1

2∆
{[
3√3

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
√6

2
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

√2

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} 
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𝜀−,5
(02) =

|⟨+,4|𝐻hfs|−,5⟩|
2 + |⟨+,6|𝐻hfs|−,5⟩|

2 + |⟨+,11|𝐻hfs|−,5⟩|
2

−2∆

= −
1

2∆
{[
√6

2
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

√2

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
√15

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√5

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
9

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀−,6
(02) =

|⟨+,5|𝐻hfs|−,6⟩|
2 + |⟨+,12|𝐻hfs|−,6⟩|

2

−2∆

= −
1

2∆
{[
√15

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√5

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
25

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀−,7
(02) =

|⟨+,1|𝐻hfs|−,7⟩|
2 + |⟨+,8|𝐻hfs|−,7⟩|

2

−2∆

= −
1

2∆
{
25

4
𝐴𝑧
2 sin2 2𝜃 + [

√15

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√5

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,8
(02) =

|⟨+,2|𝐻hfs|−,8⟩|
2 + |⟨+,7|𝐻hfs|−,8⟩|

2 + |⟨+,9|𝐻hfs|−,8⟩|
2

−2∆

= −
1

2∆
{
9

4
𝐴𝑧
2 sin2 2𝜃 + [

√15

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√5

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
√6

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√2

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,9
(02) =

|⟨+,3|𝐻hfs|−,9⟩|
2 + |⟨+,8|𝐻hfs|−,9⟩|

2 + |⟨+,10|𝐻hfs|−,9⟩|
2

−2∆

= −
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

√6

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√2

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
3√3

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

3

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,10
(02) =

|⟨+,4|𝐻hfs|−,10⟩|
2 + |⟨+,9|𝐻hfs|−,10⟩|

2 + |⟨+,11|𝐻hfs|−,10⟩|
2

−2∆

= −
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

3√3

4
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

3

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
√6

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√2

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,11
(02) =

|⟨+,5|𝐻hfs|−,11⟩|
2 + |⟨+,10|𝐻hfs|−,11⟩|

2 + |⟨+,12|𝐻hfs|−,11⟩|
2

−2∆

= −
1

2∆
{
9

4
𝐴𝑧
2 sin2 2𝜃 + [

√6

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√2

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
√15

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

√5

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 
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𝜀−,12
(02) =

|⟨+,6|𝐻hfs|−,12⟩|
2 + |⟨+,11|𝐻hfs|−,12⟩|

2

−2∆

= −
1

2∆
{
25

4
𝐴𝑧
2 sin2 2𝜃 + [

√15

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√5

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

     The first- and second-order corrections for the energy of the electron Zeeman Hamiltonian are the same 

as for the I = 1/2 case. In order to obtain the cross terms, let us remind the non-diagonal elements for the 

electron Zeeman Hamiltonian. 

⟨+,1|𝐻eZ|−,7⟩ = ⟨−,7|𝐻eZ|+,1⟩ = ⟨+,2|𝐻eZ|−,8⟩ = ⟨−,8|𝐻eZ|+,2⟩ = ⟨+,3|𝐻eZ|−,9⟩ = ⟨−,9|𝐻eZ|+,3⟩

= ⟨+,4|𝐻eZ|−,10⟩ = ⟨−,10|𝐻eZ|+,2⟩ = ⟨+,5|𝐻eZ|−,11⟩ = ⟨−,11|𝐻eZ|+,5⟩

= ⟨+,6|𝐻eZ|−,12⟩ = ⟨−,12|𝐻eZ|+,6⟩ = −𝑔𝑧𝛽𝐵 sin 2𝜃 

⟨−,1|𝐻eZ|+,7⟩ = ⟨+,7|𝐻eZ|−,1⟩ = ⟨−,2|𝐻eZ|+,8⟩ = ⟨+,8|𝐻eZ|−,2⟩ = ⟨−,3|𝐻eZ|+,9⟩ = ⟨+,9|𝐻eZ|−,3⟩

= ⟨−,4|𝐻eZ|+,10⟩ = ⟨+,10|𝐻eZ|−,4⟩ = ⟨−,5|𝐻eZ|+,11⟩ = ⟨+,1|𝐻eZ|−,5⟩

= ⟨−,6|𝐻eZ|+,12⟩ = ⟨+,12|𝐻eZ|−,6⟩ = 𝑔𝑧𝛽𝐵 sin 2𝜃 

Therefore, the cross terms can be calculated as follows: 

𝜀+,1
(11) =

⟨+,1|𝐻eZ|−,7⟩⟨−,7|𝐻hfs|+,1⟩ + ⟨+,1|𝐻hfs|−,7⟩⟨−,7|𝐻eZ|+,1⟩

𝜀+
(0) − 𝜀−

(0)
=
25𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,2
(11) =

⟨+,2|𝐻eZ|−,8⟩⟨−,8|𝐻hfs|+,2⟩ + ⟨+,2|𝐻hfs|−,8⟩⟨−,8|𝐻eZ|+,2⟩

𝜀+
(0) − 𝜀−

(0)
=
9𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,3
(11) =

⟨+,3|𝐻eZ|−,9⟩⟨−,9|𝐻hfs|+,3⟩ + ⟨+,3|𝐻hfs|−,9⟩⟨−,9|𝐻eZ|+,3⟩

𝜀+
(0) − 𝜀−

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,4
(11) =

⟨+,4|𝐻eZ|−,10⟩⟨−,10|𝐻hfs|+,4⟩ + ⟨+,4|𝐻hfs|−,10⟩⟨−,10|𝐻eZ|+,4⟩

𝜀+
(0) − 𝜀−

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,5
(11) =

⟨+,5|𝐻eZ|−,11⟩⟨−,11|𝐻hfs|+,5⟩ + ⟨+,5|𝐻hfs|−,11⟩⟨−,11|𝐻eZ|+,5⟩

𝜀+
(0) − 𝜀−

(0)
= −

9𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,6
(11) =

⟨+,6|𝐻eZ|−,12⟩⟨−,12|𝐻hfs|+,6⟩ + ⟨+,6|𝐻hfs|−,12⟩⟨−,12|𝐻eZ|+,6⟩

𝜀+
(0) − 𝜀−

(0)
= −

25𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,1
(11) =

⟨−,1|𝐻eZ|+,7⟩⟨+,7|𝐻hfs|−,1⟩ + ⟨−,1|𝐻hfs|+,7⟩⟨+,7|𝐻eZ|−,1⟩

𝜀−
(0) − 𝜀+

(0)
= −

25𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,2
(11) =

⟨−,2|𝐻eZ|+,8⟩⟨+,8|𝐻hfs|−,2⟩ + ⟨−,2|𝐻hfs|+,8⟩⟨+,8|𝐻eZ|−,2⟩

𝜀−
(0) − 𝜀+

(0)
= −

9𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,3
(11) =

⟨−,3|𝐻eZ|+,9⟩⟨+,9|𝐻hfs|−,3⟩ + ⟨−,3|𝐻hfs|+,9⟩⟨+,9|𝐻eZ|−,3⟩

𝜀−
(0) − 𝜀+

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,4
(11) =

⟨−,4|𝐻eZ|+,10⟩⟨+,10|𝐻hfs|−,4⟩ + ⟨−,4|𝐻hfs|+,10⟩⟨+,10|𝐻eZ|−,4⟩

𝜀−
(0) − 𝜀+

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,5
(11) =

⟨−,5|𝐻eZ|+,11⟩⟨+,11|𝐻hfs|−,5⟩ + ⟨−,5|𝐻hfs|+,11⟩⟨+,11|𝐻eZ|−,5⟩

𝜀−
(0) − 𝜀+

(0)
=
9𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,6
(11) =

⟨−,6|𝐻eZ|+,12⟩⟨+,12|𝐻hfs|−,6⟩ + ⟨−,6|𝐻hfs|+,12⟩⟨+,12|𝐻eZ|−,6⟩

𝜀−
(0) − 𝜀+

(0)
=
25𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
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𝜀−,7
(11)

=
⟨−,7|𝐻eZ|+,1⟩⟨+,1|𝐻hfs|−,7⟩ + ⟨−,7|𝐻hfs|+,1⟩⟨+,1|𝐻eZ|−,7⟩

𝜀−
(0) − 𝜀+

(0)
=
25𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,8
(11)

=
⟨−,8|𝐻eZ|+,2⟩⟨+,2|𝐻hfs|−,8⟩ + ⟨−,8|𝐻hfs|+,2⟩⟨+,2|𝐻eZ|−,8⟩

𝜀−
(0) − 𝜀+

(0)
=
9𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,9
(11)

=
⟨−,9|𝐻eZ|+,3⟩⟨+,3|𝐻hfs|−,9⟩ + ⟨−,9|𝐻hfs|+,3⟩⟨+,3|𝐻eZ|−,9⟩

𝜀−
(0) − 𝜀+

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,10
(11)

=
⟨−,10|𝐻eZ|+,4⟩⟨+,4|𝐻hfs|−,10⟩ + ⟨−,10|𝐻hfs|+,4⟩⟨+,4|𝐻eZ|−,10⟩

𝜀−
(0) − 𝜀+

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,11
(11)

=
⟨−,11|𝐻eZ|+,5⟩⟨+,5|𝐻hfs|−,11⟩ + ⟨−,11|𝐻hfs|+,5⟩⟨+,5|𝐻eZ|−,10⟩

𝜀−
(0) − 𝜀+

(0)
= −

9𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,12
(11)

=
⟨−,12|𝐻eZ|+,6⟩⟨+,6|𝐻hfs|−,12⟩ + ⟨−,12|𝐻hfs|+,6⟩⟨+,6|𝐻eZ|−,12⟩

𝜀−
(0) − 𝜀+

(0)
= −

25𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,7
(11) =

⟨+,7|𝐻eZ|−,1⟩⟨−,1|𝐻hfs|+,7⟩ + ⟨+,7|𝐻hfs|−,1⟩⟨−,1|𝐻eZ|+,7⟩

𝜀+
(0) − 𝜀−

(0)
= −

25𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,8
(11) =

⟨+,8|𝐻eZ|−,2⟩⟨−,2|𝐻hfs|+,8⟩ + ⟨+,8|𝐻hfs|−,2⟩⟨−,2|𝐻eZ|+,8⟩

𝜀+
(0) − 𝜀−

(0)
= −

9𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,9
(11) =

⟨+,9|𝐻eZ|−,3⟩⟨−,3|𝐻hfs|+,9⟩ + ⟨+,9|𝐻hfs|−,3⟩⟨−,3|𝐻eZ|+,9⟩

𝜀+
(0) − 𝜀−

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,10
(11) =

⟨+,10|𝐻eZ|−,4⟩⟨−,4|𝐻hfs|+,10⟩ + ⟨+,10|𝐻hfs|−,4⟩⟨−,4|𝐻eZ|+,10⟩

𝜀+
(0) − 𝜀−

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,11
(11) =

⟨+,11|𝐻eZ|−,5⟩⟨−,5|𝐻hfs|+,11⟩ + ⟨+,11|𝐻hfs|−,5⟩⟨−,5|𝐻eZ|+,11⟩

𝜀+
(0) − 𝜀−

(0)
=
9𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,12
(11) =

⟨+,12|𝐻eZ|−,6⟩⟨−,6|𝐻hfs|+,12⟩ + ⟨+,12|𝐻hfs|−,6⟩⟨−,6|𝐻eZ|+,12⟩

𝜀+
(0) − 𝜀−

(0)
=
25𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

Thus, the perturbed energies for the case with I = 5/2 for the spin quartet state were explicitly obtained in the 

second order. To our knowledge the analytical expressions above for the energies in terms of the Zeeman 

perturbation theory are for the first time given in this work, which are extremely accurate. 

4. I = 7/2 case 

a) Double perturbation approach 

The matrix elements of the hyperfine structure Hamiltonian in the basis of |MS, MI> are given as follows: 

⟨𝑀𝑆
′ , 𝑀𝐼

′|𝐻hfs|𝑀𝑆,𝑀𝐼⟩ =

{
 
 

 
 

𝛿𝑀𝑆𝑀𝑆′𝛿𝑀𝐼𝑀𝐼′𝑀𝑆𝑀𝐼𝐴𝑧
1

16
𝛿𝑀𝑆𝑀𝑆′∓1𝛿𝑀𝐼𝑀𝐼′∓1√15 − 4𝑀𝑆𝑀𝑆

′√63 − 4𝑀𝐼𝑀𝐼
′(𝐴𝑥 − 𝐴𝑦)

1

16
𝛿𝑀𝑆𝑀𝑆′∓1𝛿𝑀𝐼𝑀𝐼′±1√15 − 4𝑀𝑆𝑀𝑆

′√63 − 4𝑀𝐼𝑀𝐼
′(𝐴𝑥 + 𝐴𝑦)

 

The matrix representation of the rank-2 ZFS Hamiltonian is the same in the case of I = 1/2, and thus the 

energy eigenvalues and the spin eigenstates also have already been shown. 

     Similar to the I = 1/2, 3/2 and 5/2 cases, {|𝜑𝑀𝑆,𝑀𝐼
(0) ⟩} are divided into two subspaces according to the 

sign of the eigenvalues; 
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{
|𝜑
+32,+

7
2

(0)
⟩ , |𝜑

+32,+
5
2

(0)
⟩ , |𝜑

+32,+
3
2

(0)
⟩ , |𝜑

+32,+
1
2

(0)
⟩ , |𝜑

+32,−
1
2

(0)
⟩ , |𝜑

+32,−
3
2

(0)
⟩ , |𝜑

+32,−
5
2

(0)
⟩ , |𝜑

+32,−
7
2

(0)
⟩ ,

|𝜑
−32,+

7
2

(0) ⟩ , |𝜑
−32,+

5
2

(0) ⟩ , |𝜑
−32,+

3
2

(0) ⟩ , |𝜑
−32,+

1
2

(0) ⟩ , |𝜑
−32,−

1
2

(0) ⟩ , |𝜑
−32,−

3
2

(0) ⟩ , |𝜑
−32,−

5
2

(0) ⟩ , |𝜑
−32,−

7
2

(0) ⟩
} (eigenvalue Δ) 

and 

{
|𝜑
+12,+

7
2

(0)
⟩ , |𝜑

+12,+
5
2

(0)
⟩ , |𝜑

+12,+
3
2

(0)
⟩ , |𝜑

+12,+
1
2

(0)
⟩ , |𝜑

+12,−
1
2

(0)
⟩ , |𝜑

+12,−
3
2

(0)
⟩ , |𝜑

+12,−
5
2

(0)
⟩ , |𝜑

+12,−
7
2

(0)
⟩ ,

|𝜑
−12,−

7
2

(0) ⟩ , |𝜑
−12,+

5
2

(0) ⟩ , |𝜑
−12,+

3
2

(0) ⟩ , |𝜑
−12,+

1
2

(0) ⟩ , |𝜑
−12,−

1
2

(0) ⟩ , |𝜑
−12,−

3
2

(0) ⟩ , |𝜑
−12,−

5
2

(0) ⟩ , |𝜑
−12,−

7
2

(0) ⟩
} (eigenvalue − Δ) 

We rewrite the notation of the eigenfunctions as follows for simplicity: 

{
|𝜑
+32,+

7
2

(0)
⟩ , |𝜑

+32,+
5
2

(0)
⟩ , |𝜑

+32,+
3
2

(0)
⟩ , |𝜑

+32,+
1
2

(0)
⟩ , |𝜑

+32,−
1
2

(0)
⟩ , |𝜑

+32,−
3
2

(0)
⟩ , |𝜑

+32,−
5
2

(0)
⟩ , |𝜑

+32,−
7
2

(0)
⟩ ,

|𝜑
−32,+

7
2

(0) ⟩ , |𝜑
−32,+

5
2

(0) ⟩ , |𝜑
−32,+

3
2

(0) ⟩ , |𝜑
−32,+

1
2

(0) ⟩ , |𝜑
−32,−

1
2

(0) ⟩ , |𝜑
−32,−

3
2

(0) ⟩ , |𝜑
−32,−

5
2

(0) ⟩ , |𝜑
−32,−

7
2

(0) ⟩
}

→ {
|+,1⟩, |+,2⟩, |+,3⟩, |+,4⟩, |+,5⟩, |+,6⟩, |+,7⟩, |+,8⟩,

|+,9⟩, |+,10⟩, |+,11⟩, |+,12⟩, |+,13⟩, |+,14⟩, |+,15⟩, |+,16⟩
} 

and 

{
|𝜑
+12,+

7
2

(0) ⟩ , |𝜑
+12,+

5
2

(0) ⟩ , |𝜑
+12,+

3
2

(0) ⟩ , |𝜑
+12,+

1
2

(0) ⟩ , |𝜑
+12,−

1
2

(0) ⟩ , |𝜑
+12,−

3
2

(0) ⟩ , |𝜑
+12,−

5
2

(0) ⟩ , |𝜑
+12,−

7
2

(0) ⟩ ,

|𝜑
−12,−

7
2

(0) ⟩ , |𝜑
−12,+

5
2

(0) ⟩ , |𝜑
−12,+

3
2

(0) ⟩ , |𝜑
−12,+

1
2

(0) ⟩ , |𝜑
−12,−

1
2

(0) ⟩ , |𝜑
−12,−

3
2

(0) ⟩ , |𝜑
−12,−

5
2

(0) ⟩ , |𝜑
−12,−

7
2

(0) ⟩
}

→ {
|−,1⟩, |−,2⟩, |−,3⟩, |−,4⟩, |−,5⟩, |−,6⟩, |−,7⟩, |−,8⟩,

|−,9⟩, |−,10⟩, |−,11⟩, |−,12⟩, |+,13⟩, |+,14⟩, |+,15⟩, |+,16⟩
} 

     According to the degenerate perturbation theory, the first-order corrections for the energy of the 

hyperfine structure Hamiltonian (𝜀+,𝛼
(01) (𝛼 = 1,⋯ ,16) ) which belong to the group of the positive energy 

eigenvalue are the eigenvalues of the following matrix: 

𝐻hfs
+,1 =

(

 
 
 
 
 
 

⟨+,1|𝐻hfs|+,1⟩ ⟨+,1|𝐻hfs|+,3⟩

⟨+,3|𝐻hfs|+,1⟩ ⟨+,3|𝐻hfs|+,3⟩

⟨+,1|𝐻hfs|+,5⟩ ⟨+,1|𝐻hfs|+,7⟩

⟨+,3|𝐻hfs|+,5⟩ ⟨+,3|𝐻hfs|+,7⟩

⟨+,5|𝐻hfs|+,1⟩ ⟨+,5|𝐻hfs|+,3⟩

⟨+,7|𝐻hfs|+,1⟩ ⟨+,7|𝐻hfs|+,3⟩

⟨+,5|𝐻hfs|+,5⟩ ⟨+,5|𝐻hfs|+,7⟩

⟨+,7|𝐻hfs|+,5⟩ ⟨+,7|𝐻hfs|+,7⟩

⟨+,1|𝐻hfs|+,10⟩ ⟨+,1|𝐻hfs|+,12⟩

⟨+,3|𝐻hfs|+,10⟩ ⟨+,3|𝐻hfs|+,12⟩

⟨+,1|𝐻hfs|+,14⟩ ⟨+,1|𝐻hfs|+,16⟩

⟨+,3|𝐻hfs|+,14⟩ ⟨+,3|𝐻hfs|+,16⟩

⟨+,5|𝐻hfs|+,10⟩ ⟨+,5|𝐻hfs|+,12⟩

⟨+,7|𝐻hfs|+,10⟩ ⟨+,7|𝐻hfs|+,12⟩

⟨+,5|𝐻hfs|+,14⟩ ⟨+,5|𝐻hfs|+,16⟩

⟨+,7|𝐻hfs|+,14⟩ ⟨+,7|𝐻hfs|+,16⟩

⟨+,10|𝐻hfs|+,1⟩ ⟨+,10|𝐻hfs|+,3⟩

⟨+,12|𝐻hfs|+,1⟩ ⟨+,12|𝐻hfs|+,3⟩

⟨+,10|𝐻hfs|+,5⟩ ⟨+,10|𝐻hfs|+,7⟩

⟨+,12|𝐻hfs|+,5⟩ ⟨+,12|𝐻hfs|+,7⟩

⟨+,14|𝐻hfs|+,1⟩ ⟨+,14|𝐻hfs|+,3⟩

⟨+,16|𝐻hfs|+,1⟩ ⟨+,16|𝐻hfs|+,3⟩

⟨+,14|𝐻hfs|+,5⟩ ⟨+,14|𝐻hfs|+,7⟩

⟨+,16|𝐻hfs|+,5⟩ ⟨+,16|𝐻hfs|+,7⟩

⟨+,10|𝐻hfs|+,10⟩ ⟨+,10|𝐻hfs|+,12⟩

⟨+,12|𝐻hfs|+,10⟩ ⟨+,12|𝐻hfs|+,12⟩

⟨+,10|𝐻hfs|+,14⟩ ⟨+,10|𝐻hfs|+,16⟩

⟨+,12|𝐻hfs|+,14⟩ ⟨+,12|𝐻hfs|+,16⟩

⟨+,14|𝐻hfs|+,10⟩ ⟨+,14|𝐻hfs|+,12⟩

⟨+,16|𝐻hfs|+,10⟩ ⟨+,16|𝐻hfs|+,12⟩

⟨+,14|𝐻hfs|+,14⟩ ⟨+,14|𝐻hfs|+,16⟩

⟨+,16|𝐻hfs|+,14⟩ ⟨+,16|𝐻hfs|+,16⟩)

 
 
 
 
 
 

 

𝐻hfs
+,2 =

(

 
 
 
 
 
 

⟨+,2|𝐻hfs|+,2⟩ ⟨+,2|𝐻hfs|+,4⟩

⟨+,4|𝐻hfs|+,2⟩ ⟨+,4|𝐻hfs|+,4⟩

⟨+,2|𝐻hfs|+,6⟩ ⟨+,2|𝐻hfs|+,8⟩

⟨+,4|𝐻hfs|+,6⟩ ⟨+,4|𝐻hfs|+,8⟩

⟨+,6|𝐻hfs|+,2⟩ ⟨+,6|𝐻hfs|+,4⟩

⟨+,8|𝐻hfs|+,2⟩ ⟨+,8|𝐻hfs|+,4⟩

⟨+,6|𝐻hfs|+,6⟩ ⟨+,6|𝐻hfs|+,8⟩

⟨+,8|𝐻hfs|+,6⟩ ⟨+,8|𝐻hfs|+,8⟩

⟨+,2|𝐻hfs|+,9⟩ ⟨+,2|𝐻hfs|+,11⟩

⟨+,4|𝐻hfs|+,9⟩ ⟨+,4|𝐻hfs|+,11⟩

⟨+,2|𝐻hfs|+,13⟩ ⟨+,2|𝐻hfs|+,15⟩

⟨+,4|𝐻hfs|+,13⟩ ⟨+,4|𝐻hfs|+,15⟩

⟨+,6|𝐻hfs|+,9⟩ ⟨+,6|𝐻hfs|+,11⟩

⟨+,8|𝐻hfs|+,9⟩ ⟨+,8|𝐻hfs|+,11⟩

⟨+,6|𝐻hfs|+,13⟩ ⟨+,6|𝐻hfs|+,15⟩

⟨+,8|𝐻hfs|+,13⟩ ⟨+,8|𝐻hfs|+,15⟩

⟨+,9|𝐻hfs|+,2⟩ ⟨+,9|𝐻hfs|+,4⟩

⟨+,11|𝐻hfs|+,2⟩ ⟨+,11|𝐻hfs|+,4⟩

⟨+,9|𝐻hfs|+,6⟩ ⟨+,9|𝐻hfs|+,8⟩

⟨+,11|𝐻hfs|+,6⟩ ⟨+,11|𝐻hfs|+,8⟩

⟨+,13|𝐻hfs|+,2⟩ ⟨+,13|𝐻hfs|+,4⟩

⟨+,15|𝐻hfs|+,2⟩ ⟨+,15|𝐻hfs|+,4⟩

⟨+,13|𝐻hfs|+,6⟩ ⟨+,13|𝐻hfs|+,8⟩

⟨+,15|𝐻hfs|+,6⟩ ⟨+,15|𝐻hfs|+,8⟩

⟨+,9|𝐻hfs|+,9⟩ ⟨+,9|𝐻hfs|+,11⟩

⟨+,11|𝐻hfs|+,9⟩ ⟨+,11|𝐻hfs|+,11⟩

⟨+,9|𝐻hfs|+,13⟩ ⟨+,9|𝐻hfs|+,15⟩

⟨+,11|𝐻hfs|+,13⟩ ⟨+,11|𝐻hfs|+,15⟩

⟨+,13|𝐻hfs|+,9⟩ ⟨+,13|𝐻hfs|+,11⟩

⟨+,15|𝐻hfs|+,9⟩ ⟨+,15|𝐻hfs|+,11⟩

⟨+,13|𝐻hfs|+,13⟩ ⟨+,13|𝐻hfs|+,15⟩

⟨+,15|𝐻hfs|+,13⟩ ⟨+,15|𝐻hfs|+,15⟩)

 
 
 
 
 
 

 

⟨+,1|𝐻hfs|+,1⟩ = ⟨+,16|𝐻hfs|+,16⟩ =
7

4
𝐴𝑧(1 + 2 cos 2𝜃) 

⟨+,2|𝐻hfs|+,2⟩ = ⟨+,15|𝐻hfs|+,15⟩ =
5

4
𝐴𝑧(1 + 2 cos2𝜃) 

⟨+,3|𝐻hfs|+,3⟩ = ⟨+,14|𝐻hfs|+,14⟩ =
3

4
𝐴𝑧(1 + 2 cos2𝜃) 

⟨+,4|𝐻hfs|+,4⟩ = ⟨+,13|𝐻hfs|+,13⟩ =
1

4
𝐴𝑧(1 + 2 cos2𝜃) 
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⟨+,5|𝐻hfs|+,5⟩ = ⟨+,12|𝐻hfs|+,12⟩ = −
1

4
𝐴𝑧(1 + 2 cos2𝜃) 

⟨+,6|𝐻hfs|+,6⟩ = ⟨+,11|𝐻hfs|+,11⟩ = −
3

4
𝐴𝑧(1 + 2 cos2𝜃) 

⟨+,7|𝐻hfs|+,7⟩ = ⟨+,10|𝐻hfs|+,10⟩ = −
5

4
𝐴𝑧(1 + 2 cos2𝜃) 

⟨+,8|𝐻hfs|+,8⟩ = ⟨+,9|𝐻hfs|+,9⟩ = −
7

4
𝐴𝑧(1 + 2 cos 2𝜃) 

⟨+,1|𝐻hfs|+,10⟩ = ⟨+,10|𝐻hfs|+,1⟩ = ⟨+,7|𝐻hfs|+,16⟩ = ⟨+,16|𝐻hfs|+,7⟩

=
√7

2
sin 𝜃 [√3(𝐴𝑥 − 𝐴𝑦) cos𝜃 + (𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨+,2|𝐻hfs|+,9⟩ = ⟨+,9|𝐻hfs|+,2⟩ = ⟨+,8|𝐻hfs|+,15⟩ = ⟨+,15|𝐻hfs|+,8⟩

=
√7

2
sin 𝜃 [√3(𝐴𝑥 + 𝐴𝑦) cos𝜃 + (𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

⟨+,2|𝐻hfs|+,11⟩ = ⟨+,11|𝐻hfs|+,2⟩ = ⟨+,6|𝐻hfs|+,15⟩ = ⟨+,15|𝐻hfs|+,6⟩

= sin 𝜃 [3(𝐴𝑥 − 𝐴𝑦) cos𝜃 + √3(𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨+,3|𝐻hfs|+,10⟩ = ⟨+,10|𝐻hfs|+,3⟩ = ⟨+,7|𝐻hfs|+,14⟩ = ⟨+,14|𝐻hfs|+,7⟩

= sin 𝜃 [3(𝐴𝑥 + 𝐴𝑦) cos𝜃 + √3(𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

⟨+,3|𝐻hfs|+,12⟩ = ⟨+,12|𝐻hfs|+,3⟩ = ⟨+,5|𝐻hfs|+,14⟩ = ⟨+,14|𝐻hfs|+,5⟩

=
√5

2
sin 𝜃 [3(𝐴𝑥 − 𝐴𝑦) cos𝜃 + √3(𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨+,4|𝐻hfs|+,11⟩ = ⟨+,11|𝐻hfs|+,4⟩ = ⟨+,6|𝐻hfs|+,13⟩ = ⟨+,13|𝐻hfs|+,6⟩

=
√5

2
sin 𝜃 [3(𝐴𝑥 + 𝐴𝑦) cos𝜃 + √3(𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

⟨+,4|𝐻hfs|+,13⟩ = ⟨+,13|𝐻hfs|+,4⟩ = 2 sin 𝜃 [√3(𝐴𝑥 − 𝐴𝑦) cos𝜃 + (𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨+,5|𝐻hfs|+,12⟩ = ⟨+,12|𝐻hfs|+,5⟩ = 2 sin 𝜃 [√3(𝐴𝑥 + 𝐴𝑦) cos𝜃 + (𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

while the first-order corrections for energy which belong to the group of the negative energy eigenvalue 

(𝜀−,𝛼
(01) (𝛼 = 1,⋯ ,16)) are the eigenvalues of the following matrix: 

𝐻hfs
–,1 =

(

 
 
 
 
 
 

⟨−,1|𝐻hfs|−,1⟩ ⟨−,1|𝐻hfs|−,3⟩

⟨−,3|𝐻hfs|−,1⟩ ⟨−,3|𝐻hfs|−,3⟩

⟨−,1|𝐻hfs|−,5⟩ ⟨−,1|𝐻hfs|−,7⟩

⟨−,3|𝐻hfs|−,5⟩ ⟨−,3|𝐻hfs|−,7⟩

⟨−,5|𝐻hfs|−,1⟩ ⟨−,5|𝐻hfs|−,3⟩

⟨−,7|𝐻hfs|−,1⟩ ⟨−,7|𝐻hfs|−,3⟩

⟨−,5|𝐻hfs|−,5⟩ ⟨−,5|𝐻hfs|−,7⟩

⟨−,7|𝐻hfs|−,5⟩ ⟨−,7|𝐻hfs|−,7⟩

⟨−,1|𝐻hfs|−,10⟩ ⟨−,1|𝐻hfs|−,12⟩

⟨−,3|𝐻hfs|−,10⟩ ⟨−,3|𝐻hfs|−,12⟩

⟨−,1|𝐻hfs|−,14⟩ ⟨−,1|𝐻hfs|−,16⟩

⟨−,3|𝐻hfs|−,14⟩ ⟨−,3|𝐻hfs|−,16⟩

⟨−,5|𝐻hfs|−,10⟩ ⟨−,5|𝐻hfs|−,12⟩

⟨−,7|𝐻hfs|−,10⟩ ⟨−,7|𝐻hfs|−,12⟩

⟨−,5|𝐻hfs|−,14⟩ ⟨−,5|𝐻hfs|−,16⟩

⟨−,7|𝐻hfs|−,14⟩ ⟨−,7|𝐻hfs|−,16⟩

⟨−,10|𝐻hfs|−,1⟩ ⟨−,10|𝐻hfs|−,3⟩

⟨−,12|𝐻hfs|−,1⟩ ⟨−,12|𝐻hfs|−,3⟩

⟨−,10|𝐻hfs|−,5⟩ ⟨−,10|𝐻hfs|−,7⟩

⟨−,12|𝐻hfs|−,5⟩ ⟨−,12|𝐻hfs|−,7⟩

⟨−,14|𝐻hfs|−,1⟩ ⟨−,14|𝐻hfs|−,3⟩

⟨−,16|𝐻hfs|−,1⟩ ⟨−,16|𝐻hfs|−,3⟩

⟨−,14|𝐻hfs|−,5⟩ ⟨−,14|𝐻hfs|−,7⟩

⟨−,16|𝐻hfs|−,5⟩ ⟨−,16|𝐻hfs|−,7⟩

⟨−,10|𝐻hfs|−,10⟩ ⟨−,10|𝐻hfs|−,12⟩

⟨−,12|𝐻hfs|−,10⟩ ⟨−,12|𝐻hfs|−,12⟩

⟨−,10|𝐻hfs|−,14⟩ ⟨−,10|𝐻hfs|−,16⟩

⟨−,12|𝐻hfs|−,14⟩ ⟨−,12|𝐻hfs|−,16⟩

⟨−,14|𝐻hfs|−,10⟩ ⟨−,14|𝐻hfs|−,12⟩

⟨−,16|𝐻hfs|−,10⟩ ⟨−,16|𝐻hfs|−,12⟩

⟨−,14|𝐻hfs|−,14⟩ ⟨−,14|𝐻hfs|−,16⟩

⟨−,16|𝐻hfs|−,14⟩ ⟨−,16|𝐻hfs|−,16⟩)

 
 
 
 
 
 

 

𝐻hfs
–,2 =

(

 
 
 
 
 
 

⟨−,2|𝐻hfs|−,2⟩ ⟨−,2|𝐻hfs|−,4⟩

⟨−,4|𝐻hfs|−,2⟩ ⟨−,4|𝐻hfs|−,4⟩

⟨−,2|𝐻hfs|−,6⟩ ⟨−,2|𝐻hfs|−,8⟩

⟨−,4|𝐻hfs|−,6⟩ ⟨−,4|𝐻hfs|−,8⟩

⟨−,6|𝐻hfs|−,2⟩ ⟨−,6|𝐻hfs|−,4⟩

⟨−,8|𝐻hfs|−,2⟩ ⟨−,8|𝐻hfs|−,4⟩

⟨−,6|𝐻hfs|−,6⟩ ⟨−,6|𝐻hfs|−,8⟩

⟨−,8|𝐻hfs|−,6⟩ ⟨−,8|𝐻hfs|−,8⟩

⟨−,2|𝐻hfs|−,9⟩ ⟨−,2|𝐻hfs|−,11⟩

⟨−,4|𝐻hfs|−,9⟩ ⟨−,4|𝐻hfs|−,11⟩

⟨−,2|𝐻hfs|−,13⟩ ⟨−,2|𝐻hfs|−,15⟩

⟨−,4|𝐻hfs|−,13⟩ ⟨−,4|𝐻hfs|−,15⟩

⟨−,6|𝐻hfs|−,9⟩ ⟨−,6|𝐻hfs|−,11⟩

⟨−,8|𝐻hfs|−,9⟩ ⟨−,8|𝐻hfs|−,11⟩

⟨−,6|𝐻hfs|−,13⟩ ⟨−,6|𝐻hfs|−,15⟩

⟨−,8|𝐻hfs|−,13⟩ ⟨−,8|𝐻hfs|−,15⟩

⟨−,9|𝐻hfs|−,2⟩ ⟨−,9|𝐻hfs|−,4⟩

⟨−,11|𝐻hfs|−,2⟩ ⟨−,11|𝐻hfs|−,4⟩

⟨−,9|𝐻hfs|−,6⟩ ⟨−,9|𝐻hfs|−,8⟩

⟨−,11|𝐻hfs|−,6⟩ ⟨−,11|𝐻hfs|−,8⟩

⟨−,13|𝐻hfs|−,2⟩ ⟨−,13|𝐻hfs|−,4⟩

⟨−,15|𝐻hfs|−,2⟩ ⟨−,15|𝐻hfs|−,4⟩

⟨−,13|𝐻hfs|−,6⟩ ⟨−,13|𝐻hfs|−,8⟩

⟨−,15|𝐻hfs|−,6⟩ ⟨−,15|𝐻hfs|−,8⟩

⟨−,9|𝐻hfs|−,9⟩ ⟨−,9|𝐻hfs|−,11⟩

⟨−,11|𝐻hfs|−,9⟩ ⟨−,11|𝐻hfs|−,11⟩

⟨−,9|𝐻hfs|−,13⟩ ⟨−,9|𝐻hfs|−,15⟩

⟨−,11|𝐻hfs|−,13⟩ ⟨−,11|𝐻hfs|−,15⟩

⟨−,13|𝐻hfs|−,9⟩ ⟨−,13|𝐻hfs|−,11⟩

⟨−,15|𝐻hfs|−,9⟩ ⟨−,15|𝐻hfs|−,11⟩

⟨−,13|𝐻hfs|−,13⟩ ⟨−,13|𝐻hfs|−,15⟩

⟨−,15|𝐻hfs|−,13⟩ ⟨−,15|𝐻hfs|−,15⟩)

 
 
 
 
 
 

 

⟨−,1|𝐻hfs|−,1⟩ = ⟨−,16|𝐻hfs|−,16⟩ =
7

4
𝐴𝑧(−1 + 2 cos2𝜃) 
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⟨−,2|𝐻hfs|−,2⟩ = ⟨−,15|𝐻hfs|−,15⟩ =
5

4
𝐴𝑧(−1 + 2 cos 2𝜃) 

⟨−,3|𝐻hfs|−,3⟩ = ⟨−,14|𝐻hfs|−,14⟩ =
3

4
𝐴𝑧(−1 + 2 cos 2𝜃) 

⟨−,4|𝐻hfs|−,4⟩ = ⟨−,13|𝐻hfs|−,13⟩ =
1

4
𝐴𝑧(−1 + 2 cos 2𝜃) 

⟨−,5|𝐻hfs|−,5⟩ = ⟨−,12|𝐻hfs|−,12⟩ = −
1

4
𝐴𝑧(−1 + 2 cos 2𝜃) 

⟨−,6|𝐻hfs|−,6⟩ = ⟨−,11|𝐻hfs|−,11⟩ = −
3

4
𝐴𝑧(−1 + 2 cos 2𝜃) 

⟨−,7|𝐻hfs|−,7⟩ = ⟨−,10|𝐻hfs|−,10⟩ = −
5

4
𝐴𝑧(−1 + 2 cos 2𝜃) 

⟨−,8|𝐻hfs|−,8⟩ = ⟨−,9|𝐻hfs|−,9⟩ = −
7

4
𝐴𝑧(−1 + 2 cos2𝜃) 

⟨−,1|𝐻hfs|−,10⟩ = ⟨−,10|𝐻hfs|−,1⟩ = ⟨−,7|𝐻hfs|−,16⟩ = ⟨−,16|𝐻hfs|−,7⟩

=
√7

2
cos𝜃 [(𝐴𝑥 − 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨−,2|𝐻hfs|−,9⟩ = ⟨−,9|𝐻hfs|−,2⟩ = ⟨−,8|𝐻hfs|−,15⟩ = ⟨−,15|𝐻hfs|−,8⟩

=
√7

2
cos𝜃 [(𝐴𝑥 + 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

⟨−,2|𝐻hfs|−,11⟩ = ⟨−,11|𝐻hfs|−,2⟩ = ⟨−,6|𝐻hfs|−,15⟩ = ⟨−,15|𝐻hfs|−,6⟩

= cos𝜃 [√3(𝐴𝑥 − 𝐴𝑦) cos𝜃 − 3(𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨−,3|𝐻hfs|−,10⟩ = ⟨−,10|𝐻hfs|−,3⟩ = ⟨−,7|𝐻hfs|−,14⟩ = ⟨−,14|𝐻hfs|−,7⟩

= cos𝜃 [√3(𝐴𝑥 + 𝐴𝑦) cos𝜃 − 3(𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

⟨−,3|𝐻hfs|−,12⟩ = ⟨−,12|𝐻hfs|−,3⟩ = ⟨−,5|𝐻hfs|+,14⟩ = ⟨−,14|𝐻hfs|−,5⟩

=
√5

2
cos𝜃 [√3(𝐴𝑥 − 𝐴𝑦) cos𝜃 − 3(𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨−,4|𝐻hfs|−,11⟩ = ⟨−,11|𝐻hfs|−,4⟩ = ⟨−,6|𝐻hfs|−,13⟩ = ⟨−,13|𝐻hfs|−,6⟩

=
√5

2
cos𝜃 [√3(𝐴𝑥 + 𝐴𝑦) cos𝜃 − 3(𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

⟨−,4|𝐻hfs|−,13⟩ = ⟨−,13|𝐻hfs|−,4⟩ = 2 cos𝜃 [(𝐴𝑥 − 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 + 𝐴𝑦) sin 𝜃] 

⟨−,5|𝐻hfs|−,12⟩ = ⟨−,12|𝐻hfs|−,5⟩ = 2 cos𝜃 [(𝐴𝑥 + 𝐴𝑦) cos𝜃 − √3(𝐴𝑥 − 𝐴𝑦) sin 𝜃] 

     The secular octic equations of 𝐻hfs
+,1

 , 𝐻hfs
+,2

 , 𝐻hfs
−,1

  and 𝐻hfs
−,2

  can be factorized to two quadratic 

equations, which is represented as follows: 

𝑥4 + 𝑎𝑖𝑥
3 + 𝑏𝑖𝑥

2 + 𝑐𝑖𝑥 + 𝑑𝑖 = 0 (𝑖 = 1,⋯ , 8) 

In the equation, i = 1 and 2, 3 and 4, 5 and 6, and 7 and 8 come from 𝐻hfs
+,1

, 𝐻hfs
+,2

, 𝐻hfs
−,1

, 𝐻hfs
−,2

, respectively. 

In order to eliminate the x3 term, replace x to x – ai/4 

𝑥4 + 𝑝𝑖𝑥
2 + 𝑞𝑖𝑥 + 𝑟𝑖 = 0 

with 
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𝑝𝑖 = −
3

8
𝑎𝑖
2 + 𝑏𝑖  

𝑞𝑖 =
1

8
𝑎3
3 −

1

2
𝑎𝑖𝑏𝑖 + 𝑐𝑖  

𝑟𝑖 = −
3

256
𝑎𝑖
4 +

1

16
𝑎𝑖
2𝑏𝑖 −

1

4
𝑎𝑖𝑐𝑖 + 𝑑𝑖 

The resolvent cubic equation is 

𝑢3 + 2𝑝𝑖𝑢
2 + (𝑝𝑖

2 − 4𝑟𝑖)𝑢 − 𝑞𝑖
2 = 0 

In order to eliminate the u2 term, replace u to u – 2pi/3 yields 

𝑢3 =
1

3
(𝑝𝑖

2 + 12𝑟𝑖)𝑢 +
1

27
(𝑝𝑖

3 − 72𝑝𝑖𝑟𝑖 + 27𝑞𝑖
2) 

One of the solutions of the cubic can be represented with trigonometric functions by using Viete’s method. 

𝑢𝑖 = 2𝑠𝑖 cos (
1

3
arccos

𝑡𝑖
2𝑠𝑖
) −

2𝑝𝑖
3

 

with 

𝑠𝑖 =
1

3
√𝑝𝑖2 + 12𝑟𝑖 =

1

3
√𝑏𝑖

2 − 3𝑎𝑖𝑐𝑖 + 12𝑑𝑖 

𝑡𝑖 =
2𝑝𝑖

3 − 72𝑝𝑖𝑟𝑖 + 27𝑞𝑖
2

3𝑝𝑖2 + 36𝑟𝑖
=
2𝑏𝑖

3 − 9𝑎𝑖𝑏𝑖𝑐𝑖 + 27𝑐𝑖
2 + 27𝑎𝑖

2𝑑𝑖 − 72𝑏𝑖𝑑𝑖

3𝑏𝑖
2 − 9𝑎𝑖𝑐𝑖 + 36𝑑𝑖

 

The quartic equation can be decomposed into two quadratic equations with u0. 

{
 
 

 
 𝑥2 +√𝑢𝑖𝑥 +

𝑝𝑖 + 𝑢𝑖
2

−
𝑞𝑖

2√𝑢𝑖
= 0

𝑥2 −√𝑢𝑖𝑥 +
𝑝𝑖 + 𝑢𝑖
2

+
𝑞𝑖

2√𝑢𝑖
= 0

 

Therefore, the solutions of the equation are 

𝑥 =
1

2
(√𝑢𝑖 +√−2𝑝𝑖 −

2𝑞𝑖

√𝑢𝑖
− 𝑢𝑖) −

𝑎𝑖
4
=
1

4
(−𝑎𝑖 + 2√𝑢𝑖 +√3𝑎𝑖2 − 8𝑏𝑖 −

𝑎𝑖3 − 4𝑎𝑖𝑏𝑖 + 8𝑐𝑖

√𝑢𝑖
− 4𝑢𝑖) 

𝑥 =
1

2
(√𝑢𝑖 −√−2𝑝𝑖 −

2𝑞𝑖

√𝑢𝑖
− 𝑢𝑖) −

𝑎𝑖
4
=
1

4
(−𝑎𝑖 + 2√𝑢𝑖 −√3𝑎𝑖2 − 8𝑏𝑖 −

𝑎𝑖3 − 4𝑎𝑖𝑏𝑖 + 8𝑐𝑖

√𝑢𝑖
− 4𝑢𝑖) 

𝑥 =
1

2
(−√𝑢𝑖 +√−2𝑝𝑖 +

2𝑞𝑖

√𝑢𝑖
− 𝑢𝑖) −

𝑎𝑖
4

=
1

4
(−𝑎𝑖 − 2√𝑢𝑖 +√3𝑎𝑖2 − 8𝑏𝑖 +

𝑎𝑖3 − 4𝑎𝑖𝑏𝑖 + 8𝑐𝑖

√𝑢𝑖
− 4𝑢𝑖) 
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𝑥 =
1

2
(−√𝑢𝑖 −√−2𝑝𝑖 +

2𝑞𝑖

√𝑢𝑖
− 𝑢𝑖) −

𝑎𝑖
4

=
1

4
(−𝑎𝑖 − 2√𝑢𝑖 −√3𝑎𝑖

2 − 8𝑏𝑖 +
𝑎𝑖3 − 4𝑎𝑖𝑏𝑖 + 8𝑐𝑖

√𝑢𝑖
− 4𝑢𝑖) 

The set of the coefficients of the quartic equations {ai, bi, ci, di} is given as follows: 

𝑎1 = 𝐴𝑥 + 𝐴𝑦 + 𝐴𝑧 + (−𝐴𝑥 − 𝐴𝑦 + 2𝐴𝑧) cos 2𝜃 + √3(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

𝑏1 = −
51

8
(𝐴𝑧

2 + 𝐴𝑧
2 + 𝐴𝑧

2) +
1

4
(17𝐴𝑥

2 − 10𝐴𝑥𝐴𝑦 + 17𝐴𝑦
2 + 5𝐴𝑥𝐴𝑧 + 5𝐴𝑦𝐴𝑧 − 34𝐴𝑧

2) cos2𝜃

+
1

8
(17𝐴𝑥

2 + 20𝐴𝑥𝐴𝑦 + 17𝐴𝑦
2 − 10𝐴𝑥𝐴𝑧 − 10𝐴𝑦𝐴𝑧 − 34𝐴𝑧

2) cos4𝜃

+
√3

4
(−17𝐴𝑥

2 + 17𝐴𝑦
2 + 5𝐴𝑥𝐴𝑧 − 5𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

8
(17𝐴𝑥

2 − 17𝐴𝑦
2 + 10𝐴𝑥𝐴𝑧 − 10𝐴𝑦𝐴𝑧) sin 4𝜃 

𝑐1 =
1

16
(−133𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 − 133𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧 − 29𝐴𝑥𝐴𝑧

2

− 29𝐴𝑦𝐴𝑧
2 − 133𝐴𝑧

3)

+
3

16
(38𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 + 38𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧

− 76𝐴𝑧
3) cos 2𝜃

+
3

16
(19𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 + 19𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧

− 38𝐴𝑧
3) cos 4𝜃

+
1

16
(−38𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 − 38𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 − 28𝐴𝑥𝐴𝑦𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧

+ 29𝐴𝑥𝐴𝑧
2 + 29𝐴𝑦𝐴𝑧

2 − 38𝐴𝑧
3) cos6𝜃

+
√3

16
(−114𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 + 114𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧 − 58𝐴𝑥𝐴𝑧

2

+ 58𝐴𝑦𝐴𝑧
2) sin 2𝜃

+
√3

16
(57𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 − 57𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧 − 58𝐴𝑥𝐴𝑧

2

+ 58𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
29√3

16
(−𝐴𝑥

2𝐴𝑦 + 𝐴𝑥𝐴𝑦
2 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 − 𝐴𝑥𝐴𝑧

2 + 𝐴𝑦𝐴𝑧
2) sin 6𝜃 
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𝑑1 =
21

256
(95𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 120𝐴𝑥

2𝐴𝑦
2 − 20𝐴𝑥𝐴𝑦

3 + 95𝐴𝑦
4 − 20𝐴𝑥

3𝐴𝑧 + 88𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 88𝐴𝑥𝐴𝑦
2𝐴𝑧 − 20𝐴𝑦

3𝐴𝑧 + 120𝐴𝑥
2𝐴𝑧

2 + 88𝐴𝑥𝐴𝑦𝐴𝑧
2 + 120𝐴𝑦

2𝐴𝑧
2 − 20𝐴𝑥𝐴𝑧

3

− 20𝐴𝑦𝐴𝑧
3 + 95𝐴𝑧

4)

+
21

64
(−20𝐴𝑥

4 + 35𝐴𝑥
3𝐴𝑦 − 30𝐴𝑥

2𝐴𝑦
2 + 35𝐴𝑥𝐴𝑦

3 − 20𝐴𝑦
4 − 25𝐴𝑥

3𝐴𝑧

− 22𝐴𝑥
2𝐴𝑦𝐴𝑧 − 22𝐴𝑥𝐴𝑦

2𝐴𝑧 − 25𝐴𝑦
3𝐴𝑧 + 15𝐴𝑥

2𝐴𝑧
2 + 44𝐴𝑥𝐴𝑦𝐴𝑧

2 + 15𝐴𝑦
2𝐴𝑧

2

− 10𝐴𝑥𝐴𝑧
3 − 10𝐴𝑦𝐴𝑧

3 + 40𝐴𝑧
4) cos2𝜃

+
21

128
(−25𝐴𝑥

4 − 80𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 − 80𝐴𝑥𝐴𝑦

3 − 25𝐴𝑦
4 + 70𝐴𝑥

3𝐴𝑧

+ 22𝐴𝑥
2𝐴𝑦𝐴𝑧 + 22𝐴𝑥𝐴𝑦

2𝐴𝑧 + 70𝐴𝑦
3𝐴𝑧 − 15𝐴𝑥

2𝐴𝑧
2 − 44𝐴𝑥𝐴𝑦𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2

+ 10𝐴𝑥𝐴𝑧
3 + 10𝐴𝑦𝐴𝑧

3 + 50𝐴𝑧
4) cos4𝜃

+
21

64
(10𝐴𝑥

4 + 5𝐴𝑥
3𝐴𝑦 − 30𝐴𝑥

2𝐴𝑦
2 + 5𝐴𝑥𝐴𝑦

3 + 10𝐴𝑦
4 + 5𝐴𝑥

3𝐴𝑧 − 22𝐴𝑥
2𝐴𝑦𝐴𝑧

− 22𝐴𝑥𝐴𝑦
2𝐴𝑧 + 5𝐴𝑦

3𝐴𝑧 − 30𝐴𝑥
2𝐴𝑧

2 − 22𝐴𝑥𝐴𝑦𝐴𝑧
2 − 30𝐴𝑦

2𝐴𝑧
2 + 5𝐴𝑥𝐴𝑧

3 + 5𝐴𝑦𝐴𝑧
3

+ 10𝐴𝑧
4) cos 6𝜃

+
21

256
(−5𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 + 60𝐴𝑥

2𝐴𝑦
2 + 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 − 40𝐴𝑥

3𝐴𝑧 + 44𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 44𝐴𝑥𝐴𝑦
2𝐴𝑧 − 40𝐴𝑦

3𝐴𝑧 − 30𝐴𝑥
2𝐴𝑧

2 − 88𝐴𝑥𝐴𝑦𝐴𝑧
2 − 30𝐴𝑦

2𝐴𝑧
2 + 20𝐴𝑥𝐴𝑧

3

+ 20𝐴𝑦𝐴𝑧
3 + 10𝐴𝑧

4) cos8𝜃

+
21√3

64
(20𝐴𝑥

4 + 5𝐴𝑥
3𝐴𝑦 − 5𝐴𝑥𝐴𝑦

3 − 20𝐴𝑦
4 − 15𝐴𝑥

3𝐴𝑧 + 22𝐴𝑥
2𝐴𝑦𝐴𝑧

− 22𝐴𝑥𝐴𝑦
2𝐴𝑧 + 15𝐴𝑦

3𝐴𝑧 + 15𝐴𝑥
2𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2 − 20𝐴𝑥𝐴𝑧
3 + 20𝐴𝑦𝐴𝑧

3) sin 2𝜃

+
21√3

128
(−25𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 − 20𝐴𝑥𝐴𝑦

3 + 25𝐴𝑦
4 − 30𝐴𝑥

3𝐴𝑧 + 22𝐴𝑥
2𝐴𝑦𝐴𝑧

− 22𝐴𝑥𝐴𝑦
2𝐴𝑧 + 30𝐴𝑦

3𝐴𝑧 + 15𝐴𝑥
2𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2 − 50𝐴𝑥𝐴𝑧
3 + 50𝐴𝑦𝐴𝑧

3) sin 4𝜃

+
315√3

64
(−𝐴𝑥

3𝐴𝑦 + 𝐴𝑥𝐴𝑦
3 + 𝐴𝑥

3𝐴𝑧 − 𝐴𝑦
3𝐴𝑧 − 𝐴𝑥𝐴𝑧

3 + 𝐴𝑦𝐴𝑧
3) sin 6𝜃

+
21√3

256
(5𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 − 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 − 44𝐴𝑥

2𝐴𝑦𝐴𝑧 + 44𝐴𝑥𝐴𝑦
2𝐴𝑧

− 30𝐴𝑥
2𝐴𝑧

2 + 30𝐴𝑦
2𝐴𝑧

2 − 20𝐴𝑥𝐴𝑧
3 + 20𝐴𝑦𝐴𝑧

3) sin 8𝜃 

 

𝑎2 = −𝐴𝑥 − 𝐴𝑦 + 𝐴𝑧 + (𝐴𝑥 + 𝐴𝑦 + 2𝐴𝑧) cos 2𝜃 − √3(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 
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𝑏2 = −
51

8
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
1

4
(17𝐴𝑥

2 − 10𝐴𝑥𝐴𝑦 + 17𝐴𝑦
2 − 5𝐴𝑥𝐴𝑧 − 5𝐴𝑦𝐴𝑧 − 34𝐴𝑧

2) cos 2𝜃

+
1

8
(17𝐴𝑥

2 + 20𝐴𝑥𝐴𝑦 + 17𝐴𝑦
2 + 10𝐴𝑥𝐴𝑧 + 10𝐴𝑦𝐴𝑧 − 34𝐴𝑧

2) cos 4𝜃

+
√3

4
(−17𝐴𝑥

2 + 17𝐴𝑦
2 − 5𝐴𝑥𝐴𝑧 + 5𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

8
(17𝐴𝑥

2 − 17𝐴𝑦
2 − 10𝐴𝑥𝐴𝑧 + 10𝐴𝑦𝐴𝑧) sin 4𝜃 

𝑐2 =
1

16
(133𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 + 133𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧 + 29𝐴𝑥𝐴𝑧

2

+ 29𝐴𝑦𝐴𝑧
2 − 133𝐴𝑧

3)

+
3

16
(−38𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 − 38𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧

− 76𝐴𝑧
3) cos 2𝜃

+
3

16
(−19𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 − 19𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧

− 38𝐴𝑧
3) cos 4𝜃

+
1

16
(38𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 + 38𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 − 28𝐴𝑥𝐴𝑦𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧

− 29𝐴𝑥𝐴𝑧
2 − 29𝐴𝑦𝐴𝑧

2 − 38𝐴𝑧
3) cos6𝜃

+
√3

16
(114𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 sin 2𝜃 + 29𝐴𝑥𝐴𝑦

2 − 114𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧

+ 58𝐴𝑥𝐴𝑧
2 − 58𝐴𝑦𝐴𝑧

2) sin 2𝜃

+
√3

16
(−57𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 + 57𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧 + 58𝐴𝑥𝐴𝑧

2

− 58𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
29√3

16
(𝐴𝑥

2𝐴𝑦 − 𝐴𝑥𝐴𝑦
2 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 + 𝐴𝑥𝐴𝑧

2 − 𝐴𝑦𝐴𝑧
2) sin 6𝜃 
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𝑑2 =
21

256
(95𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 120𝐴𝑥

2𝐴𝑦
2 − 20𝐴𝑥𝐴𝑦

3 + 95𝐴𝑦
4 + 20𝐴𝑥

3𝐴𝑧 − 88𝐴𝑥
2𝐴𝑦𝐴𝑧

− 88𝐴𝑥𝐴𝑦
2𝐴𝑧 + 20𝐴𝑦

3𝐴𝑧 + 120𝐴𝑥
2𝐴𝑧

2 + 88𝐴𝑥𝐴𝑦𝐴𝑧
2 + 120𝐴𝑦

2𝐴𝑧
2 + 20𝐴𝑥𝐴𝑧

3

+ 20𝐴𝑦𝐴𝑧
3 + 95𝐴𝑧

4)

+
21

64
(−20𝐴𝑥

4 + 35𝐴𝑥
3𝐴𝑦 − 30𝐴𝑥

2𝐴𝑦
2 + 35𝐴𝑥𝐴𝑦

3 − 20𝐴𝑦
4 + 25𝐴𝑥

3𝐴𝑧

+ 22𝐴𝑥
2𝐴𝑦𝐴𝑧 + 22𝐴𝑥𝐴𝑦

2𝐴𝑧 + 25𝐴𝑦
3𝐴𝑧 + 15𝐴𝑥

2𝐴𝑧
2 + 44𝐴𝑥𝐴𝑦𝐴𝑧

2 + 15𝐴𝑦
2𝐴𝑧

2

+ 10𝐴𝑥𝐴𝑧
3 + 10𝐴𝑦𝐴𝑧

3 + 40𝐴𝑧
4) cos2𝜃

+
21

128
(−25𝐴𝑥

4 − 80𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 − 80𝐴𝑥𝐴𝑦

3 − 25𝐴𝑦
4 − 70𝐴𝑥

3𝐴𝑧

− 22𝐴𝑥
2𝐴𝑦𝐴𝑧 − 22𝐴𝑥𝐴𝑦

2𝐴𝑧 − 70𝐴𝑦
3𝐴𝑧 − 15𝐴𝑥

2𝐴𝑧
2 − 44𝐴𝑥𝐴𝑦𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2

− 10𝐴𝑥𝐴𝑧
3 − 10𝐴𝑦𝐴𝑧

3 + 50𝐴𝑧
4) cos4𝜃

+
21

64
(10𝐴𝑥

4 + 5𝐴𝑥
3𝐴𝑦 − 30𝐴𝑥

2𝐴𝑦
2 + 5𝐴𝑥𝐴𝑦

3 + 10𝐴𝑦
4 − 5𝐴𝑥

3𝐴𝑧 + 22𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 22𝐴𝑥𝐴𝑦
2𝐴𝑧 − 5𝐴𝑦

3𝐴𝑧 − 30𝐴𝑥
2𝐴𝑧

2 − 22𝐴𝑥𝐴𝑦𝐴𝑧
2 − 30𝐴𝑦

2𝐴𝑧
2 − 5𝐴𝑥𝐴𝑧

3 − 5𝐴𝑦𝐴𝑧
3

+ 10𝐴𝑧
4) cos 6𝜃

+
21

256
(−5𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 + 60𝐴𝑥

2𝐴𝑦
2 + 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 + 40𝐴𝑥

3𝐴𝑧 − 44𝐴𝑥
2𝐴𝑦𝐴𝑧

− 44𝐴𝑥𝐴𝑦
2𝐴𝑧 + 40𝐴𝑦

3𝐴𝑧 − 30𝐴𝑥
2𝐴𝑧

2 − 88𝐴𝑥𝐴𝑦𝐴𝑧
2 − 30𝐴𝑦

2𝐴𝑧
2 − 20𝐴𝑥𝐴𝑧

3

− 20𝐴𝑦𝐴𝑧
3 + 10𝐴𝑧

4) cos8𝜃

+
21√3

64
(20𝐴𝑥

4 + 5𝐴𝑥
3𝐴𝑦 − 5𝐴𝑥𝐴𝑦

3 − 20𝐴𝑦
4 + 15𝐴𝑥

3𝐴𝑧 − 22𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 22𝐴𝑥𝐴𝑦
2𝐴𝑧 − 15𝐴𝑦

3𝐴𝑧 + 15𝐴𝑥
2𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2 + 20𝐴𝑥𝐴𝑧
3 − 20𝐴𝑦𝐴𝑧

3) sin 2𝜃

+
21√3

128
(−25𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 − 20𝐴𝑥𝐴𝑦

3 + 25𝐴𝑦
4 + 30𝐴𝑥

3𝐴𝑧 − 22𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 22𝐴𝑥𝐴𝑦
2𝐴𝑧 − 30𝐴𝑦

3𝐴𝑧 + 15𝐴𝑥
2𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2 + 50𝐴𝑥𝐴𝑧
3 − 50𝐴𝑦𝐴𝑧

3) sin 4𝜃

+
315√3

64
(−𝐴𝑥

3𝐴𝑦 + 𝐴𝑥𝐴𝑦
3 − 𝐴𝑥

3𝐴𝑧 + 𝐴𝑦
3𝐴𝑧 + 𝐴𝑥𝐴𝑧

3 + 𝐴𝑦𝐴𝑧
3) sin 6𝜃

+
21√3

256
(5𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 − 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 + 44𝐴𝑥

2𝐴𝑦𝐴𝑧 − 44𝐴𝑥𝐴𝑦
2𝐴𝑧

− 30𝐴𝑥
2𝐴𝑧

2 + 30𝐴𝑦
2𝐴𝑧

2 + 20𝐴𝑥𝐴𝑧
3 − 20𝐴𝑦𝐴𝑧

3) sin 8𝜃 

 

𝑎3 = 𝐴𝑥 − 𝐴𝑦 − 𝐴𝑧 − (𝐴𝑥 − 𝐴𝑦 + 2𝐴𝑧) cos 2𝜃 + √3(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 



 S64 

𝑏3 = −
51

8
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
1

4
(17𝐴𝑥

2 + 10𝐴𝑥𝐴𝑦 + 17𝐴𝑦
2 − 5𝐴𝑥𝐴𝑧 + 5𝐴𝑦𝐴𝑧 − 34𝐴𝑧

2) cos 2𝜃

+
1

8
(17𝐴𝑥

2 − 20𝐴𝑥𝐴𝑦 + 17𝐴𝑦
2 + 10𝐴𝑥𝐴𝑧 − 10𝐴𝑦𝐴𝑧 − 34𝐴𝑧

2) cos 4𝜃

+
√3

4
(−17𝐴𝑥

2 + 17𝐴𝑦
2 − 5𝐴𝑥𝐴𝑧 − 5𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

8
(17𝐴𝑥

2 − 17𝐴𝑦
2 − 10𝐴𝑥𝐴𝑧 − 10𝐴𝑦𝐴𝑧) sin 4𝜃 

𝑐3 =
1

16
(−133𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 + 133𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧 − 29𝐴𝑥𝐴𝑧

2

+ 29𝐴𝑦𝐴𝑧
2 + 133𝐴𝑧

3)

+
3

16
(38𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 − 38𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧

+ 76𝐴𝑧
3) cos 2𝜃

+
3

16
(19𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 − 19𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧

+ 38𝐴𝑧
3) cos 4𝜃

+
1

16
(−38𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 + 38𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 − 28𝐴𝑥𝐴𝑦𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧

+ 29𝐴𝑥𝐴𝑧
2 − 29𝐴𝑦𝐴𝑧

2 + 38𝐴𝑧
3) cos6𝜃

+
√3

16
(−114𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 − 114𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧 − 58𝐴𝑥𝐴𝑧

2

− 58𝐴𝑦𝐴𝑧
2) sin 2𝜃

+
√3

16
(57𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 + 57𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧 − 58𝐴𝑥𝐴𝑧

2

− 58𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
29√3

16
(𝐴𝑥

2𝐴𝑦 + 𝐴𝑥𝐴𝑦
2 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 − 𝐴𝑥𝐴𝑧

2 − 𝐴𝑦𝐴𝑧
2) sin 6𝜃 



 S65 

𝑑3 =
21

256
(95𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 + 120𝐴𝑥

2𝐴𝑦
2 + 20𝐴𝑥𝐴𝑦

3 + 95𝐴𝑦
4 + 20𝐴𝑥

3𝐴𝑧 + 88𝐴𝑥
2𝐴𝑦𝐴𝑧

− 88𝐴𝑥𝐴𝑦
2𝐴𝑧 − 20𝐴𝑦

3𝐴𝑧 + 120𝐴𝑥
2𝐴𝑧

2 − 88𝐴𝑥𝐴𝑦𝐴𝑧
2 + 120𝐴𝑦

2𝐴𝑧
2 + 20𝐴𝑥𝐴𝑧

3

− 20𝐴𝑦𝐴𝑧
3 + 95𝐴𝑧

4)

+
21

64
(−20𝐴𝑥

4 − 35𝐴𝑥
3𝐴𝑦 − 30𝐴𝑥

2𝐴𝑦
2 − 35𝐴𝑥𝐴𝑦

3 − 20𝐴𝑦
4 + 25𝐴𝑥

3𝐴𝑧

− 22𝐴𝑥
2𝐴𝑦𝐴𝑧 + 22𝐴𝑥𝐴𝑦

2𝐴𝑧 − 25𝐴𝑦
3𝐴𝑧 + 15𝐴𝑥

2𝐴𝑧
2 − 44𝐴𝑥𝐴𝑦𝐴𝑧

2 + 15𝐴𝑦
2𝐴𝑧

2

+ 10𝐴𝑥𝐴𝑧
3 − 10𝐴𝑦𝐴𝑧

3 + 40𝐴𝑧
4) cos2𝜃

+
21

128
(−25𝐴𝑥

4 + 80𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 + 80𝐴𝑥𝐴𝑦

3 − 25𝐴𝑦
4 − 70𝐴𝑥

3𝐴𝑧

+ 22𝐴𝑥
2𝐴𝑦𝐴𝑧 − 22𝐴𝑥𝐴𝑦

2𝐴𝑧 + 70𝐴𝑦
3𝐴𝑧 − 15𝐴𝑥

2𝐴𝑧
2 + 44𝐴𝑥𝐴𝑦𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2

− 10𝐴𝑥𝐴𝑧
3 + 10𝐴𝑦𝐴𝑧

3 + 50𝐴𝑧
4) cos4𝜃

+
21

64
(10𝐴𝑥

4 − 5𝐴𝑥
3𝐴𝑦 − 30𝐴𝑥

2𝐴𝑦
2 − 5𝐴𝑥𝐴𝑦

3 + 10𝐴𝑦
4 − 5𝐴𝑥

3𝐴𝑧 − 22𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 22𝐴𝑥𝐴𝑦
2𝐴𝑧 + 5𝐴𝑦

3𝐴𝑧 − 30𝐴𝑥
2𝐴𝑧

2 + 22𝐴𝑥𝐴𝑦𝐴𝑧
2 − 30𝐴𝑦

2𝐴𝑧
2 − 5𝐴𝑥𝐴𝑧

3 + 5𝐴𝑦𝐴𝑧
3

+ 10𝐴𝑧
4) cos 6𝜃

+
21

256
(−5𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 60𝐴𝑥

2𝐴𝑦
2 − 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 + 40𝐴𝑥

3𝐴𝑧 + 44𝐴𝑥
2𝐴𝑦𝐴𝑧

− 44𝐴𝑥𝐴𝑦
2𝐴𝑧 − 40𝐴𝑦

3𝐴𝑧 − 30𝐴𝑥
2𝐴𝑧

2 + 88𝐴𝑥𝐴𝑦𝐴𝑧
2 − 30𝐴𝑦

2𝐴𝑧
2 − 20𝐴𝑥𝐴𝑧

3

+ 20𝐴𝑦𝐴𝑧
3 + 10𝐴𝑧

4) cos8𝜃

+
21√3

64
(20𝐴𝑥

4 − 5𝐴𝑥
3𝐴𝑦 + 5𝐴𝑥𝐴𝑦

3 − 20𝐴𝑦
4 + 15𝐴𝑥

3𝐴𝑧 + 22𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 22𝐴𝑥𝐴𝑦
2𝐴𝑧 + 15𝐴𝑦

3𝐴𝑧 + 15𝐴𝑥
2𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2 + 20𝐴𝑥𝐴𝑧
3 + 20𝐴𝑦𝐴𝑧

3) sin 2𝜃

+
21√3

128
(−25𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 20𝐴𝑥𝐴𝑦

3 + 25𝐴𝑦
4 + 30𝐴𝑥

3𝐴𝑧 + 22𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 22𝐴𝑥𝐴𝑦
2𝐴𝑧 + 30𝐴𝑦

3𝐴𝑧 + 15𝐴𝑥
2𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2 + 50𝐴𝑥𝐴𝑧
3 + 50𝐴𝑦𝐴𝑧

3) sin 4𝜃

+
315√3

64
(𝐴𝑥

3𝐴𝑦 − 𝐴𝑥𝐴𝑦
3 − 𝐴𝑥

3𝐴𝑧 − 𝐴𝑦
3𝐴𝑧 + 𝐴𝑥𝐴𝑧

3 + 𝐴𝑦𝐴𝑧
3) sin 6𝜃

+
21√3

256
(5𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 − 44𝐴𝑥

2𝐴𝑦𝐴𝑧 − 44𝐴𝑥𝐴𝑦
2𝐴𝑧

− 30𝐴𝑥
2𝐴𝑧

2 + 30𝐴𝑦
2𝐴𝑧

2 + 20𝐴𝑥𝐴𝑧
3 + 20𝐴𝑦𝐴𝑧

3) sin 8𝜃 

 

𝑎4 = −𝐴𝑥 + 𝐴𝑦 − 𝐴𝑧 + (𝐴𝑥 − 𝐴𝑦 − 2𝐴𝑧) cos 2𝜃 − √3(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 



 S66 

𝑏4 = −
51

8
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
1

4
(17𝐴𝑥

2 − 10𝐴𝑥𝐴𝑦 + 17𝐴𝑦
2 + 5𝐴𝑥𝐴𝑧 + 5𝐴𝑦𝐴𝑧 − 34𝐴𝑧

2) cos 2𝜃

+
1

8
(17𝐴𝑥

2 + 20𝐴𝑥𝐴𝑦 + 17𝐴𝑦
2 − 10𝐴𝑥𝐴𝑧 − 10𝐴𝑦𝐴𝑧 − 34𝐴𝑧

2) cos 4𝜃

+
√3

4
(−17𝐴𝑥

2 + 17𝐴𝑦
2 + 5𝐴𝑥𝐴𝑧 − 5𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

8
(17𝐴𝑥

2 − 17𝐴𝑦
2 + 10𝐴𝑥𝐴𝑧 + 10𝐴𝑦𝐴𝑧) sin 4𝜃 

𝑐4 =
1

16
(133𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 − 133𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧 + 29𝐴𝑥𝐴𝑧

2

− 29𝐴𝑦𝐴𝑧
2 + 133𝐴𝑧

3)

+
3

16
(−38𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 + 38𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧

+ 76𝐴𝑧
3) cos 2𝜃

+
3

16
(−19𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 + 19𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧

+ 38𝐴𝑧
3) cos 4𝜃

+
1

16
(38𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 − 38𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 − 28𝐴𝑥𝐴𝑦𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧

− 29𝐴𝑥𝐴𝑧
2 + 29𝐴𝑦𝐴𝑧

2 + 38𝐴𝑧
3) cos6𝜃

+
√3

16
(114𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 + 114𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧 + 58𝐴𝑥𝐴𝑧

2

+ 58𝐴𝑦𝐴𝑧
2) sin 2𝜃

+
√3

16
(−57𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 − 57𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧 + 58𝐴𝑥𝐴𝑧

2

+ 58𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
29√3

16
(−𝐴𝑥

2𝐴𝑦 − 𝐴𝑥𝐴𝑦
2 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 + 𝐴𝑥𝐴𝑧

2 + 𝐴𝑦𝐴𝑧
2) sin 6𝜃 



 S67 

𝑑4 =
21

256
(95𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 + 120𝐴𝑥

2𝐴𝑦
2 + 20𝐴𝑥𝐴𝑦

3 + 95𝐴𝑦
4 − 20𝐴𝑥

3𝐴𝑧 − 88𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 88𝐴𝑥𝐴𝑦
2𝐴𝑧 + 20𝐴𝑦

3𝐴𝑧 + 120𝐴𝑥
2𝐴𝑧

2 − 88𝐴𝑥𝐴𝑦𝐴𝑧
2 + 120𝐴𝑦

2𝐴𝑧
2 − 20𝐴𝑥𝐴𝑧

3

+ 20𝐴𝑦𝐴𝑧
3 + 95𝐴𝑧

4)

+
21

64
(−20𝐴𝑥

4 − 35𝐴𝑥
3𝐴𝑦 − 30𝐴𝑥

2𝐴𝑦
2 − 35𝐴𝑥𝐴𝑦

3 − 20𝐴𝑦
4 − 25𝐴𝑥

3𝐴𝑧

+ 22𝐴𝑥
2𝐴𝑦𝐴𝑧 − 22𝐴𝑥𝐴𝑦

2𝐴𝑧 + 25𝐴𝑦
3𝐴𝑧 + 15𝐴𝑥

2𝐴𝑧
2 − 44𝐴𝑥𝐴𝑦𝐴𝑧

2 + 15𝐴𝑦
2𝐴𝑧

2

− 10𝐴𝑥𝐴𝑧
3 + 10𝐴𝑦𝐴𝑧

3 + 40𝐴𝑧
4) cos2𝜃

+
21

128
(−25𝐴𝑥

4 + 80𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 + 80𝐴𝑥𝐴𝑦

3 − 25𝐴𝑦
4 + 70𝐴𝑥

3𝐴𝑧

− 22𝐴𝑥
2𝐴𝑦𝐴𝑧 + 22𝐴𝑥𝐴𝑦

2𝐴𝑧 − 70𝐴𝑦
3𝐴𝑧 − 15𝐴𝑥

2𝐴𝑧
2 + 44𝐴𝑥𝐴𝑦𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2

+ 10𝐴𝑥𝐴𝑧
3 − 10𝐴𝑦𝐴𝑧

3 + 50𝐴𝑧
4) cos4𝜃

+
21

64
(10𝐴𝑥

4 − 5𝐴𝑥
3𝐴𝑦 − 30𝐴𝑥

2𝐴𝑦
2 − 5𝐴𝑥𝐴𝑦

3 + 10𝐴𝑦
4 + 5𝐴𝑥

3𝐴𝑧 + 22𝐴𝑥
2𝐴𝑦𝐴𝑧

− 22𝐴𝑥𝐴𝑦
2𝐴𝑧 − 5𝐴𝑦

3𝐴𝑧 − 30𝐴𝑥
2𝐴𝑧

2 + 22𝐴𝑥𝐴𝑦𝐴𝑧
2 − 30𝐴𝑦

2𝐴𝑧
2 + 5𝐴𝑥𝐴𝑧

3 − 5𝐴𝑦𝐴𝑧
3

+ 10𝐴𝑧
4) cos 6𝜃

+
21

256
(−5𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 60𝐴𝑥

2𝐴𝑦
2 − 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 − 40𝐴𝑥

3𝐴𝑧 − 44𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 44𝐴𝑥𝐴𝑦
2𝐴𝑧 + 40𝐴𝑦

3𝐴𝑧 − 30𝐴𝑥
2𝐴𝑧

2 + 88𝐴𝑥𝐴𝑦𝐴𝑧
2 − 30𝐴𝑦

2𝐴𝑧
2 + 20𝐴𝑥𝐴𝑧

3

− 20𝐴𝑦𝐴𝑧
3 + 10𝐴𝑧

4) cos8𝜃

+
21√3

64
(20𝐴𝑥

4 − 5𝐴𝑥
3𝐴𝑦 + 5𝐴𝑥𝐴𝑦

3 − 20𝐴𝑦
4 − 15𝐴𝑥

3𝐴𝑧 − 22𝐴𝑥
2𝐴𝑦𝐴𝑧

− 22𝐴𝑥𝐴𝑦
2𝐴𝑧 − 15𝐴𝑦

3𝐴𝑧 + 15𝐴𝑥
2𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2 − 20𝐴𝑥𝐴𝑧
3 − 20𝐴𝑦𝐴𝑧

3) sin 2𝜃

+
21√3

128
(−25𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 20𝐴𝑥𝐴𝑦

3 + 25𝐴𝑦
4 − 30𝐴𝑥

3𝐴𝑧 − 22𝐴𝑥
2𝐴𝑦𝐴𝑧

− 22𝐴𝑥𝐴𝑦
2𝐴𝑧 − 30𝐴𝑦

3𝐴𝑧 + 15𝐴𝑥
2𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2 − 50𝐴𝑥𝐴𝑧
3 − 50𝐴𝑦𝐴𝑧

3) sin 4𝜃

+
315√3

64
(𝐴𝑥

3𝐴𝑦 − 𝐴𝑥𝐴𝑦
3 + 𝐴𝑥

3𝐴𝑧 + 𝐴𝑦
3𝐴𝑧 − 𝐴𝑥𝐴𝑧

3 − 𝐴𝑦𝐴𝑧
3) sin 6𝜃

+
21√3

256
(5𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 + 44𝐴𝑥

2𝐴𝑦𝐴𝑧 + 44𝐴𝑥𝐴𝑦
2𝐴𝑧

− 30𝐴𝑥
2𝐴𝑧

2 + 30𝐴𝑦
2𝐴𝑧

2 − 20𝐴𝑥𝐴𝑧
3 − 20𝐴𝑦𝐴𝑧

3) sin 8𝜃 

The set of the coefficients for i = 2, 3 and 4 can be obtained from {a1, b1, c1, d1} with replacing Ax and Ay to 

–Ax and –Ay, Ax and Az to –Ax and –Az, and Ay and Az to –Ay and –Az, respectively. 

     For the negative counterpart: 

𝑎5 = −𝐴𝑥 + 𝐴𝑦 − 𝐴𝑧 − (𝐴𝑥 − 𝐴𝑦 − 2𝐴𝑧) cos 2𝜃 + √3(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 
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𝑏5 = −
51

8
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
1

4
(−17𝐴𝑥

2 − 10𝐴𝑥𝐴𝑦 − 17𝐴𝑦
2 − 5𝐴𝑥𝐴𝑧 + 5𝐴𝑦𝐴𝑧 + 34𝐴𝑧

2) cos2𝜃

+
1

8
(17𝐴𝑥

2 − 20𝐴𝑥𝐴𝑦 + 17𝐴𝑦
2 − 10𝐴𝑥𝐴𝑧 + 10𝐴𝑦𝐴𝑧 − 34𝐴𝑧

2) cos4𝜃

+
√3

4
(17𝐴𝑥

2 − 17𝐴𝑦
2 − 5𝐴𝑥𝐴𝑧 − 5𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

8
(17𝐴𝑥

2 − 17𝐴𝑦
2 + 10𝐴𝑥𝐴𝑧 + 10𝐴𝑦𝐴𝑧) sin 4𝜃 

𝑐5 =
1

16
(133𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 − 133𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧 + 29𝐴𝑥𝐴𝑧

2

− 29𝐴𝑦𝐴𝑧
2 + 133𝐴𝑧

3)

+
3

16
(38𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 − 38𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧

− 76𝐴𝑧
3) cos 2𝜃

+
3

16
(−19𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 + 19𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧

+ 38𝐴𝑧
3) cos 4𝜃

+
1

16
(−38𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 + 38𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧

+ 29𝐴𝑥𝐴𝑧
2 − 29𝐴𝑦𝐴𝑧

2 − 38𝐴𝑧
3) cos6𝜃

+
√3

16
(−114𝐴𝑥

3 sin 2𝜃 − 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 − 114𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧

− 58𝐴𝑥𝐴𝑧
2 − 58𝐴𝑦𝐴𝑧

2) sin 2𝜃

+
√3

16
(−57𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 − 57𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧 + 58𝐴𝑥𝐴𝑧

2

+ 58𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
29√3

16
(𝐴𝑥

2𝐴𝑦 + 𝐴𝑥𝐴𝑦
2 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 − 𝐴𝑥𝐴𝑧

2 − 𝐴𝑦𝐴𝑧
2) sin 6𝜃 
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𝑑5 =
21

256
(95𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 + 120𝐴𝑥

2𝐴𝑦
2 + 20𝐴𝑥𝐴𝑦

3 + 95𝐴𝑦
4 − 20𝐴𝑥

3𝐴𝑧 − 88𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 88𝐴𝑥𝐴𝑦
2𝐴𝑧 + 20𝐴𝑦

3𝐴𝑧 + 120𝐴𝑥
2𝐴𝑧

2 − 88𝐴𝑥𝐴𝑦𝐴𝑧
2 + 120𝐴𝑦

2𝐴𝑧
2 − 20𝐴𝑥𝐴𝑧

3

+ 20𝐴𝑦𝐴𝑧
3 + 95𝐴𝑧

4)

+
21

64
(20𝐴𝑥

4 + 35𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 + 35𝐴𝑥𝐴𝑦

3 + 20𝐴𝑦
4 + 25𝐴𝑥

3𝐴𝑧 − 22𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 22𝐴𝑥𝐴𝑦
2𝐴𝑧 − 25𝐴𝑦

3𝐴𝑧 − 15𝐴𝑥
2𝐴𝑧

2 + 44𝐴𝑥𝐴𝑦𝐴𝑧
2 − 15𝐴𝑦

2𝐴𝑧
2 + 10𝐴𝑥𝐴𝑧

3

− 10𝐴𝑦𝐴𝑧
3 − 40𝐴𝑧

4) cos2𝜃

+
21

128
(−25𝐴𝑥

4 + 80𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 + 80𝐴𝑥𝐴𝑦

3 − 25𝐴𝑦
4 + 70𝐴𝑥

3𝐴𝑧

− 22𝐴𝑥
2𝐴𝑦𝐴𝑧 + 22𝐴𝑥𝐴𝑦

2𝐴𝑧 − 70𝐴𝑦
3𝐴𝑧 − 15𝐴𝑥

2𝐴𝑧
2 + 44𝐴𝑥𝐴𝑦𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2

+ 10𝐴𝑥𝐴𝑧
3 − 10𝐴𝑦𝐴𝑧

3 + 50𝐴𝑧
4) cos4𝜃

+
21

64
(−10𝐴𝑥

4 + 5𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 + 5𝐴𝑥𝐴𝑦

3 − 10𝐴𝑦
4 − 5𝐴𝑥

3𝐴𝑧 − 22𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 22𝐴𝑥𝐴𝑦
2𝐴𝑧 + 5𝐴𝑦

3𝐴𝑧 + 30𝐴𝑥
2𝐴𝑧

2 − 22𝐴𝑥𝐴𝑦𝐴𝑧
2 + 30𝐴𝑦

2𝐴𝑧
2 − 5𝐴𝑥𝐴𝑧

3 + 5𝐴𝑦𝐴𝑧
3

− 10𝐴𝑧
4) cos 6𝜃

+
21

256
(−5𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 60𝐴𝑥

2𝐴𝑦
2 − 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 − 40𝐴𝑥

3𝐴𝑧 − 44𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 44𝐴𝑥𝐴𝑦
2𝐴𝑧 + 40𝐴𝑦

3𝐴𝑧 − 30𝐴𝑥
2𝐴𝑧

2 + 88𝐴𝑥𝐴𝑦𝐴𝑧
2 − 30𝐴𝑦

2𝐴𝑧
2 + 20𝐴𝑥𝐴𝑧

3

− 20𝐴𝑦𝐴𝑧
3 + 10𝐴𝑧

4) cos8𝜃

+
21√3

64
(−20𝐴𝑥

4 + 5𝐴𝑥
3𝐴𝑦 − 5𝐴𝑥𝐴𝑦

3 + 20𝐴𝑦
4 + 15𝐴𝑥

3𝐴𝑧 + 22𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 22𝐴𝑥𝐴𝑦
2𝐴𝑧 + 15𝐴𝑦

3𝐴𝑧 − 15𝐴𝑥
2𝐴𝑧

2 + 15𝐴𝑦
2𝐴𝑧

2 + 20𝐴𝑥𝐴𝑧
3 + 20𝐴𝑦𝐴𝑧

3) sin 2𝜃

+
21√3

128
(−25𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 20𝐴𝑥𝐴𝑦

3 + 25𝐴𝑦
4 − 30𝐴𝑥

3𝐴𝑧 − 22𝐴𝑥
2𝐴𝑦𝐴𝑧

− 22𝐴𝑥𝐴𝑦
2𝐴𝑧 − 30𝐴𝑦

3𝐴𝑧 + 15𝐴𝑥
2𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2 − 50𝐴𝑥𝐴𝑧
3 − 50𝐴𝑦𝐴𝑧

3) sin 4𝜃

+
315√3

64
(−𝐴𝑥

3𝐴𝑦 + 𝐴𝑥𝐴𝑦
3 − 𝐴𝑥

3𝐴𝑧 − 𝐴𝑦
3𝐴𝑧 + 𝐴𝑥𝐴𝑧

3 + 𝐴𝑦𝐴𝑧
3) sin 6𝜃

+
21√3

256
(5𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 + 44𝐴𝑥

2𝐴𝑦𝐴𝑧 + 44𝐴𝑥𝐴𝑦
2𝐴𝑧

− 30𝐴𝑥
2𝐴𝑧

2 + 30𝐴𝑦
2𝐴𝑧

2 − 20𝐴𝑥𝐴𝑧
3 − 20𝐴𝑦𝐴𝑧

3) sin 8𝜃 

 

𝑎6 = 𝐴𝑥 − 𝐴𝑦 − 𝐴𝑧 + (𝐴𝑥 − 𝐴𝑦 + 2𝐴𝑧) cos 2𝜃 − √3(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 
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𝑏6 = −
51

8
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
1

4
(−17𝐴𝑥

2 − 10𝐴𝑥𝐴𝑦 − 17𝐴𝑦
2 + 5𝐴𝑥𝐴𝑧 − 5𝐴𝑦𝐴𝑧 + 34𝐴𝑧

2) cos2𝜃

+
1

8
(17𝐴𝑥

2 − 20𝐴𝑥𝐴𝑦 + 17𝐴𝑦
2 + 10𝐴𝑥𝐴𝑧 − 10𝐴𝑦𝐴𝑧 − 34𝐴𝑧

2) cos4𝜃

+
√3

4
(17𝐴𝑥

2 − 17𝐴𝑦
2 + 5𝐴𝑥𝐴𝑧 + 5𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

8
(17𝐴𝑥

2 − 17𝐴𝑦
2 − 10𝐴𝑥𝐴𝑧 − 10𝐴𝑦𝐴𝑧) sin 4𝜃 

𝑐6 =
1

16
(−133𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 + 133𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧 − 29𝐴𝑥𝐴𝑧

2

+ 29𝐴𝑦𝐴𝑧
2 + 133𝐴𝑧

3)

+
3

16
(−38𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 + 38𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧

− 76𝐴𝑧
3) cos 2𝜃

+
3

16
(19𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 − 19𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧

+ 38𝐴𝑧
3) cos 4𝜃

+
1

16
(38𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 − 38𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧

− 29𝐴𝑥𝐴𝑧
2 + 29𝐴𝑦𝐴𝑧

2 − 38𝐴𝑧
3) cos6𝜃

+
√3

16
(114𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 + 114𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧 + 58𝐴𝑥𝐴𝑧

2

+ 58𝐴𝑦𝐴𝑧
2) sin 2𝜃

+
√3

16
(57𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 + 57𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧 − 58𝐴𝑥𝐴𝑧

2

− 58𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
29√3

16
(−𝐴𝑥

2𝐴𝑦 − 𝐴𝑥𝐴𝑦
2 + 𝐴𝑥

2𝐴𝑧 − 𝐴𝑦
2𝐴𝑧 + 𝐴𝑥𝐴𝑧

2 + 𝐴𝑦𝐴𝑧
2) sin 6𝜃 
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𝑑6 =
21

256
(95𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 + 120𝐴𝑥

2𝐴𝑦
2 + 20𝐴𝑥𝐴𝑦

3 + 95𝐴𝑦
4 + 20𝐴𝑥

3𝐴𝑧 + 88𝐴𝑥
2𝐴𝑦𝐴𝑧

− 88𝐴𝑥𝐴𝑦
2𝐴𝑧 − 20𝐴𝑦

3𝐴𝑧 + 120𝐴𝑥
2𝐴𝑧

2 − 88𝐴𝑥𝐴𝑦𝐴𝑧
2 + 120𝐴𝑦

2𝐴𝑧
2 + 20𝐴𝑥𝐴𝑧

3

− 20𝐴𝑦𝐴𝑧
3 + 95𝐴𝑧

4)

+
21

64
(20𝐴𝑥

4 + 35𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 + 35𝐴𝑥𝐴𝑦

3 + 20𝐴𝑦
4 − 25𝐴𝑥

3𝐴𝑧 + 22𝐴𝑥
2𝐴𝑦𝐴𝑧

− 22𝐴𝑥𝐴𝑦
2𝐴𝑧 + 25𝐴𝑦

3𝐴𝑧 − 15𝐴𝑥
2𝐴𝑧

2 + 44𝐴𝑥𝐴𝑦𝐴𝑧
2 − 15𝐴𝑦

2𝐴𝑧
2 − 10𝐴𝑥𝐴𝑧

3

+ 10𝐴𝑦𝐴𝑧
3 − 40𝐴𝑧

4) cos2𝜃

+
21

128
(−25𝐴𝑥

4 + 80𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 + 80𝐴𝑥𝐴𝑦

3 − 25𝐴𝑦
4 − 70𝐴𝑥

3𝐴𝑧

+ 22𝐴𝑥
2𝐴𝑦𝐴𝑧 − 22𝐴𝑥𝐴𝑦

2𝐴𝑧 + 70𝐴𝑦
3𝐴𝑧 − 15𝐴𝑥

2𝐴𝑧
2 + 44𝐴𝑥𝐴𝑦𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2

− 10𝐴𝑥𝐴𝑧
3 + 10𝐴𝑦𝐴𝑧

3 + 50𝐴𝑧
4) cos4𝜃

+
21

64
(−10𝐴𝑥

4 + 5𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 + 5𝐴𝑥𝐴𝑦

3 − 10𝐴𝑦
4 + 5𝐴𝑥

3𝐴𝑧 + 22𝐴𝑥
2𝐴𝑦𝐴𝑧

− 22𝐴𝑥𝐴𝑦
2𝐴𝑧 − 5𝐴𝑦

3𝐴𝑧 + 30𝐴𝑥
2𝐴𝑧

2 − 22𝐴𝑥𝐴𝑦𝐴𝑧
2 + 30𝐴𝑦

2𝐴𝑧
2 + 5𝐴𝑥𝐴𝑧

3 − 5𝐴𝑦𝐴𝑧
3

− 10𝐴𝑧
4) cos 6𝜃

+
21

256
(−5𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 60𝐴𝑥

2𝐴𝑦
2 − 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 + 40𝐴𝑥

3𝐴𝑧 + 44𝐴𝑥
2𝐴𝑦𝐴𝑧

− 44𝐴𝑥𝐴𝑦
2𝐴𝑧 − 40𝐴𝑦

3𝐴𝑧 − 30𝐴𝑥
2𝐴𝑧

2 + 88𝐴𝑥𝐴𝑦𝐴𝑧
2 − 30𝐴𝑦

2𝐴𝑧
2 − 20𝐴𝑥𝐴𝑧

3

+ 20𝐴𝑦𝐴𝑧
3 + 10𝐴𝑧

4) cos8𝜃

+
21√3

64
(−20𝐴𝑥

4 + 5𝐴𝑥
3𝐴𝑦 − 5𝐴𝑥𝐴𝑦

3 + 20𝐴𝑦
4 − 15𝐴𝑥

3𝐴𝑧 − 22𝐴𝑥
2𝐴𝑦𝐴𝑧

− 22𝐴𝑥𝐴𝑦
2𝐴𝑧 − 15𝐴𝑦

3𝐴𝑧 − 15𝐴𝑥
2𝐴𝑧

2 + 15𝐴𝑦
2𝐴𝑧

2 − 20𝐴𝑥𝐴𝑧
3 − 20𝐴𝑦𝐴𝑧

3) sin 2𝜃

+
21√3

128
(−25𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 20𝐴𝑥𝐴𝑦

3 + 25𝐴𝑦
4 + 30𝐴𝑥

3𝐴𝑧 + 22𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 22𝐴𝑥𝐴𝑦
2𝐴𝑧 + 30𝐴𝑦

3𝐴𝑧 + 15𝐴𝑥
2𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2 + 50𝐴𝑥𝐴𝑧
3 + 50𝐴𝑦𝐴𝑧

3) sin 4𝜃

+
315√3

64
(−𝐴𝑥

3𝐴𝑦 + 𝐴𝑥𝐴𝑦
3 + 𝐴𝑥

3𝐴𝑧 + 𝐴𝑦
3𝐴𝑧 − 𝐴𝑥𝐴𝑧

3 − 𝐴𝑦𝐴𝑧
3) sin 6𝜃

+
21√3

256
(5𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 − 44𝐴𝑥

2𝐴𝑦𝐴𝑧 − 44𝐴𝑥𝐴𝑦
2𝐴𝑧

− 30𝐴𝑥
2𝐴𝑧

2 + 30𝐴𝑦
2𝐴𝑧

2 + 20𝐴𝑥𝐴𝑧
3 + 20𝐴𝑦𝐴𝑧

3) sin 8𝜃 

 

𝑎7 = −𝐴𝑥 − 𝐴𝑦 + 𝐴𝑧 − (𝐴𝑥 + 𝐴𝑦 + 2𝐴𝑧) cos 2𝜃 + √3(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 
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𝑏7 = −
51

8
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
1

4
(−17𝐴𝑥

2 + 10𝐴𝑥𝐴𝑦 − 17𝐴𝑦
2 + 5𝐴𝑥𝐴𝑧 + 5𝐴𝑦𝐴𝑧 + 34𝐴𝑧

2) cos2𝜃

+
1

8
(17𝐴𝑥

2 + 20𝐴𝑥𝐴𝑦 + 17𝐴𝑦
2 + 10𝐴𝑥𝐴𝑧 + 10𝐴𝑦𝐴𝑧 − 34𝐴𝑧

2) cos4𝜃

+
√3

4
(17𝐴𝑥

2 − 17𝐴𝑦
2 + 5𝐴𝑥𝐴𝑧 − 5𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

8
(17𝐴𝑥

2 − 17𝐴𝑦
2 − 10𝐴𝑥𝐴𝑧 + 10𝐴𝑦𝐴𝑧) sin 4𝜃 

𝑐7 =
1

16
(133𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 + 133𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧 + 29𝐴𝑥𝐴𝑧

2

+ 29𝐴𝑦𝐴𝑧
2 − 133𝐴𝑧

3)

+
3

16
(38𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 + 38𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧

+ 76𝐴𝑧
3) cos 2𝜃

+
3

16
(−19𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 − 19𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧

− 38𝐴𝑧
3) cos 4𝜃

+
1

16
(−38𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 − 38𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧

+ 29𝐴𝑥𝐴𝑧
2 + 29𝐴𝑦𝐴𝑧

2 + 38𝐴𝑧
3) cos6𝜃

+
√3

16
(−114𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 + 114𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧 − 58𝐴𝑥𝐴𝑧

2

+ 58𝐴𝑦𝐴𝑧
2) sin 2𝜃

+
√3

16
(−57𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 + 57𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧 + 58𝐴𝑥𝐴𝑧

2

− 58𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
29√3

16
(−𝐴𝑥

2𝐴𝑦 + 𝐴𝑥𝐴𝑦
2 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 − 𝐴𝑥𝐴𝑧

2 + 𝐴𝑦𝐴𝑧
2) sin 6𝜃 
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𝑑7 =
21

256
(95𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 120𝐴𝑥

2𝐴𝑦
2 − 20𝐴𝑥𝐴𝑦

3 + 95𝐴𝑦
4 + 20𝐴𝑥

3𝐴𝑧 − 88𝐴𝑥
2𝐴𝑦𝐴𝑧

− 88𝐴𝑥𝐴𝑦
2𝐴𝑧 + 20𝐴𝑦

3𝐴𝑧 + 120𝐴𝑥
2𝐴𝑧

2 + 88𝐴𝑥𝐴𝑦𝐴𝑧
2 + 120𝐴𝑦

2𝐴𝑧
2 + 20𝐴𝑥𝐴𝑧

3

+ 20𝐴𝑦𝐴𝑧
3 + 95𝐴𝑧

4)

+
21

64
(20𝐴𝑥

4 − 35𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 − 35𝐴𝑥𝐴𝑦

3 + 20𝐴𝑦
4 − 25𝐴𝑥

3𝐴𝑧 − 22𝐴𝑥
2𝐴𝑦𝐴𝑧

− 22𝐴𝑥𝐴𝑦
2𝐴𝑧 − 25𝐴𝑦

3𝐴𝑧 − 15𝐴𝑥
2𝐴𝑧

2 − 44𝐴𝑥𝐴𝑦𝐴𝑧
2 − 15𝐴𝑦

2𝐴𝑧
2 − 10𝐴𝑥𝐴𝑧

3

− 10𝐴𝑦𝐴𝑧
3 − 40𝐴𝑧

4) cos2𝜃

+
21

128
(−25𝐴𝑥

4 − 80𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 − 80𝐴𝑥𝐴𝑦

3 − 25𝐴𝑦
4 − 70𝐴𝑥

3𝐴𝑧

− 22𝐴𝑥
2𝐴𝑦𝐴𝑧 − 22𝐴𝑥𝐴𝑦

2𝐴𝑧 − 70𝐴𝑦
3𝐴𝑧 − 15𝐴𝑥

2𝐴𝑧
2 − 44𝐴𝑥𝐴𝑦𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2

− 10𝐴𝑥𝐴𝑧
3 − 10𝐴𝑦𝐴𝑧

3 + 50𝐴𝑧
4) cos4𝜃

+
21

64
(−10𝐴𝑥

4 − 5𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 − 5𝐴𝑥𝐴𝑦

3 − 10𝐴𝑦
4 + 5𝐴𝑥

3𝐴𝑧 − 22𝐴𝑥
2𝐴𝑦𝐴𝑧

− 22𝐴𝑥𝐴𝑦
2𝐴𝑧 + 5𝐴𝑦

3𝐴𝑧 + 30𝐴𝑥
2𝐴𝑧

2 + 22𝐴𝑥𝐴𝑦𝐴𝑧
2 + 30𝐴𝑦

2𝐴𝑧
2 + 5𝐴𝑥𝐴𝑧

3 + 5𝐴𝑦𝐴𝑧
3

− 10𝐴𝑧
4) cos 6𝜃

+
21

256
(−5𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 + 60𝐴𝑥

2𝐴𝑦
2 + 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 + 40𝐴𝑥

3𝐴𝑧 − 44𝐴𝑥
2𝐴𝑦𝐴𝑧

− 44𝐴𝑥𝐴𝑦
2𝐴𝑧 + 40𝐴𝑦

3𝐴𝑧 − 30𝐴𝑥
2𝐴𝑧

2 − 88𝐴𝑥𝐴𝑦𝐴𝑧
2 − 30𝐴𝑦

2𝐴𝑧
2 − 20𝐴𝑥𝐴𝑧

3

− 20𝐴𝑦𝐴𝑧
3 + 10𝐴𝑧

4) cos8𝜃

+
21√3

64
(−20𝐴𝑥

4 − 5𝐴𝑥
3𝐴𝑦 + 5𝐴𝑥𝐴𝑦

3 + 20𝐴𝑦
4 − 15𝐴𝑥

3𝐴𝑧 + 22𝐴𝑥
2𝐴𝑦𝐴𝑧

− 22𝐴𝑥𝐴𝑦
2𝐴𝑧 + 15𝐴𝑦

3𝐴𝑧 − 15𝐴𝑥
2𝐴𝑧

2 + 15𝐴𝑦
2𝐴𝑧

2 − 20𝐴𝑥𝐴𝑧
3 + 20𝐴𝑦𝐴𝑧

3) sin 2𝜃

+
21√3

128
(−25𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 − 20𝐴𝑥𝐴𝑦

3 + 25𝐴𝑦
4 + 30𝐴𝑥

3𝐴𝑧 − 22𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 22𝐴𝑥𝐴𝑦
2𝐴𝑧 − 30𝐴𝑦

3𝐴𝑧 + 15𝐴𝑥
2𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2 + 50𝐴𝑥𝐴𝑧
3 − 50𝐴𝑦𝐴𝑧

3) sin 4𝜃

+
315√3

64
(𝐴𝑥

3𝐴𝑦 − 𝐴𝑥𝐴𝑦
3 + 𝐴𝑥

3𝐴𝑧 − 𝐴𝑦
3𝐴𝑧 − 𝐴𝑥𝐴𝑧

3 + 𝐴𝑦𝐴𝑧
3) sin 6𝜃

+
21√3

256
(5𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 − 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 + 44𝐴𝑥

2𝐴𝑦𝐴𝑧 − 44𝐴𝑥𝐴𝑦
2𝐴𝑧

− 30𝐴𝑥
2𝐴𝑧

2 + 30𝐴𝑦
2𝐴𝑧

2 + 20𝐴𝑥𝐴𝑧
3 − 20𝐴𝑦𝐴𝑧

3) sin 8𝜃 

 

𝑎8 = 𝐴𝑥 + 𝐴𝑦 + 𝐴𝑧 + (𝐴𝑥 + 𝐴𝑦 − 2𝐴𝑧) cos 2𝜃 − √3(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 
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𝑏8 = −
51

8
(𝐴𝑥

2 + 𝐴𝑦
2 + 𝐴𝑧

2) +
1

4
(−17𝐴𝑥

2 + 10𝐴𝑥𝐴𝑦 − 17𝐴𝑦
2 − 5𝐴𝑥𝐴𝑧 − 5𝐴𝑦𝐴𝑧 + 34𝐴𝑧

2) cos2𝜃

+
1

8
(17𝐴𝑥

2 + 20𝐴𝑥𝐴𝑦 + 17𝐴𝑦
2 − 10𝐴𝑥𝐴𝑧 − 10𝐴𝑦𝐴𝑧 − 34𝐴𝑧

2) cos4𝜃

+
√3

4
(17𝐴𝑥

2 − 17𝐴𝑦
2 − 5𝐴𝑥𝐴𝑧 + 5𝐴𝑦𝐴𝑧) sin 2𝜃

+
√3

8
(17𝐴𝑥

2 − 17𝐴𝑦
2 + 10𝐴𝑥𝐴𝑧 − 10𝐴𝑦𝐴𝑧) sin 4𝜃 

𝑐8 =
1

16
(−133𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 − 133𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧 − 29𝐴𝑥𝐴𝑧

2

− 29𝐴𝑦𝐴𝑧
2 − 133𝐴𝑧

3)

+
3

16
(−38𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 − 38𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧

+ 76𝐴𝑧
3) cos 2𝜃

+
3

16
(19𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 + 19𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧

− 38𝐴𝑧
3) cos 4𝜃

+
1

16
(38𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 + 38𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 + 28𝐴𝑥𝐴𝑦𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧

− 29𝐴𝑥𝐴𝑧
2 − 29𝐴𝑦𝐴𝑧

2 + 38𝐴𝑧
3) cos6𝜃

+
√3

16
(114𝐴𝑥

3 − 29𝐴𝑥
2𝐴𝑦 + 29𝐴𝑥𝐴𝑦

2 − 114𝐴𝑦
3 + 29𝐴𝑥

2𝐴𝑧 − 29𝐴𝑦
2𝐴𝑧 + 58𝐴𝑥𝐴𝑧

2

− 58𝐴𝑦𝐴𝑧
2) sin 2𝜃

+
√3

16
(57𝐴𝑥

3 + 29𝐴𝑥
2𝐴𝑦 − 29𝐴𝑥𝐴𝑦

2 − 57𝐴𝑦
3 − 29𝐴𝑥

2𝐴𝑧 + 29𝐴𝑦
2𝐴𝑧 − 58𝐴𝑥𝐴𝑧

2

+ 58𝐴𝑦𝐴𝑧
2) sin 4𝜃

+
29√3

16
(𝐴𝑥

2𝐴𝑦 − 𝐴𝑥𝐴𝑦
2 − 𝐴𝑥

2𝐴𝑧 + 𝐴𝑦
2𝐴𝑧 + 𝐴𝑥𝐴𝑧

2 − 𝐴𝑦𝐴𝑧
2) sin 6𝜃 



 S75 

𝑑8 =
21

256
(95𝐴𝑥

4 − 20𝐴𝑥
3𝐴𝑦 + 120𝐴𝑥

2𝐴𝑦
2 − 20𝐴𝑥𝐴𝑦

3 + 95𝐴𝑦
4 − 20𝐴𝑥

3𝐴𝑧 + 88𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 88𝐴𝑥𝐴𝑦
2𝐴𝑧 − 20𝐴𝑦

3𝐴𝑧 + 120𝐴𝑥
2𝐴𝑧

2 + 88𝐴𝑥𝐴𝑦𝐴𝑧
2 + 120𝐴𝑦

2𝐴𝑧
2 − 20𝐴𝑥𝐴𝑧

3

− 20𝐴𝑦𝐴𝑧
3 + 95𝐴𝑧

4)

+
21

64
(20𝐴𝑥

4 − 35𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 − 35𝐴𝑥𝐴𝑦

3 + 20𝐴𝑦
4 + 25𝐴𝑥

3𝐴𝑧 + 22𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 22𝐴𝑥𝐴𝑦
2𝐴𝑧 + 25𝐴𝑦

3𝐴𝑧 − 15𝐴𝑥
2𝐴𝑧

2 − 44𝐴𝑥𝐴𝑦𝐴𝑧
2 − 15𝐴𝑦

2𝐴𝑧
2 + 10𝐴𝑥𝐴𝑧

3

+ 10𝐴𝑦𝐴𝑧
3 − 40𝐴𝑧

4) cos2𝜃

+
21

128
(−25𝐴𝑥

4 − 80𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 − 80𝐴𝑥𝐴𝑦

3 − 25𝐴𝑦
4 + 70𝐴𝑥

3𝐴𝑧

+ 22𝐴𝑥
2𝐴𝑦𝐴𝑧 + 22𝐴𝑥𝐴𝑦

2𝐴𝑧 + 70𝐴𝑦
3𝐴𝑧 − 15𝐴𝑥

2𝐴𝑧
2 − 22𝐴𝑥𝐴𝑦𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2

+ 10𝐴𝑥𝐴𝑧
3 + 10𝐴𝑦𝐴𝑧

3 + 50𝐴𝑧
4) cos4𝜃

+
21

64
(−10𝐴𝑥

4 − 5𝐴𝑥
3𝐴𝑦 + 30𝐴𝑥

2𝐴𝑦
2 − 5𝐴𝑥𝐴𝑦

3 − 10𝐴𝑦
4 − 5𝐴𝑥

3𝐴𝑧 + 22𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 22𝐴𝑥𝐴𝑦
2𝐴𝑧 − 5𝐴𝑦

3𝐴𝑧 + 30𝐴𝑥
2𝐴𝑧

2 + 22𝐴𝑥𝐴𝑦𝐴𝑧
2 + 30𝐴𝑦

2𝐴𝑧
2 − 5𝐴𝑥𝐴𝑧

3 − 5𝐴𝑦𝐴𝑧
3

− 10𝐴𝑧
4) cos 6𝜃

+
21

256
(−5𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 + 60𝐴𝑥

2𝐴𝑦
2 + 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 − 40𝐴𝑥

3𝐴𝑧 + 44𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 44𝐴𝑥𝐴𝑦
2𝐴𝑧 − 40𝐴𝑦

3𝐴𝑧 − 30𝐴𝑥
2𝐴𝑧

2 − 88𝐴𝑥𝐴𝑦𝐴𝑧
2 − 30𝐴𝑦

2𝐴𝑧
2 + 20𝐴𝑥𝐴𝑧

3

+ 20𝐴𝑦𝐴𝑧
3 + 10𝐴𝑧

4) cos8𝜃

+
21√3

64
(−20𝐴𝑥

4 − 5𝐴𝑥
3𝐴𝑦 + 5𝐴𝑥𝐴𝑦

3 + 20𝐴𝑦
4 + 15𝐴𝑥

3𝐴𝑧 − 22𝐴𝑥
2𝐴𝑦𝐴𝑧

+ 22𝐴𝑥𝐴𝑦
2𝐴𝑧 − 15𝐴𝑦

3𝐴𝑧 − 15𝐴𝑥
2𝐴𝑧

2 + 15𝐴𝑦
2𝐴𝑧

2 + 20𝐴𝑥𝐴𝑧
3 − 20𝐴𝑦𝐴𝑧

3) sin 2𝜃

+
21√3

128
(−25𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 − 20𝐴𝑥𝐴𝑦

3 + 25𝐴𝑦
4 − 30𝐴𝑥

3𝐴𝑧 + 22𝐴𝑥
2𝐴𝑦𝐴𝑧

− 22𝐴𝑥𝐴𝑦
2𝐴𝑧 + 30𝐴𝑦

3𝐴𝑧 + 15𝐴𝑥
2𝐴𝑧

2 − 15𝐴𝑦
2𝐴𝑧

2 − 50𝐴𝑥𝐴𝑧
3 + 50𝐴𝑦𝐴𝑧

3) sin 4𝜃

+
315√3

64
(𝐴𝑥

3𝐴𝑦 − 𝐴𝑥𝐴𝑦
3 − 𝐴𝑥

3𝐴𝑧 + 𝐴𝑦
3𝐴𝑧＋𝐴𝑥𝐴𝑧

3 − 𝐴𝑦𝐴𝑧
3) sin 6𝜃

+
21√3

256
(5𝐴𝑥

4 + 20𝐴𝑥
3𝐴𝑦 − 20𝐴𝑥𝐴𝑦

3 − 5𝐴𝑦
4 − 44𝐴𝑥

2𝐴𝑦𝐴𝑧 + 44𝐴𝑥𝐴𝑦
2𝐴𝑧

− 30𝐴𝑥
2𝐴𝑧

2 + 30𝐴𝑦
2𝐴𝑧

2 − 20𝐴𝑥𝐴𝑧
3 + 20𝐴𝑦𝐴𝑧

3) sin 8𝜃 

The set of coefficients for i = 6, 7 and 8 can be obtained from {a5, b5, c5, d5} with replacing Ax and Ay to –Ax 

and –Ay, Ax and Az to –Ax and –Az, and Ay and Az to –Ay and –Az, respectively. 

     The second-order correction for the energies 𝜀𝜎,𝛼
(02) (𝜎 = +,−;  𝛼 = 1,⋯ , 16) can be written as 

𝜀±,𝛼
(02) = ∑

|⟨±, 𝛼|𝐻hfs|∓, 𝛽⟩|
2

𝜀±
(0) − 𝜀∓

(0)

4

𝛽=1

 

Both the upper and lower signs should be chosen in the double sign. The non-zero matrix elements of Hhfs 

expanded to the basis belonging different eigenspaces are, 
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⟨+,1|𝐻hfs|−,2⟩ = ⟨−,2|𝐻hfs|+,1⟩ = ⟨+,7|𝐻hfs|−,8⟩ = ⟨−,8|𝐻hfs|+,7⟩ = ⟨−,9|𝐻hfs|+,10⟩

= ⟨+,10|𝐻hfs|−,9⟩ = ⟨−,15|𝐻hfs|+,16⟩ = ⟨+,16|𝐻hfs|−,15⟩

=
√21

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

√7

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

⟨+,2|𝐻hfs|−,1⟩ = ⟨−,1|𝐻hfs|+,2⟩ = ⟨+,8|𝐻hfs|−,7⟩ = ⟨−,7|𝐻hfs|+,8⟩ = ⟨−,10|𝐻hfs|+,9⟩

= ⟨+,9|𝐻hfs|−,10⟩ = ⟨−,16|𝐻hfs|+,15⟩ = ⟨+,15|𝐻hfs|−,16⟩

=
√21

4
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

√7

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

⟨+,2|𝐻hfs|−,3⟩ = ⟨−,3|𝐻hfs|+,2⟩ = ⟨+,6|𝐻hfs|−,7⟩ = ⟨−,7|𝐻hfs|+,6⟩ = ⟨−,10|𝐻hfs|+,11⟩

= ⟨+,11|𝐻hfs|−,10⟩ = ⟨−,14|𝐻hfs|+,15⟩ = ⟨+,15|𝐻hfs|−,14⟩

=
3

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

⟨+,3|𝐻hfs|−,2⟩ = ⟨−,2|𝐻hfs|+,3⟩ = ⟨+,7|𝐻hfs|−,6⟩ = ⟨−,6|𝐻hfs|+,7⟩ = ⟨−,11|𝐻hfs|+,10⟩

= ⟨+,10|𝐻hfs|−,11⟩ = ⟨−,15|𝐻hfs|+,14⟩ = ⟨+,14|𝐻hfs|−,15⟩

=
3

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

⟨+,3|𝐻hfs|−,4⟩ = ⟨−,4|𝐻hfs|+,3⟩ = ⟨+,5|𝐻hfs|−,6⟩ = ⟨−,6|𝐻hfs|+,5⟩ = ⟨−,11|𝐻hfs|+,12⟩

= ⟨+,12|𝐻hfs|−,11⟩ = ⟨−,13|𝐻hfs|+,14⟩ = ⟨+,14|𝐻hfs|−,13⟩

=
3√5

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√15

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

⟨+,4|𝐻hfs|−,3⟩ = ⟨−,3|𝐻hfs|+,4⟩ = ⟨+,6|𝐻hfs|−,5⟩ = ⟨−,5|𝐻hfs|+,6⟩ = ⟨−,12|𝐻hfs|+,11⟩

= ⟨+,11|𝐻hfs|−,12⟩ = ⟨−,14|𝐻hfs|+,13⟩ = ⟨+,13|𝐻hfs|−,14⟩

=
3√5

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√15

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

⟨+,4|𝐻hfs|−,5⟩ = ⟨−,5|𝐻hfs|+,4⟩ = ⟨−,12|𝐻hfs|+,13⟩ = ⟨+,13|𝐻hfs|−,12⟩

= √3(𝐴𝑥 − 𝐴𝑦) cos2𝜃 + (𝐴𝑥 + 𝐴𝑦) sin 2𝜃 

⟨+,5|𝐻hfs|−,4⟩ = ⟨−,4|𝐻hfs|+,5⟩ = ⟨−,13|𝐻hfs|+,12⟩ = ⟨+,12|𝐻hfs|−,13⟩

= √3(𝐴𝑥 + 𝐴𝑦) cos2𝜃 + (𝐴𝑥 − 𝐴𝑦) sin 2𝜃 

⟨+,1|𝐻hfs|−,9⟩ = ⟨−,9|𝐻hfs|+,1⟩ = ⟨−,8|𝐻hfs|+,16⟩ = ⟨+,16|𝐻hfs|−,8⟩ = −
7

2
𝐴𝑥 sin 2𝜃 

⟨+,2|𝐻hfs|−,10⟩ = ⟨−,10|𝐻hfs|+,2⟩ = ⟨−,7|𝐻hfs|+,15⟩ = ⟨+,15|𝐻hfs|−,7⟩ = −
5

2
𝐴𝑥 sin 2𝜃 

⟨+,3|𝐻hfs|−,11⟩ = ⟨−,11|𝐻hfs|+,3⟩ = ⟨−,6|𝐻hfs|+,14⟩ = ⟨+,14|𝐻hfs|−,6⟩ = −
3

2
𝐴𝑥 sin 2𝜃 

⟨+,4|𝐻hfs|−,12⟩ = ⟨−,12|𝐻hfs|+,4⟩ = ⟨−,5|𝐻hfs|+,13⟩ = ⟨+,13|𝐻hfs|−,5⟩ = −
𝐴𝑥
2
sin 2𝜃 

⟨+,5|𝐻hfs|−,13⟩ = ⟨−,13|𝐻hfs|+,5⟩ = ⟨−,4|𝐻hfs|+,12⟩ = ⟨+,12|𝐻hfs|−,4⟩ =
𝐴𝑥
2
sin 2𝜃 
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⟨+,6|𝐻hfs|−,14⟩ = ⟨−,14|𝐻hfs|+,6⟩ = ⟨−,3|𝐻hfs|+,11⟩ = ⟨+,11|𝐻hfs|−,3⟩ =
3

2
𝐴𝑥 sin 2𝜃 

⟨+,7|𝐻hfs|−,15⟩ = ⟨−,15|𝐻hfs|+,7⟩ = ⟨−,2|𝐻hfs|+,10⟩ = ⟨+,10|𝐻hfs|−,2⟩ =
5

2
𝐴𝑥 sin 2𝜃 

⟨+,8|𝐻hfs|−,16⟩ = ⟨−,16|𝐻hfs|+,8⟩ = ⟨−,1|𝐻hfs|+,9⟩ = ⟨+,9|𝐻hfs|−,1⟩ =
7

2
𝐴𝑥 sin 2𝜃 

Therefore, the second-order corrections for the energy, 𝜀𝜎,𝛼
(02)
 (𝜎 = +,−;  𝛼 = 1,⋯ , 12)  are in the 

following: 

 

𝜀+,1
(02) =

|⟨−,2|𝐻hfs|+,1⟩|
2 + |⟨−,9|𝐻hfs|+,1⟩|

2

2∆

=
1

2∆
{[
√21

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√7

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
49

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀+,2
(02)

=
|⟨−,1|𝐻hfs|+,2⟩|

2 + |⟨−,3|𝐻hfs|+,2⟩|
2 + |⟨−,10|𝐻hfs|+,2⟩|

2

2∆

=
1

2∆
{[
√21

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√7

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
3

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
25

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀+,3
(02) =

|⟨−,2|𝐻hfs|+,3⟩|
2 + |⟨−,4|𝐻hfs|+,3⟩|

2 + |⟨−,11|𝐻hfs|+,3⟩|
2

2∆

=
1

2∆
{[
3

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
3√5

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√15

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
9

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀+,4
(02) =

|⟨−,3|𝐻hfs|+,4⟩|
2 + |⟨−,5|𝐻hfs|+,4⟩|

2 + |⟨−,12|𝐻hfs|+,4⟩|
2

2∆

=
1

2∆
{[
3√5

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√15

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [√3(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 + (𝐴𝑥 + 𝐴𝑦) sin 2𝜃]
2
+
𝐴𝑧
2

4
sin2 2𝜃} 

𝜀+,5
(02) =

|⟨−,4|𝐻hfs|+,5⟩|
2 + |⟨−,6|𝐻hfs|+,5⟩|

2 + |⟨−,13|𝐻hfs|+,5⟩|
2

2∆

=
1

2∆
{[√3(𝐴𝑥 + 𝐴𝑦) cos2𝜃 + (𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
3√5

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

√15

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} 
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𝜀+,6
(02) =

|⟨−,5|𝐻hfs|+,6⟩|
2 + |⟨−,7|𝐻hfs|+,6⟩|

2 + |⟨−,14|𝐻hfs|+,6⟩|
2

2∆

=
1

2∆
{[
3√5

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√15

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
3

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
9

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀+,7
(02) =

|⟨−,6|𝐻hfs|+,7⟩|
2 + |⟨−,8|𝐻hfs|+,7⟩|

2 + |⟨−,15|𝐻hfs|+,7⟩|
2

2∆

=
1

2∆
{[
3

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
√21

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√7

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
25

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀+,8
(02)

=
|⟨−,7|𝐻hfs|+,8⟩|

2 + |⟨−,16|𝐻hfs|+,8⟩|
2

2∆

=
1

2∆
{[
√21

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√7

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
49

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀+,9
(02) =

|⟨−,1|𝐻hfs|+,9⟩|
2 + |⟨−,10|𝐻hfs|+,9⟩|

2

2∆

=
1

2∆
{
49

4
𝐴𝑧
2 sin2 2𝜃 + [

√21

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√7

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

𝜀+,10
(02) =

|⟨−,2|𝐻hfs|+,10⟩|
2 + |⟨−,9|𝐻hfs|+,10⟩|

2 + |⟨−,11|𝐻hfs|+,10⟩|
2

2∆

=
1

2∆
{
25

4
𝐴𝑧
2 sin2 2𝜃 + [

√21

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√7

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
3

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

𝜀+,11
(02) =

|⟨−,3|𝐻hfs|+,11⟩|
2 + |⟨−,10|𝐻hfs|+,11⟩|

2 + |⟨−,12|𝐻hfs|+,11⟩|
2

2∆

=
1

2∆
{
9

4
𝐴𝑧
2 sin2 2𝜃 + [

3

2
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

√3

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
3√5

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√15

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

𝜀+,12
(02) =

|⟨−,4|𝐻hfs|+,12⟩|
2 + |⟨−,11|𝐻hfs|+,12⟩|

2 + |⟨−,13|𝐻hfs|+,12⟩|
2

2∆

=
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

3√5

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√15

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [√3(𝐴𝑥 + 𝐴𝑦) cos2𝜃 + (𝐴𝑥 − 𝐴𝑦) sin 2𝜃]
2
} 
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𝜀+,13
(02) =

|⟨−,5|𝐻hfs|+,13⟩|
2 + |⟨−,12|𝐻hfs|+,13⟩|

2 + |⟨−,14|𝐻hfs|+,13⟩|
2

2∆

=
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [√3(𝐴𝑥 − 𝐴𝑦) cos2𝜃 + (𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
3√5

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√15

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

𝜀+,14
(02) =

|⟨−,6|𝐻hfs|+,14⟩|
2 + |⟨−,13|𝐻hfs|+,14⟩|

2 + |⟨−,15|𝐻hfs|+,14⟩|
2

2∆

=
1

2∆
{
9

4
𝐴𝑧
2 sin2 2𝜃 + [

3√5

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√15

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
3

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

𝜀+,15
(02)

=
|⟨−,7|𝐻hfs|+,15⟩|

2 + |⟨−,14|𝐻hfs|+,15⟩|
2 + |⟨−,16|𝐻hfs|+,15⟩|

2

2∆

=
1

2∆
{
25

4
𝐴𝑧
2 sin2 2𝜃 + [

3

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
√21

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√7

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

𝜀+,16
(02) =

|⟨−,8|𝐻hfs|+,16⟩|
2 + |⟨−,15|𝐻hfs|+,16⟩|

2

2∆

=
1

2∆
{
49

4
𝐴𝑧
2 sin2 2𝜃 + [

√21

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√7

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,1
(02) =

|⟨+,2|𝐻hfs|−,1⟩|
2 + |⟨+,9|𝐻hfs|−,1⟩|

2

−2∆

= −
1

2∆
{[
√21

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√7

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
49

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀−,2
(02) =

|⟨+,1|𝐻hfs|−,2⟩|
2 + |⟨+,3|𝐻hfs|−,2⟩|

2 + |⟨+,10|𝐻hfs|−,2⟩|
2

−2∆

= −
1

2∆
{[
√21

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

√7

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
3

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
25

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀−,3
(02) =

|⟨+,2|𝐻hfs|−,3⟩|
2 + |⟨+,4|𝐻hfs|−,3⟩|

2 + |⟨+,11|𝐻hfs|−,3⟩|
2

−2∆

= −
1

2∆
{[
3

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
3√5

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√15

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
9

4
𝐴𝑧
2 sin2 2𝜃} 
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𝜀−,4
(02) =

|⟨+,3|𝐻hfs|−,4⟩|
2 + |⟨+,5|𝐻hfs|−,4⟩|

2 + |⟨+,12|𝐻hfs|−,4⟩|
2

−2∆

= −
1

2∆
{[
3√5

4
(𝐴𝑥 − 𝐴𝑦) cos 2𝜃 +

√15

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [√3(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 + (𝐴𝑥 − 𝐴𝑦) sin 2𝜃]
2
+
𝐴𝑧
2

4
sin2 2𝜃} 

𝜀−,5
(02) =

|⟨+,4|𝐻hfs|−,5⟩|
2 + |⟨+,6|𝐻hfs|−,5⟩|

2 + |⟨+,13|𝐻hfs|−,5⟩|
2

−2∆

= −
1

2∆
{[√3(𝐴𝑥 − 𝐴𝑦) cos2𝜃 + (𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
3√5

4
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

√15

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
𝐴𝑧
2

4
sin2 2𝜃} 

𝜀−,6
(02)

=
|⟨+,5|𝐻hfs|−,6⟩|

2 + |⟨+,7|𝐻hfs|−,6⟩|
2 + |⟨+,14|𝐻hfs|−,6⟩|

2

−2∆

= −
1

2∆
{[
3√5

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√15

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
3

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
9

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀−,7
(02) =

|⟨+,6|𝐻hfs|−,7⟩|
2 + |⟨+,8|𝐻hfs|−,7⟩|

2 + |⟨+,15|𝐻hfs|−,7⟩|
2

−2∆

= −
1

2∆
{[
3

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+ [
√21

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√7

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+
25

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀−,8
(02) =

|⟨+,7|𝐻hfs|−,8⟩|
2 + |⟨+,16|𝐻hfs|−,8⟩|

2

−2∆

= −
1

2∆
{[
√21

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√7

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

+
49

4
𝐴𝑧
2 sin2 2𝜃} 

𝜀−,9
(02) =

|⟨+,1|𝐻hfs|−,9⟩|
2 + |⟨+,10|𝐻hfs|−,9⟩|

2

−2∆

= −
1

2∆
{
49

4
𝐴𝑧
2 sin2 2𝜃 + [

√21

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√7

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,10
(02) =

|⟨+,2|𝐻hfs|−,10⟩|
2 + |⟨+,9|𝐻hfs|−,10⟩|

2 + |⟨+,11|𝐻hfs|−,10⟩|
2

−2∆

= −
1

2∆
{
25

4
𝐴𝑧
2 sin2 2𝜃 + [

√21

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√7

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
3

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 



 S81 

𝜀−,11
(02) =

|⟨+,3|𝐻hfs|−,11⟩|
2 + |⟨+,10|𝐻hfs|−,11⟩|

2 + |⟨+,12|𝐻hfs|−,11⟩|
2

−2∆

= −
1

2∆
{
9

4
𝐴𝑧
2 sin2 2𝜃 + [

3

2
(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 +

√3

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
3√5

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√15

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,12
(02) =

|⟨+,4|𝐻hfs|−,12⟩|
2 + |⟨+,11|𝐻hfs|−,12⟩|

2 + |⟨+,13|𝐻hfs|−,12⟩|
2

−2∆

= −
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [

3√5

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√15

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [√3(𝐴𝑥 − 𝐴𝑦) cos2𝜃 + (𝐴𝑥 + 𝐴𝑦) sin 2𝜃]
2
} 

𝜀−,13
(02)

=
|⟨+,5|𝐻hfs|−,13⟩|

2 + |⟨+,12|𝐻hfs|−,13⟩|
2 + |⟨+,14|𝐻hfs|−,13⟩|

2

−2∆

= −
1

2∆
{
𝐴𝑧
2

4
sin2 2𝜃 + [√3(𝐴𝑥 + 𝐴𝑦) cos 2𝜃 + (𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
3√5

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√15

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,15
(02) =

|⟨+,6|𝐻hfs|−,14⟩|
2 + |⟨+,13|𝐻hfs|−,14⟩|

2 + |⟨+,15|𝐻hfs|−,14⟩|
2

−2∆

= −
1

2∆
{
9

4
𝐴𝑧
2 sin2 2𝜃 + [

3√5

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√15

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
3

2
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,15
(02) =

|⟨+,7|𝐻hfs|−,15⟩|
2 + |⟨+,14|𝐻hfs|−,15⟩|

2 + |⟨+,16|𝐻hfs|−,15⟩|
2

−2∆

= −
1

2∆
{
25

4
𝐴𝑧
2 sin2 2𝜃 + [

3

2
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√3

2
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

+ [
√21

4
(𝐴𝑥 − 𝐴𝑦) cos2𝜃 +

√7

4
(𝐴𝑥 + 𝐴𝑦) sin 2𝜃]

2

} 

𝜀−,16
(02) =

|⟨+,8|𝐻hfs|−,16⟩|
2 + |⟨+,15|𝐻hfs|−,16⟩|

2

−2∆

= −
1

2∆
{
49

4
𝐴𝑧
2 sin2 2𝜃 + [

√21

4
(𝐴𝑥 + 𝐴𝑦) cos2𝜃 +

√7

4
(𝐴𝑥 − 𝐴𝑦) sin 2𝜃]

2

} 

     The first- and second-order corrections for the energy of the electron-Zeeman Hamiltonian are the 

same as for the I = 1/2 case. In order to obtain the cross terms, let us remind the non-diagonal elements for 

the electron-Zeeman Hamiltonian. 
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⟨+,1|𝐻eZ|−,9⟩ = ⟨−,9|𝐻eZ|+,1⟩ = ⟨+,2|𝐻eZ|−,10⟩ = ⟨−,10|𝐻eZ|+,2⟩ = ⟨+,3|𝐻eZ|−,11⟩

= ⟨−,11|𝐻eZ|+,3⟩ = ⟨+,4|𝐻eZ|−,12⟩ = ⟨−,12|𝐻eZ|+,4⟩ = ⟨+,5|𝐻eZ|−,13⟩

= ⟨−,13|𝐻eZ|+,5⟩ = ⟨+,6|𝐻eZ|−,14⟩ = ⟨−,14|𝐻eZ|+,6⟩ = ⟨+,7|𝐻eZ|−,15⟩

= ⟨−,15|𝐻eZ|+,7⟩ = ⟨+,8|𝐻eZ|−,16⟩ = ⟨−,16|𝐻eZ|+,8⟩ = −𝑔𝑧𝛽𝐵 sin 2𝜃 

⟨−,1|𝐻eZ|+,9⟩ = ⟨+,9|𝐻eZ|−,1⟩ = ⟨−,2|𝐻eZ|+,10⟩ = ⟨+,10|𝐻eZ|−,2⟩ = ⟨−,3|𝐻eZ|+,11⟩

= ⟨+,11|𝐻eZ|−,3⟩ = ⟨−,4|𝐻eZ|+,12⟩ = ⟨+,12|𝐻eZ|−,4⟩ = ⟨−,5|𝐻eZ|+,13⟩

= ⟨+,13|𝐻eZ|−,5⟩ = ⟨−,6|𝐻eZ|+,14⟩ = ⟨+,14|𝐻eZ|−,6⟩ = ⟨−,7|𝐻eZ|+,15⟩

= ⟨+,15|𝐻eZ|−,7⟩ = ⟨−,8|𝐻eZ|+,16⟩ = ⟨+,16|𝐻eZ|−,8⟩ = 𝑔𝑧𝛽𝐵 sin 2𝜃 

     The cross terms can be calculated as follows: 

𝜀+,1
(11)

=
⟨+,1|𝐻eZ|−,9⟩⟨−,9|𝐻hfs|+,1⟩ + ⟨+,1|𝐻hfs|−,9⟩⟨−,9|𝐻eZ|+,1⟩

𝜀+
(0)
− 𝜀−

(0)
=
49𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,2
(11) =

⟨+,2|𝐻eZ|−,10⟩⟨−,10|𝐻hfs|+,2⟩ + ⟨+,2|𝐻hfs|−,10⟩⟨−,10|𝐻eZ|+,2⟩

𝜀+
(0) − 𝜀−

(0)
=
25𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,3
(11) =

⟨+,3|𝐻eZ|−,11⟩⟨−,11|𝐻hfs|+,3⟩ + ⟨+,3|𝐻hfs|−,11⟩⟨−,11|𝐻eZ|+,3⟩

𝜀+
(0) − 𝜀−

(0)
=
9𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,4
(11) =

⟨+,4|𝐻eZ|−,12⟩⟨−,12|𝐻hfs|+,4⟩ + ⟨+,4|𝐻hfs|−,12⟩⟨−,12|𝐻eZ|+,4⟩

𝜀+
(0) − 𝜀−

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,5
(11) =

⟨+,5|𝐻eZ|−,13⟩⟨−,13|𝐻hfs|+,5⟩ + ⟨+,5|𝐻hfs|−,13⟩⟨−,13|𝐻eZ|+,5⟩

𝜀+
(0) − 𝜀−

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,6
(11) =

⟨+,6|𝐻eZ|−,14⟩⟨−,14|𝐻hfs|+,6⟩ + ⟨+,6|𝐻hfs|−,14⟩⟨−,14|𝐻eZ|+,6⟩

𝜀+
(0) − 𝜀−

(0)
= −

9𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,7
(11)

=
⟨+,7|𝐻eZ|−,15⟩⟨−,15|𝐻hfs|+,7⟩ + ⟨+,7|𝐻hfs|−,15⟩⟨−,15|𝐻eZ|+,7⟩

𝜀+
(0) − 𝜀−

(0)
= −

25𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,8
(11) =

⟨+,8|𝐻eZ|−,16⟩⟨−,16|𝐻hfs|+,8⟩ + ⟨+,8|𝐻hfs|−,16⟩⟨−,16|𝐻eZ|+,8⟩

𝜀+
(0) − 𝜀−

(0)
= −

49𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,1
(11) =

⟨−,1|𝐻eZ|+,9⟩⟨+,9|𝐻hfs|−,1⟩ + ⟨−,1|𝐻hfs|+,9⟩⟨+,9|𝐻eZ|−,1⟩

𝜀−
(0) − 𝜀+

(0)
= −

49𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,2
(11) =

⟨−,2|𝐻eZ|+,10⟩⟨+,10|𝐻hfs|−,2⟩ + ⟨−,2|𝐻hfs|+,10⟩⟨+,10|𝐻eZ|−,2⟩

𝜀−
(0) − 𝜀+

(0)
= −

25𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,3
(11) =

⟨−,3|𝐻eZ|+,11⟩⟨+,11|𝐻hfs|−,3⟩ + ⟨−,3|𝐻hfs|+,11⟩⟨+,11|𝐻eZ|−,3⟩

𝜀−
(0) − 𝜀+

(0)
= −

9𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,4
(11) =

⟨−,4|𝐻eZ|+,12⟩⟨+,12|𝐻hfs|−,4⟩ + ⟨−,4|𝐻hfs|+,12⟩⟨+,12|𝐻eZ|−,4⟩

𝜀−
(0) − 𝜀+

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,5
(11) =

⟨−,5|𝐻eZ|+,13⟩⟨+,13|𝐻hfs|−,5⟩ + ⟨−,5|𝐻hfs|+,13⟩⟨+,13|𝐻eZ|−,5⟩

𝜀−
(0) − 𝜀+

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,6
(11) =

⟨−,6|𝐻eZ|+,14⟩⟨+,14|𝐻hfs|−,6⟩ + ⟨−,6|𝐻hfs|+,14⟩⟨+,14|𝐻eZ|−,6⟩

𝜀−
(0) − 𝜀+

(0)
=
9𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,7
(11) =

⟨−,7|𝐻eZ|+,15⟩⟨+,15|𝐻hfs|−,7⟩ + ⟨−,7|𝐻hfs|+,15⟩⟨+,15|𝐻eZ|−,7⟩

𝜀−
(0) − 𝜀+

(0)
=
25𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
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𝜀−,8
(11)

=
⟨−,8|𝐻eZ|+,16⟩⟨+,16|𝐻hfs|−,8⟩ + ⟨−,8|𝐻hfs|+,16⟩⟨+,16|𝐻eZ|−,8⟩

𝜀−
(0) − 𝜀+

(0)
=
49𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,9
(11)

=
⟨−,9|𝐻eZ|+,1⟩⟨+,1|𝐻hfs|−,9⟩ + ⟨−,9|𝐻hfs|+,1⟩⟨+,1|𝐻eZ|−,9⟩

𝜀−
(0) − 𝜀+

(0)
=
49𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,10
(11)

=
⟨−,10|𝐻eZ|+,2⟩⟨+,2|𝐻hfs|−,10⟩ + ⟨−,10|𝐻hfs|+,2⟩⟨+,2|𝐻eZ|−,10⟩

𝜀−
(0) − 𝜀+

(0)
=
25𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,11
(11)

=
⟨−,11|𝐻eZ|+,3⟩⟨+,3|𝐻hfs|−,11⟩ + ⟨−,11|𝐻hfs|+,3⟩⟨+,3|𝐻eZ|−,10⟩

𝜀−
(0) − 𝜀+

(0)
=
9𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,12
(11)

=
⟨−,12|𝐻eZ|+,4⟩⟨+,4|𝐻hfs|−,12⟩ + ⟨−,12|𝐻hfs|+,4⟩⟨+,4|𝐻eZ|−,12⟩

𝜀−
(0) − 𝜀+

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀−,13
(11)

=
⟨−,13|𝐻eZ|+,5⟩⟨+,5|𝐻hfs|−,13⟩ + ⟨−,13|𝐻hfs|+,5⟩⟨+,5|𝐻eZ|−,13⟩

𝜀−
(0) − 𝜀+

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,14
(11) =

⟨−,14|𝐻eZ|+,6⟩⟨+,6|𝐻hfs|−,14⟩ + ⟨−,14|𝐻hfs|+,6⟩⟨+,6|𝐻eZ|−,14⟩

𝜀−
(0) − 𝜀+

(0)
= −

9𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,10
(11) =

⟨−,15|𝐻eZ|+,7⟩⟨+,7|𝐻hfs|−,15⟩ + ⟨−,15|𝐻hfs|+,7⟩⟨+,7|𝐻eZ|−,15⟩

𝜀−
(0) − 𝜀+

(0)
= −

25𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀−,16
(11) =

⟨−,16|𝐻eZ|+,8⟩⟨+,8|𝐻hfs|−,16⟩ + ⟨−,16|𝐻hfs|+,8⟩⟨+,8|𝐻eZ|−,16⟩

𝜀−
(0) − 𝜀+

(0)
= −

49𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,9
(11) =

⟨+,9|𝐻eZ|−,1⟩⟨−,1|𝐻hfs|+,9⟩ + ⟨+,9|𝐻hfs|−,1⟩⟨−,1|𝐻eZ|+,9⟩

𝜀+
(0) − 𝜀−

(0)
= −

49𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,10
(11) =

⟨+,10|𝐻eZ|−,2⟩⟨−,2|𝐻hfs|+,10⟩ + ⟨+,10|𝐻hfs|−,2⟩⟨−,2|𝐻eZ|+,10⟩

𝜀+
(0) − 𝜀−

(0)
= −

25𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,11
(11) =

⟨+,11|𝐻eZ|−,3⟩⟨−,3|𝐻hfs|+,11⟩ + ⟨+,11|𝐻hfs|−,3⟩⟨−,3|𝐻eZ|+,11⟩

𝜀+
(0) − 𝜀−

(0)
= −

9𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,12
(11) =

⟨+,12|𝐻eZ|−,4⟩⟨−,4|𝐻hfs|+,12⟩ + ⟨+,12|𝐻hfs|−,4⟩⟨−,4|𝐻eZ|+,12⟩

𝜀+
(0) − 𝜀−

(0)
= −

𝑔𝑧𝛽𝐵𝐴𝑧 sin
2 2𝜃

2∆
 

𝜀+,13
(11) =

⟨+,13|𝐻eZ|−,5⟩⟨−,5|𝐻hfs|+,13⟩ + ⟨+,13|𝐻hfs|−,5⟩⟨−,5|𝐻eZ|+,13⟩

𝜀+
(0) − 𝜀−

(0)
=
𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,14
(11) =

⟨+,14|𝐻eZ|−,6⟩⟨−,6|𝐻hfs|+,14⟩ + ⟨+,14|𝐻hfs|−,6⟩⟨−,6|𝐻eZ|+,14⟩

𝜀+
(0) − 𝜀−

(0)
=
9𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,15
(11) =

⟨+,15|𝐻eZ|−,7⟩⟨−,7|𝐻hfs|+,15⟩ + ⟨+,15|𝐻hfs|−,7⟩⟨−,7|𝐻eZ|+,15⟩

𝜀+
(0) − 𝜀−

(0)
=
25𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

𝜀+,16
(11) =

⟨+,16|𝐻eZ|−,8⟩⟨−,8|𝐻hfs|+,16⟩ + ⟨+,16|𝐻hfs|−,8⟩⟨−,8|𝐻eZ|+,16⟩

𝜀+
(0) − 𝜀−

(0)
=
49𝑔𝑧𝛽𝐵𝐴𝑧 sin

2 2𝜃

2∆
 

Thus, the perturbed energies for the case with I = 7/2 for the spin quartet state were explicitly obtained in the 

second order. To our knowledge the analytical expressions above with I = 7/2 and S = 3/2 for the energies in 

terms of the Zeeman perturbation theory are for the first time given in this work, which are extremely accurate.  
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b) Perturbed energies in the case that the ZFS, g- and A-tensors are non-collinear 

     In this subsection, we consider the general case in which all the three magnetic tensors are non-collinear 

for the spin quartet state. An approach adopted here is not a Zeeman perturbation treatment, but the rank-2 

ZFS and electron-Zeeman Hamiltonian are taken as the non-perturbed term and the hyperfine structure 

interaction as the perturbed one. Thus, first the non-perturbed Hamiltonian gives a 4 × 4 matrix which is 

expanded in terms of the spin functions and in which the presence of the electron Zeeman terms destroys the 

spin conjugation symmetry, and thus, first we exactly solve the corresponding quartic secular equation.  

The non-perturbed Hamiltonian for the arbitrary direction of the magnetic field can be represented as 

𝐻 = 𝐷 [𝑆𝑧
2 −

1

3
𝑆(𝑆 + 1)] + 𝐸(𝑆𝑥

2 − 𝑆𝑦
2) + (𝑆𝑥𝑔𝑥𝑥 + 𝑆𝑦𝑔𝑦𝑥 + 𝑆𝑧𝑔𝑧𝑥)𝛽𝐵𝑥

+ (𝑆𝑥𝑔𝑥𝑦 + 𝑆𝑦𝑔𝑦𝑦 + 𝑆𝑧𝑔𝑧𝑦)𝛽𝐵𝑦 + (𝑆𝑥𝑔𝑥𝑧 + 𝑆𝑦𝑔𝑦𝑧 + 𝑆𝑧𝑔𝑧𝑧)𝛽𝐵𝑧 

where Bx, By and Bz are the elements of the vector B. In the polar coordinate-axis system, Bx = Bsinθcosφ, By 

= Bsinθsinφ and Bz = Bcosθ where B = |B| and θ and φ are the polar and azimuthal angle, respectively. Note 

that the x, y and z axes denote the principal axes of the ZFS tensor. In the following discussion, we set 𝑔𝑖𝑗
′ =

𝛽𝑔𝑖𝑗𝐵𝑗 for simplicity. The Hamiltonian can be written in the matrix representation 

𝐻 =

(

 
 
 
 
 
 

𝐷 +
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ )

√3

2
(𝑔𝑥𝑥
′ − 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ − 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ − 𝑖𝑔𝑦𝑧

′ )

√3

2
(𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ ) −𝐷 +
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ )

√3𝐸 0

𝑔𝑥𝑥
′ − 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ − 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ − 𝑖𝑔𝑦𝑧

′ √3𝐸

√3𝐸 𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′

0 √3𝐸

−𝐷 −
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ )

√3

2
(𝑔𝑥𝑥
′ − 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ − 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ − 𝑖𝑔𝑦𝑧

′ )

√3

2
(𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ ) 𝐷 −
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) )

 
 
 
 
 
 

 

The secular quartic equation of the Hamiltonian matrix is given as 

𝑥4 + 𝑝0𝑥
2 + 𝑞0𝑥 + 𝑟0 = 0 

with 

𝑝0 = −2(𝐷
2 + 3𝐸2) −

5

2
𝑔𝑥𝑥
′ 2
− 5𝑔𝑥𝑥

′ 𝑔𝑥𝑦
′ −

5

2
𝑔𝑥𝑦
′ 2
− 5𝑔𝑥𝑥

′ 𝑔𝑥𝑧
′ − 5𝑔𝑥𝑦

′ 𝑔𝑥𝑧
′ −

5

2
𝑔𝑥𝑧
′ 2 −

5

2
𝑔𝑦𝑥
′ 2
− 5𝑔𝑦𝑥

′ 𝑔𝑦𝑦
′

−
5

2
𝑔𝑦𝑦
′ 2

− 5𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ − 5𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ −
5

2
𝑔𝑦𝑧
′ 2 −

5

2
𝑔𝑧𝑥
′ 2 − 5𝑔𝑧𝑥

′ 𝑔𝑧𝑦
′ −

5

2
𝑔𝑧𝑦
′ 2
− 5𝑔𝑧𝑥

′ 𝑔𝑧𝑧
′

− 5𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ −
5

2
𝑔𝑧𝑧
′ 2 

𝑞0 = 2(𝐷 − 3𝐸)𝑔𝑥𝑥
′ 2
+ 4(𝐷 − 3𝐸)𝑔𝑥𝑥

′ 𝑔𝑥𝑦
′ + 2(𝐷 − 3𝐸)𝑔𝑥𝑦

′ 2
+ 4(𝐷 − 3𝐸)𝑔𝑥𝑥

′ 𝑔𝑥𝑧
′ + 4(𝐷 − 3𝐸)𝑔𝑥𝑦

′ 𝑔𝑥𝑧
′

+ 2(𝐷 − 3𝐸)𝑔𝑥𝑧
′ 2 + 2(𝐷 + 3𝐸)𝑔𝑦𝑥

′ 2
+ 4(𝐷 + 3𝐸)𝑔𝑦𝑥

′ 𝑔𝑦𝑦
′ + 2(𝐷 + 3𝐸)𝑔𝑦𝑦

′ 2

+ 4(𝐷 + 3𝐸)𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ + 4(𝐷 + 3𝐸)𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ + 2(𝐷 + 3𝐸)𝑔𝑦𝑧
′ 2 − 4𝐷𝑔𝑧𝑥

′ 2 − 8𝐷𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′

− 4𝐷𝑔𝑧𝑦
′ 2
− 8𝐷𝑔𝑧𝑥

′ 𝑔𝑧𝑧
′ − 8𝐷𝑔𝑧𝑦

′ 𝑔𝑧𝑧
′ − 4𝐷𝑔𝑧𝑧

′ 2 
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𝑟0 = (𝐷
2 + 3𝐸2)2 +

1

2
(𝐷2 + 12𝐷𝐸 − 9𝐸2)𝑔𝑥𝑥

′ 2
+
9

16
𝑔𝑥𝑥
′ 4
+ (𝐷2 + 12𝐷𝐸 − 9𝐸2)𝑔𝑥𝑥

′ 𝑔𝑥𝑦
′ +

9

4
𝑔𝑥𝑥
′ 3
𝑔𝑥𝑦
′

+
1

2
(𝐷2 + 12𝐷𝐸 − 9𝐸2)𝑔𝑥𝑦

′ 2
+
27

8
𝑔𝑥𝑥
′ 2
𝑔𝑥𝑦
′ 2
+
9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 3
+
9

16
𝑔𝑥𝑦
′ 4

+ (𝐷2 + 12𝐷𝐸 − 9𝐸2)𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ +
9

4
𝑔𝑥𝑥
′ 3
𝑔𝑥𝑧
′ + (𝐷2 + 12𝐷𝐸 − 9𝐸2)𝑔𝑥𝑦

′ 𝑔𝑥𝑧
′

+
27

4
𝑔𝑥𝑥
′ 2
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ +
27

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 2
𝑔𝑥𝑧
′ +

9

4
𝑔𝑥𝑦
′ 3
𝑔𝑥𝑧
′ +

1

2
(𝐷2 + 12𝐷𝐸 − 9𝐸2)𝑔𝑥𝑧

′ 2

+
27

8
𝑔𝑥𝑥
′ 2
𝑔𝑥𝑧
′ 2 +

27

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑥𝑧
′ 2 +

27

8
𝑔𝑥𝑦
′ 2
𝑔𝑥𝑧
′ 2 +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 3 +
9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 3 +
9

16
𝑔𝑥𝑧
′ 4

+
1

2
(𝐷2 − 12𝐷𝐸 − 9𝐸2)𝑔𝑦𝑥

′ 2
+
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑦𝑥
′ 2
+
9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑦𝑥
′ 2
+
9

8
𝑔𝑥𝑦
′ 2
𝑔𝑦𝑥
′ 2

+
9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑦𝑥
′ 2
+
9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑦𝑥
′ 2
+
9

8
𝑔𝑥𝑧
′ 2𝑔𝑦𝑥

′ 2
+
9

16
𝑔𝑦𝑥
′ 4

+ (𝐷2 − 12𝐷𝐸 − 9𝐸2)𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ +
9

4
𝑔𝑥𝑥
′ 2
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ +
9

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ +
9

4
𝑔𝑥𝑦
′ 2
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′

+
9

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ +
9

2
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ +
9

4
𝑔𝑥𝑧
′ 2𝑔𝑦𝑥

′ 𝑔𝑦𝑦
′ +

9

4
𝑔𝑦𝑥
′ 3
𝑔𝑦𝑦
′

+
1

2
(𝐷2 − 12𝐷𝐸 − 9𝐸2)𝑔𝑦𝑦

′ 2
+
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑦𝑦
′ 2

+
9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑦𝑦
′ 2

+
9

8
𝑔𝑥𝑦
′ 2
𝑔𝑦𝑦
′ 2

+
9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑦𝑦
′ 2

+
9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑦𝑦
′ 2

+
9

8
𝑔𝑥𝑧
′ 2𝑔𝑦𝑦

′ 2
+
27

8
𝑔𝑦𝑥
′ 2
𝑔𝑦𝑦
′ 2

+
9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 3
+
9

16
𝑔𝑦𝑦
′ 4

+ (𝐷2 − 12𝐷𝐸 − 9𝐸2)𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ +
9

4
𝑔𝑥𝑥
′ 2
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ +
9

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ +
9

4
𝑔𝑥𝑦
′ 2
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′

+
9

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ +
9

2
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ +
9

4
𝑔𝑥𝑧
′ 2𝑔𝑦𝑥

′ 𝑔𝑦𝑧
′ +

9

4
𝑔𝑦𝑥
′ 3
𝑔𝑦𝑧
′

+ (𝐷2 − 12𝐷𝐸 − 9𝐸2)𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ +
9

4
𝑔𝑥𝑥
′ 2
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ +
9

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ +
9

4
𝑔𝑥𝑦
′ 2
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′

+
9

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ +
9

2
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ +
9

4
𝑔𝑥𝑧
′ 2𝑔𝑦𝑦

′ 𝑔𝑦𝑧
′ +

27

4
𝑔𝑦𝑥
′ 2
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′

+
27

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 2
𝑔𝑦𝑧
′ +

9

4
𝑔𝑦𝑦
′ 3
𝑔𝑦𝑧
′ +

1

2
(𝐷2 − 12𝐷𝐸 − 9𝐸2)𝑔𝑦𝑧

′ 2 +
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑦𝑧
′ 2

+
9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑦𝑧
′ 2 +

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑦𝑧
′ 2 +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑦𝑧
′ 2 +

9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑦𝑧
′ 2 +

9

8
𝑔𝑥𝑧
′ 2𝑔𝑦𝑧

′ 2

+
27

8
𝑔𝑦𝑥
′ 2
𝑔𝑦𝑧
′ 2 +

27

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑦𝑧
′ 2 +

27

8
𝑔𝑦𝑦
′ 2
𝑔𝑦𝑧
′ 2 +

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 3 +
9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 3 +
9

16
𝑔𝑦𝑧
′ 4

−
1

2
(5𝐷2 − 9𝐸2)𝑔𝑧𝑥

′ 2 +
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑥
′ 2 +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑥
′ 2 +

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑥
′ 2 +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑥
′ 2
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+
9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑥
′ 2 +

9

8
𝑔𝑥𝑧
′ 2𝑔𝑧𝑥

′ 2 +
9

8
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑥
′ 2 +

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑥
′ 2 +

9

8
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑥
′ 2

+
9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑥
′ 2 +

9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑥
′ 2 +

9

8
𝑔𝑦𝑧
′ 2𝑔𝑧𝑥

′ 2 +
9

16
𝑔𝑧𝑥
′ 4 − (5𝐷2 − 9𝐸2)𝑔𝑧𝑥

′ 𝑔𝑧𝑦
′

+
9

4
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ +
9

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ +
9

4
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ +
9

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′

+
9

2
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ +
9

4
𝑔𝑥𝑧
′ 2𝑔𝑧𝑥

′ 𝑔𝑧𝑦
′ +

9

4
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ +
9

2
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ +
9

4
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′

+
9

2
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ +
9

2
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ +
9

4
𝑔𝑦𝑧
′ 2𝑔𝑧𝑥

′ 𝑔𝑧𝑦
′ +

9

4
𝑔𝑧𝑥
′ 3𝑔𝑧𝑦

′

−
1

2
(5𝐷2 − 9𝐸2)𝑔𝑧𝑦

′ 2 +
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑦
′ 2 +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑦
′ 2 +

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑦
′ 2
+
9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑦
′ 2

+
9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑦
′ 2 +

9

8
𝑔𝑥𝑧
′ 2𝑔𝑧𝑦

′ 2 +
9

8
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑦
′ 2
+
9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑦
′ 2 +

9

8
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑦
′ 2

+
9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑦
′ 2 +

9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑦
′ 2
+
9

8
𝑔𝑦𝑧
′ 2𝑔𝑧𝑦

′ 2 +
27

8
𝑔𝑧𝑥
′ 2𝑔𝑧𝑦

′ 2
+
9

4
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ 3 +
9

16
𝑔𝑧𝑦
′ 4

− (5𝐷2 − 9𝐸2)𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ +
9

4
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ +
9

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ +
9

4
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′

+
9

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ +
9

2
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ +
9

4
𝑔𝑥𝑧
′ 2𝑔𝑧𝑥

′ 𝑔𝑧𝑧
′ +

9

4
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ +
9

2
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′

+
9

4
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ +
9

2
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ +
9

2
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ +
9

4
𝑔𝑦𝑧
′ 2𝑔𝑧𝑥

′ 𝑔𝑧𝑧
′ +

9

4
𝑔𝑧𝑥
′ 3𝑔𝑧𝑧

′

− (5𝐷2 − 9𝐸2)𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ +
9

4
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ +
9

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ +
9

4
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′

+
9

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ +
9

2
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ +
9

4
𝑔𝑥𝑧
′ 2𝑔𝑧𝑦

′ 𝑔𝑧𝑧
′ +

9

4
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′

+
9

2
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ +
9

4
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ +
9

2
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ +
9

2
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′

+
9

4
𝑔𝑦𝑧
′ 2𝑔𝑧𝑦

′ 𝑔𝑧𝑧
′ +

27

4
𝑔𝑧𝑥
′ 2𝑔𝑧𝑦

′ 𝑔𝑧𝑧
′ +

27

4
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ 2
𝑔𝑧𝑧
′ +

9

4
𝑔𝑧𝑦
′ 3
𝑔𝑧𝑧
′ −

1

2
(5𝐷2 − 9𝐸2)𝑔𝑧𝑧

′ 2

+
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑧
′ 2 +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑧
′ 2 +

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑧
′ 2 +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑧
′ 2 +

9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑧
′ 2

+
9

8
𝑔𝑥𝑧
′ 2𝑔𝑧𝑧

′ 2 +
9

8
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑧
′ 2 +

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑧
′ 2 +

9

8
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑧
′ 2 +

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑧
′ 2

+
9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑧
′ 2 +

9

8
𝑔𝑦𝑧
′ 2𝑔𝑧𝑧

′ 2 +
27

8
𝑔𝑧𝑥
′ 2𝑔𝑧𝑧

′ 2 +
27

4
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ 𝑔𝑧𝑧
′ 2 +

27

8
𝑔𝑧𝑦
′ 2𝑔𝑧𝑧

′ 2

+
9

4
𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ 3 +
9

4
𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ 3 +
9

16
𝑔𝑧𝑧
′ 4 

The coefficients of the quartic equation are complex as expected from the non-collinearity between the ZFS 



 S87 

and g-tensors. The exact analytical energy eigenvalues and the corresponding spin substates for D < 0 are 

given in the following: 

𝜀1 =
1

2
[−√𝑢0 +√−2𝑝0 − 𝑢0 +

2𝑞0

√𝑢0
] (|𝑀𝑆 = +

3

2
⟩ -dominant state) 

𝜀2 =
1

2
[√𝑢0 +√−2𝑝0 − 𝑢0 −

2𝑞0

√𝑢0
] (|𝑀𝑆 = +

1

2
⟩ -dominant state) 

𝜀3 =
1

2
[√𝑢0 −√−2𝑝0 − 𝑢0 −

2𝑞0

√𝑢0
] (|𝑀𝑆 = −

1

2
⟩ -dominant state) 

𝜀4 =
1

2
[−√𝑢0 −√−2𝑝0 − 𝑢0 +

2𝑞0

√𝑢0
] (|𝑀𝑆 = −

3

2
⟩ -dominant state) 

where u0 is one of the solutions of the resolvent cubic equation of the secular equation,   

𝑢0 = 2𝑎0 cos [
1

3
arccos (

𝑏0
2𝑎0

)] 

with 

𝑎0 =
1

3
√𝑝02 + 12𝑟0 

𝑏0 =
2𝑝0

3 + 27𝑞0
3 − 72𝑝0𝑟0

3𝑝02 + 36𝑟0
 

Note that for D > 0, E3, E4, E1 and E2 is the eigenvalue corresponding to the |MS = +3/2>-, |+1/2>-, |–1/2>- 

and |–3/2>-dominant state, respectively. 

     According to Denton and co-workers [7], the square of the jth element of the eigenvector corresponding 

to the eigenvalue εi of a Hermitian matrix can be described as follows 

|𝑣𝑖,𝑗|
2
∏ (𝜀𝑖 − 𝜀𝑘)

𝑛

𝑘=1;𝑘≠𝑖

=∏(𝜀𝑖 − 𝑥𝑗,𝑘)

𝑛−1

𝑘=1

 

where vij is the coefficient to be determined, xj,k is the eigenvalues of the minor Mj of the Hermitian formed 

by removing the jth row and column. In the case of the spin Hamiltonian under study, the spin eigenfunctions 

corresponding to the eigenvalue εn are written in the form 

|𝜓𝑛⟩ = 𝛼𝑛 |+
3

2
⟩ + 𝛽𝑛 |+

1

2
⟩ + 𝛾𝑛 |−

1

2
⟩ + 𝛿𝑛 |−

3

2
⟩ 

where αn, βn, γn and δn correspond to vn1, vn2, vn3 and vn4, respectively. By using the formula, we calculate α1, 

β2, γ3 and δ4, which are the diagonal element of the unitary matrix for diagonalizing the spin Hamiltonian 

matrix. 

|𝛼1|
2 =

(𝜀1 − 𝑥1,0)(𝜀1 − 𝑥1,1)(𝜀1 − 𝑥1,2)

(𝜀1 − 𝜀2)(𝜀1 − 𝜀3)(𝜀1 − 𝜀4)
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|𝛽2|
2 =

(𝜀2 − 𝑥2,0)(𝜀2 − 𝑥2,1)(𝜀2 − 𝑥2,2)

(𝜀2 − 𝜀1)(𝜀2 − 𝜀3)(𝜀2 − 𝜀4)
 

|𝛾3|
2 =

(𝜀3 − 𝑥3,0)(𝜀3 − 𝑥3,1)(𝜀3 − 𝑥3,2)

(𝜀3 − 𝜀1)(𝜀3 − 𝜀2)(𝜀3 − 𝜀4)
 

|𝛿4|
2 =

(𝜀4 − 𝑥4,0)(𝜀4 − 𝑥4,1)(𝜀4 − 𝑥4,2)

(𝜀4 − 𝜀1)(𝜀4 − 𝜀2)(𝜀4 − 𝜀3)
 

     In order to determine the element of the eigenvectors, we define the following four 3 by 3 matrixes; 

𝑀1 =

(

 
 
 
 

−𝐷 +
1

2
(𝑔𝑧𝑥

′ + 𝑔𝑧𝑦
′ + 𝑔𝑧𝑧

′ ) 𝑔𝑥𝑥
′ − 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ − 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ − 𝑖𝑔𝑦𝑧

′ √3𝐸

𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ −𝐷 −
1

2
(𝑔𝑧𝑥

′ + 𝑔𝑧𝑦
′ + 𝑔𝑧𝑧

′ )
√3

2
(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )

√3𝐸
√3

2
(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ ) 𝐷 −

3

2
(𝑔𝑧𝑥

′ + 𝑔𝑧𝑦
′ + 𝑔𝑧𝑧

′ ) )

 
 
 
 

 

𝑀2 =

(

 
 
 
 
𝐷 +

3

2
(𝑔𝑧𝑥

′ + 𝑔𝑧𝑦
′ + 𝑔𝑧𝑧

′ ) √3𝐸 0

√3𝐸 −𝐷 −
1

2
(𝑔𝑧𝑥

′ + 𝑔𝑧𝑦
′ + 𝑔𝑧𝑧

′ )
√3

2
(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )

0
√3

2
(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ ) 𝐷 −

3

2
(𝑔𝑧𝑥

′ + 𝑔𝑧𝑦
′ + 𝑔𝑧𝑧

′ ) )

 
 
 
 

 

𝑀3 =

(

 
 
 
 

𝐷 +
3

2
(𝑔𝑧𝑥

′ + 𝑔𝑧𝑦
′ + 𝑔𝑧𝑧

′ )
√3

2
(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ ) 0

√3

2
(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ ) −𝐷 +

1

2
(𝑔𝑧𝑥

′ + 𝑔𝑧𝑦
′ + 𝑔𝑧𝑧

′ ) √3𝐸

0 √3𝐸 𝐷 −
3

2
(𝑔𝑧𝑥

′ + 𝑔𝑧𝑦
′ + 𝑔𝑧𝑧

′ ))

 
 
 
 

 

𝑀4 =

(

 
 
 
 

𝐷 +
3

2
(𝑔𝑧𝑥

′ + 𝑔𝑧𝑦
′ + 𝑔𝑧𝑧

′ )
√3

2
(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ ) √3𝐸

√3

2
(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ ) −𝐷 +

1

2
(𝑔𝑧𝑥

′ + 𝑔𝑧𝑦
′ + 𝑔𝑧𝑧

′ ) 𝑔𝑥𝑥
′ − 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ − 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ − 𝑖𝑔𝑦𝑧

′

√3𝐸 𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ −𝐷 −
1

2
(𝑔𝑧𝑥

′ + 𝑔𝑧𝑦
′ + 𝑔𝑧𝑧

′ ) )

 
 
 
 

 

and the secular equation for each matrix is represented as 

𝑥3 + 𝑝𝑖𝑥
2 + 𝑞𝑖𝑥 + 𝑟𝑖 = 0 (𝑖 = 1,2,3,4) 

with 

𝑝1 = 𝐷 +
3

2
𝑔𝑧𝑥
′ +

3

2
𝑔𝑧𝑦
′ +

3

2
𝑔𝑧𝑧
′  

𝑞1 = −(𝐷
2 + 3𝐸2) −

7

4
𝑔𝑥𝑥
′ 2
−
7

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ −
7

4
𝑔𝑥𝑦
′ 2
−
7

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ −
7

2
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ −
7

4
𝑔𝑥𝑧
′ 2 −

7

4
𝑔𝑦𝑥
′ 2
−
7

2
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′

−
7

4
𝑔𝑦𝑦
′ 2

−
7

2
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ −
7

2
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ −
7

4
𝑔𝑦𝑧
′ 2 + 3𝐷𝑔𝑧𝑥

′ −
1

4
𝑔𝑧𝑥
′ 2 + 3𝐷𝑔𝑧𝑦

′ −
1

2
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′

−
1

4
𝑔𝑧𝑦
′ 2
+ 3𝐷𝑔𝑧𝑧

′ −
1

2
𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ −
1

2
𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ −
1

4
𝑔𝑧𝑧
′ 2 
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𝑟1 = −𝐷(𝐷
2 + 3𝐸2) +

1

4
(𝐷 − 12𝐸)𝑔𝑥𝑥

′ 2
+
1

2
(𝐷 − 12𝐸)𝑔𝑥𝑥

′ 𝑔𝑥𝑦
′ +

1

4
(𝐷 − 12𝐸)𝑔𝑥𝑦

′ 2

+
1

2
(𝐷 − 12𝐸)𝑔𝑥𝑥

′ 𝑔𝑥𝑧
′ +

1

2
(𝐷 − 12𝐸)𝑔𝑥𝑦

′ 𝑔𝑥𝑧
′ +

1

4
(𝐷 − 12𝐸)𝑔𝑥𝑧

′ 2 +
1

4
(𝐷 + 12𝐸)𝑔𝑦𝑥

′ 2

+
1

2
(𝐷 + 12𝐸)𝑔𝑦𝑥

′ 𝑔𝑦𝑦
′ +

1

4
(𝐷 + 12𝐸)𝑔𝑦𝑦

′ 2
+
1

2
(𝐷 + 12𝐸)𝑔𝑦𝑥

′ 𝑔𝑦𝑧
′

+
1

2
(𝐷 + 12𝐸)𝑔𝑦𝑦

′ 𝑔𝑦𝑧
′ +

1

4
(𝐷 + 12𝐸)𝑔𝑦𝑧

′ 2 +
3

2
(𝐷2 − 𝐸2)𝑔𝑧𝑥

′ −
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑥
′

−
9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑥
′ −

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑥
′ −

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑥
′ −

9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑥
′ −

9

8
𝑔𝑥𝑧
′ 2𝑔𝑧𝑥

′ −
9

8
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑥
′

−
9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑥
′ −

9

8
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑥
′ −

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑥
′ −

9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑥
′ −

9

8
𝑔𝑦𝑧
′ 2𝑔𝑧𝑥

′ +
1

4
𝐷𝑔𝑧𝑥

′ 2

−
3

8
𝑔𝑧𝑥
′ 3 +

3

2
(𝐷2 − 𝐸2)𝑔𝑧𝑦

′ −
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑦
′ −

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑦
′ −

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑦
′ −

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑦
′

−
9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑦
′ −

9

8
𝑔𝑥𝑧
′ 2𝑔𝑧𝑦

′ −
9

8
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑦
′ −

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑦
′ −

9

8
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑦
′ −

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑦
′

−
9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑦
′ −

9

8
𝑔𝑦𝑧
′ 2𝑔𝑧𝑦

′ +
1

2
𝐷𝑔𝑧𝑥

′ 𝑔𝑧𝑦
′ −

9

8
𝑔𝑧𝑥
′ 2𝑔𝑧𝑦

′ +
1

4
𝐷𝑔𝑧𝑦

′ 2 −
9

8
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ 2 −
3

8
𝑔𝑧𝑦
′ 3

+
3

2
(𝐷2 − 𝐸2)𝑔𝑧𝑧

′ −
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑧
′ −

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑧
′ −

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑧
′ −

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑧
′

−
9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑧
′ −

9

8
𝑔𝑥𝑧
′ 2𝑔𝑧𝑧

′ −
9

8
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑧
′ −

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑧
′ −

9

8
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑧
′ −

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑧
′

−
9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑧
′ −

9

8
𝑔𝑦𝑧
′ 2𝑔𝑧𝑧

′ +
1

2
𝐷𝑔𝑧𝑥

′ 𝑔𝑧𝑧
′ −

9

8
𝑔𝑧𝑥
′ 2𝑔𝑧𝑧

′ +
1

2
𝐷𝑔𝑧𝑦

′ 𝑔𝑧𝑧
′ −

9

4
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ 𝑔𝑧𝑧
′

−
9

8
𝑔𝑧𝑦
′ 2
𝑔𝑧𝑧
′ +

1

4
𝐷𝑔𝑧𝑧

′ 2 −
9

8
𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ 2 −
9

8
𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ 2 −
3

8
𝑔𝑧𝑧
′ 3 

 

𝑝2 = −𝐷 +
3

2
𝑔𝑧𝑥
′ +

3

2
𝑔𝑧𝑦
′ +

3

2
𝑔𝑧𝑧
′  

𝑞2 = −(𝐷
2 + 3𝐸2) −

3

4
𝑔𝑥𝑥
′ 2
−
3

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ −
3

4
𝑔𝑥𝑦
′ 2
−
3

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ −
3

2
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ −
3

4
𝑔𝑥𝑧
′ 2 −

3

4
𝑔𝑦𝑥
′ 2
−
3

2
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′

−
3

4
𝑔𝑦𝑦
′ 2

−
3

2
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ −
3

2
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ −
3

4
𝑔𝑦𝑧
′ 2 − 𝐷𝑔𝑧𝑥

′ −
9

4
𝑔𝑧𝑥
′ 2 − 𝐷𝑔𝑧𝑦

′ −
9

2
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′

−
9

4
𝑔𝑧𝑦
′ 2
− 𝐷𝑔𝑧𝑧

′ −
9

2
𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ −
9

2
𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ −
9

4
𝑔𝑧𝑧
′ 2 
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𝑟2 = 𝐷(𝐷
2 + 3𝐸2) +

3

4
𝐷𝑔𝑥𝑥

′ 2
+
3

2
𝐷𝑔𝑥𝑥

′ 𝑔𝑥𝑦
′ +

3

4
𝐷𝑔𝑥𝑦

′ 2
+
3

2
𝐷𝑔𝑥𝑥

′ 𝑔𝑥𝑧
′ +

3

2
𝐷𝑔𝑥𝑦

′ 𝑔𝑥𝑧
′ +

3

4
𝐷𝑔𝑥𝑧

′ 2 +
3

4
𝐷𝑔𝑦𝑥

′ 2

+
3

2
𝐷𝑔𝑦𝑥

′ 𝑔𝑦𝑦
′ +

3

4
𝐷𝑔𝑦𝑦

′ 2
+
3

2
𝐷𝑔𝑦𝑥

′ 𝑔𝑦𝑧
′ +

3

2
𝐷𝑔𝑦𝑦

′ 𝑔𝑦𝑧
′ +

3

4
𝐷𝑔𝑦𝑧

′ 2 +
1

2
(𝐷2 − 9𝐸2)𝑔𝑧𝑥

′

+
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑥
′ +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑥
′ +

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑥
′ +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑥
′ +

9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑥
′ +

9

8
𝑔𝑥𝑧
′ 2𝑔𝑧𝑥

′

+
9

8
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑥
′ +

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑥
′ +

9

8
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑥
′ +

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑥
′ +

9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑥
′ +

9

8
𝑔𝑦𝑧
′ 2𝑔𝑧𝑥

′

−
9

4
𝐷𝑔𝑧𝑥

′ 2 −
9

8
𝑔𝑧𝑥
′ 3 +

1

2
(𝐷2 − 9𝐸2)𝑔𝑧𝑦

′ +
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑦
′ +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑦
′ +

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑦
′

+
9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑦
′ +

9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑦
′ +

9

8
𝑔𝑥𝑧
′ 2𝑔𝑧𝑦

′ +
9

8
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑦
′ +

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑦
′ +

9

8
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑦
′

+
9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑦
′ +

9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑦
′ +

9

8
𝑔𝑦𝑧
′ 2𝑔𝑧𝑦

′ −
9

2
𝐷𝑔𝑧𝑥

′ 𝑔𝑧𝑦
′ −

27

8
𝑔𝑧𝑥
′ 2𝑔𝑧𝑦

′ −
9

4
𝐷𝑔𝑧𝑦

′ 2

−
27

8
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ 2 −
9

8
𝑔𝑧𝑦
′ 3
+
1

2
(𝐷2 − 9𝐸2)𝑔𝑧𝑧

′ +
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑧
′ +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑧
′ +

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑧
′

+
9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑧
′ +

9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑧
′ +

9

8
𝑔𝑥𝑧
′ 2𝑔𝑧𝑧

′ +
9

8
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑧
′ +

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑧
′ +

9

8
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑧
′

+
9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑧
′ +

9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑧
′ +

9

8
𝑔𝑦𝑧
′ 2𝑔𝑧𝑧

′ −
9

2
𝐷𝑔𝑧𝑥

′ 𝑔𝑧𝑧
′ −

27

8
𝑔𝑧𝑥
′ 2𝑔𝑧𝑧

′ −
9

2
𝐷𝑔𝑧𝑦

′ 𝑔𝑧𝑧
′

−
27

4
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ 𝑔𝑧𝑧
′ −

27

8
𝑔𝑧𝑦
′ 2𝑔𝑧𝑧

′ −
9

4
𝐷𝑔𝑧𝑧

′ 2 −
27

8
𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ 2 −
27

8
𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ 2 −
9

8
𝑔𝑧𝑧
′ 3 

 

𝑝3 = −𝐷 −
3

2
𝑔𝑧𝑥
′ −

3

2
𝑔𝑧𝑦
′ −

3

2
𝑔𝑧𝑧
′  

𝑞3 = −(𝐷
2 + 3𝐸2) −

3

4
𝑔𝑥𝑥
′ 2
−
3

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ −
3

4
𝑔𝑥𝑦
′ 2
−
3

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ −
3

2
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ −
3

4
𝑔𝑥𝑧
′ 2 −

3

4
𝑔𝑦𝑥
′ 2
−
3

2
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′

−
3

4
𝑔𝑦𝑦
′ 2

−
3

2
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ −
3

2
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ −
3

4
𝑔𝑦𝑧
′ 2 + 𝐷𝑔𝑧𝑥

′ −
9

4
𝑔𝑧𝑥
′ 2 + 𝐷𝑔𝑧𝑦

′ −
9

2
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′

−
9

4
𝑔𝑧𝑦
′ 2
+ 𝐷𝑔𝑧𝑧

′ −
9

2
𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ −
9

2
𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ −
9

4
𝑔𝑧𝑧
′ 2 
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𝑟3 = 𝐷(𝐷
2 + 3𝐸2) +

3

4
𝐷𝑔𝑥𝑥

′ 2
+
3

2
𝐷𝑔𝑥𝑥

′ 𝑔𝑥𝑦
′ +

3

4
𝐷𝑔𝑥𝑦

′ 2
+
3

2
𝐷𝑔𝑥𝑥

′ 𝑔𝑥𝑧
′ +

3

2
𝐷𝑔𝑥𝑦

′ 𝑔𝑥𝑧
′ +

3

4
𝐷𝑔𝑥𝑧

′ 2 +
3

4
𝐷𝑔𝑦𝑥

′ 2

+
3

2
𝐷𝑔𝑦𝑥

′ 𝑔𝑦𝑦
′ +

3

4
𝐷𝑔𝑦𝑦

′ 2
+
3

2
𝐷𝑔𝑦𝑥

′ 𝑔𝑦𝑧
′ +

3

2
𝐷𝑔𝑦𝑦

′ 𝑔𝑦𝑧
′ +

3

4
𝐷𝑔𝑦𝑧

′ 2 −
1

2
(𝐷2 − 9𝐸2)𝑔𝑧𝑥

′

−
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑥
′ −

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑥
′ −

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑥
′ −

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑥
′ −

9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑥
′ −

9

8
𝑔𝑥𝑧
′ 2𝑔𝑧𝑥

′

−
9

8
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑥
′ −

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑥
′ −

9

8
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑥
′ −

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑥
′ −

9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑥
′ −

9

8
𝑔𝑦𝑧
′ 2𝑔𝑧𝑥

′

−
9

4
𝐷𝑔𝑧𝑥

′ 2 +
9

8
𝑔𝑧𝑥
′ 3 −

1

2
(𝐷2 − 9𝐸2)𝑔𝑧𝑦

′ −
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑦
′ −

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑦
′ −

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑦
′

−
9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑦
′ −

9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑦
′ −

9

8
𝑔𝑥𝑧
′ 2𝑔𝑧𝑦

′ −
9

8
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑦
′ −

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑦
′ −

9

8
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑦
′

−
9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑦
′ −

9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑦
′ −

9

8
𝑔𝑦𝑧
′ 2𝑔𝑧𝑦

′ −
9

2
𝐷𝑔𝑧𝑥

′ 𝑔𝑧𝑦
′ +

27

8
𝑔𝑧𝑥
′ 2𝑔𝑧𝑦

′ −
9

4
𝐷𝑔𝑧𝑦

′ 2

+
27

8
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ 2 +
9

8
𝑔𝑧𝑦
′ 3
−
1

2
(𝐷2 − 9𝐸2)𝑔𝑧𝑧

′ −
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑧
′ −

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑧
′ −

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑧
′

−
9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑧
′ −

9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑧
′ −

9

8
𝑔𝑥𝑧
′ 2𝑔𝑧𝑧

′ −
9

8
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑧
′ −

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑧
′ −

9

8
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑧
′

−
9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑧
′ −

9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑧
′ −

9

8
𝑔𝑦𝑧
′ 2𝑔𝑧𝑧

′ −
9

2
𝐷𝑔𝑧𝑥

′ 𝑔𝑧𝑧
′ +

27

8
𝑔𝑧𝑥
′ 2𝑔𝑧𝑧

′ −
9

2
𝐷𝑔𝑧𝑦

′ 𝑔𝑧𝑧
′

+
27

4
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ 𝑔𝑧𝑧
′ +

27

8
𝑔𝑧𝑦
′ 2𝑔𝑧𝑧

′ −
9

4
𝐷𝑔𝑧𝑧

′ 2 +
27

8
𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ 2 +
27

8
𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ 2 +
9

8
𝑔𝑧𝑧
′ 3 

 

𝑝4 = 𝐷 −
3

2
𝑔𝑧𝑥
′ −

3

2
𝑔𝑧𝑦
′ −

3

2
𝑔𝑧𝑧
′  

𝑞4 = −(𝐷
2 + 3𝐸2) −

7

4
𝑔𝑥𝑥
′ 2
−
7

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ −
7

4
𝑔𝑥𝑦
′ 2
−
7

2
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ −
7

2
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ −
7

4
𝑔𝑥𝑧
′ 2 −

7

4
𝑔𝑦𝑥
′ 2
−
7

2
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′

−
7

4
𝑔𝑦𝑦
′ 2

−
7

2
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ −
7

2
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ −
7

4
𝑔𝑦𝑧
′ 2 − 3𝐷𝑔𝑧𝑥

′ −
1

4
𝑔𝑧𝑥
′ 2 − 3𝐷𝑔𝑧𝑦

′ −
1

2
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′

−
1

4
𝑔𝑧𝑦
′ 2
− 3𝐷𝑔𝑧𝑧

′ −
1

2
𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ −
1

2
𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ −
1

4
𝑔𝑧𝑧
′ 2 
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𝑟4 = −𝐷(𝐷
2 + 3𝐸2) +

1

4
(𝐷 − 12𝐸)𝑔𝑥𝑥

′ 2
+
1

2
(𝐷 − 12𝐸)𝑔𝑥𝑥

′ 𝑔𝑥𝑦
′ +

1

4
(𝐷 − 12𝐸)𝑔𝑥𝑦

′ 2

+
1

2
(𝐷 − 12𝐸)𝑔𝑥𝑥

′ 𝑔𝑥𝑧
′ +

1

2
(𝐷 − 12𝐸)𝑔𝑥𝑦

′ 𝑔𝑥𝑧
′ +

1

4
(𝐷 − 12𝐸)𝑔𝑥𝑧

′ 2 +
1

4
(𝐷 + 12𝐸)𝑔𝑦𝑥

′ 2

+
1

2
(𝐷 + 12𝐸)𝑔𝑦𝑥

′ 𝑔𝑦𝑦
′ +

1

4
(𝐷 + 12𝐸)𝑔𝑦𝑦

′ 2
+
1

2
(𝐷 + 12𝐸)𝑔𝑦𝑥

′ 𝑔𝑦𝑧
′

+
1

2
(𝐷 + 12𝐸)𝑔𝑦𝑦

′ 𝑔𝑦𝑧
′ +

1

4
(𝐷 + 12𝐸)𝑔𝑦𝑧

′ 2 −
3

2
(𝐷2 − 𝐸2)𝑔𝑧𝑥

′ +
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑥
′

+
9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑥
′ +

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑥
′ +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑥
′ +

9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑥
′ +

9

8
𝑔𝑥𝑧
′ 2𝑔𝑧𝑥

′ +
9

8
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑥
′

+
9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑥
′ +

9

8
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑥
′ +

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑥
′ +

9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑥
′ +

9

8
𝑔𝑦𝑧
′ 2𝑔𝑧𝑥

′ +
1

4
𝐷𝑔𝑧𝑥

′ 2

+
3

8
𝑔𝑧𝑥
′ 3 −

3

2
(𝐷2 − 𝐸2)𝑔𝑧𝑦

′ +
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑦
′ +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑦
′ +

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑦
′ +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑦
′

+
9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑦
′ +

9

8
𝑔𝑥𝑧
′ 2𝑔𝑧𝑦

′ +
9

8
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑦
′ +

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑦
′ +

9

8
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑦
′ +

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑦
′

+
9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑦
′ +

9

8
𝑔𝑦𝑧
′ 2𝑔𝑧𝑦

′ +
1

2
𝐷𝑔𝑧𝑥

′ 𝑔𝑧𝑦
′ +

9

8
𝑔𝑧𝑥
′ 2𝑔𝑧𝑦

′ +
1

4
𝐷𝑔𝑧𝑦

′ 2 +
9

8
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ 2 +
3

8
𝑔𝑧𝑦
′ 3

−
3

2
(𝐷2 − 𝐸2)𝑔𝑧𝑧

′ +
9

8
𝑔𝑥𝑥
′ 2
𝑔𝑧𝑧
′ +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑦

′ 𝑔𝑧𝑧
′ +

9

8
𝑔𝑥𝑦
′ 2
𝑔𝑧𝑧
′ +

9

4
𝑔𝑥𝑥
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑧
′

+
9

4
𝑔𝑥𝑦
′ 𝑔𝑥𝑧

′ 𝑔𝑧𝑧
′ +

9

8
𝑔𝑥𝑧
′ 2𝑔𝑧𝑧

′ +
9

8
𝑔𝑦𝑥
′ 2
𝑔𝑧𝑧
′ +

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑦

′ 𝑔𝑧𝑧
′ +

9

8
𝑔𝑦𝑦
′ 2
𝑔𝑧𝑧
′ +

9

4
𝑔𝑦𝑥
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑧
′

+
9

4
𝑔𝑦𝑦
′ 𝑔𝑦𝑧

′ 𝑔𝑧𝑧
′ +

9

8
𝑔𝑦𝑧
′ 2𝑔𝑧𝑧

′ +
1

2
𝐷𝑔𝑧𝑥

′ 𝑔𝑧𝑧
′ +

9

8
𝑔𝑧𝑥
′ 2𝑔𝑧𝑧

′ +
1

2
𝐷𝑔𝑧𝑦

′ 𝑔𝑧𝑧
′ +

9

4
𝑔𝑧𝑥
′ 𝑔𝑧𝑦

′ 𝑔𝑧𝑧
′

+
9

8
𝑔𝑧𝑦
′ 2
𝑔𝑧𝑧
′ +

1

4
𝐷𝑔𝑧𝑧

′ 2 +
9

8
𝑔𝑧𝑥
′ 𝑔𝑧𝑧

′ 2 +
9

8
𝑔𝑧𝑦
′ 𝑔𝑧𝑧

′ 2 +
3

8
𝑔𝑧𝑧
′ 3 

 

Cubic equations, 

𝑥3 + 𝑝𝑖𝑥
2 + 𝑞𝑖𝑥 + 𝑟𝑖 = 0 (𝑖 = 1, 2, 3, 4) 

are transformed as follows; 

𝑥3 = (
𝑝𝑖
2 − 3𝑞𝑖
3

)𝑥 −
2𝑝𝑖

3 − 9𝑝𝑖𝑞𝑖 + 27𝑟𝑖
27

 

by substituting 𝑥 to 𝑥 − 𝑝𝑖
3
. Then, the solutions of the cubic equations are represented as follows. 

𝑥𝑖,𝑚 = 2𝑎𝑖 cos [
1

3
arccos (

𝑏𝑖
2𝑎𝑖
) +

2𝑚𝜋

3
] −
𝑝𝑖
3
 (𝑚 = 0, 1, 2) 

with 

𝑎𝑖 =
√𝑝𝑖2 − 3𝑞𝑖

3
 



 S93 

𝑏𝑖 = −
2𝑝𝑖

3 − 9𝑝𝑖𝑞𝑖 + 27𝑟𝑖
3𝑝𝑖

2 − 9𝑞𝑖
 

     For n = 1 (MS = +3/2), 𝛼1 = 𝑟𝛼1 = √|𝑣1,1|
2
 (real). 

{
 
 
 
 

 
 
 
 [𝐷 +

3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] 𝑟𝛼1 +

√3

2
(𝑔𝑥𝑥
′ − 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ − 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ − 𝑖𝑔𝑦𝑧

′ )𝛽1 + √3𝐸𝛾1 = 0 — (A2)

√3

2
(𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ )𝑟𝛼1 + [−𝐷 +
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] 𝛽1 + (𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )𝛾1 + √3𝐸𝛿1 = 0 — (B2)

√3𝐸𝑟𝛼1 + (𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ )𝛽1 + [−𝐷 −
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] 𝛾1 +

√3

2
(𝑔𝑥𝑥
′ − 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ − 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ − 𝑖𝑔𝑦𝑧

′ )𝛿1 = 0 — (C2)

√3𝐸𝛽1 +
√3

2
(𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ )𝛾1 + [𝐷 −
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] 𝛿1 = 0 — (D2)

 

(C2) × 2𝐸(𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ ) 

2√3𝐸2(𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ )𝑟𝛼1 + 2𝐸(𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ )
2
𝛽1

+ 2𝐸 [−𝐷 −
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )𝛾1

+√3𝐸(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)𝛿1 = 0 — (E2) 

(B2) × (𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2) 

√3

2
(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )𝑟𝛼1

+ [−𝐷 +
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)𝛽1

+ (𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′

− 𝑖𝑔𝑦𝑧
′ )𝛾1 + √3𝐸(𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)𝛿1 = 0 — (F2) 

(E2) – (F2) 

√3

2
(4𝐸2 − 𝑔𝑥𝑥

′ 2
− 𝑔𝑦𝑥

′ 2
− 𝑔𝑥𝑦

′ 2
− 𝑔𝑦𝑦

′ 2
− 𝑔𝑥𝑧

′ 2 − 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )𝑟𝛼1

+ {2𝐸(𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ )
2

− [−𝐷 +
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)}𝛽1

+ {2𝐸 [−𝐷 −
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )

− (𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′

− 𝑖𝑔𝑦𝑧
′ )} 𝛾1 = 0 — (G2) 

(G2)×√3𝐸 
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3

2
𝐸(4𝐸2 − 𝑔𝑥𝑥

′ 2
− 𝑔𝑦𝑥

′ 2
− 𝑔𝑥𝑦

′ 2
− 𝑔𝑦𝑦

′ 2
− 𝑔𝑥𝑧

′ 2 − 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )𝑟𝛼1

+ {2√3𝐸2(𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ )
2

−√3𝐸 [−𝐷 +
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2

+ 𝑔𝑦𝑧
′ 2)}𝛽1

+ {2√3𝐸2 [−𝐷 −
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )

− √3𝐸(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′

− 𝑖𝑔𝑦𝑧
′ )} 𝛾1 = 0 — (H2) 

(H2)× {2𝐸 [−𝐷 +
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )

− (𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′

− 𝑖𝑔𝑦𝑧
′ )} 

{2𝐸 [𝐷 +
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] [−𝐷 −

1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′

+ 𝑖𝑔𝑦𝑧
′ )

− [𝐷 +
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′

− 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )} 𝑟𝛼1

+ {√3𝐸 [−𝐷 −
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)

−
√3

2
(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2

+ 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )

2
}𝛽1

+ {2√3𝐸2 [−𝐷 −
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )

− √3𝐸(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2

+ 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )

2
} 𝛾1 = 0 — (I2) 

Applying (H2) – (I2) yields the following equation, 

𝛽1 =
𝑛𝑢𝑚𝑒𝑟(𝛽1)

𝑑𝑒𝑛𝑜𝑚(𝛽1)
𝑟𝛼1 
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where 

𝑛𝑢𝑚𝑒𝑟(𝛽1) = 2𝐸 [𝐷 +
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] [−𝐷 −

1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′

+ 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )

− [𝐷 +
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′

− 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )

−
3

2
𝐸(4𝐸2 − 𝑔𝑥𝑥

′ 2
− 𝑔𝑦𝑥

′ 2
− 𝑔𝑥𝑦

′ 2
− 𝑔𝑦𝑦

′ 2
− 𝑔𝑥𝑧

′ 2 − 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′

+ 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ ) 

𝑑𝑒𝑛𝑜𝑚(𝛽1) = 2√3𝐸(𝐷 + 𝜀1)(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)

+ 2√3𝐸2(𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ )
2

+
√3

2
(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2

+ 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )

2
 

Next, 

(G2)×
1

2
√3(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ ) 

3

4
(4𝐸2 − 𝑔𝑥𝑥

′ 2
− 𝑔𝑦𝑥

′ 2
− 𝑔𝑥𝑦

′ 2
− 𝑔𝑦𝑦

′ 2
− 𝑔𝑥𝑧

′ 2 − 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)𝑟𝛼1

+ {√3𝐸(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′

+ 𝑖𝑔𝑦𝑧
′ )

−
√3

2
[−𝐷 +

1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2

+ 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )}𝛽1

+ {√3𝐸 [−𝐷 −
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)

−
√3

2
(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2

+ 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )

2
}𝛾1 = 0 — (J2) 

(A2)× {2𝐸(𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ )
2

− [−𝐷 +
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)} 
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{2𝐸 [𝐷 +
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )

2

− [𝐷 +
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] [−𝐷 +

1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2

+ 𝑔𝑥𝑦
′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)} 𝑟𝛼1

+ {√3𝐸(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′

+ 𝑖𝑔𝑦𝑧
′ )

−
√3

2
[−𝐷 +

1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2

+ 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )}𝛽1

+ [2√3𝐸2(𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ )
2

−√3𝐸 [−𝐷 +
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2

+ 𝑔𝑦𝑧
′ 2)] 𝛾1 = 0 — (K2) 

Applyging (J2) – (K2) yields the following equation, 

𝛾1 =
𝑛𝑢𝑚𝑒𝑟(𝛾1)

𝑑𝑒𝑛𝑜𝑚(𝛾1)
𝑟𝛼1 

where 

𝑛𝑢𝑚𝑒𝑟(𝛾1) = [𝐷 +
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] [−𝐷 +

1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2

+ 𝑔𝑦𝑦
′ 2

+ 𝑔𝑥𝑧
′ 2 + 𝑔𝑦𝑧

′ 2)

− 2𝐸 [𝐷 +
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀1] (𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )

2

+
3

4
(4𝐸2 − 𝑔𝑥𝑥

′ 2
− 𝑔𝑦𝑥

′ 2
− 𝑔𝑥𝑦

′ 2
− 𝑔𝑦𝑦

′ 2
− 𝑔𝑥𝑧

′ 2 − 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2

+ 𝑔𝑥𝑧
′ 2 + 𝑔𝑦𝑧

′ 2) 

𝑑𝑒𝑛𝑜𝑚(𝛾1) = 2√3𝐸(𝐷 + 𝜀1)(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)

+ 2√3𝐸2(𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ )
2

+
√3

2
(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2

+ 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )

2
 

Finally, from (D2) we obtain 

𝛿1 =
−2√3𝐸𝛽1 − √3(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )𝛾1

2𝐷 − 3(𝑔𝑧𝑥′ + 𝑔𝑧𝑦′ + 𝑔𝑧𝑧′ ) − 2𝐸1
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Similarly, for n = 2 (MS = +1/2), we set 

𝛽2 = 𝑟𝛽2 = √|𝑣2,2|
2
 

and 

𝛾2 =
𝑛𝑢𝑚𝑒𝑟(𝛾2)

𝑑𝑒𝑛𝑜𝑚(𝛾2)
𝑟𝛽2 

𝑛𝑢𝑚𝑒𝑟(𝛾2) = 2𝐸 [𝐷 −
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀2] [−𝐷 +

1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀2] (𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′

− 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )

− [𝐷 −
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀2] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′

+ 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )

−
3

2
𝐸(4𝐸2 − 𝑔𝑥𝑥

′ 2
− 𝑔𝑦𝑥

′ 2
− 𝑔𝑥𝑦

′ 2
− 𝑔𝑦𝑦

′ 2
− 𝑔𝑥𝑧

′ 2 − 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′

+ 𝑔𝑥𝑧
′ − 𝑖𝑔𝑦𝑧

′ ) 

𝑑𝑒𝑛𝑜𝑚(𝛾2) = [𝐷 −
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀2] [−𝐷 −

1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀2] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2

+ 𝑔𝑦𝑦
′ 2

+ 𝑔𝑥𝑧
′ 2 + 𝑔𝑦𝑧

′ 2)

− 2𝐸 [𝐷 −
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀2] (𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )

2

+
3

4
(4𝐸2 − 𝑔𝑥𝑥

′ 2
− 𝑔𝑦𝑥

′ 2
− 𝑔𝑥𝑦

′ 2
− 𝑔𝑦𝑦

′ 2
− 𝑔𝑥𝑧

′ 2 − 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2

+ 𝑔𝑥𝑧
′ 2 + 𝑔𝑦𝑧

′ 2) 

𝛿2 =
𝑛𝑢𝑚𝑒𝑟(𝛿2)

𝑑𝑒𝑛𝑜𝑚(𝛿2)
𝑟𝛽2 

𝑛𝑢𝑚𝑒𝑟(𝛿2) = 2√3𝐸(𝐷 + 𝜀2)(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)

+ 2√3𝐸2(𝑔𝑥𝑥
′ − 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ − 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ − 𝑖𝑔𝑦𝑧

′ )
2

+
√3

2
(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2

+ 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )

2
 

𝑑𝑒𝑛𝑜𝑚(𝛿2) = [𝐷 −
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀2] [−𝐷 −

1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀2] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2

+ 𝑔𝑦𝑦
′ 2

+ 𝑔𝑥𝑧
′ 2 + 𝑔𝑦𝑧

′ 2)

− 2𝐸 [𝐷 −
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀2] (𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )

2

+
3

4
(4𝐸2 − 𝑔𝑥𝑥

′ 2
− 𝑔𝑦𝑥

′ 2
− 𝑔𝑥𝑦

′ 2
− 𝑔𝑦𝑦

′ 2
− 𝑔𝑥𝑧

′ 2 − 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2

+ 𝑔𝑥𝑧
′ 2 + 𝑔𝑦𝑧

′ 2) 
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𝛼2 =
−√3(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )𝑟𝛽2 − 2√3𝐸𝛾2

2𝐷 + 3(𝑔𝑧𝑥′ + 𝑔𝑧𝑦′ + 𝑔𝑧𝑧′ ) − 2𝜀2
 

were obtained. For n = 3 (MS = –1/2), we set 

𝛾3 = 𝑟𝛾3 = √|𝑣3,3|
2
 

and 

𝛼3 =
𝑛𝑢𝑚𝑒𝑟(𝛼3)

𝑑𝑒𝑛𝑜𝑚(𝛼3)
𝑟𝛾3 

𝑛𝑢𝑚𝑒𝑟(𝛼3) = 2√3𝐸(𝐷 + 𝜀3)(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)

+ 2√3𝐸2(𝑔𝑥𝑥
′ + 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ + 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ )
2

+
√3

2
(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2

+ 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )

2
 

𝑑𝑒𝑛𝑜𝑚(𝛼3) = [𝐷 +
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀3] [−𝐷 +

1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀3] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2

+ 𝑔𝑦𝑦
′ 2

+ 𝑔𝑥𝑧
′ 2 + 𝑔𝑦𝑧

′ 2)

− 2𝐸 [𝐷 +
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀3] (𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )

2

+
3

4
(4𝐸2 − 𝑔𝑥𝑥

′ 2
− 𝑔𝑦𝑥

′ 2
− 𝑔𝑥𝑦

′ 2
− 𝑔𝑦𝑦

′ 2
− 𝑔𝑥𝑧

′ 2 − 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2

+ 𝑔𝑥𝑧
′ 2 + 𝑔𝑦𝑧

′ 2) 

𝛽3 =
𝑛𝑢𝑚𝑒𝑟(𝛽3)

𝑑𝑒𝑛𝑜𝑚(𝛽3)
𝑟𝛾3 

𝑛𝑢𝑚𝑒𝑟(𝛽3) = 2𝐸 [𝐷 +
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀3] [−𝐷 −

1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀3] (𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′

+ 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )

− [𝐷 +
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀3] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′

− 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )

−
3

2
𝐸(4𝐸2 − 𝑔𝑥𝑥

′ 2
− 𝑔𝑦𝑥

′ 2
− 𝑔𝑥𝑦

′ 2
− 𝑔𝑦𝑦

′ 2
− 𝑔𝑥𝑧

′ 2 − 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′

+ 𝑔𝑥𝑧
′ + 𝑖𝑔𝑦𝑧

′ ) 
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𝑑𝑒𝑛𝑜𝑚(𝛽3) = [𝐷 +
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀3] [−𝐷 +

1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀3] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2

+ 𝑔𝑦𝑦
′ 2

+ 𝑔𝑥𝑧
′ 2 + 𝑔𝑦𝑧

′ 2)

− 2𝐸 [𝐷 +
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀3] (𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )

2

+
3

4
(4𝐸2 − 𝑔𝑥𝑥

′ 2
− 𝑔𝑦𝑥

′ 2
− 𝑔𝑥𝑦

′ 2
− 𝑔𝑦𝑦

′ 2
− 𝑔𝑥𝑧

′ 2 − 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2

+ 𝑔𝑥𝑧
′ 2 + 𝑔𝑦𝑧

′ 2) 

𝛿1 =
−2√3𝐸𝛽3 − √3(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )𝑟𝛾3

2𝐷 − 3(𝑔𝑧𝑥′ + 𝑔𝑧𝑦′ + 𝑔𝑧𝑧′ ) − 2𝜀3
 

were obtained.  

     For n = 4 (MS = –3/2), we set 

𝛿4 = 𝑟𝛿4 = √|𝑣4,4|
2
 

𝛽4 =
𝑛𝑢𝑚𝑒𝑟(𝛽4)

𝑑𝑒𝑛𝑜𝑚(𝛽4)
𝑟𝛿4 

𝑛𝑢𝑚𝑒𝑟(𝛽4) = [−𝐷 −
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀4] [𝐷 −

3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀4] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2

+ 𝑔𝑦𝑦
′ 2

+ 𝑔𝑥𝑧
′ 2 + 𝑔𝑦𝑧

′ 2)

− 2𝐸 [𝐷 −
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀4] (𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )

2

+
3

4
(4𝐸2 − 𝑔𝑥𝑥

′ 2
− 𝑔𝑦𝑥

′ 2
− 𝑔𝑥𝑦

′ 2
− 𝑔𝑦𝑦

′ 2
− 𝑔𝑥𝑧

′ 2 − 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2

+ 𝑔𝑥𝑧
′ 2 + 𝑔𝑦𝑧

′ 2) 

𝑑𝑒𝑛𝑜𝑚(𝛽4) = 2√3𝐸(𝐷 + 𝜀4)(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)

+ 2√3𝐸2(𝑔𝑥𝑥
′ − 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ − 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ − 𝑖𝑔𝑦𝑧

′ )
2

+
√3

2
(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2

+ 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )

2
 

𝛾4 =
𝑛𝑢𝑚𝑒𝑟(𝛾4)

𝑑𝑒𝑛𝑜𝑚(𝛾4)
𝑟𝛿4 
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𝑛𝑢𝑚𝑒𝑟(𝛾4) = 2𝐸 [−𝐷 +
1

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀4] [𝐷 −

3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀4] (𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′

− 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )

− [𝐷 −
3

2
(𝑔𝑧𝑥
′ + 𝑔𝑧𝑦

′ + 𝑔𝑧𝑧
′ ) − 𝜀4] (𝑔𝑥𝑥

′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′

+ 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )

−
3

2
𝐸(4𝐸2 − 𝑔𝑥𝑥

′ 2
− 𝑔𝑦𝑥

′ 2
− 𝑔𝑥𝑦

′ 2
− 𝑔𝑦𝑦

′ 2
− 𝑔𝑥𝑧

′ 2 − 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′

+ 𝑔𝑥𝑧
′ − 𝑖𝑔𝑦𝑧

′ ) 

𝑑𝑒𝑛𝑜𝑚(𝛾4) = 2√3𝐸(𝐷 + 𝜀4)(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2 + 𝑔𝑦𝑧
′ 2)

+ 2√3𝐸2(𝑔𝑥𝑥
′ − 𝑖𝑔𝑦𝑥

′ + 𝑔𝑥𝑦
′ − 𝑖𝑔𝑦𝑦

′ + 𝑔𝑥𝑧
′ − 𝑖𝑔𝑦𝑧

′ )
2

+
√3

2
(𝑔𝑥𝑥
′ 2
+ 𝑔𝑦𝑥

′ 2
+ 𝑔𝑥𝑦

′ 2
+ 𝑔𝑦𝑦

′ 2
+ 𝑔𝑥𝑧

′ 2

+ 𝑔𝑦𝑧
′ 2)(𝑔𝑥𝑥

′ + 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ + 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ + 𝑖𝑔𝑦𝑧
′ )

2
 

𝛼4 =
−√3(𝑔𝑥𝑥

′ − 𝑖𝑔𝑦𝑥
′ + 𝑔𝑥𝑦

′ − 𝑖𝑔𝑦𝑦
′ + 𝑔𝑥𝑧

′ − 𝑖𝑔𝑦𝑧
′ )𝛽4 − 2√3𝐸𝛾4

2𝐷 + 3(𝑔𝑧𝑥′ + 𝑔𝑧𝑦′ + 𝑔𝑧𝑧′ ) − 2𝜀4
 

were obtained. 

     In the case of the non-collinearity between the ZFS and A-tensors, the matrix representation of the A-

tensor is transformed in the basis of the principal axis system of the ZFS tensor by a unitary matrix 

𝐀 = (

𝐴𝑥 0 0
0 𝐴𝑦 0

0 0 𝐴𝑧

) → 𝐀′ = (

𝐴𝑥𝑥
′ 𝐴𝑥𝑦

′ 𝐴𝑥𝑧
′

𝐴𝑦𝑥
′ 𝐴𝑦𝑦

′ 𝐴𝑦𝑧
′

𝐴𝑧𝑥
′ 𝐴𝑧𝑦

′ 𝐴𝑧𝑧
′

) 

Then, the matrix elements of the hyperfine structure Hamiltonian in the basis of |MS, MI> are as follows. 

⟨±
3
2 ,𝑀𝐼

′|𝐻hfs|±
3
2 ,𝑀𝐼⟩ =

{
 
 

 
 

±2𝑀𝐼𝛿𝑀𝐼𝑀𝐼′𝐴𝑧1
′

±
1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′+1𝐴𝑧2
′

±
1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′−1𝐴𝑧2
′ ∗

 

⟨+
1
2 ,𝑀𝐼

′|𝐻hfs|+
3
2 ,𝑀𝐼⟩ = ⟨−

3
2 ,𝑀𝐼

′|𝐻hfs|−
1
2 ,𝑀𝐼⟩ =

{
 
 

 
 

2𝑀𝐼𝛿𝑀𝐼𝑀𝐼′𝐴𝑧3
′

1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′+1𝐴1−
′

1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′−1𝐴1+
′

 

⟨+
3
2
,𝑀𝐼

′|𝐻hfs|+
1
2
,𝑀𝐼⟩ = ⟨+

1
2
,𝑀𝐼|𝐻hfs|+

3
2
,𝑀𝐼

′⟩
∗

 

⟨±
1
2 ,𝑀𝐼

′|𝐻hfs|±
1
2 ,𝑀𝐼⟩ =

{
 
 

 
 

±2𝑀𝐼𝛿𝑀𝐼𝑀𝐼′𝐴𝑧4
′

±
1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′+1𝐴𝑧5
′

±
1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′−1𝐴𝑧5
′ ∗
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⟨−
1
2
,𝑀𝐼

′|𝐻hfs|+
1
2
,𝑀𝐼⟩ =

{
 
 

 
 

2𝑀𝐼𝛿𝑀𝐼𝑀𝐼′𝐴𝑧6
′

1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′+1𝐴2−
′

1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′−1𝐴2+
′

 

⟨+
1
2 ,𝑀𝐼

′|𝐻hfs|−
1
2 ,𝑀𝐼⟩ = ⟨−

1
2 ,𝑀𝐼|𝐻hfs|+

1
2 ,𝑀𝐼

′⟩
∗

 

⟨−
1
2 ,𝑀𝐼

′|𝐻hfs|−
3
2 ,𝑀𝐼⟩ = ⟨−

3
2 ,𝑀𝐼|𝐻hfs|−

1
2 ,𝑀𝐼

′⟩
∗

 

where 

𝐴𝑧1
′ =

3

4
𝐴𝑧𝑧
′  

𝐴𝑧2
′ =

3

4
(𝐴𝑧𝑥
′ + 𝑖𝐴𝑧𝑦

′ ) 

𝐴𝑧3
′ =

1

4
√3(𝐴𝑥𝑧

′ + 𝑖𝐴𝑦𝑧
′ ) 

𝐴𝑧4
′ =

1

4
𝐴𝑧𝑧
′  

𝐴𝑧5
′ =

1

4
(𝐴𝑧𝑥
′ + 𝑖𝐴𝑧𝑦

′ ) 

𝐴𝑧6
′ =

1

2
(𝐴𝑥𝑧
′ + 𝑖𝐴𝑦𝑧

′ ) 

𝐴1±
′ =

1

4
√3(𝐴𝑥𝑥

′ ∓ 𝑖𝐴𝑥𝑦
′ + 𝑖𝐴𝑦𝑥

′ ± 𝐴𝑦𝑦
′ ) 

𝐴2±
′ =

1

2
(𝐴𝑥𝑥
′ ∓ 𝑖𝐴𝑥𝑦

′ + 𝑖𝐴𝑦𝑥
′ ± 𝐴𝑦𝑦

′ ) 

The upper and lower signs should be chosen in the double sign. 

     In order to expand the hyperfine structure Hamiltonian, we carry out the calculations based on the 

tensor product between the spin eigenfunctions and the basis vector of the nuclear spin operator, as given in 

the following. 

|𝜓𝑛(𝑀𝐼)⟩ ≡ |𝜓𝑛⟩⨂|𝑀𝐼⟩ = 𝛼𝑛 |+
3

2
,𝑀𝐼⟩ + 𝛽𝑛 |+

1

2
,𝑀𝐼⟩ + 𝛾𝑛 |−

1

2
,𝑀𝐼⟩ + 𝛿𝑛 |−

3

2
,𝑀𝐼⟩ 

(𝑛 = 1,𝑀𝑆 = +
3

2
;  𝑛 = 2,𝑀𝑆 = +

1

2
; 𝑛 = 3,𝑀𝑆 = −

1

2
; 𝑛 = 4,𝑀𝑆 = −

3

2
) 

Then, the matrix element of the expanded hyperfine structure Hamiltonian can be simply represented. 

⟨𝜓𝑀𝑆′ , 𝑀𝐼
′|𝐻hfs|𝜓𝑀𝑆 , 𝑀𝐼⟩ =

{
 
 

 
 

±2𝑀𝐼𝛿𝑀𝐼𝑀𝐼′𝜆𝑖𝑗

±
1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′+1𝜇𝑖𝑗

±
1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′−1𝜈𝑖𝑗

 

where 

𝜆𝑖𝑗 =
1

4
(𝐴𝑥𝑧
′ 𝜉𝑖𝑗 + 𝑖𝐴𝑦𝑧

′ 𝜂𝑖𝑗 + 𝐴𝑧𝑧
′ 𝜁𝑖𝑗) 

𝜇𝑖𝑗 =
1

4
(𝐴𝑥𝑥
′ 𝜉𝑖𝑗 + 𝑖𝐴𝑥𝑦

′ 𝜉𝑖𝑗 + 𝑖𝐴𝑦𝑥
′ 𝜂𝑖𝑗 − 𝐴𝑦𝑦

′ 𝜂𝑖𝑗 + 𝐴𝑧𝑥
′ 𝜁𝑖𝑗 + 𝑖𝐴𝑧𝑦

′ 𝜁𝑖𝑗) 

𝜈𝑖𝑗 =
1

4
(𝐴𝑥𝑥
′ 𝜉𝑖𝑗 − 𝑖𝐴𝑥𝑦

′ 𝜉𝑖𝑗 + 𝑖𝐴𝑦𝑥
′ 𝜂𝑖𝑗 − 𝐴𝑦𝑦

′ 𝜂𝑖𝑗 + 𝐴𝑧𝑥
′ 𝜁𝑖𝑗 − 𝑖𝐴𝑧𝑦

′ 𝜁𝑖𝑗) 

𝜉𝑖𝑗 = √3𝛽𝑖
∗𝛼𝑗 + √3𝛼𝑖

∗𝛽𝑗 + 2𝛾𝑖
∗𝛽𝑗 + 2𝛽𝑖

∗𝛾𝑗 + √3𝛿𝑖
∗𝛾𝑗 + √3𝛾𝑖

∗𝛿𝑗 

𝜂𝑖𝑗 = √3𝛽𝑖
∗𝛼𝑗 −√3𝛼𝑖

∗𝛽𝑗 + 2𝛾𝑖
∗𝛽𝑗 − 2𝛽𝑖

∗𝛾𝑗 +√3𝛿𝑖
∗𝛾𝑗 − √3𝛾𝑖

∗𝛿𝑗 

𝜁𝑖𝑗 = 3𝛼𝑖
∗𝛼𝑗 + 𝛽𝑖

∗𝛽𝑗 − 𝛾𝑖
∗𝛾𝑗 − 3𝛿𝑖

∗𝛿𝑗 

and i (j) = 1 if 𝑀𝑆
′(𝑀𝑆) = +

3

2
, i (j) = 2, if 𝑀𝑆

′(𝑀𝑆) = +
1

2
, i (j) = 3, if 𝑀𝑆

′(𝑀𝑆) = −
1

2
 and i (j) = 4 if 𝑀𝑆

′(𝑀𝑆) =

−
3

2
, respectively. Note that 
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𝜉𝑖𝑗
∗ = 𝜉𝑗𝑖 

𝜂𝑖𝑗
∗ = −𝜂𝑗𝑖 

𝜁𝑖𝑗
∗ = 𝜁𝑗𝑖 

and thus, 

𝜆𝑖𝑗
∗ = 𝜆𝑗𝑖 

𝜇𝑖𝑗
∗ = 𝜈𝑗𝑖 

     Zeroth-order energies are the energy eigenvalues of the non-perturbed Hamiltonian, 

𝜀+32
= 𝜀1

(0) =
1

2
[−√𝑢0 +√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] 

𝜀+12
= 𝜀2

(0)
=
1

2
[√𝑢0 +√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] 

𝜀−12
= 𝜀3

(0)
=
1

2
[√𝑢0 −√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] 

𝜀−32
= 𝜀4

(0)
=
1

2
[−√𝑢0 −√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] 

     Since the energies correspond to the same MS-dominant state, for example, |𝜓+32
, +7

2
⟩ and |𝜓+32

, +5
2
⟩ 

are degenerate ( 𝜀+3
2
 ) and the matrix element of the expanded hyperfine structure Hamiltonian 

⟨𝜓+32
, +7

2
|𝐻hfs|𝜓+32

, +5
2
⟩  is not zero, the first-order energies must be obtained by using the degenerate 

perturbation theory. The sub-matrixes to be diagonalized are |𝜓𝑀𝑆 , 𝑀𝐼⟩⟨𝜓𝑀𝑆 , 𝑀𝐼|𝐻hfs|𝜓𝑀𝑆 , 𝑀𝐼
′⟩⟨𝜓𝑀𝑆 , 𝑀𝐼

′| 

(𝑀𝑆 = ±
3

2
 and ±1

2
, 𝑀𝐼 ,𝑀𝐼

′ = ±
7

2
,±5

2
,±3

2
 and ±1

2
). Therefore, the first-order energies can be represented as 

𝜀𝑀𝑆 ,𝑀𝐼
(1) = sgn(𝑀𝑆)2𝑀𝐼√|𝜆𝑖𝑖|2 + 𝜇𝑖𝑖𝜈𝑖𝑖 

Where i = 1 if 𝑀𝑆 = +
3

2
, i = 2 if 𝑀𝑆 = +

1

2
, i = 3 if 𝑀𝑆 = −

1

2
 and i = 4 if 𝑀𝑆 = −

3

2
. The function sgn(x) is the 

sign function defined by 

sgn(𝑥) = {
1, 𝑥 > 0
0, 𝑥 = 0
−1, 𝑥 < 0

 

     The second-order energies are as follows: 
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𝜀
+32,+

7
2

(2)
=
|⟨𝜓+32

, +7
2
|𝐻hfs|𝜓+12

, +7
2
⟩|
2

𝜀+32
− 𝜀+12

+
|⟨𝜓+32

, +7
2
|𝐻hfs|𝜓+12

, +5
2
⟩|
2

𝜀+32
− 𝜀+12

+
|⟨𝜓+32

, +7
2
|𝐻hfs|𝜓−12

, +7
2
⟩|
2

𝜀+32
− 𝜀−12

+
|⟨𝜓+32

, +7
2
|𝐻hfs|𝜓−12

, +5
2
⟩|
2

𝜀+32
− 𝜀−12

+
|⟨𝜓+32

, +7
2
|𝐻hfs|𝜓−32

, +7
2
⟩|
2

𝜀+32
− 𝜀−32

+
|⟨𝜓+32

, +7
2
|𝐻hfs|𝜓−32

, +5
2
⟩|
2

𝜀+32
− 𝜀−32

=
49𝜆12𝜆21 + 7𝜇12𝜈21

𝜀1
(0) − 𝜀2

(0)
+
49𝜆13𝜆31 + 7𝜇13𝜈31

𝜀1
(0) − 𝜀3

(0)
+
49𝜆14𝜆41 + 7𝜇14𝜈41

𝜀1
(0) − 𝜀4

(0)
 

 

𝜀
+32,+

5
2

(2)
=
|⟨𝜓+32

, +5
2
|𝐻hfs|𝜓+12

, +7
2
⟩|
2

𝜀+32
− 𝜀+12

+
|⟨𝜓+32

, +5
2
|𝐻hfs|𝜓+12

, +5
2
⟩|
2

𝜀+32
− 𝜀+12

+
|⟨𝜓+32

, +5
2
|𝐻hfs|𝜓+12

, +3
2
⟩|
2

𝜀+32
− 𝜀+12

+
|⟨𝜓+32

, +5
2
|𝐻hfs|𝜓−12

, +7
2
⟩|
2

𝜀+32
− 𝜀−12

+
|⟨𝜓+32

, +5
2
|𝐻hfs|𝜓−12

, +5
2
⟩|
2

𝜀+32
− 𝜀−12

+
|⟨𝜓+32

, +5
2
|𝐻hfs|𝜓−12

, +3
2
⟩|
2

𝜀+32
− 𝜀−12

+
|⟨𝜓+32

, +5
2
|𝐻hfs|𝜓−32

, +7
2
⟩|
2

𝜀+32
− 𝜀−32

+
|⟨𝜓+32

, +5
2
|𝐻hfs|𝜓−32

, +5
2
⟩|
2

𝜀+32
− 𝜀−32

+
|⟨𝜓+32

, +5
2
|𝐻hfs|𝜓−32

, +3
2
⟩|
2

𝜀+32
− 𝜀−32

=
25𝜆12𝜆21 + 19𝜇12𝜈21

𝜀1
(0) − 𝜀2

(0)
+
25𝜆13𝜆31 + 19𝜇13𝜈31

𝜀1
(0) − 𝜀3

(0)
+
25𝜆14𝜆41 + 19𝜇14𝜈41

𝜀1
(0) − 𝜀4

(0)
 

 

𝜀
+32,+

3
2

(2) =
|⟨𝜓+32

, +3
2
|𝐻hfs|𝜓+12

, +5
2
⟩|
2

𝜀+32
− 𝜀+12

+
|⟨𝜓+32

, +3
2
|𝐻hfs|𝜓+12

, +3
2
⟩|
2

𝜀+32
− 𝜀+12

+
|⟨𝜓+32

, +3
2
|𝐻hfs|𝜓+12

, +1
2
⟩|
2

𝜀+32
− 𝜀+12

+
|⟨𝜓+32

, +3
2
|𝐻hfs|𝜓−12

, +5
2
⟩|
2

𝜀+32
− 𝜀−12

+
|⟨𝜓+32

, +3
2
|𝐻hfs|𝜓−12

, +3
2
⟩|
2

𝜀+32
− 𝜀−12

+
|⟨𝜓+32

, +3
2
|𝐻hfs|𝜓−12

, +1
2
⟩|
2

𝜀+32
− 𝜀−12

+
|⟨𝜓+32

, +3
2
|𝐻hfs|𝜓−32

, +5
2
⟩|
2

𝜀+32
− 𝜀−32

+
|⟨𝜓+32

, +3
2
|𝐻hfs|𝜓−32

, +3
2
⟩|
2

𝜀+32
− 𝜀−32

+
|⟨𝜓+32

, +3
2
|𝐻hfs|𝜓−32

, +1
2
⟩|
2

𝜀+32
− 𝜀−32
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, +5
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, +5
2
|𝐻hfs|𝜓+12

, +3
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, +5
2
|𝐻hfs|𝜓−12

, +7
2
⟩|
2

𝜀−32
− 𝜀−12

+
|⟨𝜓−32

, +5
2
|𝐻hfs|𝜓−12

, +5
2
⟩|
2

𝜀−32
− 𝜀−12

+
|⟨𝜓−32

, +5
2
|𝐻hfs|𝜓−12

, +3
2
⟩|
2

𝜀−32
− 𝜀−12

=
25𝜆41𝜆14 + 19𝜇41𝜈14

𝜀4
(0) − 𝜀1

(0)
+
25𝜆42𝜆24 + 19𝜇42𝜈24

𝜀4
(0) − 𝜀2

(0)
+
25𝜆43𝜆34 + 19𝜇43𝜈34

𝜀4
(0) − 𝜀3

(0)
 

 

𝜀
−32,+

3
2

(2) =
|⟨𝜓−32

, +3
2
|𝐻hfs|𝜓+32

, +5
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, +3
2
|𝐻hfs|𝜓+32

, +3
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, +3
2
|𝐻hfs|𝜓+32

, +1
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, +3
2
|𝐻hfs|𝜓+12

, +5
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, +3
2
|𝐻hfs|𝜓+12

, +3
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, +3
2
|𝐻hfs|𝜓+12

, +1
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, +3
2
|𝐻hfs|𝜓−12

, +5
2
⟩|
2

𝜀−32
− 𝜀−12

+
|⟨𝜓−32

, +3
2
|𝐻hfs|𝜓−12

, +3
2
⟩|
2

𝜀−32
− 𝜀−12

+
|⟨𝜓−32

, +3
2
|𝐻hfs|𝜓−12

, +1
2
⟩|
2

𝜀−32
− 𝜀−12

=
9𝜆41𝜆14 + 27𝜇41𝜈14

𝜀4
(0) − 𝜀1

(0)
+
9𝜆42𝜆24 + 27𝜇42𝜈24

𝜀4
(0) − 𝜀2

(0)
+
9𝜆43𝜆34 + 27𝜇43𝜈34

𝜀4
(0) − 𝜀3

(0)
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𝜀
−32,+

1
2

(2)
=
|⟨𝜓−32

, +1
2
|𝐻hfs|𝜓+32

, +3
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, +1
2
|𝐻hfs|𝜓+32

, +1
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, +1
2
|𝐻hfs|𝜓+32

, −1
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, +1
2
|𝐻hfs|𝜓+12

, +3
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, +1
2
|𝐻hfs|𝜓+12

, +1
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, +1
2
|𝐻hfs|𝜓+12

, −1
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, +1
2
|𝐻hfs|𝜓−12

, +3
2
⟩|
2

𝜀−32
− 𝜀−12

+
|⟨𝜓−32

, +1
2
|𝐻hfs|𝜓−12

, +1
2
⟩|
2

𝜀−32
− 𝜀−12

+
|⟨𝜓−32

, +1
2
|𝐻hfs|𝜓−12

, −1
2
⟩|
2

𝜀−32
− 𝜀−12

=
𝜆41𝜆14 + 31𝜇41𝜈14

𝜀4
(0) − 𝜀1

(0)
+
𝜆42𝜆24 + 31𝜇42𝜈24

𝜀4
(0) − 𝜀2

(0)
+
𝜆43𝜆34 + 31𝜇43𝜈34

𝜀4
(0) − 𝜀3

(0)
 

 

𝜀
−32,−

1
2

(2) =
|⟨𝜓−32

, −1
2
|𝐻hfs|𝜓+32

, +1
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, −1
2
|𝐻hfs|𝜓+32

, −1
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, −1
2
|𝐻hfs|𝜓+32

, −3
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, −1
2
|𝐻hfs|𝜓+12

, +1
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, −1
2
|𝐻hfs|𝜓+12

, −1
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, −1
2
|𝐻hfs|𝜓+12

, −3
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, −1
2
|𝐻hfs|𝜓−12

, +1
2
⟩|
2

𝜀−32
− 𝜀−12

+
|⟨𝜓−32

, −1
2
|𝐻hfs|𝜓−12

, −1
2
⟩|
2

𝜀−32
− 𝜀−12

+
|⟨𝜓−32

, −1
2
|𝐻hfs|𝜓−12

, −3
2
⟩|
2

𝜀−32
− 𝜀−12

=
𝜆41𝜆14 + 31𝜇41𝜈14

𝜀4
(0) − 𝜀1

(0)
+
𝜆42𝜆24 + 31𝜇42𝜈24

𝜀4
(0) − 𝜀2

(0)
+
𝜆43𝜆34 + 31𝜇43𝜈34

𝜀4
(0) − 𝜀3

(0)
 

 

𝜀
−32,−

3
2

(2) =
|⟨𝜓−32

, −3
2
|𝐻hfs|𝜓+32

, −1
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, −3
2
|𝐻hfs|𝜓+32

, −3
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, −3
2
|𝐻hfs|𝜓+32

, −5
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, −3
2
|𝐻hfs|𝜓+12

, −1
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, −3
2
|𝐻hfs|𝜓+12

, −3
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, −3
2
|𝐻hfs|𝜓+12

, −5
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, −3
2
|𝐻hfs|𝜓−12

, −1
2
⟩|
2

𝜀−32
− 𝜀−12

+
|⟨𝜓−32

, −3
2
|𝐻hfs|𝜓−12

, −3
2
⟩|
2

𝜀−32
− 𝜀−12

+
|⟨𝜓−32

, −3
2
|𝐻hfs|𝜓−12

, −5
2
⟩|
2

𝜀−32
− 𝜀−12

=
9𝜆41𝜆14 + 27𝜇41𝜈14

𝜀4
(0) − 𝜀1

(0)
+
9𝜆42𝜆24 + 27𝜇42𝜈24

𝜀4
(0) − 𝜀2

(0)
+
9𝜆43𝜆34 + 27𝜇43𝜈34

𝜀4
(0) − 𝜀3

(0)
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𝜀
−32,−

5
2

(2)
=
|⟨𝜓−32

, −5
2
|𝐻hfs|𝜓+32

, −3
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, −5
2
|𝐻hfs|𝜓+32

, −5
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, −5
2
|𝐻hfs|𝜓+32

, −7
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, −5
2
|𝐻hfs|𝜓+12

, −3
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, −5
2
|𝐻hfs|𝜓+12

, −5
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, −5
2
|𝐻hfs|𝜓+12

, −7
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, −5
2
|𝐻hfs|𝜓−12

, −3
2
⟩|
2

𝜀−32
− 𝜀−12

+
|⟨𝜓−32

, −5
2
|𝐻hfs|𝜓−12

, −5
2
⟩|
2

𝜀−32
− 𝜀−12

+
|⟨𝜓−32

, −5
2
|𝐻hfs|𝜓−12

, −7
2
⟩|
2

𝜀−32
− 𝜀−12

=
25𝜆41𝜆14 + 19𝜇41𝜈14

𝜀4
(0) − 𝜀1

(0)
+
25𝜆42𝜆24 + 19𝜇42𝜈24

𝜀4
(0) − 𝜀2

(0)
+
25𝜆43𝜆34 + 19𝜇43𝜈34

𝜀4
(0) − 𝜀3

(0)
 

 

𝜀
−32,−

7
2

(2) =
|⟨𝜓−32

, −7
2
|𝐻hfs|𝜓+32

, −5
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, −7
2
|𝐻hfs|𝜓+32

, −7
2
⟩|
2

𝜀−32
− 𝜀+32

+
|⟨𝜓−32

, −7
2
|𝐻hfs|𝜓+12

, −5
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, −7
2
|𝐻hfs|𝜓+12

, −7
2
⟩|
2

𝜀−32
− 𝜀+12

+
|⟨𝜓−32

, −7
2
|𝐻hfs|𝜓−12

, −5
2
⟩|
2

𝜀−32
− 𝜀−12

+
|⟨𝜓−32

, −7
2
|𝐻hfs|𝜓−12

, −7
2
⟩|
2

𝜀−32
− 𝜀−12

=
49𝜆41𝜆14 + 7𝜇41𝜈14

𝜀4
(0) − 𝜀1

(0)
+
49𝜆42𝜆24 + 7𝜇42𝜈24

𝜀4
(0) − 𝜀2

(0)
+
49𝜆43𝜆34 + 7𝜇43𝜈34

𝜀4
(0) − 𝜀3

(0)
 

The perturbed energies to the second order are as follows. 

𝐸+32,+
7
2
=
1

2
[−√𝑢0 +√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] + 7√|𝜆11|2 + 𝜇11𝜈11 +

49𝜆12𝜆21 + 7𝜇12𝜈21

𝜀1
(0) − 𝜀2

(0)

+
49𝜆13𝜆31 + 7𝜇13𝜈31

𝜀1
(0) − 𝜀3

(0)
+
49𝜆14𝜆41 + 7𝜇14𝜈41

𝜀1
(0) − 𝜀4

(0)
 

𝐸+32,+
5
2
=
1

2
[−√𝑢0 +√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] + 5√|𝜆11|2 + 𝜇11𝜈11 +

25𝜆12𝜆21 + 19𝜇12𝜈21

𝜀1
(0) − 𝜀2

(0)

+
25𝜆13𝜆31 + 19𝜇13𝜈31

𝜀1
(0) − 𝜀3

(0)
+
25𝜆14𝜆41 + 19𝜇14𝜈41

𝜀1
(0) − 𝜀4

(0)
 

𝐸+32,+
3
2
=
1

2
[−√𝑢0 +√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] + 3√|𝜆11|2 + 𝜇11𝜈11 +

9𝜆12𝜆21 + 27𝜇12𝜈21

𝜀1
(0) − 𝜀2

(0)

+
9𝜆13𝜆31 + 27𝜇13𝜈31

𝜀1
(0) − 𝜀3

(0)
+
9𝜆14𝜆41 + 27𝜇14𝜈41

𝜀1
(0) − 𝜀4

(0)
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𝐸+32,+
1
2
=
1

2
[−√𝑢0 +√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] + √|𝜆11|

2 + 𝜇11𝜈11 +
𝜆12𝜆21 + 31𝜇12𝜈21

𝜀1
(0)
− 𝜀2

(0)
+
𝜆13𝜆31 + 31𝜇13𝜈31

𝜀1
(0)
− 𝜀3

(0)

+
𝜆14𝜆41 + 31𝜇14𝜈41

𝜀1
(0) − 𝜀4

(0)
 

𝐸+32,−
1
2
=
1

2
[−√𝑢0 +√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] − √|𝜆11|

2 + 𝜇11𝜈11 +
𝜆12𝜆21 + 31𝜇12𝜈21

𝜀1
(0)
− 𝜀2

(0)
+
𝜆13𝜆31 + 31𝜇13𝜈31

𝜀1
(0)
− 𝜀3

(0)

+
𝜆14𝜆41 + 31𝜇14𝜈41

𝜀1
(0) − 𝜀4

(0)
 

𝐸+32,−
3
2
=
1

2
[−√𝑢0 +√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] − 3√|𝜆11|2 + 𝜇11𝜈11 +

9𝜆12𝜆21 + 27𝜇12𝜈21

𝜀1
(0) − 𝜀2

(0)

+
9𝜆13𝜆31 + 27𝜇13𝜈31

𝜀1
(0)
− 𝜀3

(0)
+
9𝜆14𝜆41 + 27𝜇14𝜈41

𝜀1
(0)
− 𝜀4

(0)
 

𝐸+32,−
5
2
=
1

2
[−√𝑢0 +√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] − 5√|𝜆11|2 + 𝜇11𝜈11 +

25𝜆12𝜆21 + 19𝜇12𝜈21

𝜀1
(0) − 𝜀2

(0)

+
25𝜆13𝜆31 + 19𝜇13𝜈31

𝜀1
(0) − 𝜀3

(0)
+
25𝜆14𝜆41 + 19𝜇14𝜈41

𝜀1
(0) − 𝜀4

(0)
 

𝐸+3
2
,−7
2
=
1

2
[−√𝑢0 +√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] − 7√|𝜆11|2 + 𝜇11𝜈11 +

49𝜆12𝜆21 + 7𝜇12𝜈21

𝜀1
(0) − 𝜀2

(0)

+
49𝜆13𝜆31 + 7𝜇13𝜈31

𝜀1
(0)
− 𝜀3

(0)
+
49𝜆14𝜆41 + 7𝜇14𝜈41

𝜀1
(0)
− 𝜀4

(0)
 

𝐸+12,+
7
2
=
1

2
[√𝑢0 +√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] + 7√|𝜆22|2 + 𝜇22𝜈22 +

49𝜆21𝜆12 + 7𝜇21𝜈12

𝜀2
(0) − 𝜀1

(0)

+
49𝜆23𝜆32 + 7𝜇23𝜈32

𝜀2
(0) − 𝜀3

(0)
+
49𝜆24𝜆42 + 7𝜇24𝜈42

𝜀2
(0) − 𝜀4

(0)
 

𝐸+12,+
5
2
=
1

2
[√𝑢0 +√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] + 5√|𝜆22|2 + 𝜇22𝜈22 +

25𝜆21𝜆12 + 19𝜇21𝜈12

𝜀2
(0) − 𝜀1

(0)

+
25𝜆23𝜆32 + 19𝜇23𝜈32

𝜀2
(0) − 𝜀3

(0)
+
25𝜆24𝜆42 + 19𝜇24𝜈42

𝜀2
(0) − 𝜀4

(0)
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𝐸+12,+
3
2
=
1

2
[√𝑢0 +√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] + 3√|𝜆22|

2 + 𝜇22𝜈22 +
9𝜆21𝜆12 + 27𝜇21𝜈12

𝜀2
(0)
− 𝜀1

(0)

+
9𝜆23𝜆32 + 27𝜇23𝜈32

𝜀2
(0) − 𝜀3

(0)
+
9𝜆24𝜆42 + 27𝜇24𝜈42

𝜀2
(0) − 𝜀4

(0)
 

𝐸+12,+
1
2
=
1

2
[√𝑢0 +√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] + √|𝜆22|

2 + 𝜇22𝜈22 +
𝜆21𝜆12 + 31𝜇21𝜈12

𝜀2
(0)
− 𝜀1

(0)
+
𝜆23𝜆32 + 31𝜇23𝜈32

𝜀2
(0)
− 𝜀3

(0)

+
𝜆24𝜆42 + 31𝜇24𝜈42

𝜀2
(0) − 𝜀4

(0)
 

𝐸+12,−
1
2
=
1

2
[√𝑢0 +√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] − √|𝜆22|2 + 𝜇22𝜈22 +

𝜆21𝜆12 + 31𝜇21𝜈12

𝜀2
(0) − 𝜀1

(0)
+
𝜆23𝜆32 + 31𝜇23𝜈32

𝜀2
(0) − 𝜀3

(0)

+
𝜆24𝜆42 + 31𝜇24𝜈42

𝜀2
(0)
− 𝜀4

(0)
 

𝐸+12,−
3
2
=
1

2
[√𝑢0 +√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] − 3√|𝜆22|2 + 𝜇22𝜈22 +

9𝜆21𝜆12 + 27𝜇21𝜈12

𝜀2
(0) − 𝜀1

(0)

+
9𝜆23𝜆32 + 27𝜇23𝜈32

𝜀2
(0) − 𝜀3

(0)
+
9𝜆24𝜆42 + 27𝜇24𝜈42

𝜀2
(0) − 𝜀4

(0)
 

𝐸+1
2
,−5
2
=
1

2
[√𝑢0 +√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] − 5√|𝜆22|2 + 𝜇22𝜈22 +

25𝜆21𝜆12 + 19𝜇21𝜈12

𝜀2
(0) − 𝜀1

(0)

+
25𝜆23𝜆32 + 19𝜇23𝜈32

𝜀2
(0)
− 𝜀3

(0)
+
25𝜆24𝜆42 + 19𝜇24𝜈42

𝜀2
(0)
− 𝜀4

(0)
 

𝐸+12,−
7
2
=
1

2
[√𝑢0 +√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] − 7√|𝜆22|2 + 𝜇22𝜈22 +

49𝜆21𝜆12 + 7𝜇21𝜈12

𝜀2
(0) − 𝜀1

(0)

+
49𝜆23𝜆32 + 7𝜇23𝜈32

𝜀2
(0) − 𝜀3

(0)
+
49𝜆24𝜆42 + 7𝜇24𝜈42

𝜀2
(0) − 𝜀4

(0)
 

𝐸−12,+
7
2
=
1

2
[√𝑢0 −√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] − 7√|𝜆33|2 + 𝜇33𝜈33 +

49𝜆31𝜆13 + 7𝜇31𝜈13

𝜀3
(0) − 𝜀1

(0)

+
49𝜆32𝜆23 + 7𝜇32𝜈23

𝜀3
(0) − 𝜀2

(0)
+
49𝜆34𝜆43 + 7𝜇34𝜈43

𝜀3
(0) − 𝜀4

(0)
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𝐸−12,+
5
2
=
1

2
[√𝑢0 −√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] − 5√|𝜆33|

2 + 𝜇33𝜈33 +
25𝜆31𝜆13 + 19𝜇31𝜈13

𝜀3
(0)
− 𝜀1

(0)

+
25𝜆32𝜆23 + 19𝜇32𝜈23

𝜀3
(0) − 𝜀2

(0)
+
25𝜆34𝜆43 + 19𝜇34𝜈43

𝜀3
(0) − 𝜀4

(0)
 

𝐸−12,+
3
2
=
1

2
[√𝑢0 −√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] − 3√|𝜆33|

2 + 𝜇33𝜈33 +
9𝜆31𝜆13 + 27𝜇31𝜈13

𝜀3
(0)
− 𝜀1

(0)

+
9𝜆32𝜆23 + 27𝜇32𝜈23

𝜀3
(0) − 𝜀2

(0)
+
9𝜆34𝜆43 + 27𝜇34𝜈43

𝜀3
(0) − 𝜀4

(0)
 

𝐸−12,+
1
2
=
1

2
[√𝑢0 −√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] − √|𝜆33|2 + 𝜇33𝜈33 +

𝜆31𝜆13 + 31𝜇31𝜈13

𝜀3
(0) − 𝜀1

(0)
+
𝜆32𝜆23 + 31𝜇32𝜈23

𝜀3
(0) − 𝜀2

(0)

+
𝜆34𝜆43 + 31𝜇34𝜈43

𝜀3
(0)
− 𝜀4

(0)
 

𝐸−12,−
1
2
=
1

2
[√𝑢0 −√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] + √|𝜆33|2 + 𝜇33𝜈33 +

𝜆31𝜆13 + 31𝜇31𝜈13

𝜀3
(0) − 𝜀1

(0)
+
𝜆32𝜆23 + 31𝜇32𝜈23

𝜀3
(0) − 𝜀2

(0)

+
𝜆34𝜆43 + 31𝜇34𝜈43

𝜀3
(0) − 𝜀4

(0)
 

𝐸−1
2
,−3
2
=
1

2
[√𝑢0 −√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] + 3√|𝜆33|2 + 𝜇33𝜈33 +

9𝜆31𝜆13 + 27𝜇31𝜈13

𝜀3
(0) − 𝜀1

(0)

+
9𝜆32𝜆23 + 27𝜇32𝜈23

𝜀3
(0)
− 𝜀2

(0)
+
9𝜆34𝜆43 + 27𝜇34𝜈43

𝜀3
(0)
− 𝜀4

(0)
 

𝐸−12,−
5
2
=
1

2
[√𝑢0 −√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] + 5√|𝜆33|2 + 𝜇33𝜈33 +

25𝜆31𝜆13 + 19𝜇31𝜈13

𝜀3
(0) − 𝜀1

(0)

+
25𝜆32𝜆23 + 19𝜇32𝜈23

𝜀3
(0) − 𝜀2

(0)
+
25𝜆34𝜆43 + 19𝜇34𝜈43

𝜀3
(0) − 𝜀4

(0)
 

𝐸−12,−
7
2
=
1

2
[√𝑢0 −√−2𝑝 − 𝑢0 −

2𝑞

√𝑢0
] + 7√|𝜆33|2 + 𝜇33𝜈33 +

49𝜆31𝜆13 + 7𝜇31𝜈13

𝜀3
(0) − 𝜀1

(0)

+
49𝜆32𝜆23 + 7𝜇32𝜈23

𝜀3
(0) − 𝜀2

(0)
+
49𝜆34𝜆43 + 7𝜇34𝜈43

𝜀3
(0) − 𝜀4

(0)
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𝐸−32,+
7
2
=
1

2
[−√𝑢0 −√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] − 7√|𝜆44|

2 + 𝜇44𝜈44 +
49𝜆41𝜆14 + 7𝜇41𝜈14

𝜀4
(0)
− 𝜀1

(0)

+
49𝜆42𝜆24 + 7𝜇42𝜈24

𝜀4
(0) − 𝜀2

(0)
+
49𝜆43𝜆34 + 7𝜇43𝜈34

𝜀4
(0) − 𝜀3

(0)
 

𝐸−32,+
5
2
=
1

2
[−√𝑢0 −√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] − 5√|𝜆44|

2 + 𝜇44𝜈44 +
25𝜆41𝜆14 + 19𝜇41𝜈14

𝜀4
(0)
− 𝜀1

(0)

+
25𝜆42𝜆24 + 19𝜇42𝜈24

𝜀4
(0) − 𝜀2

(0)
+
25𝜆43𝜆34 + 19𝜇43𝜈34

𝜀4
(0) − 𝜀3

(0)
 

𝐸−32,+
3
2
=
1

2
[−√𝑢0 −√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] − 3√|𝜆44|2 + 𝜇44𝜈44 +

9𝜆41𝜆14 + 27𝜇41𝜈14

𝜀4
(0) − 𝜀1

(0)

+
9𝜆42𝜆24 + 27𝜇42𝜈24

𝜀4
(0)
− 𝜀2

(0)
+
9𝜆43𝜆34 + 27𝜇43𝜈34

𝜀4
(0)
− 𝜀3

(0)
 

𝐸−32,+
1
2
=
1

2
[−√𝑢0 −√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] − √|𝜆44|2 + 𝜇44𝜈44 +

𝜆41𝜆14 + 31𝜇41𝜈14

𝜀4
(0) − 𝜀1

(0)

+
𝜆42𝜆24 + 31𝜇42𝜈24

𝜀4
(0) − 𝜀2

(0)
+
𝜆43𝜆34 + 31𝜇43𝜈34

𝜀4
(0) − 𝜀3

(0)
 

𝐸−3
2
,−1
2
=
1

2
[−√𝑢0 −√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] + √|𝜆44|2 + 𝜇44𝜈44 +

𝜆41𝜆14 + 31𝜇41𝜈14

𝜀4
(0) − 𝜀1

(0)

+
𝜆42𝜆24 + 31𝜇42𝜈24

𝜀4
(0)
− 𝜀2

(0)
+
𝜆43𝜆34 + 31𝜇43𝜈34

𝜀4
(0)
− 𝜀3

(0)
 

𝐸−32,−
3
2
=
1

2
[−√𝑢0 −√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] + 3√|𝜆44|2 + 𝜇44𝜈44 +

9𝜆41𝜆14 + 27𝜇41𝜈14

𝜀4
(0) − 𝜀1

(0)

+
9𝜆42𝜆24 + 27𝜇42𝜈24

𝜀4
(0) − 𝜀2

(0)
+
9𝜆43𝜆34 + 27𝜇43𝜈34

𝜀4
(0) − 𝜀3

(0)
 

𝐸−32,−
5
2
=
1

2
[−√𝑢0 −√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] + 5√|𝜆44|2 + 𝜇44𝜈44 +

25𝜆41𝜆14 + 19𝜇41𝜈14

𝜀4
(0) − 𝜀1

(0)

+
25𝜆42𝜆24 + 19𝜇42𝜈24

𝜀4
(0) − 𝜀2

(0)
+
25𝜆43𝜆34 + 19𝜇43𝜈34

𝜀4
(0) − 𝜀3

(0)
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𝐸−32,−
7
2
=
1

2
[−√𝑢0 −√−2𝑝 − 𝑢0 +

2𝑞

√𝑢0
] + 7√|𝜆44|

2 + 𝜇44𝜈44 +
49𝜆41𝜆14 + 7𝜇41𝜈14

𝜀4
(0)
− 𝜀1

(0)

+
49𝜆42𝜆24 + 7𝜇42𝜈24

𝜀4
(0) − 𝜀2

(0)
+
49𝜆43𝜆34 + 7𝜇43𝜈34

𝜀4
(0) − 𝜀3

(0)
 

     It is worth noting that when at least two of the ZFS, g- and A-tensors are collinear and/or the magnetic 

field is aligned to the principal axis the energy representations are much simpler.  
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Summary and Chart of Procedure for ESR Analyses of High-Spin Metallocomplexes 

Step 0: Reproduce the experimental ESR spectra by using the fictitious spin-1/2 Hamiltonian (if needed), 

noting that not all the principal values of the Aeff-tensor may be determined. 

Step 1: Determine the principal values of the geff- and Aeff-tensors with relative coordination between the 

tensors taken from the quantum chemical calculation. 

Step 2: Calculate the principal values of the gtrue-tensor as a function of the E/D value by using the geff/gtrue 

relationships if the ZFS and gtrue-tensors are collinear. 

Step 2’: If the ZFS and gtrue-tensors are non-collinear, evaluate the principal values of the gtrue-tensor by 

solving the exact analytical energies or spectral simulation by using the full spin-Hamiltonian for 

variable E/D values. 

Step 3: Calculate the principal values of the Atrue-tensor by using the Aeff/Atrue relationships.  
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Step 0: Construct the experimental spectra in order to compare with the simulated one on screen.  

 
Chart S1. Flow chart of the procedure for reproducing the experimental ESR spectra by using the fictitious spin-

1/2 Hamiltonian. The background in blue indicates that the fictitious spin-1/2 Hamiltonian is applied. 

  



 S121 

Step 1. Introduce the result obtained by the quantum chemical calculations to the effective magnetic 

tensors (relevant to the fictitious spin-1/2 Hamiltonian approach)  

 

Chart S2. αT, βT, γT (T = g or A) are the Euler’s angle with respect to the molecular principal axis coordination 

system and UT(θT) is the unitary matrix transforming the geff or Aeff-tensor. 

 

Step 2: Transform the principal values of the geff-tensor to those of the gtrue-tensor in case of the 

collinearity between the ZFS and g-tensors.  

 

Chart S3. 𝑓𝑗
±𝑀𝑆 indicates a function of the E/D value used for transforming the 𝑔eff values to the 𝑔true 

values. For example, for S = 3/2 and for the magnetic resonance transition between the states |MS = ±3/2>-

dominant transition, 𝑓𝑥
±
3
2(𝜆) = 1 −

1−3𝜆

√1+3𝜆2
, 𝑓𝑦

±
3
2(𝜆) = 1 −

1+3𝜆

√1+3𝜆2
 and 𝑓𝑧

±
3
2(𝜆) = 1 +

2

√1+3𝜆2
 with λ = E/D. The 

background in orange indicates that the true spin Hamiltonian is applied. 
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Step 2’: Transform the principal values of the geff-tensor to those of the gtrue-tensor in case of the non-

collinearity between the ZFS and g-tensors.  

 

Chart S4. Flow chart of the procedure for obtaining the set of the E/D value and the principal value of the g-

tensor in the case of the non-collinearity between the ZFS and g-tensors. 
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Step 3: Estimate all the sets of the magnetic parameters and evaluate the accuracy of the principal A-

values 

 

Chart S5. Flow chart of the procedure for obtaining the full set of the magnetic parameters. 𝐸
±12,𝑀𝐼

eff  and 𝐸𝑀𝑆,𝑀𝐼  

denote the analytical energy from the fictitious spin-1/2 and the full spin-Hamiltonian, respectively. In the 
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parameter of the energy, B denotes the resonance field.  

 

     There are some remarks relevant to the procedure described above. 

1. As mentioned before, not all the principal values of the A-tensor may be determined due to the line-

broadening appearing in the experimental spectra. Indeed, only the AZ-value was determined in the 

complexes under study. 

2. Generally, solving the Aeff-values is easier than for the Atrue-values (step 3). Fortunately, the E/D 

dependence of the Atrue-values can be obtained for the complexes under study. 

3. The possible range of the E/D value can be limited because of the principal values of the g-tensor and/or 

the off-principal-axis extra lines frequently observed in the experimental spectra from high spin systems 

having sizable ZFS tensors. 

4. The D-value can be evaluated from the intensities of small transitions between the other spin substates 

except the large canonical peaks. For example, both the |MS = ±3/2>- and |MS = ±1/2>-dominant 

transitions were observed in the spectra under study, enabling us to determine the D-values.  
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Applications of the Perturbation Theory to ESR Analyses of Five-Coordinated Cobalt 

Complexes in Their Quartet Spin State 

1. Complex 1 

a) Perturbed energies for the case of collinear ZFS, g- and A-tensors 

Here, we derive perturbed energies, which arise only from a hyperfine A-tensor (I = 7/2), in order to estimate 

the accuracy of the hyperfine parameters in a quartet spin system (S = 3/2) having a sizeable ZFS tensor such 

as five-coordinated cobalt complexes. Thus, first we solve the problem of the eigenvalue and eigenfunction 

of the spin Hamiltonian composed of only electron spins in the presence of an external static magnetic field. 

The approach here for the spin quartet state is not a simple Zeeman perturbation one. The ZFS and electron 

Zeeman interactions are taken as the non-perturbed term H0 and the hyperfine splitting interaction is taken 

as the perturbed term H’. The non-perturbed and perturbed terms are represented as follows. 

𝐻0 = 𝑺 ∙ 𝐃 ∙ 𝑺 + 𝛽𝑺 ∙ 𝐠 ∙ 𝑩 

𝐻′ = 𝑺 ∙ 𝐀 ∙ 𝑰 

For simplicity, the ZFS, g- and A-tensors are assumed to be collinear. The non-perturbed Hamiltonian H0 can 

be rewritten when the static magnetic field B is applied parallel to the z-axis of the principal axis coordinate 

system of the complex, where the z-axis is the principal z-axis of the ZFS tensor, as follows:  

𝐻0 = 𝐷 [𝑆𝑧
2 −

1

3
𝑆(𝑆 + 1)] + 𝐸(𝑆𝑥

2 − 𝑆𝑦
2) + 𝑔𝑧𝑧𝛽𝐵𝑧𝑆𝑧 

𝐻′ = 𝑆𝑥𝐴𝑥𝑥𝐼𝑥 + 𝑆𝑦𝐴𝑦𝑦𝐼𝑦 + 𝑆𝑧𝐴𝑧𝑧𝐼𝑧  

The matrix representation of H0 on the basis of |MS> is 

𝐻0 =

(

 
 
 
 
 
𝐷 +

3

2
𝑔𝑧𝑧𝛽𝐵 0

0 −𝐷 +
1

2
𝑔𝑧𝑧𝛽𝐵

√3𝐸 0

0 √3𝐸

√3𝐸 0

0 √3𝐸

−𝐷 −
1

2
𝑔𝑧𝑧𝛽𝐵 0

0 𝐷 −
3

2
𝑔𝑧𝑧𝛽𝐵)

 
 
 
 
 

 

This matrix can be divided into two 2 × 2 matrixes H1 and H2 due to the symmetry of the spin functions. 

𝐻1 = (
𝐷 +

3

2
𝑔𝑧𝑧𝛽𝐵 √3𝐸

√3𝐸 −𝐷 −
1

2
𝑔𝑧𝑧𝛽𝐵

) 

𝐻2 = (
−𝐷 +

1

2
𝑔𝑧𝑧𝛽𝐵 √3𝐸

√3𝐸 𝐷 −
3

2
𝑔𝑧𝑧𝛽𝐵

) 

Thus, the exact energy eigenvalues and the spin eigenfunctions are 

𝜀±32
= ±

1

2
𝑔𝑧𝑧𝛽𝐵 −√(𝐷 ± 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 

𝜀±12
= ∓

1

2
𝑔𝑧𝑧𝛽𝐵 +√(𝐷 ∓ 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 
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|𝜓±32
⟩ = cos𝜃± |±

3

2
⟩ + sin 𝜃± |∓

1

2
⟩ 

|𝜓±12
⟩ = cos𝜃∓ |±

1

2
⟩ − sin 𝜃∓ |∓

3

2
⟩ 

where 

tan 2𝜃± =
√3𝐸

𝐷 ± 𝑔𝑧𝑧𝛽𝐵
 

We construct electron-nuclear spin wavefunctions as follows: 

|𝜓±32
(𝑀𝐼)⟩ ≡ |𝜓±32

⟩⨂|𝑀𝐼⟩ = cos 𝜃± |±
3

2
,𝑀𝐼⟩ + sin 𝜃± |∓

1

2
,𝑀𝐼⟩ 

|𝜓±1
2
(𝑀𝐼)⟩ ≡ |𝜓±1

2
⟩⨂|𝑀𝐼⟩ = cos 𝜃∓ |±

1

2
,𝑀𝐼⟩ − sin 𝜃∓ |∓

3

2
,𝑀𝐼⟩ 

The matrix elements of the hyperfine structure Hamiltonian in the basis of |MS, MI> are given in the following: 

⟨𝑀𝑆
′ , 𝑀𝐼

′|𝐻hfs|𝑀𝑆, 𝑀𝐼⟩ =

{
 
 

 
 

𝛿𝑀𝑆𝑀𝑆′𝛿𝑀𝐼𝑀𝐼
′𝑀𝑆𝑀𝐼𝐴𝑧𝑧

1

16
𝛿𝑀𝑆𝑀𝑆′∓1𝛿𝑀𝐼𝑀𝐼′∓1√15 − 4𝑀𝑆𝑀𝑆

′√63 − 4𝑀𝐼𝑀𝐼
′(𝐴𝑥𝑥 − 𝐴𝑦𝑦)

1

16
𝛿𝑀𝑆𝑀𝑆′∓1𝛿𝑀𝐼𝑀𝐼′±1√15 − 4𝑀𝑆𝑀𝑆

′√63 − 4𝑀𝐼𝑀𝐼
′(𝐴𝑥𝑥 + 𝐴𝑦𝑦)

 

where 

𝛿𝑖𝑗 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

 

The upper and lower signs should be chosen in the double sign. The matrix representation of the hyperfine 

structure Hamiltonian expanded by the spin wavefunctions are as follows: 

⟨𝜓
𝑀𝑆=±

3
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=±

3
2

(𝑀𝐼)⟩ = ±
𝑀𝐼
2
𝛿𝑀𝐼𝑀𝐼′𝐴𝑧𝑧(2 cos2𝜃± + 1) 

⟨𝜓
𝑀𝑆=±

1
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=±

1
2

(𝑀𝐼)⟩ = ±
𝑀𝐼
2
𝛿𝑀𝐼𝑀𝐼′𝐴𝑧𝑧(2 cos2𝜃∓ − 1) 

⟨𝜓
𝑀𝑆=+

1
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=+

3
2

(𝑀𝐼)⟩ =
1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′±1(𝐶+𝑠𝑐𝐴𝑥𝑥 ∓ 𝐶−𝑠𝑐𝐴𝑦𝑦) 

⟨𝜓
𝑀𝑆=−

1
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=+

3
2

(𝑀𝐼)⟩ = −𝑀𝐼𝛿𝑀𝐼𝑀𝐼′𝐴𝑧𝑧 sin 2𝜃+ 

⟨𝜓
𝑀𝑆=−

3
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=+

3
2

(𝑀𝐼)⟩ =
1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′±1(𝑆+𝑠𝑠𝐴𝑥𝑥 ∓ 𝑆−𝑠𝑠𝐴𝑦𝑦) 

⟨𝜓
𝑀𝑆=+

3
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=+

1
2

(𝑀𝐼)⟩ = ⟨𝜓𝑀𝑆=+
1
2

(𝑀𝐼)|𝐻hfs|𝜓𝑀𝑆=+
3
2

(𝑀𝐼
′)⟩ 

⟨𝜓
𝑀𝑆=−

1
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=+

1
2

(𝑀𝐼)⟩ =
1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′±1(𝑆+𝑐𝑐𝐴𝑥𝑥 ± 𝑆−𝑐𝑐𝐴𝑦𝑦) 

⟨𝜓
𝑀𝑆=−

3
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=+

1
2

(𝑀𝐼)⟩ = 𝑀𝐼𝛿𝑀𝐼𝑀𝐼′𝐴𝑧𝑧 sin 2𝜃− 
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⟨𝜓
𝑀𝑆=+

3
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=−

1
2

(𝑀𝐼)⟩ = −𝑀𝐼𝛿𝑀𝐼𝑀𝐼′𝐴𝑧𝑧 sin 2𝜃+ 

⟨𝜓
𝑀𝑆=+

1
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=−

1
2

(𝑀𝐼)⟩ = ⟨𝜓𝑀𝑆=−
1
2

(𝑀𝐼)|𝐻hfs|𝜓𝑀𝑆=+
1
2

(𝑀𝐼
′)⟩ 

⟨𝜓
𝑀𝑆=−

3
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=−

1
2

(𝑀𝐼)⟩ =
1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′±1(𝐶+𝑐𝑠𝐴𝑥𝑥 ∓ 𝐶−𝑐𝑠𝐴𝑦𝑦) 

⟨𝜓
𝑀𝑆=+

3
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=−

3
2

(𝑀𝐼)⟩ = ⟨𝜓𝑀𝑆=−
3
2

(𝑀𝐼)|𝐻hfs|𝜓𝑀𝑆=+
3
2

(𝑀𝐼
′)⟩ 

⟨𝜓
𝑀𝑆=+

1
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=−

3
2

(𝑀𝐼)⟩ = 𝑀𝐼𝛿𝑀𝐼𝑀𝐼′𝐴𝑧𝑧 sin 2𝜃− 

⟨𝜓
𝑀𝑆=−

1
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=−

3
2

(𝑀𝐼)⟩ = ⟨𝜓𝑀𝑆=−
3
2

(𝑀𝐼)|𝐻hfs|𝜓𝑀𝑆=−
1
2

(𝑀𝐼
′)⟩ 

where 

𝐶±𝑠𝑐 =
1

4
(√3cos𝜃+ cos𝜃− ± 2sin 𝜃+ cos 𝜃− − √3 sin 𝜃+ sin 𝜃−) 

𝑆±𝑠𝑠 =
1

4
(√3cos𝜃+ sin 𝜃− ± 2sin 𝜃+ sin 𝜃− + √3sin 𝜃+ cos𝜃−) 

𝑆±𝑐𝑐 =
1

4
(−√3cos𝜃+ sin 𝜃− ± 2 cos𝜃+ cos𝜃− − √3 sin 𝜃+ cos𝜃−) 

𝐶±𝑐𝑠 =
1

4
(−√3sin 𝜃+ sin 𝜃− ± 2cos𝜃+ sin 𝜃− + √3cos𝜃+ cos𝜃−) 

The upper and lower signs should be chosen in the double sign. We can evaluate the zeroth-order and 

perturbed energies in the following: 

     The zeroth-order energies are the energy eigenvalues of the non-perturbed Hamiltonian. 

𝜀
±
3
2

(0) = ±
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 ± 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 

𝜀
±
1
2

(0) = ∓
1

2
𝑔𝑧𝑧𝛽𝐵 + √(𝐷 ∓ 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 

The first-order energies are the diagonal elements of the expanded hyperfine Hamiltonian, as given in the 

following:  

𝜀
±
3
2
,𝑀𝐼

(1) = ±
𝑀𝐼
2
𝐴𝑧𝑧(2 cos2𝜃± + 1) 

𝜀
±
1
2
,𝑀𝐼

(1) = ±
𝑀𝐼
2
𝐴𝑧𝑧(2 cos2𝜃∓ − 1) 

The second-order energies are given in a convoluted manner, as follows; 
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𝜀
+
3
2
,+
7
2

(2)
=

7(𝐶+𝑠𝑐𝐴𝑥𝑥 − 𝐶−𝑠𝑐𝐴𝑦𝑦)
2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

49
4
𝐴𝑧𝑧

2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
7(𝑆+𝑠𝑠𝐴𝑥𝑥 − 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
+
3
2
,+
5
2

(2)
=

7(𝐶+𝑠𝑐𝐴𝑥𝑥 + 𝐶−𝑠𝑐𝐴𝑦𝑦)
2
+ 12(𝐶+𝑠𝑐𝐴𝑥𝑥 − 𝐶−𝑠𝑐𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

25
4
𝐴𝑧𝑧

2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
7(𝑆+𝑠𝑠𝐴𝑥𝑥 + 𝑆−𝑠𝑠𝐴𝑦𝑦)

2
+ 12(𝑆+𝑠𝑠𝐴𝑥𝑥 − 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
+
3
2
,+
3
2

(2)
=

12(𝐶+𝑠𝑐𝐴𝑥𝑥 + 𝐶−𝑠𝑐𝐴𝑦𝑦)
2
+ 15(𝐶+𝑠𝑐𝐴𝑥𝑥 − 𝐶−𝑠𝑐𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

9
4
𝐴𝑧𝑧

2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
12(𝑆+𝑠𝑠𝐴𝑥𝑥 + 𝑆−𝑠𝑠𝐴𝑦𝑦)

2
+ 15(𝑆+𝑠𝑠𝐴𝑥𝑥 − 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
+
3
2
,+
1
2

(2) =
15(𝐶+𝑠𝑐𝐴𝑥𝑥 + 𝐶−𝑠𝑐𝐴𝑦𝑦)

2
+ 16(𝐶+𝑠𝑐𝐴𝑥𝑥 − 𝐶−𝑠𝑐𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

1
4
𝐴𝑧𝑧

2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
15(𝑆+𝑠𝑠𝐴𝑥𝑥 + 𝑆−𝑠𝑠𝐴𝑦𝑦)

2
+ 16(𝑆+𝑠𝑠𝐴𝑥𝑥 − 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
+
3
2
,−
1
2

(2) =
16(𝐶+𝑠𝑐𝐴𝑥𝑥 + 𝐶−𝑠𝑐𝐴𝑦𝑦)

2
+ 15(𝐶+𝑠𝑐𝐴𝑥𝑥 − 𝐶−𝑠𝑐𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

1
4
𝐴𝑧𝑧

2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
16(𝑆+𝑠𝑠𝐴𝑥𝑥 + 𝑆−𝑠𝑠𝐴𝑦𝑦)

2
+ 15(𝑆+𝑠𝑠𝐴𝑥𝑥 − 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
+
3
2
,−
3
2

(2) =
15(𝐶+𝑠𝑐𝐴𝑥𝑥 + 𝐶−𝑠𝑐𝐴𝑦𝑦)

2
+ 12(𝐶+𝑠𝑐𝐴𝑥𝑥 − 𝐶−𝑠𝑐𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

9
4
𝐴𝑧𝑧

2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
15(𝑆+𝑠𝑠𝐴𝑥𝑥 + 𝑆−𝑠𝑠𝐴𝑦𝑦)

2
+ 12(𝑆+𝑠𝑠𝐴𝑥𝑥 − 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
+
3
2
,−
5
2

(2) =
12(𝐶+𝑠𝑐𝐴𝑥𝑥 + 𝐶−𝑠𝑐𝐴𝑦𝑦)

2
+ 7(𝐶+𝑠𝑐𝐴𝑥𝑥 − 𝐶−𝑠𝑐𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

25
4
𝐴𝑧𝑧

2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
12(𝑆+𝑠𝑠𝐴𝑥𝑥 + 𝑆−𝑠𝑠𝐴𝑦𝑦)

2
+ 7(𝑆+𝑠𝑠𝐴𝑥𝑥 − 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
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𝜀
+
3
2
,−
7
2

(2)
=

7(𝐶+𝑠𝑐𝐴𝑥𝑥 + 𝐶−𝑠𝑐𝐴𝑦𝑦)
2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

49
4
𝐴𝑧𝑧

2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
7(𝑆+𝑠𝑠𝐴𝑥𝑥 + 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
+
1
2
,+
7
2

(2)
=

7(𝐶+𝑠𝑐𝐴𝑥𝑥 + 𝐶−𝑠𝑐𝐴𝑦𝑦)
2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
7(𝑆+𝑐𝑐𝐴𝑥𝑥 + 𝑆−𝑐𝑐𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
49
4
𝐴𝑧𝑧

2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

 

 

𝜀
+
1
2
,+
5
2

(2) =
7(𝐶+𝑠𝑐𝐴𝑥𝑥 − 𝐶−𝑠𝑐𝐴𝑦𝑦)

2
+ 12(𝐶+𝑠𝑐𝐴𝑥𝑥 + 𝐶−𝑠𝑐𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
7(𝑆+𝑐𝑐𝐴𝑥𝑥 − 𝑆−𝑐𝑐𝐴𝑦𝑦)

2
+ 12(𝑆+𝑐𝑐𝐴𝑥𝑥 + 𝑆−𝑐𝑐𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
25
4
𝐴𝑧𝑧

2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
+
1
2
,+
3
2

(2) =
12(𝐶+𝑠𝑐𝐴𝑥𝑥 − 𝐶−𝑠𝑐𝐴𝑦𝑦)

2
+ 15(𝐶+𝑠𝑐𝐴𝑥𝑥 + 𝐶−𝑠𝑐𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
12(𝑆+𝑐𝑐𝐴𝑥𝑥 − 𝑆−𝑐𝑐𝐴𝑦𝑦)

2
+ 15(𝑆+𝑐𝑐𝐴𝑥𝑥 + 𝑆−𝑐𝑐𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
9
4
𝐴𝑧𝑧

2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
+
1
2
,+
1
2

(2) =
15(𝐶+𝑠𝑐𝐴𝑥𝑥 − 𝐶−𝑠𝑐𝐴𝑦𝑦)

2
+ 16(𝐶+𝑠𝑐𝐴𝑥𝑥 + 𝐶−𝑠𝑐𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
15(𝑆+𝑐𝑐𝐴𝑥𝑥 − 𝑆−𝑐𝑐𝐴𝑦𝑦)

2
+ 16(𝑆+𝑐𝑐𝐴𝑥𝑥 + 𝑆−𝑐𝑐𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
1
4
𝐴𝑧𝑧

2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
+
1
2
,−
1
2

(2) =
16(𝐶+𝑠𝑐𝐴𝑥𝑥 − 𝐶−𝑠𝑐𝐴𝑦𝑦)

2
+ 15(𝐶+𝑠𝑐𝐴𝑥𝑥 + 𝐶−𝑠𝑐𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
16(𝑆+𝑐𝑐𝐴𝑥𝑥 − 𝑆−𝑐𝑐𝐴𝑦𝑦)

2
+ 15(𝑆+𝑐𝑐𝐴𝑥𝑥 + 𝑆−𝑐𝑐𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
1
4
𝐴𝑧𝑧

2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 



 S130 

 

𝜀
+
1
2
,−
3
2

(2)
=

15(𝐶+𝑠𝑐𝐴𝑥𝑥 − 𝐶−𝑠𝑐𝐴𝑦𝑦)
2
+ 12(𝐶+𝑠𝑐𝐴𝑥𝑥 + 𝐶−𝑠𝑐𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
15(𝑆+𝑐𝑐𝐴𝑥𝑥 − 𝑆−𝑐𝑐𝐴𝑦𝑦)

2
+ 12(𝑆+𝑐𝑐𝐴𝑥𝑥 + 𝑆−𝑐𝑐𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
9
4
𝐴𝑧𝑧

2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

 

 

𝜀
+
1
2
,−
5
2

(2)
=

12(𝐶+𝑠𝑐𝐴𝑥𝑥 − 𝐶−𝑠𝑐𝐴𝑦𝑦)
2
+ 7(𝐶+𝑠𝑐𝐴𝑥𝑥 + 𝐶−𝑠𝑐𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
12(𝑆+𝑐𝑐𝐴𝑥𝑥 − 𝑆−𝑐𝑐𝐴𝑦𝑦)

2
+ 7(𝑆+𝑐𝑐𝐴𝑥𝑥 + 𝑆−𝑐𝑐𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
25
4
𝐴𝑧𝑧

2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
+
1
2
,−
7
2

(2) =
7(𝐶+𝑠𝑐𝐴𝑥𝑥 − 𝐶−𝑠𝑐𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
7(𝑆+𝑐𝑐𝐴𝑥𝑥 − 𝑆−𝑐𝑐𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
25
4
𝐴𝑧𝑧

2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
−
1
2
,+
7
2

(2) =
49
4
𝐴𝑧𝑧

2 sin2 2𝜃+

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

7(𝑆+𝑐𝑐𝐴𝑥𝑥 − 𝑆−𝑐𝑐𝐴𝑦𝑦)
2

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
7(𝐶+𝑐𝑠𝐴𝑥𝑥 − 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
−
1
2
,+
5
2

(2) =
25
4
𝐴𝑧𝑧

2 sin2 2𝜃+

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

7(𝑆+𝑐𝑐𝐴𝑥𝑥 + 𝑆−𝑐𝑐𝐴𝑦𝑦)
2
+ 12(𝑆+𝑐𝑐𝐴𝑥𝑥 − 𝑆−𝑐𝑐𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
7(𝐶+𝑐𝑠𝐴𝑥𝑥 + 𝐶−𝑐𝑠𝐴𝑦𝑦)

2
+ 12(𝐶+𝑐𝑠𝐴𝑥𝑥 − 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
−
1
2
,+
3
2

(2) =
9
4
𝐴𝑧𝑧

2 sin2 2𝜃+

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

12(𝑆+𝑐𝑐𝐴𝑥𝑥 + 𝑆−𝑐𝑐𝐴𝑦𝑦)
2
+ 15(𝑆+𝑐𝑐𝐴𝑥𝑥 − 𝑆−𝑐𝑐𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
12(𝐶+𝑐𝑠𝐴𝑥𝑥 + 𝐶−𝑐𝑠𝐴𝑦𝑦)

2
+ 15(𝐶+𝑐𝑠𝐴𝑥𝑥 − 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 



 S131 

𝜀
−
1
2
,+
1
2

(2)
=

1
4
𝐴𝑧𝑧

2 sin2 2𝜃+

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

15(𝑆+𝑐𝑐𝐴𝑥𝑥 + 𝑆−𝑐𝑐𝐴𝑦𝑦)
2
+ 16(𝑆+𝑐𝑐𝐴𝑥𝑥 − 𝑆−𝑐𝑐𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
15(𝐶+𝑐𝑠𝐴𝑥𝑥 + 𝐶−𝑐𝑠𝐴𝑦𝑦)

2
+ 16(𝐶+𝑐𝑠𝐴𝑥𝑥 − 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
−
1
2
,−
1
2

(2)
=

1
4
𝐴𝑧𝑧

2 sin2 2𝜃+

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

16(𝑆+𝑐𝑐𝐴𝑥𝑥 + 𝑆−𝑐𝑐𝐴𝑦𝑦)
2
+ 15(𝑆+𝑐𝑐𝐴𝑥𝑥 − 𝑆−𝑐𝑐𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
16(𝐶+𝑐𝑠𝐴𝑥𝑥 + 𝐶−𝑐𝑠𝐴𝑦𝑦)

2
+ 15(𝐶+𝑐𝑠𝐴𝑥𝑥 − 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
−
1
2
,−
3
2

(2)
=

9
4
𝐴𝑧𝑧

2 sin2 2𝜃+

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
15(𝑆+𝑐𝑐𝐴𝑥𝑥 + 𝑆−𝑐𝑐𝐴𝑦𝑦)

2
+ 12(𝑆+𝑐𝑐𝐴𝑥𝑥 − 𝑆−𝑐𝑐𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15(𝐶+𝑐𝑠𝐴𝑥𝑥 + 𝐶−𝑐𝑠𝐴𝑦𝑦)

2
+ 12(𝐶+𝑐𝑠𝐴𝑥𝑥 − 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
−
1
2
,−
5
2

(2) =
25
4
𝐴𝑧𝑧

2 sin2 2𝜃+

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

12(𝑆+𝑐𝑐𝐴𝑥𝑥 + 𝑆−𝑐𝑐𝐴𝑦𝑦)
2
+ 7(𝑆+𝑐𝑐𝐴𝑥𝑥 − 𝑆−𝑐𝑐𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
12(𝐶+𝑐𝑠𝐴𝑥𝑥 + 𝐶−𝑐𝑠𝐴𝑦𝑦)

2
+ 7(𝐶+𝑐𝑠𝐴𝑥𝑥 − 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
−
1
2
,−
7
2

(2) =
49
4
𝐴𝑧𝑧

2 sin2 2𝜃+

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

7(𝑆+𝑐𝑐𝐴𝑥𝑥 + 𝑆−𝑐𝑐𝐴𝑦𝑦)
2

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
7(𝐶+𝑐𝑠𝐴𝑥𝑥 + 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

𝑔𝑧𝑧𝛽𝐵 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
−
3
2
,+
7
2

(2) =
7(𝑆+𝑠𝑠𝐴𝑥𝑥 + 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

49
4
𝐴𝑧𝑧

2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
7(𝐶+𝑐𝑠𝐴𝑥𝑥 + 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
−
3
2
,+
5
2

(2) =
7(𝑆+𝑠𝑠𝐴𝑥𝑥 − 𝑆−𝑠𝑠𝐴𝑦𝑦)

2
+ 12(𝑆+𝑠𝑠𝐴𝑥𝑥 + 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

25
4
𝐴𝑧𝑧

2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
7(𝐶+𝑐𝑠𝐴𝑥𝑥 − 𝐶−𝑐𝑠𝐴𝑦𝑦)

2
+ 12(𝐶+𝑐𝑠𝐴𝑥𝑥 + 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
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𝜀
−
3
2
,+
3
2

(2)
=

12(𝑆+𝑠𝑠𝐴𝑥𝑥 − 𝑆−𝑠𝑠𝐴𝑦𝑦)
2
+ 15(𝑆+𝑠𝑠𝐴𝑥𝑥 + 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

9
4
𝐴𝑧𝑧

2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
12(𝐶+𝑐𝑠𝐴𝑥𝑥 − 𝐶−𝑐𝑠𝐴𝑦𝑦)

2
+ 15(𝐶+𝑐𝑠𝐴𝑥𝑥 + 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
−
3
2
,+
1
2

(2)
=

15(𝑆+𝑠𝑠𝐴𝑥𝑥 − 𝑆−𝑠𝑠𝐴𝑦𝑦)
2
+ 16(𝑆+𝑠𝑠𝐴𝑥𝑥 + 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

1
4
𝐴𝑧𝑧

2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
15(𝐶+𝑐𝑠𝐴𝑥𝑥 − 𝐶−𝑐𝑠𝐴𝑦𝑦)

2
+ 16(𝐶+𝑐𝑠𝐴𝑥𝑥 + 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
−
3
2
,−
1
2

(2)
=

16(𝑆+𝑠𝑠𝐴𝑥𝑥 − 𝑆−𝑠𝑠𝐴𝑦𝑦)
2
+ 15(𝑆+𝑠𝑠𝐴𝑥𝑥 + 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

1
4
𝐴𝑧𝑧

2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
16(𝐶+𝑐𝑠𝐴𝑥𝑥 − 𝐶−𝑐𝑠𝐴𝑦𝑦)

2
+ 15(𝐶+𝑐𝑠𝐴𝑥𝑥 + 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
−
3
2
,−
3
2

(2) =
15(𝑆+𝑠𝑠𝐴𝑥𝑥 − 𝑆−𝑠𝑠𝐴𝑦𝑦)

2
+ 12(𝑆+𝑠𝑠𝐴𝑥𝑥 + 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

9
4
𝐴𝑧𝑧

2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
15(𝐶+𝑐𝑠𝐴𝑥𝑥 − 𝐶−𝑐𝑠𝐴𝑦𝑦)

2
+ 12(𝐶+𝑐𝑠𝐴𝑥𝑥 + 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
−
3
2
,−
5
2

(2) =
12(𝑆+𝑠𝑠𝐴𝑥𝑥 − 𝑆−𝑠𝑠𝐴𝑦𝑦)

2
+ 7(𝑆+𝑠𝑠𝐴𝑥𝑥 + 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

25
4
𝐴𝑧𝑧

2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
12(𝐶+𝑐𝑠𝐴𝑥𝑥 − 𝐶−𝑐𝑠𝐴𝑦𝑦)

2
+ 7(𝐶+𝑐𝑠𝐴𝑥𝑥 + 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

𝜀
−
3
2
,−
7
2

(2) =
7(𝑆+𝑠𝑠𝐴𝑥𝑥 − 𝑆−𝑠𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
+

49
4
𝐴𝑧𝑧

2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2

+
7(𝐶+𝑐𝑠𝐴𝑥𝑥 − 𝐶−𝑐𝑠𝐴𝑦𝑦)

2

−𝑔𝑧𝑧𝛽𝐵 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2
 

 

     In summary, when the ZFS, g- and A-tensors are collinear and the magnetic field is aligned to the z-

axis of the principal axis coordination system, the zeroth-order and perturbed energies in the second order 

are represented as follows: 

𝐸
+
3
2
,+
7
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +

7

4
𝐴𝑧𝑧(2 cos2𝜃+ + 1) + 𝜀

+
3
2
,+
7
2

(2)
 

𝐸
+
3
2
,+
5
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +

5

4
𝐴𝑧𝑧(2 cos2𝜃+ + 1) + 𝜀

+
3
2
,+
5
2

(2)
 

𝐸
+
3
2
,+
3
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +

3

4
𝐴𝑧𝑧(2 cos2𝜃+ + 1) + 𝜀

+
3
2
,+
3
2

(2)
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𝐸
+
3
2
,+
1
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +

1

4
𝐴𝑧𝑧(2 cos2𝜃+ + 1) + 𝜀

+
3
2
,+
1
2

(2)
 

𝐸
+
3
2
,−
1
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

1

4
𝐴𝑧𝑧(2 cos2𝜃+ + 1) + 𝜀

+
3
2
,−
1
2

(2)
 

𝐸
+
3
2
,−
3
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

3

4
𝐴𝑧𝑧(2 cos2𝜃+ + 1) + 𝜀

+
3
2
,−
3
2

(2)
 

𝐸
+
3
2
,−
5
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

5

4
𝐴𝑧𝑧(2 cos2𝜃+ + 1) + 𝜀

+
3
2
,−
5
2

(2)
 

𝐸
+
3
2
,−
7
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

7

4
𝐴𝑧𝑧(2 cos2𝜃+ + 1) + 𝜀

+
3
2
,−
7
2

(2)
 

𝐸
+
1
2
,+
7
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +

7

4
𝐴𝑧𝑧(2 cos2𝜃− − 1) + 𝜀

+
1
2
,+
7
2

(2)
 

𝐸
+
1
2
,+
5
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2 +
5

4
𝐴𝑧𝑧(2 cos2𝜃− − 1) + 𝜀

+
1
2
,+
5
2

(2)
 

𝐸
+
1
2
,+
3
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +

3

4
𝐴𝑧𝑧(2 cos2𝜃− − 1) + 𝜀

+
1
2
,+
3
2

(2)
 

𝐸
+
1
2
,+
1
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +

1

4
𝐴𝑧𝑧(2 cos2𝜃− − 1) + 𝜀

+
1
2
,+
1
2

(2)
 

𝐸
+
1
2
,−
1
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

1

4
𝐴𝑧𝑧(2 cos2𝜃− − 1) + 𝜀

+
1
2
,−
1
2

(2)
 

𝐸
+
1
2
,−
3
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

3

4
𝐴𝑧𝑧(2 cos2𝜃− − 1) + 𝜀

+
1
2
,−
3
2

(2)
 

𝐸
+
1
2
,−
5
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

5

4
𝐴𝑧𝑧(2 cos2𝜃− − 1) + 𝜀

+
1
2
,−
5
2

(2)
 

𝐸
+
1
2
,−
7
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

7

4
𝐴𝑧𝑧(2 cos2𝜃− − 1) + 𝜀

+
1
2
,−
7
2

(2)
 

𝐸
−
1
2
,+
7
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

7

4
𝐴𝑧𝑧(2 cos2𝜃+ − 1) + 𝜀

−
1
2
,+
7
2

(2)
 

𝐸
−
1
2
,+
5
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

5

4
𝐴𝑧𝑧(2 cos2𝜃+ − 1) + 𝜀

−
1
2
,+
5
2

(2)
 

𝐸
−
1
2
,+
3
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

3

4
𝐴𝑧𝑧(2 cos2𝜃+ − 1) + 𝜀

−
1
2
,+
3
2

(2)
 

𝐸
−
1
2
,+
1
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

1

4
𝐴𝑧𝑧(2 cos2𝜃+ − 1) + 𝜀

−
1
2
,+
1
2

(2)
 

𝐸
−
1
2
,−
1
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +

1

4
𝐴𝑧𝑧(2 cos2𝜃+ − 1) + 𝜀

−
1
2
,−
1
2

(2)
 

𝐸
−
1
2
,−
3
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +

3

4
𝐴𝑧𝑧(2 cos2𝜃+ − 1) + 𝜀

−
1
2
,−
3
2

(2)
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𝐸
−
1
2
,−
5
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +

5

4
𝐴𝑧𝑧(2 cos2𝜃+ − 1) + 𝜀

−
1
2
,−
5
2

(2)
 

𝐸
−
1
2
,−
7
2
=
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +

7

4
𝐴𝑧𝑧(2 cos2𝜃+ − 1) + 𝜀

−
1
2
,−
7
2

(2)
 

𝐸
−
3
2
,+
7
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

7

4
𝐴𝑧𝑧(2 cos2𝜃− + 1) + 𝜀

−
3
2
,+
7
2

(2)
 

𝐸
−
3
2
,+
5
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

5

4
𝐴𝑧𝑧(2 cos2𝜃− + 1) + 𝜀

−
3
2
,+
5
2

(2)
 

𝐸
−
3
2
,+
3
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

3

4
𝐴𝑧𝑧(2 cos2𝜃− + 1) + 𝜀

−
3
2
,+
3
2

(2)
 

𝐸
−
3
2
,+
1
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 −

1

4
𝐴𝑧𝑧(2 cos2𝜃− + 1) + 𝜀

−
3
2
,+
1
2

(2)
 

𝐸
−
3
2
,−
1
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2 +
1

4
𝐴𝑧𝑧(2 cos2𝜃− + 1) + 𝜀

−
3
2
,−
1
2

(2)
 

𝐸
−
3
2
,−
3
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +

3

4
𝐴𝑧𝑧(2 cos2𝜃− + 1) + 𝜀

−
3
2
,−
3
2

(2)
 

𝐸
−
3
2
,−
5
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +

5

4
𝐴𝑧𝑧(2 cos2𝜃− + 1) + 𝜀

−
3
2
,−
5
2

(2)
 

𝐸
−
3
2
,−
7
2
= −

1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 +

7

4
𝐴𝑧𝑧(2 cos2𝜃− + 1) + 𝜀

−
3
2
,−
7
2

(2)
 

The analytical expressions derived above with the static magnetic field B along the principal z-axis for the 

case that all the three magnetic tensors are collinear for the spin quartet state with a nuclear spin I = 7/2 are 

extremely accurate. Note that the other analytical expressions with B applied parallel to the other principal 

axes can easily be derived by invoking the cyclic transformation of the principal axis coordinates, which 

includes giving D replaced with (3E – D)/2 and E replaced with –(E + D)/2 for B//x, and similarly D with –

(3E + D)/2 and E with (D – E)/2 for B//y. 

 

b) Evaluation of the accuracy of the Aeff/Atrue relationships 

In this section, we show the accuracy of the AZZ-value estimated for the spin quartet state with sizable ZFS 

tensors assuming the geff/gtrue relationships, noting that the Aeff/Atrue relationship is valid. The energies derived 

in the previous section are fully dependent on gZZ, D, E, AZZ and B. If the energies and all the parameters are 

accurate, the following equation holds, affording the relevant expressions. . 

𝐸
+
3
2
,𝑀𝐼
(𝑔𝑧𝑧, 𝐷, 𝐸, 𝐴𝑧𝑧, 𝐵) − 𝐸−3

2
,𝑀𝐼
(𝑔𝑧𝑧, 𝐷, 𝐸, 𝐴𝑧𝑧, 𝐵) = 𝐸

+
1
2
,𝑀𝐼

eff (𝑔𝑧𝑧
eff, 𝐴𝑧𝑧

eff, 𝐵) − 𝐸
−
1
2
,𝑀𝐼

eff (𝑔𝑧𝑧
eff, 𝐴𝑧𝑧

eff, 𝐵)     (†) 

where the difference between the energies from the true spin-Hamiltonian in the left-hand side equates to that 

between the energies from the fictitious spin-1/2 Hamiltonian in the right-hand side. The values for gzz
eff, Azz

eff 

and B can be easily obtained from the experiment and its associated spectral analyses, and the value for gzz 

and the ZFS parameters are obtained by using the geff/gtrue relationships as a function of E/D. Then, we solve 

the equation for Azz and compare the solution with the experimental value obtained from the Aeff/Atrue 
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relationship. As shown below, the Aeff/Atrue relationship is valid since the analytical expressions for the 

energies underlying the relationship and all the necessary parameters are highly accurate. The accuracy of 

the particular relationship eq (‡), as given below, will be shown in the following sections, 

𝐴𝑧𝑧
eff

𝐴𝑧𝑧
= 1 +

2

√1 + 3𝜆2
     (‡) 

where λ = E/D. 

 

c) ESR Analysis of complex 1 

Table S1. The possible combinations of the geff/gtrue relationships.  

Case gtrue geff geff/gtrue Figure No.  

1 

x 0.82 1 −
1 − 3𝜆

√1 + 3𝜆2
 

Figs. S1, S2, S3, S4 and S5 y 1.3 1 −
1 + 3𝜆

√1 + 3𝜆2
 

z 7.72 1 −
2

√1 + 3𝜆2
 

2 

x 1.3 1 −
1 − 3𝜆

√1 + 3𝜆2
 

Figs. 6 and 7 in the main text and Figs. 

S6, S7, S8, S9 and S10 
y 0.82 1 −

1 + 3𝜆

√1 + 3𝜆2
 

z 7.72 1 −
2

√1 + 3𝜆2
 

* Case 2, which is highlighted in yellow, provides the most reasonably simulated spectrum. 

 

Case 1 

 

Figure S1. The calculated gtrue values for complex 1 by use of the geff-value and geff/gtrue relationships. 
0.82

𝑔𝑋𝑋
true =

1 −
1−3𝜆

√1+3𝜆2
, 

1.3

𝑔𝑌𝑌
true = 1 −

1+3𝜆

√1+3𝜆2
, 
7.72

𝑔𝑍𝑍
true = 1 +

2

√1+3𝜆2
 with λ = E/D. The geff/gtrue relationships adopted here are 

for the |MS = ±3/2>-dominant transitions. 
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Figure S2. The simulated randomly-oriented X-band ESR spectra of complex 1 (S = 3/2) as a function of E/D. 

The values for E/D used were 0.01, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. The spectra in blue and red are based on 

the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. Microwave frequency used: 9.625 

GHz, the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: geff = [0.82, 1.3, 7.72], Ax
eff(59Co) = 919.2 MHz, 

D = –14 cm–1 and gtrue and Az
true(59Co) for the variable E/D’s are calculated by using the value of geff and the 

geff/gtrue relationships shown in Table S2. The g-, A- and D-tensors were assumed to be collinear. Any strain 

effect of the tensor to the linewidth was not included. The simulated spectra were obtained by using EasySpin 

(ver. 6.0.6) [8]. 

 

 

Figure S3. The simulated randomly-oriented X-band ESR spectra of complex 1 (S = 3/2) as a function of E/D. 

The values for E/D used were 0.11, 0.12, 0.13 and 0.14. The spectra in blue and red are based on the fictitious 

spin-1/2 and true spin Hamiltonian approaches, respectively. Microwave frequency used: 9.625 GHz, the peak-

to-peak linewidth: 1.0 mT, the magnetic tensors: geff = [0.82, 1.3, 7.72], Ax
eff(59Co) = 919.2 MHz, D = –14 cm–1 

and gtrue and Az
true(59Co) for the variable E/D’s are calculated by using the value of geff and the geff/gtrue 

relationships shown in Table S2. The g-, A- and D-tensors were assumed to be collinear. Any strain effect of the 

tensor to the linewidth was not included. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8]. 
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Table S2. The principal values of the gtrue-tensor and Azz-values used in the simulated spectra of complex 1 

(Figures S20 and S21). 
0.82

𝑔𝑋𝑋
true = 1 −

1−3𝜆

√1+3𝜆2
, 

1.3

𝑔𝑌𝑌
true = 1 −

1+3𝜆

√1+3𝜆2
, 
7.72

𝑔𝑍𝑍
true = 1 +

2

√1+3𝜆2
 with λ = E/D. The geff/gtrue 

relationships adopted here are for the |MS = ±3/2>-dominant transitions. 

E/D gXX gYY gZZ E/D gXX gYY gZZ 

0.01 27.2 43.6 2.574 0.14 1.879 3.421 2.623 

0.10 2.643 4.628 2.599 0.15 1.753 3.223 2.630 

0.11 2.399 4.241 2.604 0.20 1.318 2.540 2.671 

0.12 2.196 3.921 2.610 0.25 1.064 2.146 2.723 

0.13 2.025 3.651 2.616 0.30 0.900 1.895 2.782 

 

     One of the possible sets of the magnetic parameters: gXX = 2.025, gYY = 3.651, gZZ = 2.616, AZZ(59Co) 

= 311.5 MHz, D = –14 cm–1 and E/D = +0.13. The extra line observed at about 200 mT was simulated when 

E/D = +0.18. 

 

 

Figure S4. The simulated randomly-oriented X-band ESR spectra of complex 1 (S = 3/2). The spectra in blue 

and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. Microwave 

frequency used: 9.625 GHz, the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: geff = [0.82, 1.30, 7.72], 

Az
eff(59Co) = 919.2 MHz, gtrue = [2.025, 3.651, 2.616], Az

true(59Co) = 311.5 MHz, D = –14 cm–1 and E/D = +0.13. 

The g-, A- and D-tensors were assumed to be collinear. Any strain effect of the tensor to the linewidth was not 

included. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8]. Inset: the expanded spectrum 

from 130 mT to 330 mT. The extralines attributed from the |MS = ±1/2>-dominant transitions can be reproduced 

by using the true spin Hamiltonian (red line) but not by the fictitious spin-1/2 Hamiltonian (blue line). 
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Figure S5. The E/D dependence of the AZ
true-value which is the solution of eq (†) with the parameters used for 

the simulated spectrum in Figure S22. Red, green, blue, gray, cyan, magenta, yellow and brown curves 

correspond to the assignments to MI = +7/2, +5/2, +3/2, +1/2, –1/2, –3/2, –5/2 and –7/2, respectively. Because all 

the energies and the parameters were accurate, all the curves cross at one point. The black line indicates the AZ-

value (= 311.5 MHz) calculated by using the relationship (eq (‡)) in the case of E/D = 0.13. The figure on the 

right shows the expanded one in the range of 0.125 ≤ E/D ≤ 0.135. 

 

Case 2 

 

Figure S6. The calculated gtrue-values by use of the geff-value and geff/gtrue relationships. 
1.3

𝑔𝑋𝑋
true = 1 −

1−3𝜆

√1+3𝜆2
, 

0.82

𝑔𝑌𝑌
true = 1 −

1+3𝜆

√1+3𝜆2
, 
7.72

𝑔𝑍𝑍
true = 1 +

2

√1+3𝜆2
 with λ = E/D. The geff/gtrue relationships adopted here are for the |MS = 

±3/2>-dominant transitions. 
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Figure S7. The simulated randomly-oriented X-band ESR spectra of complex 1 (S = 3/2). The spectra in blue 

and red are based on the fictitious spin-1/2 and true spin Hamiltonian approach, respectively. Microwave 

frequency used: 9.625 GHz, the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: geff = [0.82, 1.3, 7.72], 

Ax
eff(59Co) = 919.2 MHz, D = –14 cm–1 and gtrue and Az

true(59Co) for the variable E/D’s are calculated by using the 

value of geff and the geff/gtrue relationships. The g-, A- and D-tensors were assumed to be collinear. Any strain 

effect of the tensor to the linewidth was not included. The simulated spectra were obtained by using EasySpin 

(ver. 6.0.6) [8].  

 

 

Figure S8. The simulated randomly-oriented ESR spectra of complex 1 (S = 3/2) as a function of E/D. The 

spectra in blue and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. 

Microwave frequency used: 9.625 GHz, the peak-to-peak linewidth: 1.0 mT; the magnetic tensors: geff = [0.82, 

1.30, 7.72], Az
eff(59Co) = 919.2 MHz, D = –14 cm–1 and gtrue and AZ

true(59Co) for the variable E/D’s are shown in 

Table S3. The g-, A- and D-tensors were assumed to be collinear. Any strain effect of the tensor to the linewidth 

was not included. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8]. Note that the 

resonance peaks marked by a single asterisk *, double asterisk ** and triple asterisk *** appear only for the true 

spin Hamiltonian approach. Inset: the expanded spectra in the range of 130 mT to 330 mT. 
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Table S3. The principal values of the gtrue-tensor and Azz-values used in the simulated spectra of complex 1 

(Figures S25 and S26). 
1.3

𝑔𝑋𝑋
true = 1 −

1−3𝜆

√1+3𝜆2
, 
0.82

𝑔𝑌𝑌
true = 1 −

1+3𝜆

√1+3𝜆2
, 
7.72

𝑔𝑍𝑍
true = 1 +

2

√1+3𝜆2
 with λ = E/D. The geff/gtrue 

relationships adopted here are for the |MS = ±3/2>-dominant transitions. 

E/D gXX gYY gZZ E/D gXX gYY gZZ 

0.01 43.1 27.5 2.574 0.18 2.318 1.744 2.654 

0.10 4.190 2.919 2.599 0.19 2.198 1.669 2.662 

0.15 2.780 2.033 2.630 0.20 2.090 1.602 2.671 

0.16 2.606 1.924 2.637 0.25 1.687 1.353 2.723 

0.17 2.453 1.828 2.645 0.30 1.427 1.195 2.782 

 

     One of the possible sets of the magnetic parameters: gXX = 2.318, gYY = 1.744, gZZ = 2.654, AZZ(59Co) 

= 316.0 MHz, D = –14 cm–1 and E/D = +0.18. The extra line observed at about 200 mT was simulated when 

E/D = +0.18. 

 

 

Figure S9. The simulated randomly-oriented X-band ESR spectra of complex 1 (S = 3/2). The spectra in blue 

and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. Microwave 

frequency used: 9.625 GHz, the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: geff = [1.30, 0.82, 7.72], 

Az
eff(59Co) = 919.2 MHz, gtrue = [2.318, 1.744, 2.654], Az

true(59Co) = 316.0 MHz, D = –14 cm–1 and E/D = +0.18. 

The g-, A- and D-tensors were assumed to be collinear. Any strain effect of the tensor to the linewidth was not 

included. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8].  

 



 S141 

 

Figure S10. The E/D dependence of the AZ
true-value which is the solution of eq (†) with the parameters used for 

the simulated spectrum in Figure S1-5. Red, green, blue, gray, cyan, magenta, yellow and brown curves 

correspond to the assignments to MI = +7/2, +5/2, +3/2, +1/2, –1/2, –3/2, –5/2 and –7/2, respectively. Because all 

the energies and the parameters were accurate, all the curves cross at one point. The black line indicates the AZ-

value (= 316.0 MHz) calculated by using the relationship (eq (‡)) in the case of E/D = 0.18. The right figure 

shows the expanded one in the range of 0.17 ≤ E/D ≤ 0.19. 

 

Table S4. Comparison of the theoretical and the experimental magnetic parameters. Theoretical values were 

taken from the result of DFT calculations. 

 Theor. Expl. (Case 1) Expl. (Case 2) 

gx 2.0671 2.025 2.318 

gy 2.0550 2.616 2.654 

gz 2.1119 3.651 1.744 

Az/MHz 84.49 311.5 316.0 

D/cm–1 +9.9705 –14 –14 

E/D +0.1666 +0.13 +0.18 
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     It is worth noting that the principal values of the gtrue-tensor are not permutable. 

 

Table S5. Permutation of the obtained principal values of the gtrue-tensor.  

Case gXX gYY gZZ 

 2.025 3.65 2.616 

(a) 2.025 2.616 3.65 

(b) 3.65 2.616 2.025 

(c) 3.65 2.025 2.616 

(d) 2.616 2.025 3.65 

(e) 2.616 3.65 2.025 

 

 

Figure S11. The randomly-oriented X-band ESR spectra of complex 1 (S = 3/2), as simulated based on the 

magnetic parameters in the literature [6] The spectra in blue and red are based on the fictitious spin-1/2 and true 

spin Hamiltonian approaches, respectively. Microwave frequency used: 9.625 GHz, the peak-to-peak linewidth: 

1.0 mT, the magnetic parameters: g1
eff = 7.72, g2

eff = 1.30, g3
eff = 0.82, A1

eff(59Co) = 919.2 MHz, gtrue are shown in 

Table S5, Az
true(59Co) = 459.6 MHz, D = –14 cm–1 and E/D = +0.13. The g-, A- and D-tensors were assumed to 

be collinear. Any strain effect of the tensor to the linewidth was not included. The simulated spectra were 

obtained by using EasySpin (ver. 6.0.6) [8]. 

 

  

(a) 

(b) 

(c) 

(d) 

(e) 
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Expected ZF (Zero-Field)-Frequency domain spectra for complex 1:  

 

Figure S12. The simulated zero-field frequency-domain spectra of complex 1. The magnetic tensors: gtrue = 

[2.025, 2.616, 3.651], Az
true(59Co) = 311.5 MHz, D = –14 cm–1 and E/D = +0.13 and the linewidth was set 

to 1 MHz. The g-, A- and D-tensors were assumed to be collinear. Any strain effect of the tensor to the 

linewidth was not included. The simulated spectra (stick) were obtained by using EasySpin (ver. 6.0.0-

dev.29) [8]. The low-frequency region was attributed to hyperfine transitions. The broken vertical line on 

the right indicates the value of √𝐷2 + 3𝐸2 = 860.44 GHz in units of GHz.  

 

 

Figure S13. The simulated frequency-domain zero-field Fourier-transform spectrum of complex 1 (S = 3/2). The 

magnetic tensors: geff = [1.30, 0.82, 7.72], Az
eff(59Co) = 919.2 MHz and the linewidth was set to 1 MHz. 

The geff- and Aeff-tensors were assumed to be collinear. Any strain effect of the tensor to the linewidth 

was not included. The simulated spectra (stick) were obtained by using EasySpin (ver. 6.0.0-dev.29) [8]. 

No peak was expected to appear above 4 GHz, and the spectral pattern is rather simple. 
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2. Complex 2 

a) Perturbed energies for the case of non-collinear ZFS and A-tensors 

Here, we derive the perturbed energies of the spin Hamiltonian including the ZFS, electron Zeeman and 

hyperfine interactions in the case of non-collinear ZFS and A-tensors with a nuclear spin of I = 7/2, in which 

the Dz- and Az-axes are parallel. The zeroth-order energies and eigen-functions from the non-perturbed spin 

Hamiltonian are the same as the previous section since the ZFS and g-tensors are assumed to be collinear. 

The matrix representation of the hyperfine tensor transformed by a unitary matrix is given as follows, 

𝐀 = (

𝐴𝑥 0 0
0 𝐴𝑦 0

0 0 𝐴𝑧

) → 𝐀′ = (

𝐴𝑥𝑥
′ 𝐴𝑥𝑦

′ 0

𝐴𝑦𝑥
′ 𝐴𝑦𝑦

′ 0

0 0 𝐴𝑧𝑧
′

) 

Then, the perturbed Hamiltonian H’ can be denoted as follows. 

𝐻′ = 𝐻hfs = 𝑺 ∙ 𝐀
′ ∙ 𝑰 = 𝑆𝑥𝐴𝑥𝑥

′ 𝐼𝑥 + 𝑆𝑥𝐴𝑥𝑦
′ 𝐼𝑦 + 𝑆𝑦𝐴𝑦𝑥

′ 𝐼𝑥 + 𝑆𝑦𝐴𝑦𝑦
′ 𝐼𝑦 + 𝑆𝑧𝐴𝑧𝑧

′ 𝐼𝑧 

The matrix elements of the hyperfine structure Hamiltonian in the basis of |MS, MI> are 

⟨𝑀𝑆
′ ,𝑀𝐼

′|𝐻hfs|𝑀𝑆, 𝑀𝐼⟩ = 𝛿𝑀𝑆𝑀𝑆′𝛿𝑀𝐼𝑀𝐼′𝑀𝑆𝑀𝐼𝐴𝑧𝑧
′  

⟨𝑀𝑆 − 1,𝑀𝐼
′|𝐻hfs|𝑀𝑆,𝑀𝐼⟩ =

1

16
𝛿𝑀𝐼𝑀𝐼′±1√15 − 4𝑀𝑆(𝑀𝑆 − 1)√63 − 4𝑀𝐼𝑀𝐼

′(𝐴𝑥𝑥
′ ± 𝑖𝐴𝑥𝑦

′ + 𝑖𝐴𝑦𝑥
′ ∓ 𝐴𝑦𝑦

′ ) 

⟨𝑀𝑆 + 1,𝑀𝐼
′|𝐻hfs|𝑀𝑆,𝑀𝐼⟩ = ⟨𝑀𝑆 − 1,𝑀𝐼|𝐻hfs|𝑀𝑆,𝑀𝐼

′⟩∗ 

where 

𝛿𝑖𝑗 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

 

The upper and lower signs should be chosen in the double sign. The matrix representation of the hyperfine 

splitting Hamiltonian expanded by the spin wavefunctions are given as follows. 

⟨𝜓
𝑀𝑆=±

3
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=±

3
2

(𝑀𝐼)⟩ = ±
𝑀𝐼
2
𝛿𝑀𝐼𝑀𝐼′𝐴𝑧𝑧(2 cos2𝜃± + 1) 

⟨𝜓
𝑀𝑆=±

1
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=±

1
2

(𝑀𝐼)⟩ = ±
𝑀𝐼
2
𝛿𝑀𝐼𝑀𝐼′𝐴𝑧𝑧(2 cos2𝜃∓ − 1) 

⟨𝜓
𝑀𝑆=+

1
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=+

3
2

(𝑀𝐼)⟩ =
1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′±1[𝐶+𝑠𝑐(𝐴𝑥𝑥
′ ± 𝑖𝐴𝑥𝑦

′ ) + 𝐶−𝑠𝑐(𝑖𝐴𝑦𝑥
′ ∓ 𝐴𝑦𝑦

′ )] 

⟨𝜓
𝑀𝑆=−

1
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=+

3
2

(𝑀𝐼)⟩ = ⟨𝜓𝑀𝑆=+
3
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=−

1
2

(𝑀𝐼)⟩ = −𝑀𝐼𝛿𝑀𝐼𝑀𝐼′𝐴𝑧𝑧 sin 2𝜃+ 

⟨𝜓
𝑀𝑆=−

3
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=+

3
2

(𝑀𝐼)⟩ =
1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′±1[𝑆+𝑠𝑠(𝐴𝑥𝑥
′ ± 𝑖𝐴𝑥𝑦

′ ) + 𝑆−𝑠𝑠(𝑖𝐴𝑦𝑥
′ ∓ 𝐴𝑦𝑦

′ )] 

⟨𝜓
𝑀𝑆=+

3
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=+

1
2

(𝑀𝐼)⟩ = ⟨𝜓𝑀𝑆=+
1
2

(𝑀𝐼)|𝐻hfs|𝜓𝑀𝑆=+
3
2

(𝑀𝐼
′)⟩
∗

 

⟨𝜓
𝑀𝑆=−

1
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=+

1
2

(𝑀𝐼)⟩ =
1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′±1[𝑆+𝑐𝑐(𝐴𝑥𝑥
′ ± 𝑖𝐴𝑥𝑦

′ ) − 𝑆−𝑐𝑐(𝑖𝐴𝑦𝑥
′ ∓ 𝐴𝑦𝑦

′ )] 

⟨𝜓
𝑀𝑆=−

3
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=+

1
2

(𝑀𝐼)⟩ = ⟨𝜓𝑀𝑆=+
1
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=−

3
2

(𝑀𝐼)⟩ = 𝑀𝐼𝛿𝑀𝐼𝑀𝐼′𝐴𝑧𝑧 sin 2𝜃− 
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⟨𝜓
𝑀𝑆=+

1
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=−

1
2

(𝑀𝐼)⟩ = ⟨𝜓𝑀𝑆=−
1
2

(𝑀𝐼)|𝐻hfs|𝜓𝑀𝑆=+
1
2

(𝑀𝐼
′)⟩
∗

 

⟨𝜓
𝑀𝑆=−

3
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=−

1
2

(𝑀𝐼)⟩ =
1

2
√63 − 4𝑀𝐼𝑀𝐼

′𝛿𝑀𝐼𝑀𝐼′±1[𝐶+𝑐𝑠(𝐴𝑥𝑥
′ ± 𝑖𝐴𝑥𝑦

′ ) + 𝐶−𝑐𝑠(𝑖𝐴𝑦𝑥
′ ∓ 𝐴𝑦𝑦

′ )] 

⟨𝜓
𝑀𝑆=+

3
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=−

3
2

(𝑀𝐼)⟩ = ⟨𝜓𝑀𝑆=−
3
2

(𝑀𝐼)|𝐻hfs|𝜓𝑀𝑆=+
3
2

(𝑀𝐼
′)⟩
∗

 

⟨𝜓
𝑀𝑆=−

1
2

(𝑀𝐼
′)|𝐻hfs|𝜓𝑀𝑆=−

3
2

(𝑀𝐼)⟩ = ⟨𝜓𝑀𝑆=−
3
2

(𝑀𝐼)|𝐻hfs|𝜓𝑀𝑆=−
1
2

(𝑀𝐼
′)⟩
∗

 

where 

𝐶±𝑠𝑐 =
1

4
(√3cos𝜃+ cos𝜃− ± 2sin 𝜃+ cos 𝜃− − √3 sin 𝜃+ sin 𝜃−) 

𝑆±𝑠𝑠 =
1

4
(√3cos𝜃+ sin 𝜃− ± 2sin 𝜃+ sin 𝜃− + √3sin 𝜃+ cos𝜃−) 

𝑆±𝑐𝑐 =
1

4
(−√3cos𝜃+ sin 𝜃− ± 2 cos𝜃+ cos𝜃− − √3 sin 𝜃+ cos𝜃−) 

𝐶±𝑐𝑠 =
1

4
(−√3sin 𝜃+ sin 𝜃− ± 2cos𝜃+ sin 𝜃− + √3cos𝜃+ cos𝜃−) 

     The zeroth-order energies, as shown below, are the same ones as in the previous case. 

𝜀
±32

(0) = ±
1

2
𝑔𝑧𝑧𝛽𝐵 − √(𝐷 ± 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 

𝜀
±12

(0) = ∓
1

2
𝑔𝑧𝑧𝛽𝐵 + √(𝐷 ∓ 𝑔𝑧𝑧𝛽𝐵)2 + 3𝐸2 

     The first-order energies are also the same ones as in the previous case. 

𝜀
±32,𝑀𝐼

(1) = ±
𝑀𝐼
2
𝐴𝑧𝑧
′ (2 cos 2𝜃± + 1) 

𝜀
±12,𝑀𝐼

(1) = ±
𝑀𝐼
2
𝐴𝑧𝑧
′ (2 cos 2𝜃∓ − 1) 

where the upper and the lower signs should be chosen in the double sign. 

     The second-order energies are given as follows; 

𝜀
+
3
2
,+
7
2

(2)
=

7|𝐶+𝑠𝑐(𝐴𝑥𝑥
′ + 𝑖𝐴𝑥𝑦

′ ) + 𝐶−𝑠𝑐(𝑖𝐴𝑦𝑥
′ − 𝐴𝑦𝑦

′ )|
2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 −√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

49
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
7|𝑆+𝑠𝑠(𝐴𝑥𝑥

′ + 𝑖𝐴𝑥𝑦
′ ) + 𝑆−𝑠𝑠(𝑖𝐴𝑦𝑥

′ − 𝐴𝑦𝑦
′ )|

2

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

=
7 [(𝐶+𝑠𝑐𝐴𝑥𝑥

′ − 𝐶−𝑠𝑐𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ + 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

49
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
7 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ − 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ + 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 +√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
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𝜀
+
3
2
,+
5
2

(2)
=

7 [(𝐶+𝑠𝑐𝐴𝑥𝑥
′ + 𝐶−𝑠𝑐𝐴𝑦𝑦

′ )
2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ − 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝐶+𝑠𝑐𝐴𝑥𝑥

′ − 𝐶−𝑠𝑐𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ + 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

25
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
7 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ + 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ − 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ − 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ + 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
+
3
2
,+
3
2

(2)
=

12 [(𝐶+𝑠𝑐𝐴𝑥𝑥
′ + 𝐶−𝑠𝑐𝐴𝑦𝑦

′ )
2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ − 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝐶+𝑠𝑐𝐴𝑥𝑥

′ − 𝐶−𝑠𝑐𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ + 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

9
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
12 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ + 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ − 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ − 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ + 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
+
3
2
,+
1
2

(2)
=

15 [(𝐶+𝑠𝑐𝐴𝑥𝑥
′ + 𝐶−𝑠𝑐𝐴𝑦𝑦

′ )
2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ − 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
16 [(𝐶+𝑠𝑐𝐴𝑥𝑥

′ − 𝐶−𝑠𝑐𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ + 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

1
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
15 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ + 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ − 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
16 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ − 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ + 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
+
3
2
,−
1
2

(2)
=

16 [(𝐶+𝑠𝑐𝐴𝑥𝑥
′ + 𝐶−𝑠𝑐𝐴𝑦𝑦

′ )
2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ − 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝐶+𝑠𝑐𝐴𝑥𝑥

′ − 𝐶−𝑠𝑐𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ + 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

1
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
16 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ + 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ − 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ − 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ + 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
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𝜀
+
3
2
,−
3
2

(2)
+

12 [(𝐶+𝑠𝑐𝐴𝑥𝑥
′ − 𝐶−𝑠𝑐𝐴𝑦𝑦

′ )
2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ + 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

9
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
15 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ + 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ − 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ − 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ + 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
+
3
2
,−
5
2

(2)
=

12 [(𝐶+𝑠𝑐𝐴𝑥𝑥
′ + 𝐶−𝑠𝑐𝐴𝑦𝑦

′ )
2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ − 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
7 [(𝐶+𝑠𝑐𝐴𝑥𝑥

′ − 𝐶−𝑠𝑐𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ + 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

25
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
12 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ + 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ − 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
7 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ − 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ + 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
+
3
2
,−
7
2

(2)
=

7 [(𝐶+𝑠𝑐𝐴𝑥𝑥
′ + 𝐶−𝑠𝑐𝐴𝑦𝑦

′ )
2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ − 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

49
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

−2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
7 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ + 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ − 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
+
1
2
,+
7
2

(2)
=

7 [(𝐶+𝑠𝑐𝐴𝑥𝑥
′ + 𝐶−𝑠𝑐𝐴𝑦𝑦

′ )
2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ − 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
7 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ + 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ − 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

49
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

 

 

𝜀
+
1
2
,+
5
2

(2)
=

7 [(𝐶+𝑠𝑐𝐴𝑥𝑥
′ − 𝐶−𝑠𝑐𝐴𝑦𝑦

′ )
2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ + 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝐶+𝑠𝑐𝐴𝑥𝑥

′ + 𝐶−𝑠𝑐𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ − 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
7 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ − 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ + 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ + 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ − 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

25
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

 

 



 S148 

𝜀
+
1
2
,+
3
2

(2)
=

12 [(𝐶+𝑠𝑐𝐴𝑥𝑥
′ − 𝐶−𝑠𝑐𝐴𝑦𝑦

′ )
2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ + 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝐶+𝑠𝑐𝐴𝑥𝑥

′ + 𝐶−𝑠𝑐𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ − 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ − 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ + 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ + 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ − 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

9
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

 

 

𝜀
+
1
2
,+
1
2

(2)
=

15 [(𝐶+𝑠𝑐𝐴𝑥𝑥
′ − 𝐶−𝑠𝑐𝐴𝑦𝑦

′ )
2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ + 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
16 [(𝐶+𝑠𝑐𝐴𝑥𝑥

′ + 𝐶−𝑠𝑐𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ − 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ − 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ + 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
16 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ + 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ − 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

1
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

 

 

𝜀
+
1
2
,−
1
2

(2)
=

16 [(𝐶+𝑠𝑐𝐴𝑥𝑥
′ − 𝐶−𝑠𝑐𝐴𝑦𝑦

′ )
2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ + 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝐶+𝑠𝑐𝐴𝑥𝑥

′ + 𝐶−𝑠𝑐𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ − 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
16 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ − 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ + 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ + 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ − 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

1
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

 

 

𝜀
+
1
2
,−
3
2

(2)
=

15 [(𝐶+𝑠𝑐𝐴𝑥𝑥
′ − 𝐶−𝑠𝑐𝐴𝑦𝑦

′ )
2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ + 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝐶+𝑠𝑐𝐴𝑥𝑥

′ + 𝐶−𝑠𝑐𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ − 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ − 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ + 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ + 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ − 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

9
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

 

 



 S149 

𝜀
+
1
2
,−
5
2

(2)
=

12 [(𝐶+𝑠𝑐𝐴𝑥𝑥
′ − 𝐶−𝑠𝑐𝐴𝑦𝑦

′ )
2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ + 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
7 [(𝐶+𝑠𝑐𝐴𝑥𝑥

′ + 𝐶−𝑠𝑐𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ − 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ − 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ + 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
7 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ + 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ − 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

25
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

 

 

𝜀
+
1
2
,−
7
2

(2)
=

7 [(𝐶+𝑠𝑐𝐴𝑥𝑥
′ − 𝐶−𝑠𝑐𝐴𝑦𝑦

′ )
2
+ (𝐶+𝑠𝑐𝐴𝑥𝑦

′ + 𝐶−𝑠𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
7 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ − 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ + 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

49
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

 

 

𝜀
−
1
2
,+
7
2

(2)
=

49
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
7 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ − 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ + 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
7 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ − 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ + 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
−
1
2
,+
5
2

(2)
=

25
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
7 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ + 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ − 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ − 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ + 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
7 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ + 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ − 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ − 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ + 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
−
1
2
,+
3
2

(2)
=

9
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
12 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ + 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ − 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ − 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ + 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ + 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ − 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ − 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ + 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 



 S150 

𝜀
−
1
2
,+
1
2

(2)
=

1
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
15 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ + 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ − 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
16 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ − 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ + 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ + 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ − 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
16 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ − 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ + 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
−
1
2
,−
1
2

(2)
=

1
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
16 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ + 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ − 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ − 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ + 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
16 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ + 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ − 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ − 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ + 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
−
1
2
,−
3
2

(2)
=

9
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
15 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ + 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ − 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ − 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ + 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ + 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ − 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ − 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ + 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
−
1
2
,−
5
2

(2)
=

25
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
12 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ + 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ − 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
7 [(𝑆−𝑐𝑐𝐴𝑥𝑥

′ − 𝑆+𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆−𝑐𝑐𝐴𝑥𝑦

′ + 𝑆+𝑐𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ + 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ − 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
7 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ − 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ + 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
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𝜀
−
1
2
,−
7
2

(2)
=

49
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃+

2√(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
7 [(𝑆+𝑐𝑐𝐴𝑥𝑥

′ + 𝑆−𝑐𝑐𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑐𝑐𝐴𝑥𝑦

′ − 𝑆−𝑐𝑐𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
7 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ + 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ − 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

𝑔𝑧𝑧𝛽𝐵 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
−
3
2
,+
7
2

(2)
=

7 [(𝑆+𝑠𝑠𝐴𝑥𝑥
′ + 𝑆−𝑠𝑠𝐴𝑦𝑦

′ )
2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ − 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

49
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
7 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ + 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ − 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
−
3
2
,+
5
2

(2)
=

7 [(𝑆+𝑠𝑠𝐴𝑥𝑥
′ − 𝑆−𝑠𝑠𝐴𝑦𝑦

′ )
2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ + 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ + 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ − 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

25
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
7 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ − 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ + 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ + 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ − 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
−
3
2
,+
3
2

(2)
=

12 [(𝑆+𝑠𝑠𝐴𝑥𝑥
′ − 𝑆−𝑠𝑠𝐴𝑦𝑦

′ )
2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ + 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ + 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ − 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

9
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
12 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ − 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ + 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ + 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ − 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
−
3
2
,+
1
2

(2)
=

15 [(𝑆+𝑠𝑠𝐴𝑥𝑥
′ − 𝑆−𝑠𝑠𝐴𝑦𝑦

′ )
2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ + 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
16 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ + 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ − 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

1
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
15 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ − 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ + 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
16 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ + 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ − 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
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𝜀
−
3
2
,−
1
2

(2)
=

16 [(𝑆+𝑠𝑠𝐴𝑥𝑥
′ − 𝑆−𝑠𝑠𝐴𝑦𝑦

′ )
2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ + 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ + 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ − 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

1
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
16 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ − 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ + 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
15 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ + 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ − 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
−
3
2
,−
3
2

(2)
=

15 [(𝑆+𝑠𝑠𝐴𝑥𝑥
′ − 𝑆−𝑠𝑠𝐴𝑦𝑦

′ )
2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ + 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ + 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ − 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

9
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
15 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ − 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ + 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
12 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ + 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ − 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
−
3
2
,−
5
2

(2)
=

12 [(𝑆+𝑠𝑠𝐴𝑥𝑥
′ − 𝑆−𝑠𝑠𝐴𝑦𝑦

′ )
2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ + 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
7 [(𝑆+𝑠𝑠𝐴𝑥𝑥

′ + 𝑆−𝑠𝑠𝐴𝑦𝑦
′ )

2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ − 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

25
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
12 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ − 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ + 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2

+
7 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ + 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ − 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

𝜀
−
3
2
,−
7
2

(2)
=

7 [(𝑆+𝑠𝑠𝐴𝑥𝑥
′ − 𝑆−𝑠𝑠𝐴𝑦𝑦

′ )
2
+ (𝑆+𝑠𝑠𝐴𝑥𝑦

′ + 𝑆−𝑠𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 + √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
+

49
4
𝐴𝑧𝑧
′ 2 sin2 2𝜃−

−2√(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2

+
7 [(𝐶+𝑐𝑠𝐴𝑥𝑥

′ − 𝐶−𝑐𝑠𝐴𝑦𝑦
′ )

2
+ (𝐶+𝑐𝑠𝐴𝑥𝑦

′ + 𝐶−𝑐𝑠𝐴𝑦𝑥
′ )

2
]

−𝑔𝑧𝑧𝛽𝐵 − √(𝐷 − 𝑔𝑧𝑧𝛽𝐵)
2 + 3𝐸2 − √(𝐷 + 𝑔𝑧𝑧𝛽𝐵)

2 + 3𝐸2
 

 

     In summary, when the ZFS and g-tensors are collinear but the ZFS and A-tensors are non-collinear and 

the magnetic field is aligned to the z-axis of the principal axis coordinate system, the perturbed energies in 

the second order are represented in a similar way as in the previous section, except for substituting only the 

second-order energies. The expressions explicitly given above for the case including the hyperfine 

interactions as the perturbation are for the first time derived and they are extremely accurate for the sizable 

ZFS tensor. 
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b) ESR Analysis of complex 2.  

Table S6. The possible combinations of the geff/gtrue relationships 

Case gtrue geff geff/gtrue Figure # 

1 

x 0.92 1 −
1 − 3𝜆

√1 + 3𝜆2
 

Figs. S14, S15, S16 S17 and S18 y 1.21 1 −
1 + 3𝜆

√1 + 3𝜆2
 

z 8.8 1 −
2

√1 + 3𝜆2
 

2 

x 1.21 1 −
1 − 3𝜆

√1 + 3𝜆2
 

Figs. 2 and 3 in the main text and 

Figs. S19, S20, S21, S22 and S23 
y 0.92 1 −

1 + 3𝜆

√1 + 3𝜆2
 

z 8.8 1 −
2

√1 + 3𝜆2
 

* Case 2, which is highlighted in yellow, provides the most reasonably simulated ESR spectrum. 

 

Case 1 (see Table S6 for the geff/gtrue relationship) 

 

Figure S14. The calculated gtrue-values by use of the geff-value and geff/gtrue relationships. 
0.92

𝑔𝑋𝑋
true = 1 −

1−3𝜆

√1+3𝜆2
, 

1.21

𝑔𝑌𝑌
true = 1 −

1+3𝜆

√1+3𝜆2
, 

8.8

𝑔𝑍𝑍
true = 1 +

2

√1+3𝜆2
 with λ = E/D. The geff/gtrue relationships adopted here are for the |MS = 

±3/2>-dominant transitions. The inset on the right shows the expanded figure in the range of 1.5 ≤ gtrue ≤ 3.5. The 

broken lines indicate gtrue = 2.0 and 3.0. 
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Figure S15. The simulated randomly-oriented X-band ESR spectra of complex 2 (S = 3/2). The spectra in blue 

and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. Microwave 

frequency used: 9.625 GHz, the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: geff = [0.92, 1,21, 8.8], 

Ax
eff(59Co) = 1345.2 MHz, D = –9 cm–1, and gtrue and Az

true(59Co) for the variable E/D’s are calculated by use of 

the geff-value and the geff/gtrue relationships. The ZFS and g-tensors were assumed to be collinear. A set of rotation 

angles (Euler angles) of the Atrue-tensor with respect to the ZFS tensor were  = –90,  = 90, and  = 36 degrees. 

(Note: Because only Ay-value was considered, of which the principal axis was parallel to the Dz-axis, it seemed 

that there was no effect on the spectra.) Any strain effect of the tensor to the linewidth was not included. The 

simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8]. 

 

 

Figure S16. The simulated randomly-oriented ESR spectra of complex 2 (S = 3/2) as a function of E/D. The 

spectra in blue and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. 

Microwave frequency used: 9.625 GHz, the peak-to-peak linewidth: 1.0 mT; the magnetic tensors: geff = [0.92, 

1.21, 8.80], AZ
eff(59Co) = 1345.2 MHz, D = –9 cm–1 and gtrue and AZ

true(59Co) for the variable E/D’s are shown in 

Table S2-1. The ZFS and g-tensors were assumed to be collinear. A set of rotation angles (Euler angles) of the 

Atrue-tensor with respect to the ZFS tensor were  = –90,  = 90, and  = 36 degrees. (Note: Because only Ay-

value was considered, of which the principal axis was parallel to the Dz-axis, it seemed that there was no effect 

on the spectrum.) Any strain effect of the tensor to the linewidth was not included. The simulated spectra were 

obtained by using EasySpin (ver. 6.0.6) [8]. Note that the resonance peaks marked by a single asterisk *, double 

asterisk ** and triple asterisk *** appear only for the true spin Hamiltonian approach. The inset shows the 

expanded spectra in the range of 120 mT to 300 mT. 
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Table S6. The principal values of the gtrue-tensor and Azz-values used in the simulated spectra of complex 2 

(Figures S17 and S18). 

E/D gXX gYY gZZ E/D gXX gYY gZZ 

0.01 30.5 40.5 2.934 0.14 2.108 3.184 2.989 

0.10 2.965 4.307 2.962 0.15 1.967 2.999 2.998 

0.11 2.691 3.948 2.968 0.20 1.479 2.364 3.045 

0.12 2.464 3.650 2.975 0.25 1.194 1.997 3.014 

0.13 2.272 3.398 2.982 0.30 1.010 1.764 3.172 

 

     One of the possible sets of the magnetic parameters: gXX = 2.108, gYY = 3.184, gZZ = 2.989, AZZ(59Co) 

= 456.98 MHz, D = –9 cm–1 and E/D = +0.14. The extra line observed at about 200 mT was simulated by 

using the parameters. 

 

 

Figure S17. The simulated randomly-oriented X-band ESR spectra of complex 2 (S = 3/2). The spectrum in blue 

and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. Microwave 

frequency used: 9.625 GHz, (the spectrum in black) the magnetic tensors: g1
eff = 8.8, g2

eff = 1.21, g3
eff = 0.92, 

A1
eff(59Co) = 1345 MHz, the peak-to-peak linewidth: 8.0 mT, strain of the linewidth: [0, 900, 900] MHz; (the 

spectrum in blue and red) the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: gXX
eff = 0.92, gYY

eff = 1.21, 

gZZ
eff = 8.8, AZZ

eff(59Co) = 1345 MHz; gXX
true = 2.1085, gYY

true = 3.18412, gZZ
true = 2.9895, AZZ

true(59Co) = 456.98 

MHz, D = –9cm–1 and E/D = +0.14. Any strain effect of the tensor to the linewidth was not included in the 

spectra in blue and red. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8]. Inset: The 

expanded spectra from 120 mT to 300 mT. The extralines attributed from the |MS = ±1/2>-dominant transitions 

can be reproduced by using the true spin Hamiltonian (red line) but not by using the fictitious spin-1/2 

Hamiltonian (blue line). 
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Figure S18. The E/D dependence of the AZ
true-value which is the solution of eq (†) with the parameters used for 

the simulated spectrum in Figure S2-5. Red, green, blue, gray, cyan, magenta, yellow and brown curves 

correspond to the assignments to MI = +7/2, +5/2, +3/2, +1/2, –1/2, –3/2, –5/2 and –7/2, respectively. Because all 

the energies and the parameters were accurate, all the curves cross at one point. The black line indicates the AZ-

value (= 456.98 MHz) calculated by using the relationship (eq (‡)) in the case of E/D = 0.14. The figure on the 

right shows the expanded one in the range of 0.135 ≤ E/D ≤ 0.145. 

 

Case 2 (see Table S6 for the geff/gtrue relationship) 

 

Figure S19. The calculated gtrue values by using the geff-value and geff/gtrue relationships. 
1.21

𝑔𝑥
true = 1 −

1−3𝜆

√1+3𝜆2
, 

0.92

𝑔𝑦
true = 1 −

1+3𝜆

√1+3𝜆2
, 

8.8

𝑔𝑧
true = 1 +

2

√1+3𝜆2
 with λ = E/D. The geff/gtrue relationships adopted here are for the |MS = 

±3/2>-dominant transitions. 
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Figure S20. The simulated randomly-oriented ESR spectra of complex 2 (S = 3/2) as a function of E/D. E/D 

used were 0.01, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. The spectra in blue and red are based on the fictitious spin-1/2 

and true spin Hamiltonian approaches, respectively. Microwave frequency used: 9.625 GHz, the peak-to-peak 

linewidth: 1.0 mT; the magnetic tensors: geff = [1.21, 0.92, 8.80], AZ
eff(59Co) = 1345.2 MHz, D = –9 cm–1 and gtrue 

and AZ
true(59Co) for the variable E/D’s are shown in Table S7. The ZFS and g-tensors were assumed to be 

collinear. A set of rotation angles (Euler angles) of the Atrue-tensor with respect to the ZFS tensor were  = –90, 

 = 90, and  = 36 degrees. (Note: Because only Ay-value was considered, of which the principal axis was 

parallel to the Dz-axis, it seemed that there was no effect on the spectrum.) Any strain effect of the tensor to the 

linewidth was not included. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8].  

 

 

Figure S21. The simulated randomly-oriented ESR spectra of complex 2 (S = 3/2) as a function of E/D. The 

spectra in blue and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. 

Microwave frequency used: 9.625 GHz, the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: geff = [1.21, 

0.92, 8.80], AZ
eff(59Co) = 1345.2 MHz, D = –9 cm–1 and gtrue, and AZ

true(59Co) for the variable E/D’s are shown in 

Table S7. The ZFS and g-tensors were assumed to be collinear. A set of rotation angles (Euler angles) of the 

Atrue-tensor with respect to the ZFS tensor were  = –90,  = 90, and  = 36 degrees. (Note: Because only Ay-

value was considered, of which the principal axis was parallel to the Dz-axis, it seemed that there was no effect 

on the spectrum.) Any strain effect of the tensor to the linewidth was not included. The simulated spectra were 

obtained by using EasySpin (ver. 6.0.6) [8]. Note that the resonance peaks marked by a single asterisk *, double 

asterisk ** and triple asterisk *** appear only for the true spin Hamiltonian approach. The inset shows the 

expanded spectra in the range of 120 mT to 300 mT. 
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Table S7. The principal values of the gtrue-tensor and Azz-values used in the simulated spectra of complex 2 

(Figures S22 and S23). 

E/D gXX gYY gZZ E/D gXX gYY gZZ 

0.01 40.1 30.8 2.934 0.18 2.157 1.957 3.025 

0.10 3.900 3.275 2.962 0.19 2.045 1.873 3.035 

0.15 2.587 2.281 2.998 0.20 1.945 1.797 3.045 

0.16 2.425 2.158 3.006 0.25 1.570 1.518 3.014 

0.17 2.283 2.051 3.015 0.30 1.328 1.341 3.172 

 

     One of the possible sets of the magnetic parameters: gXX = 2.283, gYY = 2.051, gZZ = 3.015, AZZ(59Co) 

= 460.91 MHz, D = –9 cm–1 and E/D = +0.17. The extra line observed at about 200 mT was simulated by 

using the parameters. 

 

 

Figure S22. The simulated randomly-oriented X-band ESR spectra of complex 2 (S = 3/2). The spectrum in blue 

and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. Microwave 

frequency used: 9.625 GHz, (the spectrum in black) the magnetic tensors: g1
eff = 8.8, g2

eff = 1.21, g3
eff = 0.92, 

A1
eff(59Co) = 1345 MHz, the peak-to-peak linewidth: 8.0 mT, the strain parameters of the linewidth: [0, 900, 900] 

MHz; (the spectrum in blue and red) the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: gXX
eff = 1.21, 

gYY
eff = 0.92, gZZ

eff = 8.8, AZZ
eff(59Co) = 1345 MHz; gXX

true = 2.2832, gYY
true = 2.0512, gZZ

true = 3.0152, AZZ
true(59Co) 

= 460.91 MHz, D = –9cm–1 and E/D = +0.17. Any strain effect of the tensor to the linewidth was not included in 

the spectra in blue and red. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8]. Inset: The 

expanded spectra from 120 mT to 300 mT. The extralines attributed from the |MS = ±1/2>-dominant transitions 

can be reproduced by using the true spin Hamiltonian (red line) but not by using the fictitious spin-1/2 

Hamiltonian (blue line). 

 

     In the simulated spectrum in Figure S22, AZZ
true = 460.91 MHz was calculated by using the Aeff/Atrue-

relationship for the principal z-axis because 𝐴𝑍𝑍
true  is parallel to 𝑔⃗𝑍𝑍

true . The E/D dependence of AZZ
true 

obtained by putting the magnetic parameters to the derived perturbed energies crosses at a point with E/D = 

0.17 and AZZ
true = 460.91 MHz (Figure S23). 
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Figure S23. The E/D dependence of the AZ
true-value which is the solution of eq (†) with the parameters used for 

the simulated spectrum in Figure S22. Red, green, blue, gray, cyan, magenta, yellow and brown curves 

correspond to the assignments to MI = +7/2, +5/2, +3/2, +1/2, –1/2, –3/2, –5/2 and –7/2, respectively. Because all 

the energies and the parameters were accurate, all the curves cross at one point. The black line indicates the AZ-

value (= 460.91 MHz) calculated by using the relationship (eq (‡)) in the case of E/D = 0.17. The inset on the 

right shows the expanded figure in the range of 0.165 ≤ E/D ≤ 0.175. 

 

Table S8. Comparison of the theoretical and experimental magnetic parameters for complex 2. The 

theoretical values were taken from the result of DFT calculations. 

 Theor. Expl. (Case 1) Expl. (Case 2) 

gx 2.0705 3.18412 2.0512 

gy 2.0469 2.9895 3.0152 

gz 2.1176 2.1085 2.2832 

Ay/MHz 72.37 456.98 460.91 

D/cm–1 +9.9705 –9 –9 

E/D +0.1666 +0.14 +0.17 
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3. Complex 3 

a) Perturbed energies in the case of non-collinearity between the ZFS and g-tensors for S = 3/2 

Here, we derive the perturbed energies of the spin-Hamiltonian including the ZFS, electron Zeeman and 

hyperfine interactions in the case of non-collinearity between the ZFS and g-tensors, in which the Dz- and gz-

axes are parallel. The non-perturbed terms include the ZFS and electron Zeeman interaction tensors: 

𝐻0 = 𝑺 ∙ 𝐃 ∙ 𝑺 + 𝛽𝑺 ∙ 𝐠 ∙ 𝑩 

where the g-tensor is represented in the matrix form as 

𝐠 = (

𝑔𝑥𝑥 𝑔𝑥𝑦 0

𝑔𝑦𝑥 𝑔𝑦𝑦 0

0 0 𝑔𝑧𝑧

) 

Using 2nd-order parameters of ZFS (D and E) and with the magnetic field parallel to the z-axis of the ZFS 

tensor, the non-perturbed Hamiltonian is described as 

𝐻0 = 𝐷 [𝑆𝑧
2 −

1

3
𝑆(𝑆 + 1)] + 𝐸(𝑆𝑥

2 − 𝑆𝑦
2) + 𝑔𝑧𝑧𝛽𝑆𝑧𝐵𝑧 

which is the same formula as in the collinear case. Therefore, the zeroth-order energies are the same as the 

previous ones. Since the ZFS and A-tensors are collinear, the first- and the second-order perturbed energies 

are already derived. 
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b) ESR analysis of complex 3 

Figure S24 shows the simulated ESR spectra of complex 3 as a function of E/D in the case of non-collinearity 

between the ZFS and g-tensors. The principal values of the g-tensor were optimized for each value of E/D. 

Since the A-tensor was assumed to be collinear with the ZFS tensor, AZ
true in the right-most column in Table 

S9 was calculated by using the AZ
eff/ AZ

true relationship. 

 

Figure S24. The simulated randomly-oriented X-band ESR spectra of complex 3 (S = 3/2). The spectra in 

blue and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. 

Microwave frequency used: 9.482 GHz, the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: geff = 

[1.51, 1.19, 7.6], Az
eff(59Co) = 745.5 MHz, D = –10 cm–1 and gtrue and Az

true(59Co) for the variable E/D’s are 

in Table S9. The D- and A-tensors were assumed to be collinear. A set of rotation angles (Euler angles) of 

the gtrue-tensor with respect to the D-tensor were  = –113,  = 180, and  = 0 degrees. Any strain effect of 

the tensor to the linewidth was not included. The simulated spectra were obtained by using EasySpin (ver. 

6.0.6) [8]. The resonance peaks marked by an asterisk *, double asterisk ** and triple asterisk *** appear 

only for the true spin Hamiltonian approach. The broken line at 150 mT indicates the resonance position of 

the extra line appearing in the experimental spectrum. 

 

Table S9. The principal values of the gtrue-tensor and Az
true-values used in the simulated spectra of complex 

3 in Figure S24. 

E/D = λ gX
true gY

true gZ
true AZ

true/MHz 

0.14 3.86 2.82 2.582 253.2 

0.15 3.62 2.64 2.589 253.9 

0.16 3.42 2.48 2.596 254.7 

0.17 3.23 2.34 2.604 255.4 

0.18 3.07 2.22 2.612 256.2 

0.19 2.93 2.12 2.621 257.1 

0.20 2.80 2.02 2.630 258.0 

* 

* 

** 

*** 
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0.21 2.68 1.93 2.640 258.9 

0.22 2.57 1.86 2.649 259.8 

0.23 2.48 1.79 2.659 260.8 

0.24 2.39 1.72 2.670 261.9 

0.25 2.31 1.67 2.681 262.9 

0.26 2.24 1.61 2.692 264.0 

0.27 2.17 1.57 2.703 265.1 

0.28 2.11 1.52 2.714 266.3 

0.29 2.14 1.48 2.727 267.5 

0.30 1.98 1.45 2.739 268.7 

0.31 1.93 1.42 2.752 269.9 

0.32 1.87 1.39 2.764 271.1 

0.33 1.82 1.37 2.777 272.4 

 

     We consider two cases, E/D = +0.14 (Case 1) and +0.33 (Case 2), where the extraline was simulated, 

appearing at about 150 mT (indicated by the broken line in Figure S24). 

 

Case 1 

 

Figure S25. The simulated randomly-oriented X-band ESR spectra of complex 3 (S = 3/2). The spectra in 

black and blue are the same as given in Figure 9 in the manuscript. The spectrum in red is based on the true 

spin Hamiltonian approach. Microwave frequency used: 9.4715 GHz, (the spectrum in red) magnetic 
tensors: gX

true = 3.86, gY
true = 2.82, gZ

true = 2.5818, AZ
true(59Co) = 253.2 MHz, D = –10 cm–1 and E/D = 

+0.14, peak-to-peak linewidth: 1.0 mT. The ZFS and A-tensors were assumed to be collinear. A set of 
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rotation angles (Euler angles) of the gtrue-tensor with respect to the ZFS tensor were  = –113,  = 180, and 

 = 0 degrees. Any strain effect of the tensor to the linewidth was not included in the spectrum in red. The 

simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8]. The resonance peaks marked by an 

asterisk *, double asterisk ** and triple asterisk *** appear only for the true spin Hamiltonian approach. 

 

 
Figure S26. The E/D dependence of the 𝐴𝑍

true-value which is the solution of eq (†). Red, green, blue, gray, 

cyan, magenta, yellow and brown curves correspond to the assignments to MI = +7/2, +5/2, +3/2, +1/2, –

1/2, –3/2, –5/2 and –7/2, respectively. Because all the energies and the parameters were accurate, all the 

curves cross at one point. The black line indicates the AZ-value (= 253.242 MHz) calculated by using of the 

relationship (eq (‡)) in the case of E/D = 0.33. The right figure shows the expanded one in the range of 

0.138 ≤ E/D ≤ 0.142. 

 

Case 2 

 

Figure S27. The simulated randomly-oriented X-band ESR spectra of complex 3 (S = 3/2). The spectra in 

black and blue are the same as given in Figure 9 in the manuscript. The spectrum in red is based on true 

spin Hamiltonian approach. Microwave frequency used: 9.4715 GHz, (the spectrum in red) the magnetic 

tensors: 𝑔𝑋
true = 1.82, 𝑔𝑌

true = 1.37, 𝑔𝑍
true = 2.7774, 𝐴𝑍

true( Co 
59 ) = 272.4 MHz, 𝐷 = −10 cm−1 and 

𝐸 𝐷⁄ = +0.33, the peak-to-peak linewidth: 1.0 mT. The D-, and A-tensors were assumed to be collinear. A 

set of rotation angles (Euler angles) of the gtrue-tensor with respect to the D-tensor were  = –113,  = 180, 

and  = 0 degrees. Any strain effect of the tensor to the linewidth was not included in the spectrum in red. 

The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8] The inset shows the expanded 

spectrum in the range from 135 mT to 365 mT. The resonance peaks marked by an asterisk * and double 
asterisk ** appear only for the true spin Hamiltonian approach. 

 

* 

** 
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Figure S28. The E/D dependence of the 𝐴𝑍

true-value which is the solution of eq (†). Red, green, blue, gray, 

cyan, magenta, yellow and brown curves correspond to the assignments to MI = +7/2, +5/2, +3/2, +1/2, –

1/2, –3/2, –5/2 and –7/2, respectively. Because all the energies and the parameters were accurate, all the 

curves cross at one point. The black line indicates the AZ-value (= 272.403 MHz) calculated by using the 

relationship (eq (‡)) in the case of E/D = 0.33. The figure on the right shows the expanded one in the range 

of 0.325 ≤ E/D ≤ 1/3. 
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4. Discrepancy in the experimental geff-tensors between the conventional X-band and high-

field ESR spectroscopies for complex 4. 

We have examined three possible cases below to evaluate the discrepancy in the experimental geff-

tensors between the conventional X-band and high-field ESR spectroscopies for complex 4.  

     Case 1: Assuming that the experimental geff-tensor from the X-band spectroscopy is correct 

and E/D = 0.26. The geff/gtrue relationships give gtrue = [2.46, 2.25, 2.54] (gave = 2.417) or [1.75, 3.16, 

2.54] (gave = 2.483). The former choice gives the X-band simulated spectrum (Fig. 15) based on the 

true spin Hamiltonian approach. The gz-value of 2.51 obtained from the high-field spectroscopy is 

close to 2.54, while both the gx- and gy-values from the high-field spectroscopy disagree with those 

from the X-band spectroscopy with the help of the relationships. 

     Case 2: Assuming that the experimental gtrue-tensor from the high-field spectroscopy is correct 

and E/D = 0.26. The geff/gtrue relationships give geff = [1.76, 1.30, 7.09] or [1.66, 1.37, 7.09], both of 

which don’t seem reasonable. 

     Case 3: Assuming that both the geff- and gtrue-tensor (from the high-field spectroscopy) are 

correct. The three geff/gtrue relationships give greatly different values for the ratio of E/D. We have 

also invoked the relationships for the possible occurrence of the non-collinearity between the D- and 

g-tensors, and there is no such possibility enabling us to reproduce the X-band spectrum. 

 

 

 

 

 

 

 

 

 

Fig. S29 (black) The reproduced randomly-oriented X-band ESR spectrum of complex 4 (S = 3/2) shown in 

the literature [10] and (red) the simulated ESR spectrum of complex 4 (S = 3/2) calculated by using the 

magnetic parameters from the high-field experiment shown in the literature [11]. Microwave frequency 

used: 9.474 GHz; (the spectrum in black) the magnetic parameters: g1
eff = 7.2, g2

eff = 1.97, g3
eff = 1.4, 

A1
eff(59Co) = 560.5 MHz, the peak-to-peak linewidth: 16.0 mT, the strain parameters of the linewidth: [0, 

1850, 1600] MHz; (the spectrum in red) the magnetic parameters: g = [2.20, 2.08, 2.51], D = −38.7 cm−1 

and E = −10.0 cm−1 (E/D = 0.26), the peak-to-peak linewidth: 16 mT. The D-, g- and A-tensors were 

assumed to be collinear. Any strain effect of the tensor to the linewidth was not included in the spectrum in 

red. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8]. 
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Quantum Chemical Calculations 

1. Cartesian coordinates of complex 1 - 3 optimized at the UB3LYP/6-31G* method with PCM (CH2Cl2 

solvent)  

Cartesian coordinates of complex 1 

Co      1.123826    0.490574   -0.010374 

S       2.965976    1.884343   -0.126014 

O       4.883328   -2.635118    0.671629 

O       6.078034   -1.576772   -0.939381 

N      -1.734345    1.426148   -0.253925 

N      -0.515978    2.014018   -0.049327 

N      -1.211109   -0.907482   -1.082154 

N       0.045033   -0.552557   -1.484883 

N      -1.283233   -0.412126    1.433060 

N       0.069572   -0.319422    1.609306 

N       2.603479   -1.146266    0.055054 

C      -2.664815    2.362564   -0.605923 

C      -2.022244    3.593753   -0.613008 

C      -0.687991    3.334682   -0.252148 

C      -1.707009   -1.874947   -1.909060 

C      -0.740435   -2.130543   -2.877237 

C       0.336661   -1.281374   -2.580825 

C      -1.855935   -0.977152    2.536527 

C      -0.833582   -1.268268    3.434377 

C       0.351638   -0.830267    2.824231 

C      -4.084394    2.098417   -0.911242 

C      -4.487495    1.071818   -1.780970 

C      -5.836542    0.884945   -2.080938 

C      -6.805366    1.724754   -1.526458 

C      -6.415726    2.756457   -0.669091 

C      -5.067262    2.941931   -0.364159 

C       0.348681    4.365007   -0.039747 

C       1.108034    4.401404    1.139602 

C       2.007354    5.442072    1.372329 

C       2.161905    6.462415    0.431329 

C       1.410477    6.436636   -0.746359 

C       0.507558    5.399087   -0.977467 

C      -3.029035   -2.518683   -1.789589 

C      -3.792264   -2.725215   -2.952355 

C      -5.025670   -3.373185   -2.887751 

C      -5.516375   -3.826204   -1.660686 

C      -4.762090   -3.633312   -0.501142 

C      -3.526325   -2.990031   -0.564194 

C       1.588593   -1.131930   -3.344723 

C       2.223203   -2.265023   -3.881820 

C       3.386990   -2.133898   -4.639312 

C       3.932529   -0.869007   -4.874792 

C       3.304871    0.264038   -4.351044 

C       2.139952    0.135863   -3.593668 

C      -3.301341   -1.181250    2.750563 

C      -3.741659   -2.382762    3.332626 

C      -5.094524   -2.588067    3.604133 

C      -6.028957   -1.594866    3.300751 

C      -5.600250   -0.393390    2.731325 

C      -4.248167   -0.184165    2.462513 
C       1.704526   -0.858377    3.414792 

C       2.145796   -2.018360    4.075288 



 S167 

C       3.397735   -2.054280    4.688671 

C       4.226586   -0.930217    4.657258 

C       3.794931    0.229871    4.009482 

C       2.542506    0.269187    3.394380 

C       4.308976    0.635946    0.062850 

C       3.906179   -0.741501   -0.495505 

C       4.988614   -1.770826   -0.178861 

C       7.220943   -2.444679   -0.701188 

C       8.092052   -1.911712    0.424726 

B      -1.911540   -0.080795    0.043072 

H       2.746176   -1.470750    1.013741 

H       2.257855   -1.959268   -0.454391 

H      -2.463532    4.553797   -0.837701 

H      -0.814416   -2.832920   -3.694409 

H      -0.943833   -1.666588    4.432150 

H      -3.742481    0.426698   -2.233829 

H      -6.128470    0.081625   -2.751631 

H      -7.855748    1.577431   -1.762300 

H      -7.161472    3.415726   -0.233152 

H      -4.768013    3.737971    0.311764 

H       0.977833    3.618268    1.879252 

H       2.585214    5.457116    2.292555 

H       2.861923    7.273174    0.614712 

H       1.526182    7.225092   -1.485296 

H      -0.076175    5.381429   -1.893926 

H      -3.419037   -2.363046   -3.906063 

H      -5.604253   -3.520074   -3.795658 

H      -6.478673   -4.328020   -1.609104 

H      -5.132744   -3.984372    0.457717 

H      -2.940270   -2.863999    0.339331 

H       1.807148   -3.250807   -3.692551 

H       3.869581   -3.019979   -5.042477 

H       4.838978   -0.767047   -5.464985 

H       3.718493    1.251608   -4.534885 

H       1.647651    1.019401   -3.201577 

H      -3.018249   -3.160378    3.561375 

H      -5.417563   -3.524486    4.050693 

H      -7.083095   -1.754503    3.509909 

H      -6.318475    0.387643    2.498260 

H      -3.923935    0.760662    2.039578 

H       1.505032   -2.895538    4.096367 

H       3.726314   -2.961227    5.188507 

H       5.201016   -0.957041    5.136958 

H       4.428231    1.112591    3.991516 

H       2.208084    1.179649    2.906853 

H       5.204965    0.982476   -0.458052 

H       4.558700    0.536400    1.125926 

H       3.806806   -0.658813   -1.579921 

H       6.854921   -3.450752   -0.485515 

H       7.753952   -2.450066   -1.653998 

H       8.422373   -0.889965    0.211942 

H       8.979646   -2.545082    0.532093 

H       7.549045   -1.917900    1.374306 

H      -3.062750   -0.362336    0.059984 

 

Cartesian coordinates of complex 2 

Co     -0.043558    0.582647   -0.035243 
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S      -1.494225    2.394014   -0.247271 

O      -4.461155   -1.533024   -0.583094 

O      -5.433943   -0.041637    0.822919 

N       2.953527    0.817266   -0.111857 

N       1.859018    1.644042   -0.139001 

N       2.004779   -1.003592    1.352062 

N       0.773144   -0.449675    1.583813 

N       1.945580   -1.231336   -1.192731 

N       0.708344   -0.712083   -1.467510 

N      -1.919977   -0.611601    0.134957 

C       4.098858    1.541185   -0.208362 

C       3.732949    2.876911   -0.300583 

C       2.327259    2.897147   -0.253066 

C       2.418839   -1.682763    2.452641 

C       1.428697   -1.556524    3.419929 

C       0.417727   -0.776004    2.836417 

C       2.292723   -2.125173   -2.154110 

C       1.252589   -2.174832   -3.075263 

C       0.280797   -1.275094   -2.608161 

C       5.470676    0.938464   -0.208871 

C       1.438343    4.102869   -0.309053 

C       3.727344   -2.406488    2.540938 

C      -0.876128   -0.323032    3.443370 

C       3.586910   -2.879232   -2.159523 

C      -1.042377   -0.927002   -3.221622 

C      -3.091390    1.491031   -0.403655 

C      -3.107314    0.200728    0.439550 

C      -4.394294   -0.575692    0.166444 

C      -6.745713   -0.630324    0.592403 

C      -7.408269   -0.029744   -0.636472 

B       2.759477   -0.708439    0.024319 

H      -2.105637   -1.125572   -0.727999 

H      -1.801119   -1.332312    0.846321 

H       4.395854    3.726616   -0.389538 

H       1.443348   -1.969096    4.419105 

H       1.209802   -2.779150   -3.970644 

H      -3.911600    2.137476   -0.080793 

H      -3.267684    1.236254   -1.455685 

H      -3.078156    0.478745    1.495772 

H      -6.629786   -1.712330    0.501087 

H      -7.302599   -0.401260    1.502947 

H      -7.483196    1.058593   -0.546292 

H      -8.419921   -0.436857   -0.742414 

H      -6.844482   -0.272052   -1.542064 

H       3.819852   -1.257568    0.048489 

H      -1.667406   -1.076189    3.332612 

H      -0.752464   -0.145712    4.516099 

H      -1.222590    0.607257    2.983954 

H       3.823576   -3.171732    1.763141 

H       4.578325   -1.724522    2.435684 

H       3.806557   -2.899029    3.513745 

H       3.609982   -3.557980   -3.016222 

H       4.449712   -2.208224   -2.234480 

H       3.714716   -3.475071   -1.249343 

H      -1.387508    0.055166   -2.884691 

H      -0.962598   -0.899950   -4.312942 
H      -1.815589   -1.667424   -2.977484 

H       0.855179    4.220019    0.611264 
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H       2.043260    5.004506   -0.443413 

H       0.722829    4.041290   -1.135292 

H       5.671190    0.375168    0.709379 

H       5.617107    0.252105   -1.050540 

H       6.217854    1.732916   -0.287909 

 

Cartesian coordinates of complex 3 

Co      0.651550    0.036957   -0.204214 

O      -0.973842    1.160152   -0.174056 

N       3.281109   -1.177174   -0.999643 

N       1.989548   -1.095052   -1.441692 

N       3.420554    1.145133   -0.027405 

N       2.140823    1.567047   -0.294169 

N       2.930794   -0.816287    1.493073 

N       1.570666   -0.676612    1.522521 

N      -0.859668   -1.522602   -0.262936 

C      -2.143032    0.526189   -0.129668 

C      -2.167185   -0.886939   -0.167116 

C      -3.344154   -1.630822   -0.119864 

C      -4.582359   -0.994213   -0.029880 

C      -4.562650    0.413788    0.007223 

C      -3.406366    1.197824   -0.037897 

C      -3.486590    2.737523   -0.005710 

C      -2.938636    3.304385   -1.337666 

C      -2.665500    3.285909    1.186389 

C      -4.929312    3.257910    0.155987 

C      -5.920738   -1.754142    0.023161 

C      -6.796278   -1.354804   -1.188745 

C      -5.722037   -3.281239   -0.015840 

C      -6.673588   -1.403080    1.328779 

C       4.025365   -1.910996   -1.868245 

C       3.185109   -2.312909   -2.898846 

C       1.921572   -1.775677   -2.595030 

C       4.275622    2.199385   -0.066794 

C       3.529887    3.330787   -0.369894 

C       2.201444    2.891559   -0.506336 

C       3.373577   -1.289627    2.685275 

C       2.263684   -1.458102    3.506113 

C       1.155319   -1.058341    2.741232 

C       5.486712   -2.185101   -1.684034 

C       0.649097   -1.894329   -3.380077 

C       5.748185    2.087392    0.186056 

C       0.986637    3.695052   -0.851021 

C       4.816272   -1.553841    2.989888 

C      -0.291411   -1.026800    3.132721 

B       3.717217   -0.353373    0.239755 

H      -0.786411   -2.071501   -1.119873 

H      -0.715316   -2.189252    0.495993 

H      -3.268374   -2.713941   -0.153675 

H      -5.516661    0.923480    0.076249 

H      -3.574440    2.995095   -2.176606 

H      -2.926763    4.401917   -1.312170 

H      -1.924403    2.950382   -1.528690 

H      -3.092950    2.941480    2.136543 

H      -1.628124    2.952641    1.134245 
H      -2.685189    4.383631    1.189151 

H      -5.390571    2.910457    1.087941 



 S170 

H      -5.574847    2.958982   -0.678112 

H      -4.915786    4.353914    0.183228 

H      -7.760907   -1.877228   -1.156566 

H      -6.300208   -1.615526   -2.131152 

H      -6.999878   -0.278804   -1.204507 

H      -5.221644   -3.602948   -0.936553 

H      -6.695534   -3.783388    0.024029 

H      -5.130543   -3.636719    0.835955 

H      -6.084395   -1.688726    2.208161 

H      -6.884105   -0.330717    1.401161 

H      -7.632398   -1.934853    1.374361 

H       3.454669   -2.909779   -3.759150 

H       3.900749    4.341064   -0.475481 

H       2.262849   -1.815769    4.526447 

H       6.080133   -1.264036   -1.700946 

H       5.842089   -2.831196   -2.491292 

H       5.690917   -2.686859   -0.731835 

H       0.115295   -2.828583   -3.159557 

H       0.859938   -1.896414   -4.454084 

H      -0.025500   -1.057518   -3.173534 

H       5.961953    1.690158    1.184482 

H       6.207901    3.076505    0.109595 

H       6.239081    1.428426   -0.538797 

H       1.010333    4.012534   -1.901674 

H       0.935181    4.604504   -0.241426 

H       0.083257    3.106105   -0.686154 

H       5.252355   -2.280005    2.295159 

H       4.908660   -1.954867    4.002704 

H       5.419501   -0.641264    2.929418 

H      -0.878192   -0.427690    2.431256 

H      -0.411643   -0.594395    4.131603 

H      -0.723190   -2.035345    3.166273 

H       4.887251   -0.507771    0.426123 
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2. Relationship between molecular structures and principal axes of the A, g, and D tensors. 

The relationship between the molecular structures and principal axes of the theoretical magnetic tensors for 

complex 1–3 calculated in this study are summarized in Figure S30. The calculations were carried out by two 

methods, i.e., DFT and CASSCF.  

 

 
Figure S30. Relationship between the molecular structures and principal axes of the theoretical D-, g-, and A-

tensors for complex 1–3. The principal axes of the magnetic tensors obtained by the DFT and CASSCF 

method are depicted. 
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3. CASSCF calculations of complex 1–3. 

The cobalt complexes 1–3 have trigonal bipyramidal structures at the UB3LYP/6-31G* optimized geometries. 

In the trigonal bipyramidal coordinations, the valence d orbitals split into three groups: dxz and dyz (e′′ 

symmetry in D3h point group), dxy and dx2−y2 (e′), and dz2 (a1′) orbitals. The e′′ orbitals (dxz and dyz) are the 

most stable among the three groups, and the dz2 orbital is the most unstable. The CoII complexes under study 

have seven valence d-electrons and therefore the main configuration of the spin-quartet ground state is given 

by (dxz)2(dyz)2(dxy)1(dx2−y2)1(dz2)1. The energy gap between the e′′ and e′ orbitals is generally small and thus 

excited states arising from the electron excitation from the e′′ to e′ orbitals have small excitation energies. 

We note that such a quasi-degeneracy of the electronic states prevents us to predict the g- and DSO-tensors by 

means of DFT methods for those magnetic tensors. Those magnetic tensors can be calculated by using the 

second-order perturbation theory starting from a non-relativistic wavefunction as the unperturbed 

wavefunction. Thus, we carried out CASSCF calculations of the electronic ground and excited states of 

complex 1–3. In the present study, we used the Sapporo-DZP basis set only for the cobalt atom, and the 3-

21G basis set for the other nuclei, due to the limitations of our computational resources. 

     The CASSCF active space of complex 1–3 is illustrated in Figure S31. The active space consists of the 

valence 3d orbitals/electrons of the cobalt atom. We carried out the state-specific (SS) CASSCF for the 

electronic ground state. Electronic excited states calculations were carried out at the CAS-CI level by using 

the SS-CASSCF canonical orbitals for the ground state. The CASSCF excitation energies, major electronic 

configurations having the CI coefficient c greater than 0.3 (c > 0.3), and contributions to the principal values 

of the g- and DSO-tensors are summarized in Tables S10–S12. From the Tables S10–S12, the wavefunction 

of the 1 4A ground state is well described by the single configuration, justifying the usage of DFT for the 

ground state geometry optimizations and the A-tensor calculations. However, complex 1–3 have many low-

lying excited states, and the first excited quartet state (2 4A) is calculated to be ca. 2,000 cm−1 above the 

ground state. From the CASSCF wavefunction analyses, the 2 4A state contributes significantly to the gz and 

DSO
z principal values. The other low-lying states also have non-negligible contributions to the g- and DSO-

tensors. In the DSO-tensor, the spin-doublet and quartet states have positive and negative contributions, 

respectively, to the principal value of the DSO-tensor. This is because the absolute sign of the coefficients 

depending on the difference in spin quantum numbers between the ground and excited states appearing in the 

sum-over-states formula is different for ∆S = 0 and ±1 [12]. Note that only the electronic excited states having 

the same spin quantum number as the electronic ground state can contribute to the g-tensor, and therefore the 

spin-doublet excited states have no contributions to the g-tensor of complex 1–3. 
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Figure S31. The CASSCF canonical orbitals of the electronic ground state of complex 1–3. Red arrows specify 

the main electronic configuration of the ground state. 

 

Table S10. The electronic states of complex 1 calculated at the CASSCF(7e,5o)/Sapporo-DZP(Co) and 3-

21G(other nuclei) level. 

State Main configurationsa ∆E/cm−1 
gii

b DSO
ii

c/cm−1 

i = x i = y i = z i = x i = y i = z 

1 4A 0.99 (22uuu) 0       

2 4A 
−0.62 (u22uu) +0.60 (2u2uu) 

 −0.42 (uu22u) 
1 862 0.0014 0.0019 0.4745 −0.1523 −0.3854 −46.8702 

3 4A 
−0.62 (u22uu) −0.59 (2u2uu) 

 −0.38 (2uu2u) 
2 906 0.1025 0.1129 0.0010 −5.5054 −15.9127 −0.1709 

4 4A 
−0.73 (2uu2u) −0.44 (uu22u) 

 −0.42 (2uuu2) 
6 090 0.0302 0.0391 0.0882 −4.9773 −2.2337 −8.7662 

5 4A −0.69 (u2u2u) +0.46 (u2uu2) 6 302 0.1187 0.0426 0.0354 −14.5984 −1.5917 −3.8114 

6 4A −0.82 (uu2u2) +0.49 (u2uu2) 10 477 0.0227 0.0006 0.0003 −2.3709 −0.0107 −0.0461 

7 4A 0.90 (uuu22) 14 193 0.0001 0.0000 0.0002 −0.0064 −0.0001 −0.0221 

8 4A 
−0.60 (uu22u) +0.53 (u2u2u) 

 +0.32 (u22uu) 
24 160 0.0004 0.0000 0.0001 −0.0505 −0.0006 −0.0165 

9 4A 

−0.43 (u2uu2) +0.41 (2uu2u) 

 −0.40 (uu2u2) −0.38 

(2uuu2) 

 −0.33 (uu22u) 

24 667 0.0016 0.0000 0.0000 −0.1626 −0.0058 −0.0032 

10 4A 
0.63 (2uuu2) −0.51 (u2uu2) 

 +0.34 (uuu22) 
25 702 0.0000 0.0000 0.0012 −0.0004 −0.0002 −0.1424 

1 2A 0.90 (222u0) 15 806    0.0709 0.0166 1.3954 

2 2A 0.83 (2220u) + 0.34 (u22du) 18 482    0.4716 3.8617 0.1008 

3 2A −0.76 (22u20) −0.39 (2u220) 18 905    0.2849 0.0031 0.0044 

4 2A −0.86 (22udu) 20 815    0.0005 0.0004 0.2521 
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5 2A 
−0.55 (22uud) +0.44 (2u2ud) 

 −0.38 (u22ud) 
21 295    0.0000 0.0019 1.7546 

6 2A 0.53 (u22du) −0.31 (u2202) 22 369    0.6478 0.2101 0.9411 

7 2A 
−0.55 (2u2du) +0.32 (u22ud) 

 −0.31 (ud22u) 
22 444    1.2149 0.5107 0.4749 

8 2A 

−0.50 (2uu2d) −0.50 (u22ud)  

 +0.34 (u2u2d) −0.33 

(2u2ud) 

22 713    0.0067 0.4881 0.0001 

9 2A 
0.62 (2ud2u) +0.44 (2202u) 

 −0.37 (u2d2u)  
24 513    0.4439 4.4679 0.0019 

10 2A 

−0.35 (u22ud) −0.35 (2u220) 

 +0.31 (u2220) −0.31 

(u22du) 

26 118    0.0617 0.1222 0.0002 

11 2A 
−0.66 (22uud) −0.42 (2u2ud) 

 +0.42 (uu22d) 
26 660    0.0001 0.0002 0.0418 

12 2A 

−0.48 (uu22d) −0.35 (u2u2d) 

 −0.31 (2uu2d) −0.30 

(u2220) 

27 759    0.0003 0.0023 0.0008 

13 2A 0.52 (2202u) −0.33 (2022u) 28 941    0.5128 0.0567 0.0105 

14 2A 
−0.55 (u2d2u) −0.33 (2ud2u) 

 +0.32 (u2202) 
29 642    0.0024 0.0001 0.3352 

15 2A −0.61 (22u02) −0.34 (u2ud2) 30 641    0.3129 0.1998 0.0212 

16 2A 
0.46 (u2202) +0.41 (2uud2) 

 +0.34 (2uu2d) 
31 374    0.0004 0.0404 0.0412 

17 2A 0.76 (uu2d2) 31 864    0.0016 0.0022 0.0133 

18 2A −0.58 (ud2u2) +0.45 (u2du2) 32 467    0.0307 0.0031 0.5266 

19 2A 

−0.40 (2udu2) +0.38 (2022u) 

 +0.38 (202u2) −0.30 

(u2d2u) 

32 864    0.1310 0.0980 0.1134 

20 2A 
0.51 (022u2) +0.41 (u2du2) 

 −0.39 (2ud2u) 
32 897    0.4325 0.2606 0.0108 

21 2A −0.46 (2u022) +0.38 (u2022) 34 311    0.0247 0.4635 0.0175 

22 2A 
−0.57 (udu22) +0.40 (uu2d2) 

 +.31 (ud22u) 
34 732    0.5894 0.0919 0.0118 

23 2A 
0.43 (220u2) +0.40 (2u022) 

 +0.39 (u2022) 
34 898    0.0275 0.0173 0.5097 

24 2A 
−0.49 (20u22) +0.45 (02u22) 

 −0.32 (uu22d) 
35 717    0.0260 0.0014 0.0175 

25 2A 

−0.45 (udu22) +0.40 (u2ud2) 

 +0.38 (2uud2) −0.37 

(ud22u) 

36 298    0.7669 0.1846 0.0183 

26 2A 0.75 (uud22) 36 557    0.0012 0.0033 0.3389 

27 2A −0.57 (u0222) +0.55 (0u222) 37 356    0.0006 0.0024 0.1563 

28 2A 0.61 (u0222) +0.60 (0u222)  37 660    0.1560 0.0052 0.0001 

29 2A 0.30 (u22ud) 47 832    0.1514 0.1085 0.0001 

30 2A 

−0.39 (u2220) −0.36 (2uud2) 

 −0.35 (2u220) −0.32 

(220u2) 

48 183    0.0001 0.0007 0.3052 

31 2A 0.34 (2u2ud) −0.33 (u2u2d) 48 892    0.0004 0.0043 0.0689 

32 2A 
0.45 (ud22u) −0.43 (22u02) 

 −0.38 (2u202) 
49 194    0.0721 0.0001 0.0061 

33 2A 
0.40 (uu22d) +0.36 (ud2u2)  

 −0.33 (20u22) 
49 327    0.0021 0.0016 0.0003 

34 2A 0.45 (udu22) 49 808    0.0757 0.0294 0.0003 

35 2A 
0.49 (2udu2) +0.35 (2022u) 

 −0.34 (0222u) 
50 131    0.0021 0.0002 0.0008 

36 2A 0.50 (0222u) +0.46 (2022u) 72 823    0.0175 0.0808 0.0003 

37 2A −0.37 (u2022) −0.35 (u2220) 73 119    0.0006 0.0062 0.0050 
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 −0.31 (u0222) 

38 2A 

−0.46 (220u2) +0.41 (u2022) 

 −0.41 (022u2) −0.36 

(202u2) 

74 198    0.0004 0.0001 0.0324 

39 2A 
−0.49 (20u22) −0.41 (02u22) 

 +0.37 (202u2) 
74 719    0.0036 0.0223 0.0021 

40 2A −0.45 (2u022) −0.44 (2u202) 75 076    0.0005 0.0127 0.0022 

a The CAS-CI configurations having the coefficient |c| > 0.3 are listed. 2, 0, u, d represents for doubly occupied, unoccupied, 

spin up (α), and spin down (β), respectively. b Contributions to the g-tensor principal values. c Contributions to the DSO-tensor 

principal values. 

 

Table S11. The electronic states of complex 2 calculated at the CASSCF(7e,5o)/Sapporo-DZP(Co) and 3-

21G(other nuclei) level. 

State Main configurationsa ∆E/cm−1 
gii

b DSO
ii

c/cm−1 

i = x i = y i = z i = x i = y i = z 

1 4A 1.00 (22uuu) 0       

2 4A 
−0.71 (2u2uu) +0.49 (u22uu) 

−0.43 (uu22u) 
1 977 0.0003 0.0000 0.4439 −0.0316 −0.0106 −44.2742 

3 4A 
−0.69 (u22uu) −0.51 (2u2uu) 

+0.35 (2uu2u) 
3 007 0.0054 0.2529 0.0002 −7.0272 −18.9203 −0.0193 

4 4A 
0.70 (u2u2u) −0.43 (u2uu2) 

−0.33 (2uu2u) +0.30 (uu22u) 
6 518 0.1453 0.0007 0.0294 −9.8770 −4.9400 −3.1113 

5 4A 
0.66 (2uu2u) +0.53 (uu22u) 

+0.43 (2uuu2) 
6 860 0.0494 0.0017 0.0595 −4.1264 −1.2630 −6.0028 

6 4A 
0.75 (uu2u2) −0.52 (u2uu2) 

−0.40 (2uuu2) 
10 740 0.0220 0.0129 0.0000 −3.6012 −0.0043 −0.0054 

7 4A 0.88 (uuu22) 14 958 0.0000 0.0000 0.0001 −0.0056 −0.0001 −0.0148 

8 4A 

−0.60 (uu22u) +0.50 (u2u2u) 

−0.32 (u22uu) +0.31 (2uu2u) 

+0.31 (uuu22) 

24 248 0.0001 0.0001 0.0003 −0.0171 −0.0001 −0.0270 

9 4A 

−0.52 (uu2u2) −0.51 (2uuu2) 

+0.43 (2uu2u) +0.33 (u22uu) 

−0.31 (u2uu2) 

25 270 0.0007 0.0008 0.0000 −0.1587 −0.0031 −0.0024 

10 4A 
−0.59 (u2uu2) +0.54 (2uuu2) 

−0.33 (uuu22) +0.31 (2u2uu) 
26 129 0.0000 0.0000 0.0010 −0.0050 −0.0003 −0.1209 

1 2A −0.90 (222u0) 15 467    0.0263 0.0393 2.1946 

2 2A 0.84 (2220u) 18 290    0.9997 2.9740 0.0355 

3 2A 
−0.73 (22u20) −0.42 (2u220) 

+0.34 (u2220) 
19 024    0.2786 0.0039 0.0017 

4 2A −0.80 (22udu) +0.31 (22uud) 20 944    0.0006 0.0000 0.0449 

5 2A 
0.56 (22uud) −0.36 (2u2ud) 

+0.35 (2u2du) 
21 257    0.0030 0.0001 1.8859 

6 2A −0.49 (2u2du) +0.36 (u22ud) 22 401    1.2926 0.5125 0.3884 

7 2A −0.53 (u22du) +0.32 (u2202) 22 509    0.4278 0.0923 1.0595 

8 2A 
−0.47 (u22ud) +0.43 (2uu2d) 

−0.41 (2u2ud) −0.39 (u2u2d) 
22 896    0.0067 0.6552 0.0158 

9 2A 
−0.58 (2ud2u) +0.48 (u2d2u) 

−0.33 (2202u) 
25 001    0.3946 3.8991 0.0004 

10 2A 

0.35 (u22ud) +0.35 (u22du) 

−0.33 (22u20) +0.31 (2u220) 

−0.31 (u2220) −0.30 (ud22u) 

26 152    0.1104 0.1489 0.0171 

11 2A 
−0.58 (22uud) −0.46 (2u2ud) 

−0.37 (uu22d) 
26 873    0.0104 0.0079 0.0549 

12 2A 0.56 (uu22d) +0.32 (u2u2d) 27 925    0.0001 0.0000 0.0002 

13 2A −0.56 (2202u) +0.33 (2022u) 29 177    0.5921 0.0427 0.0003 

14 2A 
0.50 (u2d2u) +0.35 (2ud2u) 

+0.31 (u2202) −0.30 (0222u) 
30 028    0.0287 0.0016 0.3716 
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15 2A −0.61 (22u02) +0.34 (u2ud2) 30 829    0.1929 0.3658 0.0011 

16 2A 
0.44 (2uud2) −0.38 (u2202) 

−0.33 (2u202) +0.31 (u2u2d) 
31 733    0.0002 0.0081 0.0075 

17 2A −0.75 (uu2d2) 32 148    0.0086 0.0524 0.0082 

18 2A 
−0.47 (ud2u2) −0.44 (2udu2) 

+0.39 (u2du2) 
32 661    0.0169 0.0003 0.8967 

19 2A 
0.47 (u2du2) +0.44 (022u2) 

−0.39 (2ud2u) 
33 234    0.4783 0.1363 0.0167 

20 2A 

−0.42 (2udu2) −0.38 (u2d2u) 

+0.36 (202u2) +0.34 (2022u) 

+0.32 (ud2u2) 

33 318    0.3034 0.0604 0.0378 

21 2A 
0.45 (2u022) −0.36 (2202u) 

+0.33 (ud22u) −0.32 (u2022) 
34 777    0.4990 0.3616 0.0014 

22 2A 
0.45 (udu22) +0.42 (uu2d2) 

+0.31 (u2u2d) 
35 350    0.3930 0.0217 0.0333 

23 2A 0.48 (u2022) −0.45 (220u2) 35 449    0.0627 0.0055 0.6004 

24 2A 0.49 (20u22) −0.42 (02u22) 36 234    0.0300 0.0127 0.0448 

25 2A 

0.47 (udu22) +0.46 (u2ud2) 

+0.33 (02u22) −0.32 (ud22u) 

+0.32 (2uud2) 

36 896    0.5533 0.2555 0.0013 

26 2A 0.79 (uud22) 37 286    0.0017 0.0025 0.2781 

27 2A −0.65 (u0222) +0.52 (0u222) 37 929    0.0011 0.0005 0.0218 

28 2A 0.66 (0u222) +0.56 (u0222) 38 429    0.0720 0.0027 0.0006 

29 2A 
−0.34 (2u220) L0.31 (u22ud) 

−0.31 (022u2) 
48 105    0.1054 0.1623 0.0056 

30 2A 0.45 (u2220) −0.36 (220u2) 48 394    0.0102 0.0021 0.2768 

31 2A 
0.33 (u2u2d) −0.33 (2uud2) 

+0.31 (2u2ud) 
49 138    0.0015 0.0001 0.0610 

32 2A 
0.42 (ud22u) +0.38 (2u202) 

+0.37 (22u02) −0.33 (u2202) 
49 520    0.0908 0.0000 0.0129 

33 2A 
0.37 (uu22d) −0.34 (02u22) 

+0.31 (ud2u2) +0.31 (20u22) 
49 714    0.0000 0.0000 0.0041 

34 2A 
−0.52 (udu22) +0.33 (uu2d2) 

+0.30 (u2ud2) 
50 242    0.0625 0.0284 0.0000 

35 2A 
0.42 (2udu2) −0.35 (ud2u2) 

−0.35 (u2du2) +0.30 (uud22) 
50 556    0.0002 0.0012 0.0015 

36 2A 
−0.50 (0222u) −0.47 (2022u) 

−0.33 (2202u) 
73 080    0.0304 0.0609 0.0015 

37 2A 
−0.38 (u2022) −0.36 (u2220) 

−0.31 (u0222) 
73 478    0.0002 0.0031 0.0029 

38 2A −0.37 (220u2) −0.36 (u2022) 74 598    0.0001 0.0082 0.0310 

39 2A 
0.54 (20u22) +0.42 (202u2) 

+0.35 (02u22) −0.30 (22u02) 
74 969    0.0018 0.0114 0.0197 

40 2A −0.51 (2u022) −0.43 (2u202) 75 492    0.0003 0.0060 0.0042 

a The CAS-CI configurations having the coefficient |c| > 0.3 are listed. 2, 0, u, d represents for doubly occupied, unoccupied, 

spin up (α), and spin down (β), respectively. b Contributions to the g-tensor principal values. c Contributions to the DSO-tensor 

principal values. 

 

Table S12. The electronic states of complex 3 calculated at the CASSCF(7e,5o)/Sapporo-DZP(Co) and 3-

21G(other nuclei) level. 

State Main configurationsa ∆E/cm−1 
gii

b DSO
ii

c/cm−1 

i = x i = y i = z i = x i = y i = z 

1 4A −0.99 (22uuu) 0       

2 4A −0.87 (u22uu) −0.40 (uu22u) 2 107 0.0006 0.0021 0.4802 −0.0145 −0.5993 −47.1967 

3 4A −0.85 (2u2uu) +0.47 (u2u2u) 2 971 0.0131 0.2198 0.0009 −14.7149 −8.6068 −0.1838 

4 4A 0.69 (2uu2u) +0.59 (uu22u) 6 117 0.0077 0.0019 0.1020 −0.1673 −0.5887 −10.4763 

5 4A 0.72 (u2u2u) +0.46 (2uuu2) 7 542 0.1591 0.0081 0.0011 −6.5924 −10.6713 −0.0418 
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6 4A −0.75 (uu2u2) +0.60 (2uuu2) 11 242 0.0113 0.0121 0.0033 −0.0177 −2.3647 −0.4181 

7 4A 
0.84 (uuu22) −0.33 (2uu2u) 

 +0.32 (u2uu2) 
14 915 0.0000 0.0001 0.0002 −0.0077 −0.0062 −0.0248 

8 4A 

0.54 (2uuu2) −0.45 (u2u2u) 

 +0.42 (uu2u2) −0.41 

(2u2uu) 

 −0.35 (u2uu2) 

23 951 0.0009 0.0013 0.0001 −0.0001 −0.2476 −0.0043 

9 4A 

−0.57 (uu22u) +0.54 (2uu2u) 

 +0.45 (uuu22) +0.36 

(u22uu) 

25 363 0.0000 0.0000 0.0001 −0.0012 −0.0017 −0.0062 

10 4A 0.76 (u2uu2) +0.33 (uu2u2) 28 242 0.0000 0.0001 0.0011 −0.0062 −0.0018 −0.1288 

1 2A −0.89 (222u0) 14 956    0.1541 1.0736 1.3118 

2 2A 0.74 (22u20) −0.48 (u2220) 18 397    1.1163 0.0010 0.0101 

3 2A −0.81 (2220u) −0.34 (2u2du) 18 835    1.6437 1.1612 0.0535 

4 2A 
−0.66 (22udu) +0.45 (22uud) 

 +0.40 (u22ud) 
21 072    0.0328 0.0000 0.0652 

5 2A 

−0.55 (22udu) −0.43 (22uud) 

 −0.34 (u22ud) +0.33 

(u22du) 

21 273    0.0026 0.1043 1.0538 

6 2A 0.52 (u22du) +0.47 (2u2ud) 22 157    0.1195 0.4488 1.7226 

7 2A 0.57 (u2u2d) −0.53 (2u2ud) 22 779    0.6743 0.0383 0.1218 

8 2A −0.49 (2u2du) −0.41 (u22du) 22 908    0.1988 1.3383 0.5310 

9 2A 0.67 (u2d2u) −0.42 (2202u) 25 271    4.5578 0.0296 0.0008 

10 2A 
0.45 (22uud) −0.36 (2u2du) 

 −0.32 (u2220) 
25 737    0.0005 0.2453 0.0951 

11 2A 
0.49 (uu22d) +0.48 (u22ud) 

 −0.44 (22uud) 
26 791    0.0020 0.0160 0.0218 

12 2A 
−0.48 (uu22d) −0.43 (2uu2d) 

 +0.35 (u22du) 
27 882    0.0009 0.0364 0.0136 

13 2A 
−0.52 (2202u) +0.41 (0222u) 

 +0.35 (2u2du) 
29 731    0.0198 0.6789 0.0450 

14 2A 
0.55 (2ud2u) +0.50 (2u202) 

 −0.34 (ud22u) 
30 051    0.0302 0.0144 0.2522 

15 2A 0.59 (22u02) +0.33 (2uud2) 31 469    0.1923 0.1796 0.0136 

16 2A −0.49 (uu2d2) 32 568    0.0066 0.0177 0.0339 

17 2A 

−0.46 (u2ud2) +0.35 (202u2) 

 −0.33 (2uu2d) +0.33 

(2u202) 

 −0.33 (220u2) 

32 586    0.2105 0.0032 0.0026 

18 2A 

−0.48 (uu2d2) +0.36 (ud22u) 

 +0.34 (202u2) +0.33 

(2ud2u) 

33 251    0.0104 0.0185 0.0142 

19 2A 
0.52 (2udu2) +0.42 (ud2u2) 

 −0.31 (u2d2u) 
33 566    0.0682 0.4600 0.2867 

20 2A 
−0.49 (u2du2) −0.40 (ud22u) 

 +0.36 (2udu2) 
33 806    0.0006 0.5287 0.4727 

21 2A 

−0.49 (u2022) −0.40 (ud2u2) 

 +0.33 (2uud2) −0.32 

(2202u) 

35 238    0.3823 0.1741 0.0346 

22 2A 
0.43 (2u022) +0.42 (220u2) 

 −0.30 (0222u) 
35 567    0.0398 0.6308 0.0937 

23 2A 0.46 (02u22) +0.38 (2u022) 35 906    0.0041 0.1197 0.1211 

24 2A 
0.40 (20u22) −0.40 (2uud2) 

 +0.39 (uud22) 
36 673    0.1957 0.3726 0.0045 

25 2A 
0.56 (udu22) +0.31 (2uud2) 

 −0.31 (202u2) 
36 784    0.0830 0.1508 0.1354 

26 2A 
0.57 (uud22) −0.47 (u0222) 

 −0.36 (20u22) 
38 149    0.0227 0.0356 0.1735 
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27 2A 0.61 (0u222) −0.55 (u0222) 38 579    0.0087 0.0514 0.0176 

28 2A 
0.57 (0u222) +0.41 (u0222) 

 +0.39 (uud22) 
39 175    0.0085 0.0045 0.1013 

29 2A 

0.41 (ud2u2) +0.37 (u2220) 

 −0.35 (2udu2) −0.35 

(2u2ud) 

48 229    0.1472 0.0581 0.0501 

30 2A 

0.51 (u2ud2) −0.49 (2u220) 

 +0.32 (022u2) −0.32 

(220u2) 

48 851    0.0001 0.0378 0.2359 

31 2A 
−0.35 (u22ud) −0.34 (udu22) 

 −0.34 (2uu2d) 
49 661    0.0267 0.0480 0.0267 

32 2A 
−0.37 (u2202) +0.33 (2022u) 

 −0.33 (u2ud2) 
50 595    0.0001 0.0051 0.0723 

33 2A 
0.40 (udu22) −034 (uu22d) 

 −0.33 (022u2) 
50 806    0.0192 0.0039 0.0026 

34 2A 0.46 (u2du2) −0.35 (ud22u) 51 295    0.0285 0.0407 0.0281 

35 2A 
−0.38 (u2du2) −0.32 (20u22) 

 +0.30 (02u22) 
51 448    0.0037 0.0191 0.0000 

36 2A 

−0.57 (2022u) −0.35 (0222u) 

 −0.32 (20u22) −0.32 

(2202u) 

72 257    0.0418 0.0242 0.0044 

37 2A 

0.47 (2u022) +0.42 (2u220) 

 −0.39 (0u222) +0.36 

(2u202) 

73 667    0.0009 0.0001 0.0001 

38 2A 
−0.48 (022u2) −0.41 (220u2) 

 −0.38 (202u2) 
75 603    0.0005 0.0164 0.0209 

39 2A 
0.42 (02u22) +0.34 (20u22) 

 −0.34 (u2022) 
76 847    0.0128 0.0007 0.0001 

40 2A 
−0.41 (u2022) −0.37 (02u22) 

 −0.33 (u2202) 
77 572    0.0296 0.0128 0.0076 

a The CAS-CI configurations having the coefficient |c| > 0.3 are listed. 2, 0, u, d represents for doubly occupied, unoccupied, 

spin up (α), and spin down (β), respectively. b Contributions to the g-tensor principal values. c Contributions to the DSO-tensor 

principal values. 
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4. Quantum chemical calculations on the electronic structure and magnetic tensors of complex 4 

The molecular structure of complex 4 and principal axis system of the D-tensor calculated by CASSCF is 

given in Figure S32. The principal values and direction cosines of the g- and A-tensors of complex 4 in the 

principal axis system of the D-tensor, as calculated by CASSCF, are given in Table S13.  

 

Fig. S32 The molecular structure and principal axis coordinate of the D-tensor of complex 4, as calculated 

by CASSCF.  

 

Table S13 The principal values and direction cosines of the magnetic tensors of complex 4 in the principal 

axis system of the D-tensor, as calculated by CASSCF.  

a) g-tensor 

 gxx gyy gzz 

Principal values 2.2419 2.047944 2.661085 

X 0.9992315 0.0371124 0.0126125 

Y −0.0368430 0.9991012 −0.0209604 

Z 0.0133791 −0.0204796 −0.9997007 

 

b) A-tensor 

 Axx/MHz Ayy/MHz Azz/MHz 

Principal values 122.9381 63.7055 178.7272 

X 0.9658926 −0.2584846 −0.0153994 

Y 0.2382587 0.8638740 0.4437956 

Z 0.1014112 0.4323279 −0.8959957 

 

 

  

x 

y 
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Fig. S33 (black) The reproduced randomly-oriented X-band ESR spectrum of complex 4 (S = 3/2) shown in 

the literature [10] and (red) the spectrum simulated by use of the theoretical magnetic parameters given in 

Table S12 including the relative coordination between D- and g-/A-tensors. Microwave frequency used: 

9.474GHz; (the spectrum in black) the magnetic parameters: g1
eff = 7.2, g2

eff = 1.97, g3
eff = 1.4, A1

eff(59Co) = 

560.5 MHz, the peak-to-peak linewidth: 16.0 mT, the strain parameters of the linewidth: [0, 1850, 1600] 

MHz; (the spectrum in red) the magnetic parameters: g = [2.2419, 2.047944, 2.661085], A(59Co) = 

[122.9381, 63.7055, 178.7272] MHz, D = −48.94 cm−1, E = −12.65 cm−1 (E/D = 0.26), the peak-to-peak 

linewidth: 1.0 mT. Any strain effect of the tensor to the linewidth was not included in the spectrum in red. 

The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8]. 
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