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Double Perturbation Treatment for Degenerate States
In this section, in order to obtain the energies of the spin Hamiltonian having the sizable zero-field splitting
(ZFS), electron-Zeeman and hyperfine terms, we consider the Rayleigh—Schrodinger perturbation for the
energies and states of a Hamiltonian (') composed of a non-perturbed term (Ho: a rank-2 ZFS Hamiltonian
in this work) and two perturbing terms (//1 and H>: the electron-Zeeman and hyperfine structure Hamiltonians,
respectively, in this work). Note that the non-perturbed term is not the electron-Zeeman term which is
regarded as a non-perturbed one in putative and conventional high-field approximation treatments. The
current approach is termed a Zeeman perturbation treatment, which is not common but has a big advantage
over the putative ones in many aspects, exemplifying the derivation of the analytical expressions for bridging
the gap between a true spin Hamiltonian and fictitious spin-1/2 Hamiltonian relationships, as described in
this work.
The Hamiltonian # is in the following form of
H =Hy+ AH, + uH, €))
H|Wna) = EnalPna) 2)

(0

where the energy eigenvalues of the non-perturbed Hamiltonian &, are assumed to be g,-th degenerate.

HO |¢(0)> — E(O) |¢(0)> (a — 1’2’ m’gn) (3)

This assumption is underlain by the Kramers’ degeneracy for the electronic spin systems with half-integer

spin quantum numbers. The wavefunctions and the energies can be expanded as follows:

0 10 01 20 11 02
%) = |on )>+l|¢( )>+u|<pfm)>+/12|<p( )>+/1u|<p( )>+u o )> - )
Epa = e + 20 + uel’y + 2229 + Auel? + u2el’? + - (5)

In the equations above, a factor of 1/2 is omitted from the quadratic perturbation parameter. Supposing an

application to the spin Hamiltonian, the matrix elements of H; expanded by the wavefunctions

(0)

|<p(0)> a=1,2,..,9,), having the same eigenenergy &, ’, are assumed as

<¢£°}|H1|<p(°) ) 0 (6)

for any S # a. As described below, the matrix elements of the electron-Zeeman Hamiltonian have non-zero
values between the eigenstates belonging the different eigenvalues. Degenerate perturbation treatment has to

be applied to the second perturbing term (H>).

The eigenstates of the non-perturbed Hamiltonian |(p7(102,> is orthonormal and complete, as given in the

following.
< (0) (0)> 6nm6a,8 (7)
33 oo
n=0 a=

Also, the projection operator to the n-th eigenstate is defined as follows:

Sl



In

P= > |own) (ol ©)

a=1

i P,=1 (10)
n=0

The new basis set |¢,§00)l> is made from |q0,(10;> by using a unitary transformation.

From egs. (8) and (9), we obtain

In

|¢(0)> 2 . |(p(0)> (11

p=1

The coefficients ¢, is the a-th row and f-th column matrix elements of g, X g, unitary matrix. The new

basis |¢7(102‘> is also the eigenstate of the non-perturbed Hamiltonian:

H, |¢(0)> (0) |¢<o)> 1,2, .., 9,) (12)

Also, |¢7(102‘> satisfies the orthonormality condition in the following,

< (0)|¢(0) > 5nm6a[3 (13)
and the completeness.
© Idn
D o) o] =1 (14)
n=0a=1

Then, the wavefunctions can be rewritten by using |¢,(loo)(>

o) = [62) + 2|00} + 1[0} + 22 [0Z2) + 2u |0l ) + 2 |0l2) + 2° [0

15)
|<p(21)> + A |<p(12)> +u |¢(03)>
Substituting egs. (1), (5) and (15) to the time-independent Schrédinger equation eq. (2) yields
(o + 21, + ) (|052) + 2| 0S2) + e oSe) + 22 |020) + aue | 012) + 12 [0 52)
(16)
+ 23 |(pr(l3£)> + 2% |go(21)> + A |<p(12)> +u |<p(03)> )
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( © 4 257(112) + ue,(loé) + 22 ,223) + /1;15(11) + yzs,goj) + 23 ,233) + /12;18(21) + Auzs(lz)

+ 3D 4 ...)(|¢(0)> +,1|<p(1°)> +u |¢(01)> 422 |¢(zo)> +u |(p(11)>

+ 2 |(p(02)>+/13|¢(30)>+/12 |§0(21)>+;{’u |<p(12)>+# |¢(03)> )

The coefficients of both the sides of eq. (16) are compared in the order of A and , giving the following

zeroth H, |¢(°)> £© |¢(°)> a7
1 H,y |(p(1o)> +H, |¢(0)> KO <p,(1,1£)> (10) |¢(O)> (18)
? Ho [o02) + o [052) = e [02) + &%’ [#12) (19
2 H, |<p(20)> +H, |<p(10)> (0) q01(12‘;))> " 1(11;)) (pr(l,lo(z))> (20) |¢(0)> (20)
A H0|‘P(11)>+H1|<P(01)>+H2 |‘P(10)>

(21)

£© g01(:;)) 400 <Pfloi)> 4 oD 90(1°)> (11)|¢<o)>

Tl na TL[l n,a

r Ho |02 + s [ol22) = 60 002) + 690 [080) + 62 [0®) 2

The relationship of the zeroth-order, eq. (17), is equivalent to eq. (12).

A: We calculate the energy 8(10). <¢1SS)B is multiplied to both the sides of eq. (18) from the left.

<<Pf,f)g|Ho|<P(1°)> <§01(72)3|H1|¢(0)> (o)<(p1(7§>)ﬁ|¢(1o)> (10)<¢r(r(1)?8 ¢(o)> 23)

Using Schrodinger equation of the non-perturbed Hamiltonian eq. (3) and eq. (24),

(05]65%) = cnc® S (24)

eq. (23) is rewritten as follows,
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In

SCOPAE . =ZC’“" <90,5§’),; | H1| (p(o)> (s - (o>)<(p$)ﬁ | g0(1o>> (25)
y=1

When m = n, eq. (25) is

In
e ena® = ) cna? (0] |0S3) 26)
y=1

Andif B#7, <¢7(10;|H1|<p(0)> — 0 due to (6), then
e = (oS |o) @7)

Next, we consider the first-order correction of the wavefunction. Multiplying <¢T(,g )ﬁ | to both the sides

of eq. (18) from the left yields

< ©) |HO|(p(10)> < ) |H1|¢(°)> = © <¢(o) |¢(1o)> (1o)< ©0) |¢(o)> (28)
Using the orthonormality condition (eq. (13)),
095,605 = <¢<o) | H1|¢<o)> ( ©) _ (o))< ©0) |¢(1o)> (29)

Thus, when m # n,

<¢(0) <P1(11£)> _ _< Do |Hl|¢(0)> (30)

mp gr(r(l)) _ 51(10)
This is one of the coefficients of the perturbed wavefunctions in the first order.

: Multiplying (p to both the sides of eq. (19) from the left yields

(0) (01) (0) (0) (0) 0) | (01) (01) 0) | 4 (0)
<(me|H°|(p > <(me|H2|¢ > <‘/’m[;|‘l’ > <(pmﬁ ®n > (31)

Using Schrodinger equation of the non-perturbed Hamiltonian eq. (3) and eq. (24), eq. (31) is given as

In
01 0 0 0 0 0 01
e cna S = ) na? (00 oo} + (o5 = 2) (005 |00 (32)

When m =n, eq. (32) is

dn
0 0 0
81(1';)Cnaﬁ = Z Cna! <(p£23|1‘12|(p( )> (33)
v=1

Equation (33) can be expanded as follows:
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floé)cna1=cn“< )|H2|(p(o)> < )|H2|¢(o>>+...+cm <€0n1)|Hz|<0(°)>

ﬁf’é)cmz=cna< )|HZ|¢(0>> Crs < )|H2|<p(°))+---+cm< )|H2|¢(o)>

(34)
gr(l(,)o})cnag = Cnoc < )|H2|§0(0)>+Cna < )|H2|§0(0)>+"'+Cna < )|H2|§0(0)>
where g, is represented as just g. Equation (34) can be represented in the following matrix form:
(idlefoi) (oidlelo) - {olmloi) ,
Oy | © Oy | © ol o\ | [ na
2 2
(o |”2|"’ ) o |”2|<" ) (o |”2|"’ ) tna” | = (01 | Cna (35)
Ol L O\ [ OO . oo e Cna’
<(Png|H2|§0 > <§0ng|H2|(p > <(png|H2|¢ >

In this equation, the matrix elements of the left-hand side are the second perturbing Hamiltonian expanded

by the original wavefunctions with the eigenvalue e( ) That i is, <<p(0) |H2|<p(0)> forms g, x g, Hermite

matrix whose eigenvalue is s,(l(,);). Therefore, e,(f;) is the solution of the secular equation:
0 0 0 0 0 0
<‘Pr(11)|H2|‘P( )> x <‘Pr(z1)|H2|¢( )> <‘Pr(z1)|H2|<P( )>
) (0) () () (0) (0)
<<Pnz|Hz|<P > < |Hz|<P > <<Pnz|H2|<P > =0 (36)
0 0 0 0 0 0
<¢£3|Hz|q)( )> <<P1(13|H2|<P( )> <¢£3|Hz|¢( )>

Supposing the degeneracy is removed by the perturbation in the first order. Then, ¢,/’s are determined and

thus |¢,(10,3> is also determined. <¢7(,2 )ﬁ is multiplied to both the sides of eq. (18) from the left.

< ©) |H0|<p(01)> < ©0) |H2|¢(0)> O <¢(o) |(p(01)> + D ( ©) |¢(o)> (37)
Using the orthonormality conditions (eq. (13)), eq. (37) is described as
7(10;)5nm5aﬁ _ <¢(0) |H2|¢(°)> ( 0 _ (0))( ) |(p(o1)> (38)
When m # n,

<¢(0) (01)>_ _< (0) |H2|¢(O)> (39)

EONNO

|an,“) is represented as follows by using the perturbation in the first order, with the completeness (eq.

(14)):

|¢(0)> +2 |(p(10)> +u |(p(01)> + (h1gher order)

S5



o 9Im o Im

(0)>+’12 Z |¢(o)>< (o) (10)>+“Z Z |¢(o)>< (o) (01)>

m=0 =1 m=0 f=1
+ (higher order)
In [ Im
|¢(0)> Z|¢(0)>< ©) (10)>+Z | (0)>< ©) 1(11(;))>

B=1 m=0 B=1
In [ Im (40)
Z|¢(0)>< (0 (01)>+Z | (0)>< (0) <P7(10;)>

B=1 m=0 B=1

+ (higher order)
Here, Y,,,' means that the summation will be calculated except m = n. < (©) |<p(10)> and <¢7(13 )B (pff?) in

eq. (40) have been determined from egs. (30) and (39), respectively, however, < (0)|<p(10)> and
< (0)|<p(01)> will have been calculated the relationships in the second order described below.
2% Multiplying < (0) | the both hands of eq. (20) from the left yields
< ©) |H0|<p(2°)> < (©) |H1|¢(1o)>

O <¢(o) (zo)> + (0 < ©) | (puo)) + 20 ( ) | ¢(o)>
Using the zeroth-order relationship (eq. (12)) and the orthonormality condition (eq. (13)),

20, Saﬁ—<¢(°) ( (10))|g0(10)> ( @ _ (o))<¢(o) (20)> (42)

Supposing m = n, then

(41)

25,5 = <¢(o) ( (10)) | (p(10)> (43)

Supposing m = n in eq. (29), eq. (44) is obtained.
e 8 = (00| 1:] 652) (44)

Multiplying < () | to the both hands of eq. (44) from right and summation is taken for a, we have

In

z (10)5ap<¢(0) _Z< (0)|H1|¢(0)>< (©) (45)

a=1

S6



09 (0] = (65| . (46)

The right-hand side of eq. (43) can be written as

<¢(o) ( (10)) | (p(10)> < ) | Hy(1 - n)l g0(10)) (47)
And using eq. (46), the first term of eq. (47) is given as
( a0 _ ﬁii”)( ©) | (puo)) (48)
Notice that
1-p, = z ' (49)
m=0

and using eq. (30), the second term of eq. (47) is given as

o) 9m
Z< (0)|H1 (1o)> Z< (0)|H1|q5(°)>< () 7(113)>

m=0 0 y=1

Ol OV ON TR INO)
i ) )

5, g el

m=0

Ms

3
I

(50)

It is worth mentioning that the denominator is not zero because the summation for m eliminates m = n.

Replacing the right-hand side of eq. (43) to egs. (48) and (50) yields

o gm< © |y |¢(o)>< © |y |¢(o)>

e _ (.00 _ _10))/[,© (10)

Ena Oap = ( g T Ena )< > 2 O _ 2(0) S
m=0 y=1 m n

57(32) can be obtained supposing o = f in eq. (51):

< (0)|H1|¢(0)>|

(20) 52
Z Z (0) (0) (52)

Supposing a # f in eq. (51) yields

o gm (@Y (o)>< © |y (o)>
<¢(0) (10)> Z < | 1|¢ |¢ (53)
Vra (10) L0 RO (o)
m

TLO{ m=0 y:]_ gn

Equation (53) is the one of the coefficients of the perturbed wavefunctions in the first order, which have not

been determined in eq. (40).

1% Multiplying <¢>r(,%| to the both hands of eq. (22) from the left yields
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< ) |H0|(p(02)> < ©0) |H2|¢(01)>
(54)
£© <¢(o) |¢(°2)>+£ﬁ°§)< ©) |¢(°1)>+€£°§)< ) |¢(o)>

Using the zeroth-order relationship eq. (12) and the orthonormality condition eq. (13), eq. (54) is

e, 8a5—<¢>(°) ( (o1))|(p(o1)> (fr?)—fr(lo))< ©) |¢(oz)> (55)

Supposing m = n,
e 8 = (9] (1, - e92) |0?) (56)

An equation is obtained supposing m = n in eq. (38):

Multiplying < ne| to the both hands of eq. (57) from right and summation is taken for a, we have

e (60 = (05| 1P, (58)

The right-hand side of eq. (56) can be rewritten as

<¢(o) ( <01)) |(p<01)> < ) |H2(1 n)|¢(01)> (59)
Using eq. (58), the first term of eq. (59) is
( 1(103) 7(10;))< (0 |(p(01)> (60)

Using eq. (39) with attention to eq. (49),

> 05 i o22) = i

m=0 m=0

IIMg

0 0 0 0
< ()|H2|¢()>< ) ﬁ;))

o  gm <¢(O)|H2|¢(O)>< © |y |¢(o)> o
Z g(")—s“’)
m=0 y=1 m n

Substituting the right-hand side of eq. (56) to egs. (60) and (61) yields

gm<¢(o) |¢(o)>< © |y |¢(o)>
©

02 — (0D _ (00 [ @ (01)
L CrEE Rl A EDRDY o ©
m=0 y=1 gﬂ.
We obtain S(O ) supposing a = £ in eq. (62).

< (0)|H2|¢(0)>|

(02) 63
Z Z (0) (0) (63)

Supposing a # f in eq. (62) yields

S8



o  Gm [ 400 (o)>< © |y (o)>
H
<¢(0) (01)> E < |2|¢ |¢ (64)
Pra (01) £OD E(O)—E(O)
n

namoy:1 m

Equation (64) is also one of the coefficients of the perturbed wavefunctions in the first order, which have not

been determined in eq. (40). Using the completeness (eq. (14)), the wavefunction |an,a) is in first order:

|¢(°’>(1+/1|¢(°)>< (0)|‘”(10)>+“|¢(0)>< (o)|¢(01)>)

[e3) 9m 1
iy Z |¢(o)>< © (10)) +z (o)>< ©) 1(1’1‘3)>
m=0 f=1
[e9) 9m 1
0 0 01 0 0 01
+“Z|¢()><() ()>+Z ()><()ﬁ¢7(1'a)>
m=0 f=1 |

+ (higher order)

:exp( < (o)|¢(1o)>+#<¢<o)|¢(01)>) |¢(o)>

[} 9m 1
0 0 10 0 0 10
+AZ|¢()><() ()>+Z ()><() 1(1,a)> 65)
m=0 f=1 ]
%) 9m T
+u Z |¢(o)>< (0) (o1)>+z (o)>< (0) 1(3;))
m=0 f=1 ]

+ (higher order)
where the prime (") on the summation for f means that the summation will be calculated except f = a.

Applying the normality for the wavefunction in the first order (‘Pn,a |‘Pn,a) = 1 + (higher order), we have

< ) | g0(10)) 0 (66)

< (0)|¢(01)> 0 (67)

Therefore, the normalized wavefunction in the first order can be obtained by using egs. (30), (39), (53), (60),
(66), and (67):

S9



In o gn< O]y |¢(o>>< © |y |¢(o>>

(0) (0)
|¢ > z |¢ > (10) (10 Z £ _ 8(0)
m n

=1 namOy:l

o  Gm <(0) |¢(0)>

IO e
00

=0 B=1
(68)
gn oo In (0) (0) (0) (0)
+ Z | (0)) Z < |H2|¢ >< |H2|¢ >
H1 2, [ Png (01) RGN RORRO!
B=1 na m=0 y=1 m n
oo 9m < (0) |¢(0)>
- Z ! |¢7(,?‘)B>W + (higher order)
m=0 B=1 Em” ~ &n
Ap: Multiplyin © | o the both hands of eq. (21) from the left yields
M plymg m,B
< ) |H0|¢(11)> < (0) |H1|¢(01)> < (0) |H2|(p(10)>
£© <¢(o) |¢(11)> +87(11£)< (0) |(p(01)> (01) <¢(o) (1o)> (69)

11 0 0
1D < () |¢( ))
Using the zeroth-order relationship eq. (12) and the orthonormality conditions, eq. (13), eq. (69) is

S0 B = (B3] (1 £52) |2+ 003 (: - 22 20

(70)
n (87(13) _ 87(10))< © |¢(n)>
Supposing m = n, eq. (70) is described as
87(1'1;)5[; <¢(0) ( 87(1'10(())) |(p(o1)> <¢(0) ( (01)) |¢(10)> 71
The right-hand side of eq. (71) can be divided as follows:
<¢(0) ( (10)) |(p(01)> <¢(0) ( (10)) |¢(01)> ( (0 |H1(1 n)|<P(01)> (72)

(69 (= &52) [052) = (6] (HoP — 252) [0} + (60| = POJ0)  (73)

Using eqs. (46) and (48), the first term of the right-hand side of eqgs. (72) and (73) is

<¢7(1?[)? (H1P (10))|<p(01)> (7(11[?) 7(112))< (0)|<p(01)> (74)
<¢(0) ( (01))|<p(10)> (éog) 1&0;))( (0)|(p(10)> (75)

Using egs. (30) and (39) with attention to eq. (49), the second term in the right-hand side of eqs. (72) and

S10



(73) are
Im

<(0)|H1(1 P)|(p(01)> Z <(0)|H1|¢(0)>< 0 7(100})>
m=0 y=1
(76)
©  gm <¢(°)|H1|¢(°)>< © |y |¢(o)>
Z (0) (0)
m=0 y=1
co Im
<(°)|H2(1 P)|<p(1°)) Z <(0)|H2|¢(o)>< 0 r(}g))
m=0 y=1
(77)
o  m <¢(0)|H2|¢(0)>< © |y |¢(o)>
Z (0) (0)
m=0 =1
Replacing the terms of eq. (71) to eqs. (74)—(77) yields
o gm [5©@|y (o)>< O (o)>
6(11)5 =(£(10)—£(10)) (0) (01) <¢ |¢ |¢
na 9Ba np n,a (0) 6(0)
m=0 y=1 n
(78)

m 0 0 0 0
g <¢() |¢()>< © |y |¢()>
© 51(10)

(01) (01) 0) (10)
+ (e —en) (prplen’) - )

m=0

<
fuy

7(11;) can be obtained supposing a = £ in eq. (78).
< (0)|H1|¢(0)>< © |y (o)) o gm <¢(°)|H2|¢(0)>< © |y |¢(o)>
P2 )

= Z

Eventually, the perturbed energies can be obtained in the second order with substituting eqgs. (27), (52),

(63) and (79) to eq. (14).

o (o)|H |¢(o)>|
0 0 0 01 < !
B = l” + o2 fof2) + e+ ) Z KOO

9 (6O, |6 ) (6O |1, | 6@
< ||(o)><g$) d > (80)

D)

m=0

,_.

<¢(0)|H2|¢(0) >|

o Im 0 H 0 0 H 0 [e} Im
Z SO _EO Z Z 0 0
T(L) TS’I.) m=0 _— () ()

+ (higher order)

here, 8(01) is an eigenvalue of the matrix given below
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< )|H2|go(0)> < )|H2|(p(o)> < )|H2|(p(0)>
< )|H2|(p(0)> < )|H2|<p(0)> < )|H2|<p(0)> 1)

< )|H2|¢(o)> < )|H2|(p(o)> < )|H2|(p(0)>

Exact Analytical Energies for §' = 3/2
The full spin-Hamiltonian are composed of the ZFS, the electron-Zeeman and the hyperfine structure terms
in the following:

H=S-D-S+pS-g-B+S-A-1
where D, g and A are the zero-field, g- and hyperfine tensors, respectively, S and 7 are the electron and the
nuclear spin operator, respectively, and f is the Bohr magneton. Through the discussion, the D-, g- and A-
tensors are assumed collinear. Additionally, the external magnetic field is parallel to the z-axis of the principal

coordinate system. Under these assumptions, the spin-Hamiltonian H can be represented as
1
H=D [SZZ - §5(5 + 1)] + E(Sy* = S)%) + BS,9.B + Sy Ayl + SyAy L, + S,A,lL,

where D and E are the ZFS parameters. When the external magnetic field is parallel to the x- or y-axis of the
principal coordinate system, the corresponding energies can be obtained by the cyclic permutation

relationships for D and E as given in the following [1-4].

1 1
D—>§(3E—D),E—>—§(E+D)if3 Il x

1 1
D —>—E(3E+D),E—>E(E+D)if3 Iy

1. 1=1/2 case
a) Exact diagonalization treatment
The full spin Hamiltonian for the spin quartet state with one / = 1/2 nucleus and the static magnetic field

along the z-axis can be represented as a matrix in terms of the {|Ms, M>} basis set as follows:

3,1
Hs=5,1=E _
full
32, 412> 32, -12> 2,412 U212 U2, H12> 2,402 322> |32, 12
3
D +29,BB &
<+3/2,+172| 0 0 C(ay - Ay) V3E 0 0 0
3
+34,
3
D+ EgZﬁB
<43/2,-172] 0 (A, +4y) 0 0 V3E 0 0
—34,
4
-D +29,PB )
<+1/2,+172| 0 Blay+4,) 0 0 3(4x—4,) V3E 0
+34,
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-D +39,8B

<+1/2,-172| ‘/;(Ax -4,) 0 0 . (4 +4,) 0 0 V3E
—_ ZAZ
1
1 -D EgzﬁB V3
<1/2,+172| V3E 0 0 S(4x +4,) ) 0 0 S(4,-4,)
—_ ZAZ
. -D - 29,88 .
<-1/2,+1/2| 0 V3E $(4x = 4,) 0 0 ) f(Ax +4,) 0
+ 24,
3
D - EgzﬁB
<372, 4172 0 0 V3E 0 0 Bla,+4,) 0
3
—_ ZAZ
3
D- EgzﬁB
<32,-172] 0 0 0 V3E Ba.-a,) 0 0
+24,

The matrix can be divided into two 4 X 4 matrices. Exploiting two particular basis sets of {|+3/2, +1/2>, |+1/2,
=1/2>, |-1/2, +1/2>,|-3/2, -1/2>} (Ms+ M;==+2 or 0) and {|+3/2, —1/2>, |+1/2, +1/2>, |-1/2, -1/2>, |-3/2,
+1/2>} (Ms + M; = £1) give the two 4 x 4 matrices, both of which can be analytically and exactly solved.
The basis sets are spin-conjugate each other, which are intrinsic to the properties of half-integer spins. The

former basis set gives the following 4 x 4 matrix denoted by “full, 1”:

3 3 V3
D +5 98B + 74, T(Ax —4,) V3E 0
1
V3 1 1 =(A,+4,) V3E
3,21 - (Ax=4y)  —D+59.B-74, 2( w+hy)
g2z = 4 2 4
o 1 p-tgpp-ta, LB, -4

VEE 5 (ac+4,) D398 =34 (A-4y)

V3 3 3

0 S(h-4y)  D-3gpB+3A,

The corresponding secular equation is given as
xt+azxdtax?+ax+a;=0
with
az = —4,;

1
Z_2DA,—=A,?

5 5 1 5
a, = —2(D? + 3E?) — > (9,8B)? — gsz +74xAy — 5 Ay 5

1 3 1 3 3
a, = —4D(g,BB)? + EDAXZ - EEAx2 + DA, A, + EDAy2 + EEAy2 + D?A, + 3E%A, — ZAZ(gZﬁB)2

9 2 3 9 2 2 3 3
+ g Ax A + G AxAy A + A A + DA 2 A,
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5 9 9 1 3 9
ag = (D? + 3E?)? — 2 D(g,BB)* + 5 E*(9.BB)? + 7. (9:PB)* + g D?A," + 5 DEA,” — SE?A,°

9 9 5 9 27 9
+ i,clxz(gzﬁB)Z + ﬁAx“ - ZDZAxAy + ZEZAxAy + EAxAy(gzﬁB)2 - an?’Ay

27, , 9 X
oAy’ — g Axdy

1 3 9 9
+=D?A,* —=DEA,* — -E?*A,* + —A,*(9.BB)* + -

8 2 8 32

9 ., 3 9 ., 3
+ 52 Ayt + 2D%A, + 6DE?A, — 5 D(g,PB)*A, + EAA, — 5 DALAA,

256 8 2
9 11 9 9 9 27
- gEAyZAZ + EDZAZ2 + §E2A22 - ﬁAZZ(gZﬁB)2 - mszAZZ - anAyAzz

9 24 2 3 3 9 4
_HSAY A, +§DAZ +2—56AZ

In order to eliminate the x3 term as usual, replacing x to x + 4./4 yields
x*+pox?+qox+1r,=0 (*)
with

5 5 1 5 1
po = —2(D? + 3E?) — E(gzﬁB)2 - §A,f + 744y — §Ay2 —2DA, — EAZ2

1 3 1 3 1
qo = —4D(g,BB)? + EDAX2 - EEA,CZ + DA A, + EDAy2 + EEAy2 —24,(g,BB)? + ZAXZAZ

1

2

1
AyAyA, + ZAy A,
— (P2 22_52 222 2,9 4122% 2_222
1o = (D* + 3E?) 2D (g9,8B) +2E (9,8B) +16(gZBB) +8D A, +=-DEA, 8E A,

2

9 9 5 9 27 9
+ =A% (g.BB)? + s—= A —=D?A, A, + ~E?A A, + —AA,(9,8B)* — —A, %A,

32 256 4 4 16 64
1 3 9 9 27 9
—D2A,2 —ZDEA,> —ZE?A.> +—A,> B2 +—A2%A4,2——A.A,°

+g DAy — 5 DEA)" — g ERA" + 35 4y "(92BB)" + o5 A" Ay — o7 Axdy

9 5 ,. 5 L1 .3
+ 52 Ayt + 2D, + 6DE*A, — 5 D(g,pB)* A, + 5 DA A, + L EALCA,

5 1 3 3 3 5
——DAA A, + 2 DA A, — —EA’A, +5D?A,% + S E*A,* — 2 A,*(9,BB)?

4 8 4 2 2 8
1 2 2 5 2 1 2 2 1 3 1 4
oo A A = T Ay AL + o AV A + DDA + A,

The quartic equation (*) can be rewritten by using a parameter u (# 0) as

(x2+p0;u)2—u(x—g—i)2=0

Comparing the coefficients of the two quartic equations gives us the resolvent cubic equation about u.

Po2 CIo2 bou u?
—_— —_— —_—— ‘ro
4 4u 2 4
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ud + 2pou? + (po? — 4ry)u = g2

In order to eliminate the u? term, replacing u with u — 2po/3 yields
3 1 2 1 3 2
= §(p0 + 12r))u + E(ZPO — 27poro + 72q,°)

According to the Viete’s method [5, 6], one of the solutions of the cubic equation above is

—5 (1 to > 2P0
Uy = 25p Cos 3 arccos 250 3

with
1
SO = §\[p02 + 127'0

2p03 - 72p0T0 + 27q02
3po? + 3671,

t0=

Then, the quartic equation can be factorized to two quadratic equations as follows;

(4 252) e o 42 - (e ) -

Finally, the exact analytical solutions of the quartic equation are

— 2q0 ‘12
=1 0_2\] po 0T1 ,_0 4

The double signs +; and +; can be taken freely, affording four eigenvalues. Therefore, the energy eigenvalues

N[ =

X =

are given in the following;

_\/u_0+\/—2p0 u0+\/% +TZ

for the [+3/2, +1/2>-dominant state,

A
—2py — Uy +ﬂ +==
Juo 4

E; =

for the |-3/2, —1/2>-dominant state

uo

for the [+1/2, —1/2>-dominant state, and

2 A
Zpo_uo_ﬂ +—2

E, =
4 4

N =

uo

2 A

for the |-1/2, +1/2>-dominant state when D < 0.
Now we analytically derive the exact expressions for the eigenfunctions composed of the four spin

conjugate states. According to Denton and co-workers [7], the square of the jth element of the eigenvector
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corresponding to the eigenvalue E; of the Hermitian matrix can be described as follows

n

n—-1
|vi,j|2 1_[ (E; —Ey) = 1_[(51 - Xx)
k=1

k=1;k#i

where vy is the coefficient to determine, and x; is the eigenvalues of the minor M, of the Hermitian formed
by removing the jth row and column. In the case of the spin Hamiltonian, the spin conjugate eigenfunctions
Y; corresponding to the eigenvalue E; can be described as

3 1 1 1 1 1
¥ =ai|+_:+_>+.8i|+§:__>+Vi|__ +E>+5i

31>
2" 2 2 2’

"272

where o, B, y» and J, correspond to vu1, Va2, Va3 and va4, respectively. By using the formula, we calculate a;,
b2, 3 and d4, which are the diagonal element of the unitary matrix for diagonalizing the spin Hamiltonian
matrix.
(E1 - x1,0)(E1 - x1,1)(E1 - x1,2)
(Ey — E3)(Ey — E3)(Ey — Ey)
(Ez - xz,o)(Ez - x2,1)(Ez - xz,z)
(E; — E1)(E; — E3)(E; — E4)
2 = (Es —x30)(Es — x31) (Es — x3,5)
(E3 — E1)(Es — E5)(E3 — Ey)
(E4 - x4,o)(E4 - x4,1)(E4 - x4,2)
(B4 — E1)(Ey — E3)(E4 — E3)

In order to determine the element of the eigenvectors, we define the following matrixes,

|0f1|2 =

18,1 =

lv3

|54|2 =

1 1 1
—D +5 9,88 — 74, > (A +4,)) V3E
1 1 1 V3
M, = E(Ax +4,) —D-359.8B 74, (A, —4,)
V3 3 3
V3E —(Ay—4,) D-=g,BB+=A,
4 2 4
3 3
D +>9:BB + 74, V3E 0
1 1 V3
M, = V3E ~D-59.BB =34, (A4, - A4,)
V3 3 3
0 T(Ax—Ay) D —>9.BB + 74,
3 3 V3
D+ 9,88 + 74, T(Ax—Ay) 0
_| V3 1 1
M; = - (Ax=4))  —D+5gpB- A, V3E
3 3
0 V3E D=2 9.BB +7 A,
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3 3 V3
D+5gpB+74;, - (4x=4,) V3E

| V3 1 1 1
M4 - T(Ax - Ay) —-D + EgZﬁB - ZAZ E(Ax +Ay)
1 1 1
\/§E E(Ax + Ay) —-D — EgzﬁB —ZAZ

and the secular equation corresponding to each matrix above is given by the following cubic equation

B+pxt+qx+r=0(>0=1234)
with

3 1
pr=D +§gzﬂB _ZAZ

3 3 7 1 3
—(DZ+3E2)——(gZﬂB)2+3DgZBB > DA, +79.BBA; 16Ax2—§AxAy 16,4 +- A2

~DD? + 352 — 2 (9,B)° + 7 D(g.BB)* +5 (D + E)D — E)g,8 — 55 9. PBA,*

1 , 15 7 9 , 1 ,
+ E(D - 12E)Ax - EgZ:BBAxAy + gDAxAy - _ZgZ'BBAy +E(D + 12E)Ay

3 9 15
+—(gzﬁB)2A +5 Dg:pBA, ——(5D2 +3EA, + L A A + o AvAyA,
9 13 3
— A A+ — 2_lpp2_2p3
+ +5,9:8BA; 16DA 2

1 5
D2 = -D +Egz,8B _ZAZ

= —(D? + 3E?) 9( £B)? — Dg,BB 1DA > BA 3A +3AA A2+3A2
92 = 79z 9z > DA, —79.PBA; — 6 3 e T 1642
, .9 , 9 , 1 9 3 5
r, = D(D? + 3E )—g(gZBB) —ZD(gZ[)’B) +§(D+3E)(D—3E)gzﬂB+ 9,BBA,* + ¢ DAx
9 3 9 3 2 ) 3
— g 9BBAAy — g DAAy + 9.BBA,” +1g DAy - 6(gZBB) A;+7Dg,pBA,
+ - (7D2+9E2)A+9A2A AAA+9A2A +9 BA,* +15DA2
64 32 64 329F 16
9
— A, 3
T o1t
1 5
ps=—D—-59,pB - 74,
=—(D2+3E2)—2(g,BB)2+DgBB—lDA +-g,BBA, — — A +ZAA, 3A2+3A2
477 z 2777 49772 16 8 167 167
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3 2
BBA,* +—DA,

9 9 1
— 2 2 Z 3_2 2 _ _ -
r3 =D(D* + 3E%) + 3 (9.8B) 4D(gzﬁB) 7 (D +3E)(D —3E)g,pB 3792 16

3 9 3 - 3
+RQZBBAxAy _gDAxAy _EQZBBA +EDA 6(92:83)2142 _ZDgzﬁBAz
+ = (7D2+9E2)A+9A2A 9AAA+9A2A 0 BA,* +15DA2
64"x 2732 g1y Az = 3598 16
9
— A, 3
talz

3 1
ps=D _EQZBB _ZAZ
1 3 3 7, 1 3,
qs = _(DZ + 3E2) - Z(gzﬁB)z - BDQZBB - EDAZ - ZgzﬂBAz - 1_6Ax _§AxAy 16A + A

3 1 3 9 )
= _D(DZ + 3E2) + g(gzﬁB)?) + ZD(QZ.BB)Z - E(D + E)(D - E)gzﬁB +3_2.gzﬂBAx

1 , 15 7
+ Te (D —12E)A,~ + EQZBBAxAy +-

9 1
g DAxAy + 25 9:.PBA,* + e@+ 12E)A,*

3 9 15
+—(9zﬁ3)2A — D 9:8BA, ——(5D2+3E2)A AL AL+ o5 A A,
9 13 2 2 3 .3
64A A, 2gZﬁBA —1—6DA —aA
The cubic equation (i=1, 2, 3, 4)
x3+px?+qx+r,=0(0{=1,23,4)

is transformed as follows;

s (pi®—3q; 2p;® — 9piq; + 271
X~ = X —
3 27

by substituting x to x — pi/3. Then, the solutions of the cubic equations are represented as follows;

Xim = 2S;COS E arccos (Zt;i) 2mn] _bi (m=0,1,2)
with
3
f=— 2p;® = 9piq; + 271
3pi® — 9q;

Forn=1Ms=+32and M;=+1/2), a; =74 = |v1‘1|2 (real).
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3 3 V3
(D + EgzﬁB + ZAZ — 151)@1 + T(Ax —Ay)B; +V3Ey; =0 —(Al)

V3 1 1 1
J T(Ax — Ay gy + (—D +59:PB -4, - E1> B + E(Ax + A, )1 +V3ES;, = 0—(Bl)
1 1 1 V3
V3ET,, + E(Ax +A,)p + (—D — 5928 =74, — E1> yi+ T(Ax —A,)8, =0—(Cl)

V3 3 3
V3EB, + T(Ax — Ay, + (D - EgZBB +ZAZ - E1> 5, =0—(D1)

1
(B1) x Z(Ax —A4,)

V3

1 1 1 1
e (Ay = Ay) on + Z (4, —A4A,) (—D +59.:8B A, ~ El) Bitg (4% - A,

V3
+ TE(AX —A4,)8, = 0—(El)

(ChHYXE

1 1 1 V3
V3E%r,, + EE(AX +4,)B +E (—D - EgzﬁB — 742 151)]/1 + TE(AX —4,)8, = 0—(F1)
(E1)— (F1)

V3

1 1 1
e (45— 4,)" = 16E?] 1y + 2 [(Ax —4,) (—D +59.PB 74, ~ E1> — 2E(A, + Ay)] B,

+[5(42 -4, ~ (D ~30.88 34~ B )i = 0— )
(A X V3| (4 = 4,) (D + %gzﬁB ~ 24 - By) - 2B(4c + 4y)]
V3(D 430,88 +5 A4~ B2 ) (4~ 4,) (=D + 50,88 — 3 4, Ey) = 2(A, + 4))| ra
2= 2) [~ 2) (-0 + 2 085 — 4, B) - 2E(a, +4)] 1

1 1
+3E [(Ax —4,) (—D + EgzﬁB - ZAZ - El) —2E(A, + Ay)] y1 = 0—(HI)
(G1) x 3(A, — 4,)

3v3

T (4= 4,) (45— 4,)" = 16E?| 1

+ % (4, - 4,) [(Ax —-Ay) (—D + %gzﬁB - %Az - El) —2E(A, + Ay)] B

+3(4,— 4,) E (A —-A%)-E (—D - %gzﬁB —%AZ — El)] y1=0—(1)

Applying (H1) — (I1) yields

_ numer(y;)

= denom(y;) **
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where

numer(y,) = 3V3(4, - 4,) [(4, - 4,)" - 16E?|
~16v3(D +3 6,88+ 4, ~ £, ) [(4c — 4,) (-0 + 39,8 ~ 74~ Ey)
—2E(A, + Ay)]
denom(y,) = 48E [(Ax —4,) (—D + % 9zBB — %Az - El) —2E(A, + Ay)]

5 5 1 1
—6(A, —4,) [Ax —-A,* —8E (—D —59:PB — 74, - El)]
From (A1) we obtain

3 3, numer(y,)
43 (D +59.8B + 34, El) +12E g s

Br=- 3(Ax — Ay) Ta1

Finally, from (D1) we obtain
_ _4‘/§E.81 - \/g(Ax - Ay)yl
Y™ 4D —6g,8B +34,—E;
For the basis sets of {|+3/2, —1/2>, [+1/2, +1/2>, |-1/2, -1/2>, |-3/2, +1/2>} (Ms + M; = £1), the

corresponding spin Hamiltonian is written as

3 3 V3
D +§gzﬁB —ZAZ T(Ax +Ay) \/§E 0
1
NE] 1 1 >(Ax—4,) V3E
s3,.1 T(Ax‘FAy) -D +EngB +ZAZ 2( = 4)
H. 272 =
fu11,2 1 1 B 1A \/§ A A
VEE (4, 4) D -39hB 43 (At 4y)
3 3 3
0 VEE Bara)  p-3epseda,

The secular quartic equation above, which is the counterpart Hamiltonian based on the spin conjugate

1

function, can be established by replacing 4, and 4: to —4, and —A4:, respectively, of the counterpart of H:: full 1

Thus, the eigenvalues E; (i = 5,6,7,8) are given as
Ay=—AyA,=—A,
Ey ——— ;s
for the [+3/2, —1/2>-dominant state,
Ay=—AyA=—4,
E, 22—~ SE,
for the |[-3/2, +1/2>-dominant state.
Ay=—AyA=—4,
E, X~ S,
for the |[+1/2, +1/2>-dominant state, and
Ay=—AyA=—4,
E, —————E,

for the |-1/2, —1/2>-dominant state.
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b) Double perturbation approach

The perturbation approach for the case of the spin quartet state with /= 1/2 does not necessarily encourage

to merit attention, but it is worth comparing the accuracy of the double perturbation treatment with the exact

analytical treatment. In this context, we note that our Zeeman perturbation approach applied to the cases

without hyperfine interactions affords extremely accurate analytical expressions for the eigenvalues and

functions. The spin Hamiltonian for the ZFS terms, which come from the spin—spin and spin—orbit

interactions in the cases of S > 1, is taken as the non-perturbed Hamiltonian. The matrix representation of the

rank-2 ZFS Hamiltonian in terms of the basis set (|Ms, M> = [+3/2, +1/2>, |+1/2, +1/2>, |-1/2, +1/2>, |-3/2,

+1/2>) is given as

D 0 V3E 0
s=3 0 -D 0 3E
fs V3E 0 -D 0

0 +3E 0 D

The eigenvalues and the corresponding eigen spin wavefunctions are given, respectively in the following:

ei(? 1=A go(og) 1—cos@|i§,+1>+sin9|$1,+1>
341 15+3 2" 2 27 2
J(ro)+ =-A gof_%) ;—cos@|i%,+%>—sin9‘¢;+%>
where
A =+/D?+3E?
and

V3E

tan20 = —

It is noted that the half-integer spin S = 3/2 results in the degeneracy in the absence of the static magnetic

field and this gives complexity in treating the hyperfine structure terms, which is underlain by the spin

conjugate properties.

First, {|(p ,S)S) M1>} are divided to two subspaces corresponding to the eigenvalues;

ERIEE

(02,0

For simplicity, we rewrite the notation of the eigenfunctions as follows;

<P5_03)+1>, |§0(03) 1>,|<p(0) >} (eigenvalue A)

|§0(01) 1>,|§0(0) >} (eigenvalue — A)

{le2,0) [02) |0 2) [e )} = i 120, 1430 144
{ (p-(}-()l)+1>l (0) > |‘P(02) %> |(p(0) >} - {l_ll)l |_,2), |_,3), |_14)}

The matrix elements of the hyperfine structure Hamiltonian in the basis of |Ms, M are given as
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5M5M§5M,M,’ MsM;A,,

1

(Mg, M[|Hyes| Mg, M) = E6M5M§$16M,M,’$1\/15 - 4MSM5\/3 —4MM,; (Axx - Ayy)
1 ! !
E5M5M§$15M,M,’i1\/15 - 4M5M5\/3 —4M;M; (Axx + Ayy)

According to the degenerate perturbation theory, the first-order corrections for the energy of the hyperfine
structure Hamiltonian (sfr?;) (a = 1,2,3,4)) which belong to the group of the positive energy eigenvalue are

given as the eigenvalues of the following matrix:

(+1|Hygl+,1)  (+1[Hpgl+,2)  (+1|Hpgl+,3)  (+,1|Hygl+,4)
(+.2|Hpg|+,1)  (+.2|Hpg|+,2)  (+,2|Hpgl+,3)  (+,2|Hyg| +,4)
(+,3|Hpg|+,1)  (+.3|Hpg|+,2)  (+,3[Hypgl+,3)  (+,3|Hyg| +,4)
(+4|Hygl+,1)  (+4Hpe|+,2)  (+4|Hpgl+.3)  (+,4|Hpgl +,4)

where each matrix element can be calculated in the following;

}{ﬂ}s =
A,
<+,1|thsl+,1) = (+,4|thsl+,4> = T(l + 2 cos 29)

Z

A
<+,2|thsl+,2) = (+,3|thsl+,3> = —T(l + 2 cos 29)
1
(+,1|Hpgo | +,4) = (+,4|Hpp | +,1) = Zsing [V3(4, — Ay) cos8 + (A, + A,)sin 6]

1
(.2l Hygs|+3) = (+3|Hyg | +,2) = Zsin 0 [V3(4, + Ay) cos8 + (A, — A,)sin 6]

The other elements are zero. Thus, the matrix can be divided to two 2 x 2 matrixes with the basis of {|+, 1>,

|+, 4>} and {|+, 2>, |+, 3>}. The secular determinants are as follows; for the {|+, 1>, |+, 4>} basis set,

A 1
IZ (1+2cos26)—x Esin 0 [\/§(Ax - Ay) cos 6 + (Ax + Ay) sin 9]
1 A -
sind [V3(A; — Ay) cos8 + (A, + A,)sin 6] IZ (1+2cos26) —x
and for the {|+, 2>, [+, 4>} basis set,
A, 1. .
s (1+2cos26)—x > sin 0 [\/§(Ax + Ay) cos 6 + (Ax - Ay) sin 9] ~
1 A -
sind [V3(A; + Ay) cos8 + (A, — A,)sin 6] —TZ (1+2cos26) —x
From the first secular equation, we obtain
(01)
€11

1
= Z{AZ + 24, cos 260

+ 2\/sin2 0[2(A,° — AA, + A)%) + (A2 — 44,4, + A)?) cos 20 + V3(A,° — A7) sin 29]}

(01)
€4

1
= Z{AZ + 24, cos 260

- 2\/sin2 0[2(A,° — AA, + A)%) + (A2 — 44,A, + A)?) cos 20 +V3(A,° — A,%)sin 29]}
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From the second secular equation, we obtain

(01)
€12

1
= Z{_AZ — 2A,cos 260

+ ZJsinZ 0 [2(A% + A Ay + A7) + (A% + 44,4, + A)?) cos 20 +V3(A,% — A)%) sin 29]}

(01)
€43

1
= Z{_AZ — 2A,cos 260

- ZJsinZ 0 [2(A% + A Ay + A7) + (A% + 44,4, + Ay?) cos 20 +V3(A,% — A)?) sin 29]}

Similarly, the first-order corrections for the energy of the hyperfine structure Hamiltonian
(SE(’);) (a = 1,2,3,4)) which belong to the group of the negative energy eigenvalue are the eigenvalues of the

following matrix:
(= 1|Hygl—=1)  (=1|Hpel=2) (= 1|Hygl=.3) (= 11Hpgl—4)
o = (—=2|Hpgl=1)  (=2|Hpl=2)  (=2|Hygl—=3) (= 2|Hygs|—14)
hs (=3[Hpgl=1)  (=3|Hpl=2)  (=3|Hugsl—=3)  (=.3|Hpgs|—4)
(—4|Hygl—1)  (=4|Hpel=.2)  (—4|Hygl—.3) (= 4|Hpgl—4)

with each matrix element represented as follows:

A
(= 1Hys|=1) = (=4l Hy|—4) = =7 (1 — 2 cos 26)
A,
(—,2|Hpgl—,2) = (—,3|Hpl—,3) = T(l — 2c0s26)
1
(= 1|Hypl—,4) = (—4|Hyi|—,1) = 5 cos 0[(Ay —A4y)cos® —V3(4, + A,)sinb]

1
(=2l Hygs|=,3) = (= 3| Hygs|—,2) = 5 cos 0 [(Ay + 4)) cos8 —V3(4, — A,)sin 6]

The other elements are zero. Thus, the matrix also can be divided to two 2 X 2 matrixes with the basis of

{|- 1>, |-, 4>} and {|-, 2>, |-, 3>}. The secular determinants are as follows; for the {|-, 1>, |-, 4>} basis set,

A 1
—Iz(l —2cos26)—x EcosB [(Ax —Ay) cos 6 — \/§(Ax +Ay) sin@] e
1 A -
5 cos 0[(Ax—A,)cos® —V3(4, +A,)sin6] —TZ (1-2cos26) —x
And for the {|—, 2>, |-, 4>} basis set,
A 1
Iz(l —2cos26)—x ECOSB [(Ax + Ay) cos 6 — \/§(Ax - Ay) sin 9] .\
1 A -
5cos0 [(Ay + A,) cos 8 —V3(A, — A,) sin 0] TZ (1—2cos20) —x

From the first secular equation, we obtain
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5(011)

1
= Z{_AZ + 24, cos 260

+ 2\/cosz 0 [2(A% + A A, + A)%) — (A2 + 44,4, + A,%) cos 20 — V3(4,° — A,%) sin 20]}

R

1
= Z{_AZ + 24, cos 260

- 2\/cosz 0 [2(A% + A A, + A)%) — (A2 + 44,4, + A,%) cos 20 — V3(4,° — A,%) sin 20]}

From the second secular equation, we obtain

P

1
= Z{AZ — 2A,cos26

+ 2\/cosz 0[2(A,° — AA, + A)%) — (A, — 44,A, + A)?) cos 20 — V3(A,* — A,7) sin 29]}

(01)
€_3

1
= Z{AZ — 2A,cos26

- 2\/cosz 0[2(A,° — AA, + A)%) — (A, — 44,A, + A)?) cos 20 — V3(A,* — A,%) sin 29]}
The second-order correction for the energy of the hyperfine structure Hamiltonian (sé.?j) (6 =

+,—; @ =1,2,3,4)) can be written as

4 _
£02) _ [(z, at| Hug| F, B2

ta  _ (0
=1 &+ T &

Both the upper and lower signs should be chosen in the double sign. The non-zero matrix elements of Hyg

expanded to the basis belonging different eigenspaces are as follows:

V3 1 _
(+,1|Hp|=,2) = (=,2|Hpg | +,1) = - (Ax —A,)cos20 + 2 (A +A,)sin20

A
(+,1[Hygs|=,3) = (=3[ Hy | +,1) = —{sinze
V3 1 _
(+,2|Hygl—,1) = (= 1|Hpl +,2) = " (A +A,)cos20 + 2 (A, —A,)sin20
A,
(+.2|Hygs|—,4) = (=, 4|Hpg|+,2) = - sin 20

z

A
(+,3|Hpg|=,1) = (= 1|Hyg| +,3) = 7sin 20
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V3 1
(+,3|ths|_,4> = (_:4|ths|+:3> = T(AX + Ay) cos 26 +Z(Ax _Ay) sin 20

A
(+,4|Hpg | —,2) = (=, 2|Hpg|+,4) = —7Zsin29

V3 1
(+4|Hp|=,3) = (=3 Hyg|+,4) = T (Ax —A,)cos260 + 7 (A +A,)sin26

Therefore,

20 _ [(=,2|Hug |+, 1)|% + [{(=,3| Hpe|+,1)1?

+,1 A

2
1 ([v3 1 A2
= ﬂ{[? (A —Ay)cos26 + Z(Ax +A,) sin 20] + %Sinz 29}

L2 _ Mg 4,217 + [ 4 Hi [ +2) 12

+,2 A

2
1 {[v3 1 _ 42
= ﬂ{[T (A, +A,)cos20 + Z(Ax —A,)sin 20] + —-sin 20

£02) _ (=11 Hygs|+,3)|% + [{—,4| Hygs | +,3) [

3 20

2
1 A22 . \/g 1 .
= ﬂ{T sin? 20 + [T (A, + Ay) cos 20 + 7 (4, — Ay) sin 29] }

L2 _ {2 Hyg 1% + 131 Hi [+

+,4 A

2
1(4,° V3 1
= ﬂ{% sin? 20 + [T (A, —A,)cos20 + 7 (A, + Ay)sin 29] }
£02) _ [(+,2| Hugs| = 1) |% + [{(+,3| Hygs | = 1)

-t —2A

2
1 ([V3 1 . A% ,
= _ﬂ{[T (A, +A,)cos20 + Z(Ax —A,)sin 26] + ——sin 20

Sz _ [ Ly [ = 2)1% + [+ 4 Hy | =, 2)1
_2 -
' —24

2
1 ([V3 1 . A% ,
= _ﬂ{[T (Ax - Ay) cos 260 + Z(Ax +Ay) sin 26] + Tsm 20

£02) _ [{+,1|Hpsl =302 + [(+,4|Hpg | —,3)1?
o 24

2
1(4,% V3 1 .
= _ﬂ{Tsmz 20 + [T (Ax - Ay) cos 26 + Z(Ax + Ay) sin 29] }
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5(02) _ |<+12|ths|_:4)|2 + |<+:3|ths|_l4)|2

-4 T 2A
2
1 (4,2 V3 1
= _ﬂ{%sinz 20 + [T (A +Ay)cos20 + Z(Ax —A,)sin 29] }

In order to calculate the first-order corrections for the energy of the electron-Zeeman Hamiltonian,

3

2 = 92BS,B isalso expanded by |o,a) (6 =+,—; a =1,2,3,4):

HeZ

B
(+1|Hogl 1) = (+,2|Hogl+,2) = %(3 cos? 0 — sin? §)

B
(+,3|Hez|+,3) = (+,4|Hyz | +,4) = —ng (3 cos? 8 —sin?0)

<+1B|HeZ|+'a) = <+,Q|Hezl+,ﬁ) =0 (a * ,B)

B
(= 1|Hez|—,1) = (—=,2|Hez|—,2) = %(cos2 6 — 3sin? )

B
(—3|Hez|—,3) = (—4|Hez|—,4) = —% (cos? 8 — 3sin?H)

<_')8|HeZ|_'a) = <_1a|HeZ|_'ﬁ) =0 (a * ,B)

Thus, the first-order corrections for the energy of the electron-Zeeman Hamiltonian are as follows:

B
10 _ % (3 cos? 0 —sin? 0)

3
+§,MI 2

B
10 _ % (cos? 6 — 3sin? 0)

1
+3.M; 2

B
10 — _9:PB (cos? 6 — 3sin? 0)
_E’MI 2

851%3‘)/[1 = — @ (3 cos? 60 —sin? 0)
In order to calculate the second-order correction for the clectron-Zeeman Hamiltonian, the non-
diagonal components of the electron-Zeeman Hamiltonian are obtained.
(+,1|Hez|—,3) = (—,3|Hez|+,1) = —2g,BB sin 6 cos 6
(+,2|Hoz|—,4) = (—4|Hoz|+,2) = —29,8B sin 0 cos 0
(+,3|Hez|—,1) = (—,1|Hz|+,3) = 29,B8B sin 6 cos 6
(+4|Hez|—,2) = (=,2|Hez|+,4) = 2g,BB sin 6 cos 6

The other elements are zero. Therefore,

L20 _ 2(g,BB)? sin? O cos? O
oM D? + 3E2

L20 _ 2(g,BB)? sin? O cos? O
M D? + 3E2

_ 2(g,BB)?sin* 6 cos* 6

£ =
+2Mi VDZ + 3E?
$26




(20) 2(g,PB)?sin? 0 cos? @
& = —
R D? + 3EZ

From the double perturbation theory, the correction for the energy in the case of =1 and g =1 can be

represented as

81(111) _ Z (n|H;|m){m|Hz|n) + (n|Hy|m){m|H,|n)

(0) (0)
m#n &n T Em

In this case, H1 and H- are the electron Zeeman and hyperfine structure Hamiltonians, respectively. Thus,

8(11) _ (+:1|HeZ|_13)(_:3|thsl+:1) + (+:1|thsl_:3)(_:3|HeZ|+:1) — gZIBBAZ Sinz 29

+,1 S-EO) () 2A
LD (+,2|Hez|—/4)X(—,4|Hygs|+,2) + (+,2| Hpgs| — 40—, 4| Hez | +,2) _ _ 9:BBA, sin” 20
+,2 S-EO) — £ 2A
8(11) _ (_11|HeZ|+r3)(+:3|ths|_:1) + (_:1|ths|+:3)(+:3|HeZ|_:1) _ _gZﬁBAZ Sinz 20
-1 £© — ¢© B 24
8(11) _ (_12|HeZ|+r4)(+:4|ths|_:2) + (_:2|ths|+:4)(+:4|HeZ|_:2) _ gZﬁBAZ Sinz 20
-2 g0 — sfro) 24
8(11) _ (_13|HeZ|+11)(+:1|ths|_:3) + (_:3|ths|+:1)(+:1|HeZ|_:3) _ _gZﬁBAZ Sinz 20
-3 £© — ¢© B 24
8(11) _ (_14|HeZ|+12)(+:2|ths|_:4) + (_:4|ths|+:2)(+:2|HeZ|_:4‘) _ gZﬁBAZ Sinz 20
-4 g0 — sfro) 24
8(11) _ (+:3|HeZ|_11)(_:1|ths|+:3) + (+:3|ths|_:1)(_:1|HeZ|+:3) _ gzﬁBAz Sinz 20
3T e® _ O B 24
3(11) _ (+:4|HeZ|_12)(_:2|ths|+:4‘) + (+:4|ths|_:2)(_:2|He2|+:4‘) _ _gzﬁBAz Sinz 20
4T e® _ © B 24
The perturbed energies in the second order are:
B 2 B)?sin? 6 cos? 0
= /D2 + 3E?2 +gZﬁ (3cos? @ —sin? 9) + (9:5B)

2 VD2 + 3E2

1
+ Z{AZ + 24, cos 260

+ ZJsinz 0[2(A,° — AA, + A)%) + (A2 — 44,4, + A)?) cos 20 +V3(A,° — A,%)sin 29]}

2
1 ([vV3 1 , A% 9,BBA, sin 26
+ﬁ{[7 (Ax - Ay) cos 260 + Z(Ax + Ay) sin 28] + Tsz 26} + Fme
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E. s

1
t272
98B _ 2(g,BB)?sin? 6 cos? 6
=+/D2+3E2 +=—=—(3cos?60 —sin?0) +
2 VD? + 3E2

1
+ Z{_AZ — 2A,cos 26

+ ZJsinZ 0 [2(A% + A Ay + A7) + (A% + 44,4, + A)?) cos 20 +V3(A,% — A)%) sin 29]}

2
L ! i Al g,BBA, sin? 20
+ ﬁ”T (Ax + Ay) cos 20 + 7 (Ax - Ay) sin 29] + %sz 29} _ %
9:PB : 2(g,BB)?sin? 6 cos? 0
Eyya = —YD? 4 32 + 5= (cos” 6 — 3sin® 0) - ——— ey

1
= Z{AZ — 2A,cos26

+ 2\/cosz 0[2(A,° — AA, + A)%) — (A, — 44,A, + A)?) cos 20 — V3(A,* — A7) sin 29]}

2
1 ([v3 1 _ A2 g,BBA, sin? 20
ﬂ{[_z} (Ay —A,)cos20 + 2 (A, + A,)sin 29] + sin? 20} B

E

+

/ > B 2 B)? sin? 6 cos? 6
== D2+3E2+%(C0529—351n29)— (9-8B)
2 \VD? + 3E?

NI
NI

1
+ Z{_AZ + 24, cos 260

+ 2\/cosz 0[2(A° + AA, + A)%) — (A% + 44,A, + A)?) cos 20 — V3(A,* — A7) sin 29]}

2
LR E] 1 . A 92BBA, sin? 26
_ﬂ{[j (A, +A,)cos20 + 2 (A, — A,)sin 29] + %sm2 29} + %
Eogn
/ > B 2 B)?sin? 6 cos? 0
= —vD?+3E? _ o (cos? 6 — 3sin? ) — (9-8B)

2 VD% 1 362

1
+ Z{_AZ + 24, cos 20

- 2\/cosz 0[2(A° + AA, + A)%) — (A% + 44, A, + A)?) cos 20 — V3(A,> — A7) sin 29]}

2
1(4,% V3 1 _ 9zBBA, sin? 20
——ZA{—4 sin? 26 + [—4 (Ax+Ay)COSZt9+Z(Ax—Ay)sm29] }——ZA
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E

1.1
22

2 gin2 2
= —D? +3E% — 9:h8 (cos? 6 — 3sin? ) — 2(g,pB)” sin” 0 cos” 0
2 VD2 + 3E2

1
+ Z{AZ — 2A, cos 26

- 2\/cosz 0 [2(A% — A A, + A)%) — (A% — 44,4, + A,%) cos 20 — V3(4,* — A,%) sin 20]}

gzPBA,sin? 20

2A( 4 2A

E 3,1
~2%2

B 2 B)?sin? 6 cos? 0
=\/D2+3E2—%(3c0526—sin26)+ (9.8B)
2 VD? + 3E2

2
1 (4,7 V3 1
——{Lsin2 20 + [T(Ax —A,)cos20 +Z(Ax +4,)sin 29] }+

1
+ Z{_AZ —2A,cos 20

- ZJsinZ 0[2(A,° + AAy + A)%) + (A% + 44,4, + A)?) cos 20 +V3(4,° — A,%)sin 29]}

2
1 (A7 V3 1 BA, sin? 20
—A{% sin® 20 + [T (Ax + 4y) 0520 +5 (4, - 4,) sin 29] } 4 §2PB4, Sin" 26

2A

+

N

E

B 2 B)?2 sin2 0 cos2 6
=\/D2+3E2—%(3c0529—sin2 0) + (9-8B)
2 VD2 + 3E2

Niw
N[ =

1
+ Z{AZ + 24, cos 260

- ZJsinz 0[2(A,° — AA, + A)%) + (A* — 44,4, + A)?) cos 20 + V3(4,° — A,%)sin 29]}

2
1 (A% V3 1 _ g,BBA, sin? 20
+ E{T sin? 26 + [T (Ax — Ay) cos 20 + Z (Ax + Ay) sin 26] } — T

2.1=13/2 case
The matrix elements of the hyperfine structure Hamiltonian in the basis of |Ms, M are

5MSM§5M,M,’M5MIAZZ

1

(ML, M!|Hsl Mg, M) = E5M5Mg¢15M,M,’$1\/15 — 4MgMg/15 — 4M;M[ (A — Ayy)
1

16

The secular equation of the full spin Hamiltonian (including the zero-field splitting, the electron-

SugntF1Omym) 41V 15 — 4MsMgy[15 — 4M; M (A + Ayy)

Zeeman and the hyperfine terms) is factorized into two octic equations, for which we do not have general
solutions. Therefore, the extremely exact energies relevant to the equations can be obtained by applying the
double perturbation approach.

The matrix representation of the rank-2 ZFS Hamiltonian is the same as that in the case of /=1/2, and

S29



thus the energy eigenvalues and the spin eigenstates have already been shown.
Similar to the /= 1/2 case, the set of the spin eigenfunctions, {lgo ,SJS) M1>}’ is divided into two subspaces

corresponding to the eigenvalues;

) ) © > © ) (0) > | (0) ) | © > ‘ () > | © >} eigenvalue A
{(p+3+3 NP5 ) (0331 |05 5) [05,0) | 050) [0 4) |05 s ) (el )
(65 2 o2 ot L o ) s -

For simplicity, we rewrite the notation of the eigenfunctions as follows for simplicity.

{l02.) [0 [020) |02 [02s) [0 D) [0 %) [0 2
- {|+’1)’ |+’2)F |+13)F |+’4)’ |+J5)J |+l6)l |+l7)l |+J8)}
{qoi(’l)+3>, <pfr°1)+1>, qofr()l)_l), © > |<p(°1) 3>.|¢(°1) 1>,‘<p(°1) 1>,|¢(°) >}

- {|=1),1=-.2),1-3),|=4),1=.5), | =,6), |=7), | -,8)}
According to the degenerate perturbation theory, similarly to the /= 1/2 case the first-order corrections for
the energies of the hyperfine structure Hamiltonian which belong to the group of the positive eigenenergy
(01) (a =1,---,8)) are the eigenvalues of the 8 x 8 matrix, which can be divided into two 4 x 4 matrixes

represented as follows:
(+,1|Hyl+,1)  (+,1|Hyi|+,3)  (+,1[Hygl+,6)  (+,1|Hpg|+,8)
= (+,3|Hygs|+,1)  (+,3|Hypgs|+,3)  (+,3|Hygs|+,6)  (+,3|Hygs| +,8)
hfs (+,6|Hygs|+,1)  (+,6|Hygs|+,3)  (+,6|Hyg|+,6)  (+,6|Hyg|+,8)
(+,8|Hy|+,1)  (+,8|Hy|+,3)  (+,8[Hyi|+,6)  (+,8|Hyg|+,8)
(+,2|Husl +,2)  (+,2|Hyis|+,4)  (+.2]Hygl+,5)  (+.2|Hyg|+,7)
(+4|Hygs|+,2)  (+4|Hygl+,4)  (+4|Hyg|+,5)  (+4|Hygl+,7)
(+,5|Hygs|+,2)  (+,5|Hygsl+,4)  (+,5|Hyg|+,5)  (+,5|Hyg|+,7)
(+,7|Husl +,2)  (+,7|Hygs|+,4)  (+,7[Hygs|+,5)  (+,7|Hyg|+,7)

where each matrix element can be calculated as

+2 _
ths -

<+,1|th5|+,1) = <+,8|th5|+,8) =

z

A
<+,2|th5|+,2) = (+,7|th5|+,7> = T(l + 2 cos 29)
z

A
<+,3|th5|+,3) = (+,6|th5|+,6> = —T(l + 2 cos 29)

<+)4|ths|+'4) = <+l5|ths|+:5) = -

<+'1|ths|+i6) = <+16|ths|+il) = <+:3|ths|+:8) = (+:8|ths|+:3)

1
= EsinB [3(Ax — Ay) cos O + \/§(Ax + Ay) sin 9]
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(+,2|Hygs|+,5) = (+,5|Hugs|+,2) = (+,4|Hpg| +,7) = (+,7|Hpg| +,4)

1
= Esine [3(Ax + Ay) cos@ + \/§(Ax - Ay) sin 9]

(+,2|Hyg+,7) = (+,7|Hyg|+,2) = sin 0 [V3(4, — A,) cos 6 + (A, + A,) sin 8]
(+,3|Hyg|+,6) = (+,6]Hyg|+,3) = sin 0 [V3(4, + A,) cos 6 + (A, — A,) sin ]

The other elements are zero.
(+:1|ths|+:1>
0
(+,6|Hygl +,1)
0
(+:2|ths|+:2>
0
(+,5|Hpgl +,2)
(+,7|Hygs| +,2)

+1 _
ths -

+2 _
ths -

while the first-order corrections for the energy, which belong to the group of the negative eigenenergy

0
(+,3|Hpg| +,3)
(+,6/Hyg| +,3)
(+,8|Hyg|+,3)

0
(+,4|Hyg| +,4)

0
(+,7|Hygs | +,4)

<+I1|thsl+l6)

<+'3|ths|+'6)

<+'6|ths|+'6)
0

<+f2|thS|+f5)
0

<+'5|ths|+'5)
0

0
(+,3|Hpg | +,8)
0
(+,8[Hygs | +,8)
<+I2|thsl+l7)
(+4|Hpg|+,7)
0
<+I7|thsl+l7)

(SE(’);) (a =1,---,8)), are the eigenvalues of the 4 x 4 matrixes represented as follows:

(= 1|Hyl=1) (= 1|Hyg|—,3) (= 1[Hygl—6) (= 1|Hpg|—,8)
Ho = (=3|Hpgs|—1)  (=3|Hypgs|—,3)  (—,3|Hygs|—,6)  (—,3|Hygs|—,8)
(=,6|Hypg|—1)  (—,6|Hygs|—,3)  (—,6|Hyg|—,6)  (—,6|Hygs|—,8)
(—8|Hnl = 1) (—.8|Hhi|—,3)  (—8|Hyi|—,6)  (—,8|Hyg|—,8)
(= 2|Husl =2y (—2|Hyis|—4)  {—2[Hygs|—=5)  (—2|Hyg|—,7)
H2 = (—4|Hyg|—,2)  (—4|Hyg|l—4)  (—4|Hyg|=,5) (= 4|Hyg|—,7)
(=,5|Hpgs|—,2)  (=,5|Hygs|—4)  (=,5|Hyg|—,5)  (=,5|Hyg|—,7)
(= 7|Husl =2y (= 7|Hygs|—4)  {—=7[Hpgs|—=5)  (—=7|Hyg|—7)
34,

(= 1|Hyg|—,1) = (—,8|Hpg|—,8) =

4

A

(=14 2cos26)

A
(=2|Hygs|=,2) = (=, 7|Hys| =, 7) = 7 (=14 2cos26)

z

A
(=3IHy) =3) = (=6l —6) = 77 (1~ 2 cos 26)

(—4|Hygs|—,4) = (=,5|Hpg|—,5) =

34,
4

(1 —-2cos20)

<_;1|ths|_:6) = <_l6|ths|_11) = <_,3|thsl_,8) = <_,8|th5|_,3)

1
= Ecos 0 [\/§(Ax - Ay) cosO — 3(Ax + Ay) sin 9]

<_t2|ths|_15) = <_15|ths|_12) = <_,4’|th5|_;7) = <_;7|ths|_;4’)

1
= Ecos 0 [\/§(Ax + Ay) cosf — 3(Ax - Ay) sin 9]

(—2|Hyl = 7) = (=7|Hyg|—,2) = cos 8 [(Ax — A,) cos @ — V3(A, + A,) sin 6]
(—3|Hyg|—,6) = (—6]Hy|—3) = cos 8 [(A, + A,) cos @ — V3(A, — A,) sin 6]
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(_tlthfs|_11> 0 <_'1|ths|_:6) 0

Hot = 0 (=3|Hypgs|—,3)  (—,3|Hygs|—,6)  (—,3|Hygs|—,8)
(=,6|Hypgs|— 1) (—,6|Hyg|—,3)  (—,6|Hygs|—,6) 0

0 (=8| Hpg|—,3) 0 (—,8|Hpg|—,8)

(—2|Hypg|—,2) 0 (—2[Hyis| =5 (—2|Hygs|—,7)

Ho? = 0 (—4|Hyg| —,4) 0 (—4|Hyi|=,7)
(=,5|Hugs|—,2) 0 (=,5[Hhgs|—,5) 0

(= 7|Husl—,2) (=, 7|Hygs|—,4) 0 (= 7|Hpg|—7)

The secular quartic equations can be factorized to two quadratic equations. The first-order corrections are
given as the solutions of the following quadratic equation:

x2+ax+b;=0@{=1,-,8)
In the equation, i =1 and 2, 3 and 4, 5 and 6, and 7 and 8 come from Hl:'f'sl, Hl:'f'sz , H}:f'sl , H}:f'sz, respectively.

The solutions of the quadratic equation above are

—a; +/a;> —4b;
x=— ‘(i=1,-,8)

The coefficients of the quadratic equation are in the following:

1 3
—(Ax— A, +24,) cos 20 + g (A +A,)sin26

1
a, =§(Ax—,4y—,42)—2

9 3
b, = —1—6(sz +A,%+4,%) + g(sz +24,A, + A)® — A A, + Ay A, — 24,%) cos 20

+i(A 2 — 44, A, + A7 + 24,4, — 24,4, — 24,%) cos 46
16 X x4y y x41z yélz z

3V3, 2 :
——5 (A° — A, + AA, + AyA,)sin20
3V3, , ) _
+ e (A° — A, — 24,4, — 2A,A,) sin46

1 1 1
a; = 5(—Ax +4,—A4,)+ E(Ax — A, —24,)cos20 — E\/§(Ax +A4,)sin20
9 3
b, = _1_6(‘4"2 +A,°+4,%) + 3 (A% + 24,4, + A% + Ay A, — A A, — 24,%) cos 20

+i(A 2 —4A,A, + A, — 24,4, + 24,4, — 24,%) cos 40
16 x x4y y x4z yilz z

3V3, 2 .
- (A, — A, —AA, — AyA,)sin20

3v3, , ) _
T (A,° — A% + 24,4, + 2A,4,) sin46

1 1 3
as =§(Ax+Ay+AZ)—E(Ax+Ay—ZAZ)c0529+g(Ax—Ay)Sin29
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9 3
by = —— (A® + A2 + A,%) + = (A2 — 24,4, + A2 + A A, + Ay A, — 24,%) cos 26
16 y 3 y T Ay y
3 2 2 2
+— (A% + 44,4, + A% — 24,4, — 24,A, — 24,%) cos 40
16 y o Y

- (A 2— A% — A A, + A A,)sin20

3\/—
(A 2— A% +24,A, — 2A,A,)sin 46

1 1 V3
ay =5 (=Ax = Ay + 4;) + 5 (A + Ay + 24,) cos 20 + —-(—A; + 4, ) sin 20
9 3
by = 16 (sz + Ay2 + Azz) + 8 (Ax2 — 24,4y + Ay2 —Axd; — AyA, — ZAZZ) cos2¢

3
+ 16 (A + 4444, + A% + 24, A, + 2A,A, — 24,%) cos 40

—i(A - A +AA, — AyA,)sin260

3\/_
(A 2— A% —24,A, +2A,A,)sin 40

Actually, the coefficients for i = 2, 3 and 4 can be obtained from {a, b1, c1, di} with replacing A, and 4, to —
Ay and —A,, A and A: to —Ax and —A4:, and 4, and 4. to —A4, and —A4:, respectively.

For the negative counterpart:

1 3
as = 5 (—Ay — Ay +4;) =5 (A + A, + 24;) cos 20 +§(Ax — 4,)sin26

9 3
bs = _1_6(‘4"2 +A4,°+A,7%) - 3 (A2 —2A,A, + A% — A A, — AyA, — 2A,%) cos 20

3
+ 16 (A + 44,4, + A% + 24, A, + 2A,A, — 24,%) cos 40

i(A - A+ AA, — AyA,)sin20

3\/_
(A 2— A% —24,A, +2A,A,)sin 40

1 1 3
ag = E(Ax +A,+4,)+ E(A" + A, —24,)cos20 +g(—Ax +4,)sin 20
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9 3
bg = _R(sz +A,5+4,%)+ 3 (A% + 24,4, — A,* — A A, — AyA, + 24,%) cos 20

+i(A 24+ 44,4, + A — 24,4, — 2A,A, — 24,%) cos 46
16 x x4y y x4z yélz z

3V3 _
+—5 (A7 —A)° — A A, + AyA,) sin 20
3V3, _
+ T (A° —A)% + 24,4, — 2A,A,) sin 46

1 1 V3
a; = z(—Ax +A4,—A4,)+ E(—Ax + Ay +24,)cos20 + T(Ax +A4,)sin26
9 3
b, = —1—6(sz +A,%+4,%) + 3 (A% — 24,4, — A? — A A, + AyA, + 24,%) cos 20

+i(A 2 —4A,A, + A7 — 24,4, + 24,4, — 24,%) cos 40
16 x x4y y x4z yélz z

3V3
+—5 (A° — A% — A A, — AyA,)sin 20

3\/_
(A 2— A% +24,A, +24,A,)sin 46

1 1 V3
ag = E(A" — A, —A,)+ > (Ax — A, +24,) cos 26 + - (—A, —A,)sin26
9 2 2 2 3 2 2 2
by = __16(‘4" +A2+A, )+§(—Ax — 24,4, — A, + A A, — AyA, + 24,°) cos 20

+i(A 2 —4A,A, + A% + 24,4, — 24,4, — 24,%) cos 40
16 x x4y y x4z yélz z

1_(A 2— A%+ A A, + A A,)sin20

3\/_
(A 2— A% —24,A, —2A,A,)sin 40

Similarly, the coefficients for i = 6, 7 and 8 can be obtained from {as, bs, cs, ds} with replacing 4y and A4, to
—Ax and —A4,, A and 4. to —A, and —A4:, and 4, and 4: to —A4, and —4., respectively.

The second-order corrections for the energy 8(02) (0 =+4+,—; a =1,2,3,4) can be written as

£02) _ |(i,d|ths|$,ﬁ)|2
Sra T (0 _ (0
=1 & T &

Both the upper and lower signs should be chosen in the double sign. The non-zero matrix elements of Hyg

expanded to the basis belonging different eigenspaces are in the following;
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(+,1|Hpgl=,2) = (=, 2|Hpg|+,1) = (+,3|Hpg|—,4) = (—,4|Hpi|+,3) = (=,5|Hpg|+,6) = (+,6|Hpg|—,5)

3 V3 _
= (—,7|Hyg|+,8) = (+,8|Hp | —,7) = 2 (Ay —Ay)cos26 + = (Ax +4,)sin26

<+:2|ths|_11> = <_11|ths|+52) = <+l4|ths|_53) = <_I3|th5|+l4) = (_16|ths|+15) = (+55|ths|_:6)

3 V3 _
= (—,8|Hyg|+,7) = (+,7|Hp| —,8) = 2 (A +Ay)cos26 + = (Ax —A,)sin26

<+:2|ths|_53) = <_13|ths|+52) = <_I6|th5|+l7) = (+17|ths|_16)

V3 1 _
== (Ax - Ay) cos 20 + 5 (Ax + Ay) sin 26
<+:3|ths|_52) = <_12|ths|+53) = <_I7|th5|+l6) = (+F6|th5|_l7)

3 1
= g (A +A,)cos26 + 2 (Ax—A,)sin26

3
(+,1|Hyg|—,5) = (=,5|Hpgl+,1) = (—,4|Hp|+,8) = (+,8|Hyg| —,4) = _EAZ sin 26
Ay,
(+,2|Hygs|—,6) = (=,6]Hpg|+,2) = (= 3|Hygs|+,7) = (+,7|Hpg|=,3) = —— sin 26
Ay,
(+,3|Hugs|—,7) = (=, 7|Hpg| +,3) = (= 2|Hygs|+,6) = (+,6]Hpg|—,2) = — sin 26

3
(+,4|Hyg|—,8) = (—,8|Hpgl +,4) = (= 1|Hp|+,5) = (+,5|Hpgl =, 1) = EAZ sin 260

Therefore,

8(02) _ |<_t2|thS|+'1)|2 + |<_;5|ths|+:1)|2

+,1 2A

2
= ﬁ{[z (Ax - Ay) cos 20 + e (Ax + Ay) sin 26] + ZAZ sin2 29}

02 _ (=1 Hy|+,2)|% + [{(=,3|Hyg | +,2)1? + [{=,6] Hygs | +,2) |2

+,2 2A

2
1([3 3
= ﬂ{[Z (Ax +Ay)cos26 + g (A, — A,)sin 29]

2
V3 1 A,°
+ [7 (Ay —A,)cos20 + 3 (A, + A,)sin 26] + Tzsin2 20

+,3 2A

(02 _ [{=,2|Hys|+,3)|% + [{(—4|Hyg| +,3)1? + [{=, 7| Hygs| +,3) |2

2
1 ([V3 1
= ﬁ{[g (A; +Ay)cos26 + > (A, — A,)sin 29]

2
3 V3 A°
+ [Z (Ay —A,)cos20 + - (A + Ay) sin 29] + %sinz 29}
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£(02) _ [{=,3|Hugs|+,4) 1% + [(—,8| Hyg|+,4) |2

+,4 2A

2
1

ZA{[ (A +4 )C0529+£(A _a )szg]

+ 9A 20
2 % sin?

£(02) _ [{=,1|Hyg|+,5)|% + (=6 Hyg|+,5) >

+,5 2A

2
1(9 V3
2A{4A sin 26+[ (Ax+Ay)c0520+T(Ax—Ay)sin29] }

£02) _ [{=2|Hygs|+,6)1% + [{=5|Hygs| +,6)|% + [{=,7 | Hys | +,6) >

+6 2A

2

1(4? 3 V3
= ﬂ{% sin? 26 + [Z (Ax —Ay)cos26 + - (A + Ay)sin 29]

V3 1 T
+5 (A +A,)cos20 + > (A, —A,)sin20

02) _ {=31Hye |+, 7% + [{(—,6]Hyg | +,7)1? + [(—,8| Hygs | +,7) |2
£+,7 - ZA

2

1 (47 V3 1 .
= ﬂ{Tsm2 26 + [7 (Ay—A,)cos20 + > (A, +A,)sin 29]

[ (A, +Ay)c0529+ (A —Ay)smzen

8(02) _ |<_,4|ths|+,8)|2 + |<_;7|H1’1fs|+'8)|2

+,8 2A

1

2
9 3 V3
= ﬂ{ZAZZ sin? 20 + [Z (Ay —A,)cos20 + T(Ax +4,)sin 29] f

8(02) _ |<+;2|ths|_;1)|2 + |<+15|ths|_il)|2
-1 = —2A

2
1

9
ZA“ (A, +Ay)c0529+£(A y)sinZG] +ZAzzsin2 29}

202 _ [(+, 1 Hngs| =, 2)1% + [{+,3|Hugs| =, 2) | + [(+,6] Hys| =, 2) |2
- —2A

2
1

ZA{[ (A, — Ay)cos 29+?(Ax+Ay) sin29]

2
V3 1 A,°
+ [7 (A, + Ay) cos 20 + > (A — Ay)sin 29] + %sinz 20
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8(02) _ |<+:2|ths|_:3>|2 + |<+:4|ths|_i3>|2 + |(+r7|ths|_r3)|2
- —2A

2
1{[v3 1
= ﬂ{[g (Ay —Ay)cos26 + > (Ax +Ay)sin 29]

2
3 V3 Al
+ [Z (A +A,)cos20 + e (A, —A,)sin 29] + %sinz 29}

(02) |<+;3|ths|_;4)|2 + |<+:8|ths|_'4)|2
e T —2A

2
1

ZA{[ (Ax —Ay)cos20 + ? (A + Ay)sin 29]

9
+ ZAZ2 sin? 29}

£02) _ [{+,1[Hyg|—=,5)1% + [{+,6|Hyg| —=,5) >
-5 —2A

1

2
9
:ﬁ{zAzzsin220+[ (A, — A4 )c0529+\/_(A +4 )sm29”

202 _ [{+,2| Hygs| =617 + [{+,5| Hygs| —,6)1% + [{+,7| Hyis | —,6)1
e —2A

1 (42 V3 2
= x| asin® 26 + | (A +Ay)c0529+ (A, —A,)sin26

V3 1 T
+5 (Ax — A,)cos20 + > (A, +A,)sin20

£02) _ [{+,3| Hugs| = 7) 1% + [{+,6 Hygs| = 7)1 + [{+,8] Hpgs | =, 7)1
R —2A

2
1 (4% V3 1 '
= ﬂ{T sin? 26 + [7 (A +A,)cos20 + > (A, —A,)sin 29]

3 V3 ’
+ [Z (Ax - Ay) cos 20 + 7 (Ax + Ay) sin 29] }

02 _ [(+,4|Hyg|—,8)1% + 1(+,7|Hpgs|—.8) |2
-8 —2A

2

= %{ZAZZ sin? 26 + E (A +A,)cos20 + ? (A, — A,)sin 29] f
Noticeably, the first- and second-order corrections for the energy of the electron Zeeman Hamiltonian are the
same as for the / = 1/2 case. In order to obtain the cross terms, let us remind the non-diagonal elements for
the electron Zeeman Hamiltonian.

(+,1|Hez|—,5) = (—,5|Hez|+,1) = —g,fB sin 26

(+,2|Hez|—,6) = (—,6|Hoz|+,2) = —g,fB sin 20

(+,3|Hez|—,7) = (—,7|Hoz|+,3) = —g,fB sin 26

(+,4|Hoz|—,8) = (—,8|Hoz|+,2) = —g,fB sin 20

(+,5|Hoz|—1) = (=, 1|Hoz|+,5) = g,BB sin 26

(+,6|Hoz]—2) = (—,2|Hoz|+,6) = g,BB sin 26
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(+,7|Hez|—,3) = (—,3|Hez|+,7) = g,BB sin 26
(+,8|Hez|—,4) = (—,4|Hoz|+,7) = g,BB sin 26

The cross terms are as follows:
8(11) _ (+11|HeZ|_:5)(_:5|ths|+:1) + <+,1|ths|_,5)<_,5|HeZ|+,1) — 3gzﬁBAz Sinz 26
2A

+1 = ©)
e, —e®
LD _ (+,2|Hez|—,6)(—,6|Hngs|+,2) + (+,2|Hns|—,6)(— 6| Hez|+,2) _ g-BBA, sin” 26
+,2 S-EO) () 2A
LD _ (+,31Hez| = 7)(=7 | Hnss|+,3) + (+31Hns| = 70— 7|Hez | +.3) _ g,BBA, sin” 26
+,3 S-EO) — £ 2A
LD _ (+/4|Hez|—8)(—8IHns|+4) + (+/4|Hns|— 8~ 8lHez| +:4) _ 39,BBA, sin? 26
+,4 S-EO) — £ 2A
8(11) _ (_11|HeZ|+:5)(+:5|ths|_:1) + <_:1|ths|+:5><+:5|HeZ|_:1> _ ggZﬂBAZ Sinz 20
-1 T £© — O B 24
8(11) _ (_,2|HeZ|+,6)(+,6|thS|_,2) + (—,2|thsl+,6)(+,6|Hezl_,2) _ _gZﬁBAZ Sinz 20
-2 £© — ¢© B 24
8(11) _ (_13|HeZ|+r7)(+:7|ths|_:3) + (_:3|ths|+:7)(+:7|HeZ|_:3) _ gZﬁBAZ Sinz 20
-3 g0 — sfro) 24
8(11) _ (_'4|HeZ|+!8)(+l8|thS|_J4) + <_l4|thS|+J8><+18|HEZ|_I4> _ ggZﬂBAZ Sinz 20
-4 £© — £ B 2A
8(11) _ (_15|HeZ|+:1)(+:1|ths|_:5) + <_:5|ths|+:1><+:1|HeZ|_:5> _ ggZﬂBAZ Sinz 29
-5 T £© — O B 24
<«':(11) _ (_I6|HeZ|+12)(+:2|ths|_:6) + (_:6|ths|+:2)(+:2|He2|_:6) _ _gZﬁBAZ Sinz 29
—6 £© — © B 24
<«':(11) _ (_'7|HeZ|+:3)(+;3|ths|_:7) + (_'7|ths|+;3)(+;3|HeZ|_;7) _ ngBAz Sinz 20
-7 = £(0) — 84(_0) B 2A
<«':(11) _ (_'8|HeZ|+:4‘)(+'4|th5|_:8) + <—,8|ths|+,4><+,4|Hezl_,8> _ 3gZﬂBl‘lZ Sin2 29
-8 £© — £ B 2A
<«':(11) _ (+t5|HeZ|_:1)(_:1|ths|+:5) + <+:5|ths|_:1><_;1|HeZ|+;5> _ 3gZﬂBl‘lZ Sin2 26
+,5 85_0) _ gg)) 2A
<":(11) _ (+)6|HeZ|_IZ)(_llehfS|+l6) + (+l6|thS|_i2)(_l2|HeZ|+l6) _ gZBBAZ Sinz 29
+,6 85_0) _ g&o) 2A
LD _ (+.7[Hez|=3X=3|Hnss|+.7) + (+,7|Hnes|—3X—3|Hez|+.7) _ g.BBA,sin® 20
+,7 85_0) — ¢ 2A
LD _ (+8[Hez|—4X—4|Hnss|+.8) + (+8|Hngs|— 4N —4|Hez|+8) _ 39,8BA, sin” 26
+,8 85_0) N O) 2A
Thus, the perturbed energies for the case with /= 3/2 for the spin quartet state were explicitly obtained in the

second order. To our knowledge the analytical expressions for the energies in terms of the Zeeman

perturbation theory are for the first time given in this work, which are extremely accurate.
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3.1=15/2 case
The matrix elements of the hyperfine structure Hamiltonian are as follows:

6M5M§6M,M,’MSM1AZZ

1 ! !

(M_s'-, M1’|ths|Ms: MI) = E‘SMSM§$16M,M,’¢1\/15 - 4MsM5\/35 - 4MIMI (Axx - Ayy)
1 ! !
E6M5M§¢16MIM;i1\/ 15 — 4MsM{/35 — 4M;M](Ayy + Ayy)

The matrix representation of the rank-2 ZFS Hamiltonian is the same as in the case of / = 1/2, and thus the

energy eigenvalues and the spin eigenstates also have already been shown.
Similar to the / = 1/2 and 3/2 cases, {lqog)s) M1>} are divided into two subspaces according to the sign

of the eigenvalues;

(0) (0) (0) (0) (0) (0)
(P+3+5>; §0+3+3>; (P+3+1>; (P_'_z %>; §0+; %> ‘(P_'_% g>
) e o
212 %2 272 272 2

0 0 0 0 0 0
LI b

The division into the two subspaces is due to the symmetry of the spin eigenfunctions involved. We rewrite

(eigenvalue A)

I ul

(eigenvalue — A)

the notation of the eigenfunctions as follows for simplicity.
(p:%)+s>’ ‘Pi()3)+3>' ¢(+°3)+1>, <p(03) 1>’ © ) O] 7>
o B o o) )

- {|+1),[+.2), [+,3), [+,4), | +,5), |+,6), [+,7), | +,8), |+,9), [+,10), |[+,11), | +,12)}
0Q) [0%) |02 ) [022). [0 [0 D).
o o o o2 o2

- {=1),1-.2),1-3),|-4),1=.5), [-,6), |=7),1-,8),1-,9),|-,10), | -,11), | —,12)}

According to the degenerate perturbation theory, the first-order correction for the energy of the hyperfine

structure Hamiltonian which belong to the group of the positive eigenenergy (8(0 ) (@ =1,-,12)) are the
eigenvalues of the following matrix:

{(+1[Hpgl+1)  (+1|Hpgl+.3) {(+,1|Hpi|+,5)  {+,1|Hpg|+,8) (+1|Hygl+,10)  (+,1|Hpg|+,12)
(+.3|Hpgsl+,1)  (+.3|Hpg|+,3) {+,3|Hns|+,5)  {+,3|Hpgs|+,8) (+,3|Hyg|+,10) - (+,3|Hpgi|+,12)
{(+,5Hpgs|+,1)  (+,5|Hpg|+,3) {+,5|Hns|+,5)  {+,5|Hpgs|+,8) (+,5|Hyg|+,10) - (+,5|Hpg|+,12)

+1 _
ois = | (48Hyl+ 1) (+8Hl+3)  (H8IH45) (+8IHl+8)  (+8lHyl+10) (+8lHyl+12)
(+,10|Hpl+1)  (+,10|Hpl+.3)  (+,10[Hpgl+,5)  (+,10[Hpg|+,8)  (+,10[Hpg|+,10)  (+,10[Hpg|+,12)
(+12|Hpel+1)  (+12|Hpel +.3)  (F12|Hpl+,5)  (+,12[Hpg|+.8)  (+,12[Hyg|+,10)  (+,11|Hyg|+,12)
(+.2|Hpgsl+,2)  {+,2|Hpgl +,4) (+.2|Hpg|+,6)  (+,2|Hpg5|+,7) (+,2|Hpg|+,9)  (+,2|Hpg|+,11)
(+,4|Hyg|+,2)  {+,4|Hpg +,4) (+,4|Hpg|+,6)  (+,4|Hpgs|+,7) (+,4|Hpg|+,9)  (+,4|Hpg|+,11)
2 = (+,6(Hpgs|+,2)  {+,6]Hpg|+,4) (+,6|Hpg|+,6)  (+,6]Hpgs|+,7) (+,6|Hpg|+,9)  (+,6|Hpg|+,11)

hfs = [ (4 7|Hpe|+.2) (.7 |Hyg|+,4) (+,7|Hypg|+,6)  {+,7|Hpg|+,7) (+,7|Hpg|+,9)  {(+,7|Hpg | +,11)
(+,9|Hp | +,2)  (+,91Hyil4+,4)  (+9|Hp|+,6)  (+.9|Hpil+,7)  (+,9[Hpgl+,9)  (+,9]Hypgl+,11)
(+,11|Hpg|+,2)  (+,11|Hpg|+,4)  (+,11|Hypg|+,6)  (+,11|Hpe|+,7) (11| Hyg|+,9)  (+,11|Hpg | +,11)
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5

(+,1|Hpg|+,1) = (+,12|Hpp | +,12) = ZAZ(l + 2 cos 26)
3

(h21Hyg | +,2) = (+11{Hy [ +,11) = 74, (1 + 2 cos 26)
1

(+,3|Hpg|+,3) = (+,10|Hp | +,10) = ZAZ(l + 2 cos28)
1

<+,4|thsl+,4) = <+,9|thsl+,9) = —ZAZ(l + 2 cos 29)
3

<+,5|thsl+,5) = <+:8|ths|+:8) = —ZAZ(l + 2 cos 29)

5
<+,6|ths|+,6) = <+,7|ths|+,7) = —ZAZ(l + 2 cos 26)

<+:1|ths|+:8) = <+:8|ths|+:1) = <+'5|ths|+:12) = (+:12|ths|+:5)

= ?sin 0 [\/§(Ax - Ay) cosf + (Ax + Ay) sin 9]

<+:2|ths|+:7) = <+:7|ths|+:2) = <+'6|ths|+:11) = (+:11|ths|+:6)

= ?sin 0 [\/§(Ax + Ay) cosf + (Ax - Ay) sin 9]

(+.2|Hpg|+,9) = (+,9Hyg|+,2) = (+/4|Hpg | +,11) = (+, 11| Hyge| +,4)
=V2sin@[V3(4, — A,)cos8 + (A, + A,) sin 6]

(+,3|Hpg|+,8) = (+,8|Hyg+,3) = (+,5|Hpg|+,10) = (+,10|Hyg| +,5)
=2sin@ [V3(4, + A,) cos@ + (4, — A,)sin 6]

3

(.31 Higsl +,10) = (/101 Hy|+,3) = 3

sin 6@ [\/§(Ax - Ay) cosf + (Ax + Ay) sin 9]

3
(4 Hygs|+9) = (+,91Hyg | +,4) = = sin 0 [V3(4, + Ay) cos8 + (A, — A,)sin 6]

while the first-order corrections of the energy which belongs to the group of the negative eigenenergy
(EE(’);) (a =1,--+,12)) are the eigenvalues of the following matrix:

(= 1|Hpgl=1) (= 1|Hpgl—,3) (= 1|Hpgl=5)  (—1|Hpg|—,8) (= 1|Hpg|—10) (=, 1|Hpgl—,12)
(=3|Hpgl=1)  {=,3|Hpg|—,3) (=3|Hpg|=5)  (—,3|Hpg|—,8) (=,3|Hpgs|—10)  (—,3|Hpg|—,12)
Hol = (=5|Hpgl=1)  {=,5|Hpg|—,3) (=,5|Hpg|=,5)  (—,5|Hpg|—,8) (=,5|Hpgs|—10)  (—,5|Hpg|—,12)
hfs (—=8|Hy|=1)  (—8|Hpg|—,3) (—8|Hun|—5)  (—8|Hpg|—,8) (—8|Hys|=10)  (—,8|Hpgl—,12)
(= 10|Hygl—1)  (=10[Hnel—=,3)  (—=10|Hpg|=,5) (=, 10|Hne|—,8)  (—10|Hpg|—,10) (=, 10|Hpg—,12)
(= 12|Hygl=1)  (=12[Huel=3) (= 12|Hpg|=,5)  (—12|Hpel—,8)  (=12|Hpg|—,10) (=, 12|Hpg—,12)
(—=2|Hpg|=2)  (=,2|Hpg]—,4) (=2|Hpg|=,6)  {—.2|Hpg|—=,7) (—=2|Hypgs|=,9)  (=.2|Hyi|—,11)
(—4|Hp|—=2)  (—4|Hpg]—,4) (—4|Hpg|—,6)  {—4|Hpgl—,7) (—4|Hygs|=,9)  (—4|Hyg|—,11)
H2 = (—,6|Hpg|—=2)  (=,6|Hpg|—,4) (=,6|Hpg|—,6)  {—,6|Hpg|—,7) (—6|Hpgs|—,9)  (—,6|Hys|—,11)
(=7 Husl =2 {=7|Hpg|—,4) (= 7|Husl=,6)  (=7|Hpg|=,7) (=7|Husl=9)  {=7|Hpg|—,11)
(=9|Hug|=2)  (=9|Hngl—4)  (=9|Hpg|=6)  (=9lHuel=7)  (=9|Hngl—9)  (—9|Hyxl—,11)
(= 11|Hyel=2) (= 11|Hpgl—4) (=11 Hygl=6) (=11|Hngl=,7) (=11|Hyg|=,9)  (=11|Hpgl —11)

5
<_11|ths|_:1) = <_;12|ths|_;12) = ZAZ(_l + 2 cos 29)
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3
(—,2|Hpgl —,2) = (—11|Hp| —,11) = ZAZ(_l + 2cos26)
A,
(—,3|Hp]—,3) = (—,10|Hpi| —,10) = Z(—l + 2 cos20)
A,
(—4|Hygs|—,4) = (=,9|Hpg|—,9) = 7(1 —2cos 26)
3
(—,5|Hyi|—,5) = (—,8|Hyi|—.8) = ZAZ(1 — 2cos 26)

5
<—,6|ths|—,6) = <—,7|ths|—,7) = ZAZ(l — 2 cos 26)

(= 1|Hpgl—,8) = (=8|Hyg| =, 1) = (=,5|Hpg|—12) = (=, 12|Hpg|=,5)

= gcos 0 [(Ax - Ay) cosf — \/§(Ax + Ay) sin 9]

<_'2|ths|_'7) = <_'7|ths|_'2) = <_'6|ths|_ill) = (_,11|thsl_,6)

= gcos 0 [(Ax + Ay) cosf — \/§(Ax - Ay) sin 9]
(=2|Hpg|=)9) = (=91 Hy|—2) = (—4|Hpg|—11) = (=, 11| Hyg| —,4)

=V2cos8[(Ay — Ay)cos® —V3(4, + A,)sin6]
(=3|Hpg|—,8) = (—,8|Hy|—3) = (=,5|Hpg|—,10) = (—,10|Hyg|—,5)

=V2cos@[(A; +A,)cos8 —V3(A, — A,)sin6)]

3
(=3|Hyi|—10) = (—,10|Hy|—,3) = 5 cos 0[(Ax —Ay)cos® —V3(A, + A,)sin6]

3
(=4 Hygs|=,9) = (=91 Hygs| —4) = 2 cos 0 [(Ay + A4)) cos8 —V3(A, — A,)sin 6]

The other elements are zero. The secular equation can be factorized into two cubic equations in the form of
x}+ax?+bx+c¢=0(0G=1,-,8)
In the equation, i =1 and 2, 3 and 4, 5 and 6, and 7 and 8 come from H}Tf'sl, Hf:f'sz s H}:f’sl, H}:f’sz, respectively.

In order to eliminate x? term, replacing x to x — a;/3 yields
s_1. 2 1 3
X" = g (ai + 3b1)x - 2_7 (Zai - 9aibi + 27Ci)

According to the Viete’s method [6], the solutions of the cubic equation are given as

=2 [1 (qi)+2nn] % n=0,1,2)
Xn = 2p; COS |z arccos 200 3 7 =01,

with
1
pi = gvaiz + 3b;

_ —Zai3 + 9aibi - 27Ci
4= 3ai2 + 9bl

The set of the coefficients of the cubic equation {a;, b;, ¢;} is given in the following;
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b1=

3 3 3V3
a =Z(AX+A}/_AZ)_Z(Ax+Ay+2AZ)C0529 +T\/—(Ax_Ay)Sin29

39 1
——6(sz +A,%+4,%)+ §(13Ax2 — 6A,A, + 134,% — 34, A, — 3A,A, — 264,%) cos 20

1
+ R(BAXZ +124,A, + 134,% + 64,4, + 64,4, — 264,%) cos 40

V3
+ ?(—13,4,(2 + 134, — 34,4, + 34,4,) sin 20
V3 _
+1¢ (134,% — 134,% — 64,4, + 6A4,A,) sin40

i _ 3 _ 2, _ 2 3 2 2,4 2
= —(-214,° — 94,24, — 94,A,% — 214,° + 94, %A, + 284, A A, + 94, %A, — 94, A,

b2=

—94,A,% + 214,°)

45
+= (24,° + 34,°A, + 3A4,A,% + 24,° + 3A4,°A, + 3A,%A, + 44,°) cos 20
45
+= (A,° —34,%A, — 34,A,%° + A)® — 34,%A, — 3A,°A, + 24,%) cos 40

i _ 3 2 2 _ 3 _ 24 _ _ 2
+2 4( 64" + 94, A, + 94, A% — 6A,° — 9A,PA, — 28A, A, A, — 94,74,
+94,A,° + 94,4, + 64,) cos 60

45\/_

( 24,° + APAy — AL A + 24,7 + AA, — AA, — 24,47
+ 24,A,%)sin 20

45\/_
(A + A A, — A A — A+ ACA, — ASA, — 24,47 + 24,A,7) sin 40

45\/_
( —A Ay + A A — ACA + ASA, — AA + AyA,) sin6d

3 3 3
az =7 (—Ax— Ay — A;) + 7 (Ax + Ay — 24,) cos 20 —%g(Ax — A,)sin26

39 2 2 2 1 2 2 2
——6(Ax +4,°+A4,°)+ 3 (134,% — 6A4,Ay, + 134,% + 34,A, + 34,A, — 26A,%) cos 260
1 2 2 2
+ 1—6(13Ax +124,A, + 134,° — 64, A, — 6A,A, — 26A,°) cos 40

V3 .
-5 (134,% — 134,* — 34,4, + 34,A,) sin 20

V3
+ 16 (134,% — 134,% + 64,4, — 6A,A,) sin 40
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5
C2=g1 (214,°% + 94,24, + 94,4, + 214,° + 9A,° A, + 28A, A, A, + 9A,% A, + 94, A" + 94,A,°
+214,%)

45

tea (—24,° —34,%A, — 34,A,* — 24,° + 34,%A, + 34,°A, + 44, cos 20
45

+= (A% + 34,4, + 34,A,° — A,> —34,°A, — 3A,°A, + 24,%) cos 40

i 3 _ 2 _ 2 3 _ 2 _ _ 2 _ 2
o (64:° — 9424, — 9A,A,% + 64)° — 9A,PA, — 284 A, A, — 94,74, — 944,

—94,4,” + 64,%) cos 60

+ 456—2;5 (24° = AAy + AxAy® =247 + A4, — A)PA, + 24,47
—24,A,%)sin 26
4543
64
—24,A,%)sin46
45V3

3
i (A Ay — AyA) — A A, + AP A, + A A" — AyA,%) sin60

(4> — A A, + A A + A + AA, — A A, + 24,A,°
_|_

3 3 3v3 _
a; = Z(—Ax +A,+4,)+ Z(Ax — Ay + 24,)cos 20 —T(Ax +A4,)sin20
39 1
by = _1_6(‘4"2 +A,°+4,%) + 3 (134, + 6A,Ay, + 134,° — 3A,A, + 3A,A, — 26A,%) cos 20

1
+ 1—6(13,4x2 —124,A, + 134,% + 64,4, — 6A,A, — 26A,%) cos 48

V3

+5 (—134,% + 134,* — 34,4, — 34,A,) sin 20
V3 _

+ 15 (134,% — 134,% — 64,4, — 6A,A,) sin 40
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s =gg (214,°% — 94,24, + 94,A,° — 214,° — 9A,° A, + 28A, A, A, — 9A,° A, + 94, A," — 9A4,A,°

—214,%)

5

teg (24,2 + 34,24, — 34,A,% + 24,° — 34,%A, — 3A,*A, — 44,%) cos 26
+os (A —34,°4, + 34, A% + A)® + 34,°A, + 34,%A, — 24,%) cos 48
+=2 (64,° + 94,° A, — 9A, A% — 6A,° + 9A,°A, — 28A,A A, + 9A,° A, — 94, A,°
+94,4," — 64,%) cos 60

45v3
—(2A + 44,7 Ay + AyA) +24,° — APA, + AP A, + 24,A,°

+24,4,%)sin 26

45\/_
( —AC +ACA + A A — A —ACA + A A, + 24,A,°

+24,4,%) sin 460

45\/_
( —A Ay — A A+ ACA, — ASA + AA + AyA,”) sin60

3
—Z(Ax—Ay+AZ)—Z( -4, 2A)cos29+3 (A +A,)sin26

39 1
b, = _1_6(‘4"2 +A,°+4,%) + 3 (134, + 6A,Ay, + 134, + 3A,A, — 3A,A, — 26A,%) cos 20

+ 1—6(13,4x2 — 124,A, + 134,° — 6A,A, + 6A,A, — 26A,%) cos 48

V3 .
-5 (134,% — 134,* — 34,4, — 3A,A,) sin 20

V3
+ 15 (134,% — 134,% + 64,4, + 6A,A,) sin 40
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5
Cy = a(—21Ax3 +94,%4, — 94,A,% + 21A,° — 9A,°A, + 28A, A, A, — 9A,°A, — 9A,A,°

+94,4,% — 214,°)
45 3 2 2 3 2 2 3

+ a(ZAx —34,%A, + 34,A,° —24,° — 34,%A, — 3A,*A, — 44,%) cos 20
45 3 2 2 3 2 2 3

+22 (A,° +34,%A, — 34,A,7 — A)° + 34,%A, + 3A,°A, — 24,%) cos 40

5 3 2 2 3 2 2
+ (64, —94,%A, + 94, A% + 64,7 + 9A, %A, — 28A,A A, + 94,4,
+94,A,° — 94,A,” — 6A,) cos 60

45v3

t (—24,° — A A, — A A —24,° — A A, + APA, — 24,A,°
—24,A,%)sin26
453
t— (A° —ALA, — A A + AP — APA, + A A, — 24,A,° — 24,A,%) sin 46
453

t— (A Ay + A A + ALA, — APA, — A A" — AyA,”) sin60

We note that the coefficients for i = 2, 3 and 4 can be obtained from {ai, b1, c1, d1} with replacing 4. and 4,
to —Ax and —A4,, Ax and 4. to -4, and —A4:, and 4, and A4: to —4, and —A4., respectively.
For the negative counterpart:

3 3 3V3
as = Z(Ax —A,+4,)+ 2 (Ax — A, — 24,) cos 26 + - (—A, —A,)sin26
39 2 2 2 1 2 2 2
bs = —1—6(Ax +4,°+A4,°) - §(13Ax + 64,4y + 13A4,% + 34,4, — 3A,A, — 264,%) cos 26
1 2 2 2
+ 1—6(13Ax —124,A, + 134,° — 64, A, + 6A,A, — 26A,°) cos 40

V3
+5 (134,% — 134,* — 34,4, — 3A,A,) sin 20

V3
+ 16 (134,% — 134,% + 64,4, + 6A,A,) sin 40
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_0 214,23+ 94,%A, — 94, A,% + 21A4,2 — 94, %A, + 284,A, A, —9A,%A, —9A,A,*
5_a(_ x t94,74), —94,4," + y — 94,74, + xAyfz — FAly Ay — FAxAy

+94,4,% — 214,°%)

5
+22 (—24,° +34,%A, — 34,A,% + 24,° + 34,%A, + 34,°A, + 44, ) cos 20
45
+22 (A,° +34,%A, — 34,A,° — A)° + 34,74, + 3A,°A, — 24,%) cos 40

5 3 2 2 3 2 2 2
+ (64,° +94,°A, — 94,A,° — 6A,° — 9A,%A, + 28A, A, A, — 9A,° A, — 9A A,
+94,4,” + 64,%) cos 60

45v3
—(2A + A A, + AA + 24)° + ACA, — A A, + 24,A,°

+24,4,%)sin 26

45\/_
(A S ACA, - AAS + AP - ACA + ASA, - 24,A,° — 24,A,7) sin 40

45\/_
( —A Ay — A A — ACA 4+ ASA + A + AyA,”) sin60
3 3 3vV3
ae =Z(—Ax+Ay +4,) +Z(—AX+A —24,)cos26 +— (A +A4,)sin26
39 1
bg = —1—6(sz +A4,°+4,%) - 3 (134, + 6A,A, — 134,° — 3A,A, + 3A,A, — 26A,%) cos 20

1
+ 1—6(13,4x2 —124,A, + 134,% + 64,4, — 6A,A, — 26A,%) cos 48

V3
+5 (134,% — 134,% + 34,4, + 34,A,) sin 20

V3
+ 15 (134,% — 134,% — 64,4, — 6A,A,) sin 40

S46



5
% =27 (214,° — 94,74, + 94,4,% — 214,° — 9A,%A, + 28A, A, A, — 9A,%A, + 94,A,% — 9A,A,°
—214,%)

45
+—(24,% — 34,24, + 34,A,* — 2A,% + 34,%A, + 3A,%A, + 4A,%) cos 26
64 y y y y
45
+—(—A,° —34,%A, + 34,A,%* + A,> + 34,%A, + 34,%A, — 24,%) cos 40
64 y y y y

i _ 3 _ 2 2 3 _ 2 _ 2
+e 4( 64, — 9A A, + 9AA,? + 64,° — 94,2 A, + 284,A,A, — 94,24,

+94,A,° — 94,4, + 6A,”) cos 60

453
+ 7(—ZAX3 — AA, — AA —24,° + ACA, — A A, - 24,A,°

— 24,A,%)sin 26

- 42—4\@ (A + A Ay + AxA) — A — A4, + A A, + 24,4,
+24,A,%) sin 460

+ 42—4\5 (Ax"Ay + AcAy® = A4, + A7, — AA” = AyA,?) sin 60

3 3 3v3
a, = Z(_A" -4, —AZ) +Z(_A" —Ay,+ 2AZ) cos 26 +%_(Ax —Ay) sin 26

39 1
b, = _1_6(‘4"2 +A4,°+4,%) - 3 (134,° — 6A,Ay, + 134, + 3A,A, + 3A,A, — 26A,%) cos 20

1
+ 1—6(13,4x2 +124,A, + 134,° — 64,4, — 6A,A, — 26A,%) cos 48

V3
+5 (134,% — 134,%* — 34,4, + 34 A,) sin 20

V3

+ 15 (134,% — 134,% + 64,4, — 6A,A,) sin 40
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5
=27 (214,° + 94,74, + 94, A,° + 214,° + 9A4,° A, + 28A, A, A, + 9A4,%A, + 94, A,% + 9A4,A,°

+214,°%)

45

+—(24,% + 34,24, + 34,A,%* + 2A,° — 34,%A, — 3A,%A, — 4A,%) cos 26
64 y y y y
45

+—(—A,> +34,%A, +34,A,%* — A,> —34,%A, — 34,%A, + 24,%) cos 40
64 y y y y

i _ 3 2 2 3 2 2
+e 4( 64> + 94,2 A, + 9A A, — 64,° + 94,2 A, + 284, A, A, + 94,24,

+94,A,° + 94,A4,° — 6A,”) cos 60

453
+ 7(—ZAX3 + A %A, — AA +24,° — ACA, + A A, - 24,A,°

+24,A,%) sin 20

453
+ 7(—1‘1,(3 - szAy + AxAyz + Ay3 + szAz - AyzAz + 2AXAZ2

— 24,A,%)sin46

453
e (CASA + A+ A A, — AP A, — ALA” + Ay, ) sin 66

3 3 3v3
ag :Z(Ax+Ay_Az)+Z(Ax+Ay+2AZ)C0529_£

2 (Ay—A,)sin26

39 1
bg = _1_6(‘4"2 +A4,°+4,%) - 3 (134,° — 6A,Ay, + 134,° — 3A,A, — 3A,A, — 26A,%) cos 20

1
+ 1—6(13,4x2 +124,A, + 134, + 64,4, + 6A,A, — 26A,%) cos 48

V3 _
+5 (134,% — 134,% + 34,4, — 3A,A,) sin 20
V3 _
+ 15 (134,% — 134,% — 64,4, + 6A,A,) sin 40
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_ 5 3 2 2 3 2 2 2
6 =g (—214,°% — 94,° A, — 94,A,%* — 21A,° + 9A,*A, + 28A, A, A, + 9A,%A, — 94, A,
—94,4," + 214,°%)

45

+22 (—24,° —34,%A, — 34,A,* — 24,° — 34,%A, — 34,*A, — 44, ) cos 20
45

+22 (4,° —34,%A, — 34,A,° + A)® —34,%A, — 3A,°A, + 24,%) cos 40

+i(6A 3 —94,%A, — 94,A,% + 6A,° + 9A,°A, + 284, A, A, + 9A,° A, — 94, A,°
64 X x y x4ty y x ‘1z xtyiz y ‘1z x4z

—94,4,” — 64,%) cos 60

45v3
t (24,° — AAy + A, A7 —24,° — A A, + A A, + 24,47

—24,A,%)sin 26
45v3 i
t— (A3 +ALA, — A A — AP + ACA, — A A, — 24,A,° + 24,A,%) sin 46
453
t— (A PAy — AyA) + A A, — APA, + A A" — AyA,%) sin60

Similarly to the coefficients for i = 2, 3 and 4, we note that those for i = 6, 7 and 8 can be obtained from {as,
bs, cs, ds} with replacing 4, and A, to —A4x and —4,, 4, and 4: to —A, and —A4:, and 4, and 4: to -4, and -4,
respectively.

The second-order correction for the energy of the hyperfine structure Hamiltonian sc(,?j) (o=

+,—; a =1,---,12) can be written as

4 _
£02) _ [(z, at| Hug| F, B2

ta  _ (0
=1 &+ T &

Both the upper and lower signs should be chosen in the double sign. The non-zero matrix elements of Hhg
expanded to the basis belonging different eigenspaces are given in the following:
(+1Hpgl—,2) = (=,2|Hygl+,1) = (+,5|Hpg|—,6) = (—,6|Hyg|+,5) = (=,7|Hpg|+,8) = (+,8|Hyg|—,7)
= (—,11|Hyg|+,12) = (+,12|Hpg|—,11)

V15 V5 _
= (Ay —Ay)cos26 + - (A +A,)sin20
<+'2|thsl_'1> = <_'1|thsl+iz) = <+,6|th5|_,5) = <_15|ths|+l6) = (_18|ths|+l7) = (+,7|th5|_,8)
= <_'12|ths|+J11) = <+111|ths|_112)

V15 V5 _
= (Ay +Ay)cos26 + " (Ax—A,)sin20
<+12|ths|_'3> = <_l3|ths|+12) = <+l4|ths|_15) = <_;5|ths|+:4) = <_,8|th5|+,9) = (+;9|ths|_;8>

V6

V2 .
= (—,10|Hpg|+,11) = (+,11|Hg|—,10) = - (Ay—Ay)cos26 + - (A, +A,)sin26
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(+,3|Hpgs|=,2) = (=, 2|Hpg| +,3) = (+,5|Hyi|—4) = (—,4|Hpg|+,5) = (=,9|Hpg| +,8) = (+,8|Hpg|—,9)

V6 V2
= (—,11|Hyg]+,10) = (+,10|Hyi | —,11) = - (A +Ay)cos26 + - (Ax —A,)sin26
<+l3|thS|_l4) = <_i4|ths|+53) = <_19|ths|+J10) = (+110|ths|_;9)
3vV3 3 _
= (Ax - Ay) cos 20 + 7 (Ax + Ay) sin 26
<+:4'|th5|_’3) = <_53|ths|+i4) = <_110|ths|+19) = (+19|ths|_110)
3v3

3
- (A +A,)cos26 + 2 (Ax—A,)sin26

5
<+’1|th5|_'7> = <—,7|ths|+,1) = <—,6|ths|+,12) = <+,12|ths|—,6) = —EAZ sin 260
3 .
(+,2|Hygs|—,8) = (=,8|Hpg|+,2) = (—=,5|Hyg|+,11) = (+,11|Hyg|=,5) = _EAZ sin 26
A, .
(+,3|Hygs|—,9) = (=.9|Hpg|+,3) = (—4|Hyg+,10) = (+,10|Hyg| —,4) = — 5 sin 26
A,
(+,4|Hyg|—,10) = (—,10|Hyg +,4) = (=, 3|Hpg|+,9) = (+,9|Hyg|—,3) = — sin 26
3 .
(+,5|Hygs|—,11) = (= 11|Hygl+,5) = (=, 2|Hpg|+,8) = (+,8|Hpg|—,2) = EAZ sin 26

5
(+,6|Hpg|—,12) = (=,12|Hyg|+,6) = (= 1|Hpg | +,7) = (+,7|Hpg|—,1) = EAZ sin 26

Therefore, the second-order corrections for the energy, 5((,?5) (c=+4,—; a=1,---,12) are in the
following:

[{(—=2|Hpg |+, 1012 + [(=,7|Hpgs|+,1)|2

(02) _
£+1 - 2A

2
1 ([V15 V5 25
= ﬂ{[T (A, —Ay)cos20 + - (A, + A,)sin 29] + TAZ2 sin? 29}

02 _ (=11 Hp|+,2)|% + [(=,3[Hygs| +,2)17 + [(—,8|Hps | +,2) |2

+,2 2A
2

1 |[V15 =
= ﬁ{[g (A +A,)cos20 + % (A, —A,)sin 29]

2
V6 V2 9
+ [7 (Ax — A,)cos20 +7(Ax +4,)sin 29] +ZAZ2 sin? 26
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£02) _ [{—,2| Hugs|+,3)1% + [{(—=,4|Hys|4+,3) + [(=9|Hy5 | +,3) 12

+3 2A
2
1 ([ve 2
= ﬁ{[g (A +A,)cos20 + g (A, —A,)sin 29]
2 2
[E(A —A,)cos20 +— (A +A4 )stQ] +ATsm 29}

£(02) _ [{=3[Hygs|+,4)|% + [{=,5|Hygs|+,4) | + [{—,10|Hyg|+,4)]?

+,4 2A

ZA{[?“/_(A +A4,)cos20 +— (A —-A )stQ]

2
V6 V2 Al
+ [7 (A, —A,)cos26 + - (A, + A,)sin 29] + %sinz 26

£02) _ [{—4|Hyg|+,5) 12 + [{=,6] Hys|+,5) > + [{—,11|Hy|+,5) >

+,5 2A

2
1 6 2
= ﬂ“% (Ax — A,)cos20 + g (A +A,)sin 29]

2
£ A, — A c0529+\/_ A, + A, )sin20 +9AZ sin? 26
y y 4

(02) |<_'5|ths|+;6)|2 + |<_112|thsl+l6)|2

+6 A
2
L|\[V15 V5 25
= ﬂ{[T (Ax = Ay) cos 20 + - (Ax + 4, ) sin 29] + - 4,” sin’ 29}
©02) _ =1 Hugl+,7)1? + (=8l Hyg | +,7)|?
£+,7 - A
2
25 V15 N
ZA{ 2 A,?sin? 20 + [T (A +A,)cos20 + T(Ax —A,)sin 29] f
©02) _ [(=21Hug|+.8)% + [{=,7|Hyg|+,8)1* + 1{(= 91y +.8)I?
€8 = 0
1 \15 N 2

9 ) .
= ﬁ{ZAZZ sin? 26 + [T (Ax - Ay) cos 26 + e (Ax + Ay) sin 29]
2
6 2
+ [g (Ax + Ay)cos20 + g(Ax — A,)sin 29] }

02) _ (= 31Hnss |+, + [{=,8IHnis|+,9)1? + (= 10[ Hy | +,9)?

+,9 2A

2
1(A4,% NG V2 _
= ﬁ;T sin? 20 + - (A, — Ay) cos 26 + - (A, +A,)sin20

[—(A +Ay)00529+ (A y)sinzen
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02) _ [(—,4|Hpg|+,10)|% + [(=,9|Hpg|4,10)|% + [(—,11|Hpg|+,10) |
£+,10 - 2A

2
1 (4,° 3v3 3
= ﬁ{%sinz 20 + [T (Ay —A,)cos26 + 2 (A, +A,)sin 29]

+ [g (A + A,)cos20 + g (A, — A,)sin 29] }

£02) _ [{(=,5|Hpg|+,11)| + [(—,10|Hyg|+,11)|? + [(—,12|Hpg|+,11) |2

+,11 — oA
= i{ZAZZ sin? 26 + [@ (A, —A,)cos20 + g (A, +A,)sin 29]2
+ [? (A, + A,)cos20 + ? (4, - 4,)sin 20]2}
£02) _ [{(—,6|Hug|+,12)|2 + [(=,11|Hy|+,12)|
+,12 A
2A{245 A,%sin? 26 + [£ (Ax —A,)cos20 + \/_(A +4,)sin 20]2}

5(02) _ |<+'2|ths|_t1>|2 + |<+'7|thsl_'1)|2
- 1 -
' —2A

Vis 2
1 25
_ﬂ{[ (A +Ay)c0529+\/_(,4 —Ay)sm29] +TAZ sin 29}

5(02) _ |<+t1|ths|_'2)|2 + |<+'3|ths|_'2)|2 + |<+18|ths|_12)|2
—2 —2A

2
1 ([vV15 5
_ ﬁ“T (A, —A,)cos20 + % (A, +A,)sin 29]

2
V6 V2 9
+ [7 (A + A,)cos20 + - (A, — A,)sin 20] + ZAZ2 sin? 20

8(02) _ |<+I2|thsl_l3)|2 + |<+14|ths|_13)|2 + |(+19|ths|_13)|2
-3 —2A
2

1 ([Ve 2
_ ﬁ{[g (Ay —A,)cos20 + g (A + A,)sin 29]

3V3 © a2
[—(A +A,)cos26 + = (A Ay)sin 29] +%sin2 29§
(02) _ [(+3[Hni| =4 + [{+,51 Huss | = 4)1? + [(+,10] Hy | - 4) 2
E_4 =
' —2A
2
1 ([3v3 3 _
= _EHT (Ay—A,)cos20 + 2 (Ax + Ay)sin 29]

2
V6 V2 A’
+ [7 (A, +A,)cos20 + 7(Ax —A,)sin 29] + %sinz 26
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©0z) _ |{(+4|Hyg|=.5)12 + [(+,6|Hygs|=,5)1? + [(+,11]Hpgs|—,5) |2
e =

, —2A
1 {[\/8

2
— (A, — Ay) cos 26 + ? (A + Ay) sin 29]

2

[x/ﬁ V5 ]

= (A, +A,)cos20 + - (A, —A,)sin20| + zAZZ sin? 29}

5(02) _ |<+15|thsl_l6>|2 + |<+l12|ths|_:6)|2
-6 = —2A
1 {[\/ﬁ

V5 * 25
(A, —A,)cos20 + = (A, + A,)sin 29] + TAZ2 sin? 26

20| 4

5(02) _ |<+11|thsl_l7>|2 + |<+l8|thS|_l7)|2
-7 = —2A
V15

2
25 N
= ZA{ Z A,?sin? 26 + [T (Ax—A,)cos20 + T(Ax +4,)sin 29] }

£02) _ [{+,2|Hyg | =8)|% + [{+,7 [ Hyg | =8 % + [{+,9|Hyg | —,8)
-8 24
2

1(9 V15 V5
= _ZA{4AZ sin? 26 + [—(A +4A,)cos26 +— (A —-4,) sm29]
2
V6 V2
+ [7 (A, — Ay)cos26 + - (A + Ay)sin 29]
£02) _ [{+,3|Hugs| =9 % + [{+,8 Hygs| =91 + [{+,10] Hyg|—,9)|?
9 = —24

1 2

A V6 V2
:_ﬂ{TSI 229+[2 (Ax+Ay)c0526+7(Ax—Ay)sin29]

[i—(,q y) cos 260 +Z(Ax +Ay) sin 29] }

(02) _ |<+;4|ths|_:10)|2 + |<+;9|ths|_:10)|2 + |<+:11|ths|_:10)|2
-10 = —2A

2

1 (4,2 3V3 3
= _E{TSI 220+ [T\/_(Ax +4,)cos20 +Z(Ax —Ay)sinze]
2

6 2
+ [g (Ay —A,) cos20 + g(Ax +A,)sin 29] }

£02) _ [(+,51Hng| = 11)|% + [{(+, 101 Hy | = 111 + [(+,12] Hyge | =, 1)1

£ —2A

2
1 (9 V6 V2
= —E{ZAZZ sin? 20 + [7 (Ax +A4y) cos 20 + — (A — 4, ) sin 29]

[— (Ax —Ay)cos26 + ? (Ax +A,)sin 29] }
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©02) _ [{+,61Hye|=12)17 + [{+,11| Hy | —,12)|?
12 T —2
VTS

2
1 (25 _ 15 V5 .
= _ﬁ{TAzz sin? 26 + [T (A +A,)cos20 + T(Ax —A,)sin 29] }

The first- and second-order corrections for the energy of the electron Zeeman Hamiltonian are the same
as for the / = 1/2 case. In order to obtain the cross terms, let us remind the non-diagonal elements for the
electron Zeeman Hamiltonian.

(+1|Hez|=,7) = (=, 7|Hez|+,1) = (+,2|Hez|—,8) = (—8|Hez|+,2) = (+,3|Hez|—,9) = (—,9|Hez|+,3)
= (+,4|Hez|—,10) = (—,10|Hez|+,2) = (+,5|Hez| —,11) = (—,11|Hez|+,5)
= (+,6|Hez|—,12) = (—,12|Hz|+,6) = —g,LB sin 20
(= 1|Hez|+,7) = (+,7|Hez|—,1) = (—,2|Hez|+,8) = (+,8|Hez|—,2) = (=3|Hez|+,9) = (+,9]Hez|—,3)
= (—/4|Hez|+,10) = (+,10|Hez|—,4) = (=,5|Hez|+,11) = (+,1|Hez|—,5)
= (=,6|Hez|+,12) = (+,12|Hez|—,6) = g, BB sin 26
Therefore, the cross terms can be calculated as follows:

L) _ CHUHegl =707 Higs[41) + b A Hags |70 7 Hegl +1) _ 259,884, sin? 26

+,1 gio) — £ 2A
Ly _ (2ol = B)(= Bl |+.2) + (+.21Husl = 8)(= BlHezl +.2) _ 99,854, sin? 20
+,2 gio) — £ - 2A
Ly _ C+31Hea| == Sl |+,3) + (3 Husl =)=l Hezl +.3) _ g,BBA, sin’ 20
+,3 gio) _ ggo) - 2A
Ly _ (i Heg = 100 100 |+, + (+ 4Hugs |- 100 10 Heg +4) _ _guBBA, sin® 26
+,4 gio) — £ a 2A
8(11) _ <+J5|HeZ|_:11)(_:11|ths|+:5) + <+l5|thS|_111)(_'11|H6Z|+i5) _ 9ngBAz Sinz 20
+,5 85_0) ) - 2A
8(11) _ <+,6|Hezl—,12)(—,12|th5|+,6> + <+;6|ths|_:12)(_;12|He2|+;6) _ 25gZBBAZ Sinz 20
+6 e® _ c© B 2A
LD _ (= 1lHez|+,7X+.7 | Hngs| = 1) + (= 1Hngs |+ 7K+, 7| Hez| = 1) 259,8BA, sin® 26
-1 0 — ¢© B 24
8(11) _ (_'2|HeZ|+J8)(+I8|thS|_12) + <—,2|thsl+,8><+,8|Hezl—,2> _ 9gZﬂBl‘lZ Sin2 29
-2 g0 _ O B 2A
= +
LD _ (=3[Hez|+,9X+,9 Hts|—3) + (=3I Hnes |+, 9K+ 9 Hez| —3) _ g.BBA, sin® 20
-3 g0 _ ¢ B 2A
= +
LD (—4|Hez|+,10)(+,10|Hpgs|—,4) + (=4 Hpgs|+,10)(+,10|Hez | —4) ~ g,BBA, sin? 20
_4 - —

€£0) — SS-O) 2A

a1y _ {ESUH D U | =8) + (= Sl +11) (4111 Hegl—5) _ 99,884, sin 20
-5 €£0) — gio) 2A

(—,6|Hez|+,12)(+,12|Hygs|—,6) + (—,6|Hngs|+,12)(+,12|Hez|—,6)  25g,BBA, sin? 26
£© — £ B 2A

LD =
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<_,7|HeZ|+,1>(+,1|ths|_,7> + <_:7|ths|+:1)<+:1|HeZ|_:7) _ 25gZBBAZ Sil’lz 26

LD _
-7 e — eio) 24
8(11) _ (_18|HeZ|+:2)(+:2|ths|_:8) + (-,8|th5|+,2)(+,2|Hezl—,8) — 9gZﬁBAZ Sinz 20
-8 £ — eJ(rO) 24
(11) _ (_,9|HeZ|+,3)(+,3|th5|_,9) + (_:9|ths|+:3)(+:3|HeZ|_:9) — ngBBAZ Sinz 20
-9 £ — efro) 24
8(11) _ <_:10|HeZ|+:4‘)<+:4|th5|_:10) + (_,10|ths|+,4)(+,4|Hezl_,10) — _gZﬁBAZ Sinz 29
-10 £(0) _ gJ(rO) 2A
8(11) _ <_:11|HeZ|+:5)<+:5|ths|_:11) + <_:11|ths|+:5)(+:5|HeZ|_:10) - _ 9ngBBAZ Sinz 20
-11 £(0) _ EJ(rO) 2A
LD _ (=12|Hez|+,6)(+ 6| Hngs|—12) + (= 12|Hnes| +,6)(+,6|Hez| —12) _ 259,8BA, sin” 26
-1z £© — ¢© 24
8(11) _ <+:7|HeZ|_:1)(_:1|thsl+:7> + <+:7|thsl_:1><_:1|HeZ|+r7> _ 25.gZﬂBlélz Sinz 29
+7 OB 24
8(11) _ (+18|HEZ|_12)(_12|th5|+18) + <+:8|thsl_:2><_:2|HeZ|+:8> _ 9gZﬂBAZ Sinz 29
+,8 gio) — £ 2A
8(11) _ (+19|HEZ|_13)(_I3|th5|+19) + (+:9|ths|_:3)(_:3|He2|+:9) _ _gZﬁBAZ Sinz 29
+,9 gio) — £ 2A
(11) _ <+110|HeZ|_14‘)(_14|th5|+110) + (+110|ths|_l4)(_l4|HeZ|+110) _ gZﬂBAZ Sinz 29
+,10 gio) _ ggo) 2A
(11) _ <+111|HeZ|_15)(_15|th5|+111) + <+:11|ths|_:5)(_:5|He2|+:11) _ 9gZBBAZ Sinz 29
+11 — SJ(rO) NO) a 2A

(11) _ <+112|HEZ|_J6><_16|th5|+112> + <+112|thS|_l6)(_l6|HeZ|+l12) _ 25gZBBAZ Sinz 29
B 24

+12 — 54(-0) — &0
Thus, the perturbed energies for the case with /= 5/2 for the spin quartet state were explicitly obtained in the
second order. To our knowledge the analytical expressions above for the energies in terms of the Zeeman
perturbation theory are for the first time given in this work, which are extremely accurate.

4.1="1/2 case

a) Double perturbation approach
The matrix elements of the hyperfine structure Hamiltonian in the basis of |Ms, M7 are given as follows:

5M3M§5M,M,’MSMIAZ
1 ! !
(Mg, M{|Hys| Mg, M;) = EaMsMg¢16M1MI'$1\/15 - 4M5M5\/63 —4M M, (Ax - Ay)
1

1—65M5Mg¢15M,M,’11\/ 15 — 4MsM{/ 63 — 4M; M (A, + A)
The matrix representation of the rank-2 ZFS Hamiltonian is the same in the case of / = 1/2, and thus the

energy eigenvalues and the spin eigenstates also have already been shown.

Similar to the /= 1/2, 3/2 and 5/2 cases, {|<p§f s),M1>} are divided into two subspaces according to the

sign of the eigenvalues;
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(0) ) () > (o) ) (o) > (o) > (o) > (0) >
tat3 2z

§0_('_O§)_7> ’

(eigenvalue A)

2,+
and
(pi()l)+7>, ) > (0) ) (0) ) (0) > ©) _) ) 7> QDE,(J;)_z),
©) © (0) (0) (0) (O) © (0)2 (eigenvalue — A)
|(P 1 7>:|(P 1+5>;|(P 1 3>.|<P 1 1>:|(P 1 l>:|(P 1 §>,‘<P 1 5>,|(p ___>
3

We rewrite the notation of the eigenfunctions as follows for simplicity:

9. ) 0 5>, 02 3), 0 1>, 02 l), v §>, “ ,} 9 _)
2
2
{ |+11>l |+,2>, |+,3), |+l4>l |+I5>I |+l6>l |+l7>l |+I8>I }
[+,9), |[+,10), |+,11), |[+,12), |+,13), |+,14), |+,15), [+,16)

and

(o) > (/’S)l)+5> 9"501)+3>' (o) > ) (o) > (0) 7> go("l) 7>’
|(P(01) 7>,|(P(01) 5>:|§0(01) 3>,|<p(01) 1>;|§0(01) 1>:|(P(01) §>,‘§0(01) 5>;|(P(O) _>

- { |_11>I |_J2>J |_J3)J |_I4>I |_I5>I |_l6>l |_l7>l |_I8>I }
|_J9>J |_J10>J |_J11>J |_J12>l |+I13>l |+I14>l |+I15>l |+116>

According to the degenerate perturbation theory, the first-order corrections for the energy of the

hyperfine structure Hamiltonian (&5 a) (e =1,--+,16)) which belong to the group of the positive energy

eigenvalue are the eigenvalues of the following matrix:

(+1lHpis|+,1) (1 Hngl+3) (1 Hpg|+,5)  (+1|Hpgl+,7) (+1|Hpgs|+,10)  (+,1]Hpgel+,12)  (+1|Hpgl+14)  (+,1]Hpgl+,16)
(+31Hns|+1)  (+31Hn|+3)  (+31Hne|+,5)  (+,3|Hngs|+,7) (+3|Hngs|+,10)  (+,3|Hpgs|+12)  (+,3|Hngs|+,14)  (+,3]|Hpgl+,16)
(+,5|Hns|+,1)  (+51Hnsl+.3)  (+,5Hngs|+,5)  (+,5|Hpgs|+,7) (+,5|Hpgs|+,10)  (+,5]Hpgsl+,12)  (+,5|Hnsl+,14)  (+,5]Hpgl+,16)
HE = (+71Hps|+1)  (+71Hpgl+3)  (H71Hnes|+,5) (7| Hygs|+,7) (+7|Hpgs|+,10) - (+,7|Hygs|+,12)  (+,7|Hygsl+,14)  (+,7|Hpgsl +,16)

(+,10|Hygs|+,1)  (+,10|Hpgs|+,3)  (+,101Hpg+,5)  (+10[Hpgs|+7)  (+,10[Hpgs|+,10)  (+,10]Hpgs|+,12)  (+,10|Hpgl+,14)  (+,10|Hpg|+,16)
(+12|Hpsl+1)  (+12|Hpgs|+,3)  (+H12|Hpge|+.5)  (+12|Hng|+7)  (+,12]Hpgs|+,10)  (+,12]Hpge+,12)  (+,12|Hpgel+,14)  (+,12|Hygo|+,16)
(+14|Hygs|+,1)  (+14|Hps|+,3)  (+,14Hp|+,5)  (+14[Hpgs|+7)  (+,14[Hpg|+,10)  (+14|Hpgsl+12)  (+,14]Hpgl+,14)  (+,14|Hyg|+,16)
(+,16|Hpgsl+1)  (+,16[Hpgs|+,3)  (+,16]Hpg|+,5)  (+,16|Hngs|+,7)  (+,16]Hpgs|+,10)  (+,16]Hpgel+,12)  (+,16]Hpge|+,14)  (+,16]Hygo|+,16)

(+.2|Hpgs|+.2)  (+2|Hpgs|+4) (2| Hpgs|+,6) - (+.2]Hpgs|+,8) (+.2|Hns|+,9)  (+.2|Hpge|+,11)  (+,2|Hns|+,13)  (+,2|Hpgs|+,15)
(+4[Hpgs|+2)  (+H41Hps+4)  (H41Hpl+,6)  (+41Hpel +,8) (+4|Hpgs|+,9)  (+41Hpgs|+,11)  (+,4|Hys|+,13) - (+,4|Hygel+,15)
(+.6]Hpgs|+.2)  (+.6|Hpgs|+4)  (+.6|Hpgs|+,6)  (+,6|Hpg|+,8) (+,6|Hnts|+,9)  (+,6|Hpgs|+,11)  (+,6|Hns|+,13)  (+,6]Hpgs|+,15)
HYZ = (+8|Hpgs|+.2)  (+8|Hpgs|+4)  (+8|Hpg|+,6)  (+,8|Hpgl+,8) (+.8|Hpgs|+,9)  (+8|Hpgs|+,11)  (+,8|Hygs|+,13)  (+,8|Hygsl+,15)

(+91Hns|+.2)  (+9Hpgs|+4)  (+9|Hnes|+,6)  (+91Hn|+,8)  (+9IHpgs|+9)  (+9Hngs|+,11)  (+9|Hpgs|+,13)  (+,91Hpgl+,15)
(+ 11 Hpgel+2)  (+11|Hpgl+4)  (+ 11 Hpge|+,6)  (+ 11| Hpel+.8)  (+,11|Hpgs|+,9)  (+ 11 Hpge|+,11)  (+ 11 Hyygo|+,13)  (+,11|Hygsl+,15)
(+13|Hygs|+,2)  (+,13|Hpgsl+,4)  (+13|Hpgs|+,6)  (+13|Hygs|+.8)  (+,13|Hpge|+,9)  (+,13|Hpgs|+,11)  (+,13|Hygel+,13)  (+,13|Hygs|+,15)
(+,15|Hpgel+.2)  (+,15|Hpgs|+,4)  (+15]Hpgs|+,6)  (+,15|Hnesl+.8)  (+,15|Hpgs|+,9)  (+,15|Hpge|+,11)  (+,15|Hygs|+,13)  (+,15]|Hygs|+,15)
7
(+,1|Hygs|+,1) = (+,16[Hyg | +,16) = ZAz(l + 2 cos 20)
5
<+52|thS|+J2) = <+J15|ths|+115) = ZAZ(l +2 COSZG)
3
(3| Hy|+,3) = (+,14|Hys | +,14) = 2 4,(1 +2 o5 26)

1
(+,4|Hyg|+,4) = (+,13|Hyg | +,13) = ZAZ(l + 2 cos 26)
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1
<+,5|th5|+,5) = (+,12|thsl+,12> = —ZAZ(l + 2 cos 29)

3
(+6lHyg|+,6) = (+,11[Hyg|+,11) = =7 4,(1 + 2 cos 26)

5
(+,7|Hyg|+,7) = (+,10|Hpg|+,10) = _ZAZ(l + 2 cos28)

7
<+,8|ths|+,8) = <+,9|ths|+,9) = —ZAZ(l + 2 cos 29)

(+,1|ths|+,10) = <+,10|ths|+,1) = <+,7|ths|+,16) = (+,16|thsl+,7>

7
gsin 0 [\/§(Ax - Ay) cos@ + (Ax + Ay) sin 9]

<+:2|ths|+:9) = <+:9|ths|+:2) = <+'8|ths|+:15) = (+:15|ths|+:8)

<+t2|ths|+t11)

<+t3|ths|+t10)

<+t3|ths|+t12)

7
g sin @ [\/§(Ax + Ay) cosf + (Ax - Ay) sin 9]

(+,11|Hygl+,2) = (+,6|Hy|+,15) = (+,15|Hy|+,6)
sin@ [3(4, — A,) cos 0 +V3(4, + A,) sin 6]
(+,10|Hygl+,3) = (+,7|Hyp|+,14) = (+,14|Hpi|+,7)
sin@ [3(4, + 4,) cos 0 +V3(4, — A,) sin 6]
(+,12|Hygl+,3) = (+,5|Hy|+,14) = (+,14|Hp|+,5)

?sin 0 [3(Ax — Ay) cosf + \/§(Ax + Ay) sin 9]

<+t4|ths|+t11) = <+:11|ths|+:4) = (+’6|ths|+:13) = (+:13|ths|+:6)

gsin 0[3(A; +A4,) cos6 +V3(A, — A,)sin 8]

(+,4| Hyg|+,13) = (+,13|Hyg|+,4) = 2sin 0 [V3(4, — A,) cos 6 + (A, + 4, sin 0]
(+,5|Hyg|+,12) = (+,12|Hy|+,5) = 2sin @ [V3(A, + A,) cos @ + (A, — A, ) sin 6]

while the first-order corrections for energy which belong to the group of the negative energy eigenvalue

(EE(’);) (a =1,--+,16)) are the eigenvalues of the following matrix:

(= 1lHnes|=1) (= 1]Hpg|—3)

(=3IHpgs| 1) (=3[Hpgs|—3)
(=5[Hngs| 1) (=.5[Hpgs|—3)

Hl = ( (1—0.|71.|1th5|—.1> (=7|Hpgs|—3)
—10]Hpgs|—1) (= 10|Hpgs|—,3)
(=12|Hpgs|—1)  (=,12|Hpgs]=3)

(= 14|Hygs|—1) (=141 Hpgl—3)
(=16|Hpgs|—1)  (=,16]Hpg]—3)
(—2|Hngs|—2)  (—2|Hpgs|—4)
(—41Hns|—2)  (—41Hpg]—4)
(—,6lHns|—,2)  (—,6|Hngs|—4)

H2 = (—8lHngs|—2)  (—8|Hpgs|—4)

hfs

(=9IHngs|=2)  (=9|Hngs|—4)
(—11|Hpl—2) (= 11|Hygs|—4)
(=13|Hygs|—2)  (=,13|Hpgsl—/4)
(—15|Hngs|—2)  (—,15|Hys|—4)

(= 1|Hpgs|=5)  (=1lHpgs|—7)

(=3|Hngs|=5)  (=31Hngs|—7)
(=5[Hngs|=5)  (=5]Hngs|—7)
(=7|Hngs|=5)  (=7|Hpgs|—7)
(=10[Hngs|—,5)  (—,10Hpgl—,7)
(=12|Hygs|—,5) (=, 12]|Hpg|=,7)
(= 14|Hys|—,5) (=, 14|Hpgl—,7)
(=16|Hngs|—,5)  (=,16]Hpg|—,7)
(—2|Hygs|—,6)  (—,2|Hpgs|—.8)
(—4|Hpgs|—6)  (—4|Hpg|—8)
(—,6|Hpgs|—,6)  (—,6|Hnzs|—.8)
(—8|Hngs|—6)  (—8|Hpg|—,8)
(=9|Hngs|—6)  (—9|Hngs|—,8)

(—11|Hps|—6)  (—,11|Hpgs|—,8)
(=13|Hygs|—6)  (—,13|Hpgs|—,8)
(—15|Hygs|—,6)  (—,15|Hpgs|—,8)

(= 1|Hns|—10) (= 1|Hpgs|—,12)
(=3|Hpgs|—10)  (=,3|Hygs|—,12)
(=5|Hnts|—10)  (—,5|Hpgs|—,12)
(=7|Hpgs|—10)  (=,7|Hpgs|—,12)
(=10|Hygs|—,10) (=, 10|Hpgs|—,12)
(= 12|Hyge|—,10) (=, 12|Hygsl—,12)
(= 14|Hygs|—,10) (=, 14|Hpg|—,12)
(= 16|Hpgs|—,10)  (—,16]|Hpgs|—,12)

(—2|Hpgs|—,9)  (—.2|Hpg|—11)
(—4|Hp|—9) (=41 Hpgl—,11)
(—,6|Hngs|—,9)  (—,6|Hpg|—11)
(—8|Hpg|—9)  (—8|Hpgl—,11)
(=91Hngs|=9) (= 9|Hpgs|—,11)
(—11|Hngsl—9)  (—11|Hpgl—,11)
(=13|Hys|—9)  (—13|Hpg—,11)
(= 15|Hns|—,9)  (—15|Hpgl—,11)

(= 1|Hpgs|—,14)  (=,1|Hpgel—,16)
(=31 Hngsl—14)  (=3|Hpgs|—,16)
(=,5|Hpgs|—,14)  (=,5|Hpg|—,16)
(=71 Hngsl—14)  (=7|Hpgs|—,16)
(—10|Hys|—14)  (—,10|Hpgl—,16)
(—12|Hys|—14)  (—,12|Hpgs|—,16)
(= 14|Hygs|—14) (= 14|Hpgl—,16)
(—16|Hys|—,14)  (—,16|Hpgs|—,16)

(=2|Hpgs|—13)  (=,2|Hpgs|—,15)
(=4|Hng|—13)  (—4|Hpgs|—,15)
(=61Hpgs|—13)  (=,6]Hpss|—,15)
(—8|Hngs|—13)  (—,8|Hpgs|—,15)
(=91Hngsl—13)  (=9|Hygs|—,15)
(= 11|Hygs|—13)  (=11|Hpgl—,15)
(=13|Hygs|—13)  (—,13|Hpgl—,15)
(=15|Hpgs|—13)  (—,15|Hpg|—,15)

7
(—,1|Hps|—1) = (—,16|Hpg | —,16) = ZAZ(_l + 2 cos28)
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5
<—,2|ths|—,2) = <_'15|ths|_'15) = ZAZ(—l + 2 cos 26)
3
(=3|Hyg|—3) = (= 14|Hp | - 14) = 74, (=1 + 2 cos 26)
1
(=4 Hyg|—4) = (= 13|Hp | —13) = 74,(=1 + 2 cos 26)
1
(=5|Hyg|=)5) = (= 12|Hygs| - 12) = — 7 A, (=1 + Z cos 26)
3
(—,6|Hyp| —,6) = (—,11|Hp | —,11) = _ZAZ(_l + 2cos 20)
5
<—,7|ths|—,7) = <_'10|ths|_'10) = —ZAZ(—l + 2 cos 26)
7
(—8|Hngs| —,8) = (—,9|Hpg|—,9) = —ZAZ(—l + 2 cos 20)

<_t1|ths|_t10) = <_'10|ths|_'1) = <_!7|ths|_116) = (_,16|thsl_,7)

7
= gcos 0 [(Ax - Ay) cos 6 — \/§(Ax + Ay) sin 9]

<_'2|ths|_'9) = <_'9|ths|_'2) = <_'8|ths|_J15) = (_115|ths|_l8)

7
= gcos 0 [(Ax + Ay) cosf — \/§(Ax - Ay) sin 9]

(=2|Hyg|—11) = (= 11|Hpg|—,2) = (=,6|Hyg|—,15) = (—,15|Hyg| —,6)
= cos 6 [V3(4, — A,) cos — 3(A, + A,)sin 8]

(=3|Hngs|—,10) = (=, 10|Hpg|—,3) = (=, 7|Hy|—,14) = (—,14|Hpg| —,7)
= cos 6 [V3(4, + 4,) cos® — 3(A, — A,)sin 8]

(=3|Hngs|—12) = (= 12|Hpg|—,3) = (—,5|Hy|+,14) = (—,14|Hyg| —,5)
= gcos 0 [\/§(Ax - Ay) cosf — 3(Ax + Ay) sin 9]

<_t4|ths|_t11) = <_;11|ths|_;4) = <_16|ths|_113) = (_J13|ths|_16)

= gcos 0 [\/§(Ax + Ay) cosf — 3(Ax - Ay) sin 9]

(—4| Hyl —13) = (—,13|Hyg|—,4) = 2 cos 8 [(A, — Ay) cos @ — V3(A, + A,) sin 6]
(—=5|Hygl—,12) = (—,12|Hyi|—,5) = 2 cos 8 [(A, + A,) cos @ — V3(A, — A,) sin 6]

The secular octic equations of H}Tf’sl, H}Tf‘sz, H}:f’sl and H}:f‘sz can be factorized to two quadratic

equations, which is represented as follows:

In the equation, i = 1 and 2, 3 and 4, 5 and 6, and 7 and 8 come from Hy,,

x*+ax®+bx*+cex+d;=0@{=1,-,8)
+1

In order to eliminate the x3 term, replace x to x — a;/4

xt+px?+qx+r,=0
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3 2
Pi =~ g +b;

q; = 5(133 _Eaibi + ¢

3, 1 , 1
—ﬁai +Eai bi—zaiCi‘Fdi

N =
The resolvent cubic equation is
ud + 2pu® + (p? —4r)u—q; =0

In order to eliminate the u? term, replace u to u — 2p;/3 yields
s_1. 5 L 2
u® = §(Pi +12ru+ ﬁ(pi — 72pi1; + 27q;°)
One of the solutions of the cubic can be represented with trigonometric functions by using Viete’s method.
1 t; > Zpl

Uu; = 25; cos (—arccos—
t L 3 ZSL'

3

with

1 1
Si = §\’pi2 + 12Ti = §\/bi2 - 3aici + 12dl

- 2p° — 72pir; + 279, 2b° — 9a;byc; + 27¢;% + 27a;%d; — 72bd;
Y 3p?+36n 3b,2 — 9a;c; + 36d;

The quartic equation can be decomposed into two quadratic equations with .

pi tyy qi
x? + Jux + B U—
' 2 2,/ui
.+u. .
xz—,/uix+pl iy 9y

2 2\/71.

Therefore, the solutions of the equation are

Cli3 — 4aibi + 8Ci

1 qu a;
=— . 2p, —— . | =2 =2 —a; + 2. u 3a.2 — 8b; — — 4u;
X > u,+\/ pi \/El U; 2 p a; + ul+\] a; i \/E U;

Cli3 — 4aibi + 8Ci

1 qu a; 1
x=z|Jui— |—2p; — -y | ——=~—a; +2Ju; — |3a;>—8b; — — 4y
2 L \/ pl \/El L 4 4 1 L i L \/;l L

ai3 — 4aibi + 8Ci

= 4 —a; — 2\/;,' + \/3(11'2 - 8bl + \/;l 4ui
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ai3 - 4aibi + 8Ci

1
=—| —a; —2\u; — [3a;2 —8b; + 4u;
4 i 2 \} i 2 \/Z L

The set of the coefficients of the quartic equations {a;, b;, ¢;, d;} is given as follows:

ay =Ay+ A, + A, + (A, — A, + 24,) cos 20 + V3(4, — A,) sin 26

51 1
b, = —;(AZZ +AS+AS)+ 2 (174,% — 104,A, + 174, + 5A,A, + 54,A, — 344,°) cos 20

1
+ §(17Ax2 +204,4, + 174,* — 104, A, — 104,A, — 344,%) cos 46

V3
+ (—174,% + 17A,% + 54, A, — 54,A,) sin 20

V3 .
+ F(17Ax2 —174,% + 104, A, — 104,A,) sin 46

1
€, = 1—6(—133,4,53 —294,%4, — 294, A,% — 1334, — 29A,%A, + 284, A A, — 29A,*A, — 294,A,°
—294,A,% — 1334,°)
3
+ 16 (384,° + 294,%A, + 294,A,% + 384,° — 294,%A, — 294,°A,
- 76AZ3) cos 20
3
+ 16 (194, — 294,%A, — 294,A,% + 194,° + 294, %A, + 294,°A,
—384,%) cos 46
1 3 2 2 3 2 2
+ 1—6(—38Ax +294,%A, + 294,A,° — 384,° + 294,°A, — 28A,A,A, + 29A,°A,

+294,A,% + 294,A,” — 384,%) cos 66
N V3

16
+584,4,%)sin 20
N V3

16
+584,4,%)sin48

29v3
+ e (CAL A+ AA + AP, — A2 A, — A4 + A4, sin 60

(—1144,° + 294,%A, — 294, A,% + 1144,°> — 294,°A, + 294,°A, — 584,A,°

(574,° + 294,%A, — 294,A,* — 57A,° — 29A,%A, + 294,°A, — 584,4,"
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d, = (95A *—204,%4, + 1204,°A,% — 204,A,° + 954,* — 204,°A, + 884,°A A,

256
2 3 2 2 2 2 2 3
+884,4,°A, — 20A,°A, + 1204,%A,” + 884,A,A,” + 1204,°A,* — 204,A,
—204,4,° + 954,%)

1
+ 77 (204, +354,%4, — 304,74, + 354,4,° — 204" ~ 254,°4,

—224,°AyA, — 224, A,°A, — 25A,°A, + 154,74, + 444, A A, + 154,°A,°
—104,4,% — 104,A,” + 404,*) cos 26

4 3 2 2 3 4 3
128( 254," — 804, A, + 304,247 — 804,A,° — 254,* + 704,%4,

+224,°AyA, + 224, A7 A, + T04,°A, — 154,%A,” — 444, A,A," — 154,°A,°
+104,4,° + 104,A, + 504,") cos 46

21
+22 (104,* + 54,°A, — 304,24, + 54,A4,° + 10A,* + 54,°A, — 224,%A A,

— 224,A,%A, + 54,°A, — 304,°A,* — 224,A,A,* — 304,°A,* + 54,A,° + 5A,A,°
+ 10AZ4) cos 66

3 2 3 4 3 2
256( SA,* + 204,34, + 604,%A,% + 204,4,° — 5A," — 404, A, + 444,% A, A,

+44A,A,%A, — 40A,°A, — 304,°A,% — 884,A,A," — 304,%A,% + 204,A,°
+204,4,” + 104,*) cos 86

21\/_
+— (20A +54,°A, — 54,A,° — 20A4,* — 154,%A, + 224,74, A,

— 224,A,%A, + 154, A, + 154,°A,* — 154,°A,> — 20A,A,> + 204,4,%) sin 20

21\/_ 3 3 4 3 2
38 —— (—254,* + 204, A, — 204,A,° + 254,* — 304,°A, + 224,%A A,
— 224,A,%A, + 30A,°A, + 154,°A,* — 154,°A,* — 504, A, + 504,4,%) sin 40
315\/_
(mACA, + A AR + ACA, — A A, — A A + A A7) sin68
21\/_ 3 3 4 2 2
+ ¢ —— (54," + 204,° A, — 204,A,° — 54,* — 444, A, A, + 44A,A, %A,

—304,°4,% + 304,°A,* — 204,A,” + 204,4,%) sin 80

ay =—Ay— Ay + A, + (A + Ay + 24,) cos 20 — V3(A, — A,) sin 20
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51 1
b, = —?(sz +A4,°+A4,°)+ 2 (174,% — 104, A, + 174,° — 54, A, — 54, A, — 344,%) cos 26

1
+ g(17Ax2 +204,A, + 174,% + 104, A, + 104,A, — 344,%) cos 46

V3
+ (—17A,% + 17A,* — 54, A, + 54,4,) sin 20

V3 .
+ ?(17sz — 174, — 104,A, + 104,A,) sin 46

= 1—16(133Ax3 + 29Ax2Ay + 29AxAy2 + 133Ay3 - 29Ax2Az +284,A,A, — 29Ay2Az n 29AxAz2
+294,4,” — 1334,%)
+ 116(_38‘49:3 —294,%A, — 294,A,% — 384,° — 294,74, — 294,%4,
— 764,°) cos 26
+ %(—19Ax3 +294,°A, + 294,A,% — 194,° + 294,°A, + 294,° 4,
—384,%) cos 46
+ 1—16 (384,° — 294,%A, — 294,A,” + 384,° + 294, A, — 284, A, A, + 294,74,

—294,A,% — 294,A," — 384,%) cos 66

V3
+ 16 (1144,° — 294,°A, sin 20 + 294,A,° — 114A,° — 294,%A, + 294,°A,
+ 584,4,% — 584,A,%) sin 20

\/§ 3 2 2 3 2 2 2
+ E(—smx — 294,°Ay + 294, A, + 57A,% — 294, A, + 29A,° A, + 584, 4,

— 584,4,%)sin40

29v3
+ e (A Ay — AA + AA, — AP A, + A A" — AyA,”) sin 60
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d, = (95A *—204,%4, + 1204,°A,% — 204,A,° + 954, + 204, A, — 884,°A A,

256
—88A4,A4,%4, + 204,24, + 1204,%A,% + 884, A,A,% + 1204,%A4,% + 204,.A,°
X4y VA y VA X Z xX4tyitz y Z x4z

+204,4,° + 954,*)

1
+22 (—204,* + 354,°4, — 304,%A,% + 354,4,° — 204,* + 254,°4,

+224,°AyA, + 224, A, A, + 25A4,° A, + 154,74, + 444, A A, + 154,°A,°
+104,4,° + 104,A,° + 404,*) cos 26

4 3 2 2 3 4 3
128( 254," — 804, A, + 304,2A,% — 804,A,° — 254,* — 704,%4,

—224,°AyA, — 224, A,*A, — T0A4,°A, — 154,%A,” — 444, A,A," — 154,°A,°
—104,4,% — 104,A,” + 504,*) cos 46

1
+22 (104,* + 54,°A, — 304,24, + 54,A4,° + 104,* — 54,°A, + 224,%A A,

+224,A,%A, — 54,°A, — 304,°A,* — 224,A,A,* — 304,°A,* — 54,A,° — 5A,A,°
+ 10AZ4) cos 66

3 2 3 4 3 2
256( SA,* + 204, %A, + 604,%A,% + 204,4,° — 5A," + 404,° A, — 444,% A, A,

— 44A,A,%A, + 40A,°A, — 304,°A,* — 884,A,A," — 304,%A,% — 204,A,°
—204,4,” + 104,*) cos 86

21\/_
+— (20A +54,°A, — 54,A,° — 204,* + 154,%4, — 224,74, A,

+224,A,%A, — 154, A, + 154,°A,* — 154,°A,% + 204, A, — 204,4,%) sin 20

21\/_
128

+224,A,%A, — 30A,°A, + 154,°A,* — 154,°A,* + 504,A,> — 504,4,%) sin 40
315\/_

—— (—254,* + 204, A, — 204, A,° + 254,* + 304,°A, — 224,%A A,

(mA>A, + A AP — APA, + A A, + A A% + A A7) sin60

21\/_
256

—304,°A,% + 304,°A,% + 204,A,> — 204,4,%) sin 80

—— (54," + 204,° A, — 204,A,° — 5A,* + 444, A, A, — 444, A, %A,

az =A,— Ay, — A, — (Ay — Ay + 24,) cos 20 +V3(4, + A,) sin 20
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51 1
by = —?(sz +A4,°+A4,°)+ 2 (17A4,% + 104, A, + 174,° — 54, A, + 54, A, — 344,%) cos 26

1
+ g(17Ax2 — 204,A, + 174,% + 104, A, — 104,A, — 344,%) cos 46

V3
+ (—17A,% + 17A,* — 54,4, — 54,A,) sin 20

V3 .
+ ?(17sz — 174, — 104,A, — 104,A,) sin 46

1
c3 = R(—133Ax3 +294,%4, — 294, A,% + 1334,° + 294,%A, + 284, A A, + 29A,*A, — 294,A,°
+294,4,° + 1334,°)
3
+ 16 (384,° — 294,%A, + 294,A,% — 384,° + 294, %A, + 294,°A,
+ 76AZ3) cos 20
3
+ 16 (194,° + 294,%A, — 294,A,% — 194,° — 294,%A, — 294,°A,
+384,°) cos 46
1 3 2 2 3 2 2
+ 1—6(—38Ax —294,%A, + 294,A,° + 384,° — 294,°A, — 28A,A,A, — 29A,°A,

+294,A,* — 294,A,” + 384,%) cos 66
N V3

16
— 584,A4,%)sin 20

(—1144,° — 294,%A, — 294,A,% — 1144,° + 294,° A, — 294, %A, — 584,A,"

V3
+ g (574,° — 294,%A, — 294,A,% + 57A,° + 294,%*A, — 294,°A, — 584,4,"
— 584,4,%)sin48

293

+—T5 (A Ay + AA — A A, + APA, — A A" — AyA,”) sin 60

S64



ds = (95A +204,°4, + 1204,°A,* + 204,A,° + 954,* + 204, A, + 884,°A A,

256
2 3 2 2 2 2 2 3
— 884,A4,°A, —20A,%A, + 1204,%A,” — 884, A,A,” + 1204, A,* + 204,4,
—204,4,° + 954,%)

1
+2 (—204,* — 354,°4, — 304,%A,% — 354,A,° — 204,* + 254,°4,

— 224,°AyA, + 224, AP A, — 25A4,°A, + 154,%A," — 444, A A, + 154,°A,°
+104,4,° — 104,A,° + 404,*) cos 26

3 2 3 4 3
128( 254,* + 804, Ay + 304, A + 80A4,A," — 25A," —704,°A,

+224,°AyA, — 224, A7 A, + T0A4,°A, — 154,%A,” + 444, A,A," — 154,°A,°
—104,4,% + 104,A,” + 504,") cos 46

1
+22 (104,* — 54,°A, — 304,%4,* —54,A,° + 104,* — 54,°A, — 224,%A A,

+224,A,%A, + 54,°A, — 304,°A,% + 224,A,A,* — 304,°A,* — 54,A,° + 5A,A,°
+ 10AZ4) cos 66

+oz 6( 54" — 204, Ay, + 604,°A," — 204,4,° — 54,* + 404,° A, + 444,%A A,
— 44A,A,%A, — 40A,°A, — 304,°A,% + 884,A,A," — 304,%A,% — 204,A,°
+204,4,” + 104,*) cos 86

21\/_
+— (20A *—5A4,°A, + 54,A,° — 204" + 154,%4, + 224,74, A,

+224,A,%A, + 154, A, + 154,°A,* — 154,°A,% + 204, A,> + 204,4,%) sin 20

21\/_
128

+224,A,%A, + 30A,°A, + 154,°A,* — 154,°A,%* + 504, A, + 504,4,%) sin 40
315\/_

—— (—254,* — 204, A, + 204,A,° + 254,* + 304,°A, + 224,%A A,

(A4, — A A — ACA, — A A, + A A + AyA,°) sin 60

21\/_
256

—304,%°A,% + 304,°A,% + 204,A,” + 204,4,%) sin 80

—— (54,* — 204,°A,, + 204,A,° — 54,* — 444, A, A, — 444, A, %A,

ay=—A,+A, — A, + (A, — Ay — 24,) cos 20 — V3(A, + A,) sin 20
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51 1
b, = —?(sz +A4,°+A4,°)+ 2 (174,% — 104, A, + 174, + 54, A, + 54,A, — 344,%) cos 26

1
+ g(17Ax2 +204,A, + 174,° — 104, A, — 104,A, — 344,%) cos 46

V3
+ (—17A,% + 17A,% + 54,4, — 54,A,) sin 20

V3 .
+ ?(17sz —17A,% + 104,A, + 104,A,) sin 46

1
€y = R(133Ax3 —294,%A, + 294,47 — 1334,° + 29A4,%A, + 284, A A, + 29A,%A, + 294, A,
—294,A,° +1334,%)
3 3 2 2 3 2 2
+ 1—6(—38Ax +294,%A, — 294,A,% + 384,° + 294, %A, + 294,%A,
+ 76AZ3) cos 26
3
+ 16 (—194,° + 294,74, — 294,A,° + 19A,° — 294,°A, — 294,°4A,
+384,°) cos 40
1 3 2 2 3 2 2
+ 1—6(38Ax +294,%A, — 294,A,° — 384,° — 294,%A, — 28A,A,A, — 29A,°A,
— 294,A,% + 294,A,% + 384,%) cos 66
\/§ 3 2 2 3 2 2 2
+ R(114Ax +294,%A, + 294,A,° + 1144,° + 29A4,%A, — 29A,%A, + 5844,

+584,4,%)sin 26

N V3
16
+584,4,%)sin48

29v3
* 16 (_szAy - AxAy2 - AxZAz + AyzAz + AxA22 + AyAzz) sin 6¢

(—574,°% + 294,° A, + 294,A,% — 57A,% + 29A,°A, — 29A,°A, + 584,4,°
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dy = (95A +204,°4, + 1204,°A,* + 204,A,° + 954,* — 204, A, — 884,°A A,

256
2 3 2 2 2 2 2 3
+884,A4,°A, + 20A,°A, + 1204,°A,” — 884,A,A," + 1204,°A,* — 204,A,
+204,4,° + 954,%)

1
+2 (—204,* — 354,°4, — 304,%A,% — 354,A,° — 204,* — 254,°4,

+224,°AyA, — 224, A, A, + 25A4,° A, + 154,%A," — 444, A A, + 154,°A,°
—104,4,% + 104,A,> + 404,*) cos 26

3 2 3 4 3
128( 254,* + 804, Ay + 304, A + 80A4,A," — 25A," + 704,°A,

— 224,°AyA, + 224, A,*A, — T0A4,°A, — 154,%A,” + 444, A,A," — 154,°A,°
+104,4,° — 104,A,° + 504,") cos 46

1
+22 (104,* — 54,°A, — 304,%4,* — 54,A,° + 104,* + 54,°A, + 224,%A A,

—224,A,%A, — 54,°A, — 304,° A, + 224,A,A,* — 304,° A, + 54,A,° — 5A,A,°
+ 10AZ4) cos 66

4 3 2 2 3 4 3 2
5 6( 5A,* — 204, %A, + 604,742 — 204,A,° — 5A," — 404,° A, — 444,% A, A,

+44A,A,%A, + 40A,°A, — 304,°A,% + 884, A,A," — 304,%A,% + 204,A,°
—204,4,” + 104,*) cos 86

21\/_
+— (20A * —5A4,°A, + 54,A,° — 204,* — 154,%4, — 224,74, A,

—224,A,%A, —15A,°A, + 154,°A,* — 154,°A,* — 204, A, — 204,4,%) sin 20

21\/_ 4 3 3 4 3 2
38 —— (—254,* — 204, A, + 204,A,° + 254,* — 304,°A, — 224,%A A,
— 224,A,%A, — 30A,°A, + 154,°A,* — 154,°A,* — 504,A,> — 504,4,%) sin 40
315\/_
(A4, — A A + ACA, + A A, — A A — AyA,°) sin 60
21\/_ 4 3 3 4 2 2
+ ¢ —— (54,* — 204,°A, + 204,A,° — 5A,* + 444, A, A, + 444,A,° A,

—304,°A,% + 304,°A,* — 204,A,> — 204,4,%) sin 80
The set of the coefficients for i =2, 3 and 4 can be obtained from {ai, b1, c1, d1} with replacing 4, and 4, to
—Ax and —A4,, A and 4. to —A, and —A4:, and 4, and 4: to —A4, and —4., respectively.
For the negative counterpart:

as =—A,+A, — A, — (Ay — Ay — 24,) cos 20 + V3(A, + A,) sin 20
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51 1
bs = —?(sz +4,° +A4,°)+ Z(—17Ax2 — 104,A, — 17A,* — 54,4, + 54,4, + 344, cos 20

1
+ 5(17Ax2 —204,4, + 174,% — 104, A, + 104,A, — 34A,%) cos 48

V3
+ 7(17‘4"2 — 174, — 54,4, — 54,4,) sin 20

V3 .
+ ?(17,4,(2 —174,% + 104, 4, + 104,A,) sin 46

1
cs = R(133Ax3 —294,%Ay + 294,47 — 1334,° + 29A,%A, + 284, A, A, + 29A,%A, + 294, A,
—294,A,° +1334,%)
3
+ 16 (384,° — 294,%A, + 294,A,% — 384,° — 294,%A, — 294,°A,
- 76AZ3) cos 26
3
+ 16 (—194,°% — 294,74, + 294,4,° + 19A,° — 294,°A, — 294,°4A,

+384,°) cos 40

1
+ 76 (—384,°% — 294,74, + 294, A, + 384,° + 294,%A, + 284, A A, + 294,°A,

+294,A,% — 294,A,” — 384,%) cos 66

+ \1/—5(—114,4,(3 sin 20 — 294,24, — 294, 4,7 — 1144,% — 294,24, + 294,24,
— 584,4,% — 584,A,%) sin 20
+ \1/—3(—5714;;3 +294,%4, + 294, 4,7 — 57A,% + 294, A, — 294, A, + 584,4,"
+584,4,%) sin46

29V3

3
(A Ay + A A + A A, — APA, — A A" — AyA,”) sin60

+16
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ds = (95A +204,°4, + 1204,°A,* + 204,A,° + 954,* — 204, A, — 884,°A A,

256
2 3 2 2 2 2 2 3
+884,A4,°A, + 20A,°A, + 1204,°A,” — 884,A,A," + 1204,°A,* — 204,A,
+204,4,° + 954,*)

+—1(20A4+35A A, +304,%A,% + 354,A,° + 204,* + 254, A, — 22A,° A, A
64 X x Ay x Ay x4y y x ‘iz x 2yttz

+224,A,%A, — 25A,°A, — 15A4,°A,% + 444, A, A," — 154,°A,% + 104,A,°
— 1044, — 404,*) cos 26

3 2 3 4 3
128( 254,* + 804, Ay + 304, A + 80A4,A," — 25A," + 704,°A,

— 224,°AyA, + 224, A,*A, — T0A4,°A, — 154,%A,” + 444, A,A," — 154,°A,°
+104,4,° — 104,A,° + 504,") cos 46

1
+2 (—104,* + 54, Ay, + 304,°A,* + 54,A,° — 104,* — 54,%A, — 224,74, A,

+224,A,%A, + 54,° A, + 304,°A,” — 224,A,A,% + 304,°A,* — 54,A,° + 5A,A,°
- 10AZ4) cos 66

+oz 6( 54,* — 204, Ay, + 604,°A,* — 204,4,° — 54,* — 404,° A, — 44A,%A A,
+44A,A,%A, + 40A,°A, — 304,°A,% + 884, A,A," — 304,%A,% + 204,A,°
—204,4,” + 104,*) cos 86

21\/_
( 204,* + 54,° A, — 54,A,° + 204,* + 154,°A, + 224,°A A,

+224,A,%A, + 154, A, — 15A4,°A,% + 154,°A,% + 204, A, + 204,4,%) sin 20

21\/_ 4 3 3 4 3 2
38 —— (—254,* — 204, A, + 204,A,° + 254,* — 304,°A, — 224,%A A,
— 224,A,%A, — 30A,°A, + 154,°A,* — 154,°A,* — 504,A,> — 504,4,%) sin 40
315\/_
(mA>A, + A AP — APA, — AP A, + A A + A A7) sin60
21\/_ 54,* — 204,34, + 204, A,° — 5A,* + 44A,%A A, + 44A, A, A
256( xy+ xy_y+ xyz+ xy Az

—304,°A,% + 304,°A,* — 204,A,> — 204,4,%) sin 80

ag=Ay— Ay — A, + (Ay — Ay + 24,) cos 20 —V3(4, + A,) sin 20
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51 1
bg = —?(sz +4,° +A4,°)+ Z(—17Ax2 — 104,A, — 17A,% + 54,A, — 54,4, + 344, cos 20

1
+ 5(17Ax2 —204,4, + 17A,% + 104, A, — 104,A, — 344,%) cos 40

V3
+ 7(17‘4"2 —174,% + 54,4, + 54,4,) sin 20

V3 .
+ ?(17,4,(2 —174,* — 104,4, — 104,A,) sin 46

Ce = %(—133,4,(3 +294,%°4, — 294,A,° + 1334,° + 294, %A, + 284,A A, + 29A,%A, — 294, A,°
+294,A,% +1334,%)
+ 116 (—384,° + 294,%A, — 294,A,% + 384,° — 294,%A, — 29A,°A,
— 764,°) cos 20
+ 116(19,4,53 +294,%4, — 294,47 — 194,° — 294,%A, — 294,%A,
+384,°) cos 40
+ 1—16 (384,% + 294,24, — 294,A,% — 384,° + 294,%A, + 284, A, A, + 294,74,
— 294,A,% + 294,A,” — 384,%) cos 66
V3
+ 1—6(114Ax3 +294,%4A, + 294,A,° + 1144,° — 29A4,%A, + 29A,%A, + 584,A,°
+584,4,%)sin 26
V3
+ 1—6(57Ax3 —294,%A, — 294, A, + 57A,° + 294,74, — 29A,°A, — 584,4,"

—584,4,%)sin48

293

+ g (CAL Ay — A+ APA, = AP A+ A4 + Ay A,7) sin 60
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de = (95A +204,°4, + 1204,°A,* + 204,A,° + 954,* + 204, A, + 884,°A A,

256
2 3 2 2 2 2 2 3
— 884,A4,°A, —20A,%A, + 1204,%A,” — 884, A,A,” + 1204, A,* + 204,4,
—204,4,° + 954,%)

+—1(20A4+35A A, + 304,74, + 354,A,° + 204,* — 254, A, + 22A,°A,A
64 X x Ay x Ay x4y y x ‘iz x 2yttz

— 224,A,%A, + 25A,°A, — 15A,°A,% + 444, A, A," — 154,%°A,% — 104,A,°
+104,4, — 404,*) cos 26

3 2 3 4 3
128( 254,* + 804, Ay + 304, A + 80A4,A," — 25A," —704,°A,

+224,°AyA, — 224, A7 A, + T0A4,°A, — 154,%A,” + 444, A,A," — 154,°A,°
—104,4,% + 104,A,” + 504,") cos 46

1
+22 (—104,* + 54, A, + 304,°A,* + 54,A,° — 104,* + 54,%A, + 224,74, A,

—224,A,%A, — 54,°A, + 304,°A,* — 224,A,A,% + 304,°A,* + 54,A,° — 5A,A,°
- 10AZ4) cos 66

+oz 6( 54" — 204, Ay, + 604,°A," — 204,4,° — 54,* + 404,° A, + 444,%A A,
— 44A,A,%A, — 40A,°A, — 304,°A,% + 884,A,A," — 304,%A,% — 204,A,°
+204,4,” + 104,*) cos 86

21\/_
( 204,* + 54,° A, — 54,A,° + 204,* — 154, A, — 22A,°A A,

— 224,A,%A, — 15A,°A, — 15A,°A,% + 154,°A,> — 204, A, — 204,4,%) sin 20

21\/_
128

+224,A,%A, + 30A,°A, + 154,°A,* — 154,°A,%* + 504, A, + 504,4,%) sin 40
315\/_

—— (—254,* — 204, A, + 204,A,° + 254,* + 304,°A, + 224,%A A,

(mACA, + A AR + ACA, + A A, — A A% — A,A,%) sin60

21\/_
256

—304,%°A,% + 304,°A,% + 204,A,” + 204,4,%) sin 80

—— (54,* — 204,°A,, + 204,A,° — 54,* — 444, A, A, — 444, A, %A,

a; = —Ay— Ay + A, — (A + Ay + 24,) cos 20 + V3(A, — A,) sin 20
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b ——E(A >+ 4 2+AZ)+1(—17A >+ 104,A, — 17A,% + 54, A, + 5A,A, + 344,%) cos 20
7 = 3 X y z 4 X x4ty y x4z y4iz z ) COS

1
+ 5(17Ax2 +204,4, + 174,% + 104, A, + 104,A, — 344,%) cos 40

V3
+ 7(17‘4"2 —174,% + 54,4, — 54,4,) sin 20

V3 .
+ ?(17,4,(2 —174,* — 104, 4, + 104,4,) sin 46

1
c; = R(133Ax3 +294,%°4, + 294,A,° + 1334,° — 294,%A, + 284, A A, — 29A,% A, + 294, A,°
+294,A4,° — 1334,°)
3 3 2 2 3 2 2
+ 1—6(38Ax +294,%A, + 294,A,% + 384,° + 294, %A, + 294,%A,
+ 76AZ3) cos 20
3 3 2 2 3 2 2
+ 1—6(—19Ax +294,%4, + 294,47 — 194,° + 294,%A, + 294,°4A,
—384,%) cos 46
1 3 2 2 3 2 2
+ 1—6(—38Ax +294,%4, + 294,A,° — 384,° — 294, A, + 28A,A,A, — 29A,°A,

+294,A,% + 294,A, + 384,%) cos 66
N V3

16
+584,4,%)sin 20
N V3

16
— 584,A4,%)sin48

. 293
16

(—1144,° + 294,%A, — 294,A,% + 1144,° + 294,° A, — 294,°A, — 584,A,°

(—574,°% — 294,74, + 294,A,° + 57A,° — 294,°A, + 29A,°A, + 584, 4,°

(mA%A, + A A% — APA, + A A, — A A% + AyA,%) sin 60
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d, = (95A *—204,%4, + 1204,°A,% — 204,A,° + 954, + 204, A, — 884,°A A,

256
—88A4,A4,%4, + 204,24, + 1204,%A,% + 884, A,A,% + 1204,%A4,% + 204,.A,°
X4y VA y VA X Z xX4tyitz y Z x4z

+204,4,° + 954,*)

1
+22 (204,* — 354,%4, + 304,°A,* — 354,A,° + 204,* — 254,°A, — 224,%A A,

—224,A,%A, — 25A,°A, — 15A,°A,* — 444, A, A," — 154,%°A,% — 104,A,°
— 1044, — 404,*) cos 26

4 3 2 2 3 4 3
128( 254," — 804, A, + 304,2A,% — 804,A,° — 254,* — 704,%4,

—224,°AyA, — 224, A,*A, — T0A4,°A, — 154,%A,” — 444, A,A," — 154,°A,°
—104,4,% — 104,A,” + 504,*) cos 46

1
+22 (—104,* — 54, A, + 304,°A,* — 54,A,° — 104,* + 54,%A, — 224,74, A,

— 224,A,%A, + 54,°A, + 304,° A, + 224,A,A,% + 304,° A, + 54,A,° + 5A,A,°
- 10AZ4) cos 66

3 2 3 4 3 2
256( SA,* + 204, %A, + 604,%A,% + 204,4,° — 5A," + 404,° A, — 444,% A, A,

— 44A,A,%A, + 40A,°A, — 304,°A,* — 884,A,A," — 304,%A,% — 204,A,°
—204,4,” + 104,*) cos 86

21\/_
( 204,* — 54,° A, + 54,A,° + 204,* — 154,%A, + 22A,°A A,

— 224,A,%A, + 15A,°A, — 15A4,°A,% + 154,°A,> — 20A,A,> + 204,4,%) sin 20

21\/_ 3 3 4 3 2
38 —— (—254,* + 204, A, — 204, A,° + 254,* + 304,°A, — 224,%A A,
+224,A,%A, — 30A,°A, + 154,°A,* — 154,°A,* + 504,A,> — 504,4,%) sin 40
315\/_
(A°A, — A A + ACA, — A A, — A A + AyA,°) sin 60
21\/_ 3 3 4 2 2
+ ¢ —— (54," + 204,° A, — 204,A,° — 5A,* + 444, A, A, — 444, A, %A,

—304,°A,% + 304,°A,% + 204,A,> — 204,4,%) sin 80

ag = Ay + Ay + A, + (A + Ay — 24,) cos 20 —V3(A, — A,)sin 20
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51 1
bg = —?(sz +4,° +A4,°)+ Z(—17Ax2 + 104,A, — 17A,* — 54,4, — 54,4, + 344, cos 20

1
+ 5(17Ax2 +204,4, + 174,7 — 104, A, — 104,A, — 34A,%) cos 40

V3
+ 7(17‘4"2 —174,% — 54,4, + 54,4,) sin 20

V3 .
+ ?(17,4,(2 —174,% + 104,4, — 104,A,) sin 46

1
cg = R(—133Ax3 —294,%4, — 294,A,% — 1334,° — 29A,%A, + 284,A A, — 29A,%A, — 294, A,°
—294,A,% — 1334,%)
3
+ 16 (—384,° — 294,74, — 294,A,” — 384,° + 294,°A, + 294,°4A,
+ 76AZ3) cos 26
3
+ 1—6(19,4,53 —294,%A, — 294, A,% + 194,° + 294,%A, + 294,°A,
—384,%) cos 40
1 3 2 2 3 2 2
+ 1—6(38Ax —294,%°A, — 294, A,% + 384,° — 294,%A, + 28A,A,A, — 29A,°A,

— 294,A,%* — 294,A,% + 384,%) cos 66

V3
+ 1—6(114Ax3 — 294,%A, + 294,A,° — 1144,° + 29A,%A, — 29A,%A, + 584,A,°
—584,4,%)sin26

\/§ 3 2 2 3 2 2 2
+ 1—6(57Ax +294,°A, — 294, A% — 57A,% — 294, A, + 29A,° A, — 584, 4,

+584,4,%)sin48

29V3
T (A Ay — A A — A A, + AP A, + A A" — AyA,%) sin60
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dg = (95A *—204,%4, + 1204,°A,% — 204,A,° + 954,* — 204, A, + 884,°A A,

256
2 3 2 2 2 2 2 3
+884,4,°A, — 20A,°A, + 1204,%A,” + 884,A,A,” + 1204,°A,* — 204,A,
—204,4,° + 954,%)

1
+22 (204,* — 354,%4, + 304,%A,* — 354,A,° + 204,* + 254, A, + 224,%A A,

+224,A,%A, + 25A,°A, — 15A4,°A,% — 444, A, A," — 154,°A,% + 104,A,°
+104,4, — 404,*) cos 26

4 3 2 2 3 4 3
128( 254," — 804, A, + 304,247 — 804,A,° — 254,* + 704,%4,

+224,°AyA, + 224, A7 A, + T04,°A, — 154,%A,” — 224, A,A," — 154,°A,°
+104,4,° + 104,A, + 504,") cos 46

1
+22 (—104,* — 54, A, + 304,°A,* — 54,A,° — 104,* — 54,%A, + 224,74, A,

+224,A,%A, — 54,° A, + 304,° A, + 224,A,A,% + 304,°A,* — 54,A,° — 5A,A,°
- 10AZ4) cos 66

3
256( 54" + 204, Ay, + 604,°A,% + 204,4,° — 54,* — 404, A, + 444,%A A,

+44A,A,%A, — 40A,°A, — 304,°A,% — 884,A,A," — 304,%A,% + 204,A,°
+204,4,” + 104,*) cos 86

21\/_
( 204,* — 54, A, + 54,A,° + 204,* + 154, A, — 22A,7A A,

+224,A,%A, — 15A,°A, — 15A4,°A,% + 154,°A,% + 204, A, — 204,4,%) sin 20

21\/_ 3 3 3 2
78 ——(—254,"* + 204,°A, — 204,A,° + 25A4,* — 304,° A, + 224,°A,A,
— 224,A,%A, + 30A,°A, + 154,°A,* — 154,°A,* — 504, A, + 504,4,%) sin 40
315\/_
(A4, — A A — ACA, + A A, +AA° — A,A,7)sin68
21\/_

556 —— (54," + 204,° A, — 204,A,° — 54,* — 444, A, A, + 44A,A, %A,

—304,°4,% + 304,°A,* — 204,A,” + 204,4,%) sin 80
The set of coefficients for i = 6, 7 and 8 can be obtained from {as, bs, cs, ds} with replacing 4 and 4, to —Ax
and —4,, A, and 4: to —A. and —A:, and 4, and A4: to —4, and —4:, respectively.

The second-order correction for the energies 5(02) (0 =+4+,—; a =1,---,16) can be written as

£02) _ |(i,d|ths|$,ﬁ)|2
Sra T (0 _ (0
=1 & T &

Both the upper and lower signs should be chosen in the double sign. The non-zero matrix elements of Hhg

expanded to the basis belonging different eigenspaces are,
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(+,1|Hns|=,2) = (=, 2|Hyis|+,1) = (+,7|Hps|—,8) = (—,8|Hngs|+,7) = (—,9|Hpg| +,10)
== <+,10|ths|—,9) - <—,15|thsl+,16) = <+,16|ths|—,15)

V21 V7 _
= (Ax - Ay) cos 20 + 7 (Ax + Ay) sin 26
<+;2|ths|_t1> = <_11|ths|+12) = <+58|ths|_l7) = <_,7|th5|+,8) = <_;10|th5|+,9>
= <+,9|ths|—,10) = <—,16|thsl+,15) = <+,15|ths|—,16)

V21 V7 _
= (Ax + Ay) cos 20 + 7 (Ax - Ay) sin 26
<+;2|ths|_l3> = <_l3|thS|+'2) = <+I6|thsl_l7) = (_J7|th5|+l6) = <_;10|th5|+;11>
= <+,11|ths|—,10) = <—,14|thsl+,15) = <+,15|ths|—,14)

3 3
= E(Ax —Ay)cos26 + g(Ax +4,)sin26

<+t3|ths|_'2> = <_t2|ths|+!3) = <+'7|ths|_!6) = (_,6|thsl+,7) = <_;11|ths|+;10>
= <+'10|ths|_'11) = <_'15|ths|+il4) = <+114|ths|_115)

= ;(Ax +A4,)cos20 + g(Ax —A,)sin26

<+t3|ths|_'4'> = <_t4|ths|+!3) = <+'5|ths|_!6) = (_J6|ths|+15) = <_;11|ths|+;12>
= <+'12|ths|_'11) = <_'13|ths|+il4) = <+114|ths|_113)

3v5 V15 _
= T(Ax —Ay)cos20 + T(Ax +4,)sin26
<+t4|ths|_'3> = <_t3|ths|+!4) = <+'6|ths|_!5) = (_,SthfS|+,6) = <_;12|ths|+;11>
= <+,11|ths|—,12) = <—,14|thsl+,13) = <+,13|ths|—,14)

1
= #(Ax +A4,)cos20 + ?(Ax —A,)sin26

(+,4|Hpg|—,5) = (=,5|Hygl+,4) = (= 12|Hypg|+,13) = (+,13|Hyg | —,12)
= \/§(Ax - Ay) cos 28 + (Ax + Ay) sin26

(+,5|Hpg|—4) = (=4 Hygl+,5) = (= 13|Hypg|+,12) = (+,12|Hyg|—,13)
=V3(4, +A,) cos 26 + (A, — A,) sin 26

7

<+'1|ths|_'9> = <_19|ths|+11) = <_18|ths|+116) = <+J16|ths|_18) = _EAJC sin 26

S50
<+'2|ths|_'10> = <_110|ths|+12) = <_J7|ths|+115) = <+;15|ths|_:7) = _EAJC sin 26

3
<+,3|thsl—,11) = <—,11|thsl+,3> = (—,6|thsl+,14) = <+,14|th5|—,6) = —EAx sin 260

AX .
(+4|Hpg|—12) = (—,12|Hpg|+,4) = (=5 Hy|+,13) = (+,13|Hpg|—,5) = —— sin26

A
(+:5|ths|_;13> = <_:13|ths|+:5) = (_14|th5|+112) = (+512|th5|_l4) = %Sin 29
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3
(+,6|Hpg| —,14) = (=,14|Hpg|+,6) = (=, 3|Hpg|+,11) = (+,11[Hpg | —,3) = A sin 26

5
<+,7|thsl—,15> = <—,15|ths|+,7) = <—,2|thsl+,10) = <+,10|ths| 2) A sin 260

7
<+,8|ths|—,16> = <—,16|thsl+,8) = <—,1|thsl+,9) = <+,9|ths| 1) = —A sin 260

Therefore, the second-order corrections for the energy, 8(02) (c=+4+,— a=1,---,12) are in the

following:

(02) |<_12|thS|+I1)|2 + |<_19|th5|+11)|2

+1 2A

2
Lf[v21 V7 49
= ﬂ{[T (Ax - Ay) cos26 + T(A" + Ay) sin 23] + TAzz sin? 29}

(02) |<_:1|ths|+:2)|2 + |<_;3|ths|+’2)|2 + |<_;10|ths|+;2)|2

+2 2A
2
1
=ﬂ{[\/_(A +Ay)c0529+ (A —Ay)sm29]

2
3 V3 25
+ [E (Ay —A,)cos20 + - (A, +A,)sin 29] + TAZ2 sin? 29}

5(02) _ |<_I2|thsl+l3)|2 + |<_14|ths|+:3)|2 + |<_111|ths|+l3)|2

+,3 2A

2

1 V3 .
ZA“ (A, +A,)cos20 +—(A y)sm29]

2
3 V 9
i A, cos20 +—— (A, + A, )sin260| +- A,%sin? 20
4y y 4

8(02) _ |<_I3|th5|+l4)|2 + |<_15|th5|+l4)|2 + |<_J12|ths|+l4)|2

+,4 2A

ZA“N_ (A, +A,)cos20 +£(A Ay)sin 29]

A 2
+[V3(Ay — 4y) c05 20 + (4, + 4, ) sin 26] + == sin’ 29}

8(02) _ |<_I4|th5|+J5)|2 + |<_,6|ths|+,5)|2 + |<_,13|ths|+,5)|2

+,5 2A

1
- ﬂ{[\/?(Ax +A,)cos20 + (4 — A,) sin26]°

2
A 2
_(A y)c0529+\/_(A +Ay)sm29] +Tsm 29}
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£02) _ [{=,5|Hugs|+,6)1% + (=, 7| Hpgs| +,6)? + [{(—, 14| Hy| +,6) |

+6

24
2
35 V15
ZA{[ (A + Ay) cos 26 + — (4, —Ay)sinZH]
2
3 V3 9
+ [E (A, —A,)cos20 + > (A, + A,)sin 29] + ZAZ2 sin? 29}
©0z) _ [{=6lHug|+,7)]? + [(=8|Hyg|+,7)[? + [(=,15|Hpgs | +,7) |2
€7 =
24
2
1

ZA{[ (A, +4 )c0529+£(A _a )szg]

V21 V7 * 25
+ [T (Ax —A,)cos20 + = (A, +A,)sin 29] + TAZZ sin? 26

(02) |<_'7|ths|+;8)|2 + |<_116|thsl+58)|2

+8 2A

W/ 2
1 49
:ﬂ{[ (A, +Ay)c0529+\/_(,4 —Ay)smze] +TAZ sin 29}

(02) |<_l1|thS|+t9)|2 + |<_110|ths|+:9)|2

+9 2A

2
1 (49
2A{4AZ sin 29+[£(A +Ay)c0529+\/_(A —Ay)sm26] }

(02) _ |<_;2|ths|+;10)|2 + |<_;9|ths|+’10)|2 + |<_,11|thsl+,10)|2
€10~ oA

2
25 V21 V7
ZA{ 2 A,%sin? 26 + [T (A, —Ay)cos26 + T (A, + A,)sin 29]

3 V3 ’
+ [E (A + A,)cos20 + - (A, — A,)sin 29] }

(02) _ |<_53|ths|+;11)|2 + |<_,10|ths|+,11)|2 + I(_lllehfS|+111)|2
+,11 — 2A

2
1

9 3 3
= ﬂ{ZAZZ sin? 26 + [Z (Ay—A,)cos20 + g (A + A,)sin 29]
2
[— (A, +A,)cos20 +£(A Ay) sin 29] }

©02) _ {=41Higl+12)12 + (=11 Hyg|+,12)17 + (=, 13|Hyg | +,12)1°
+,12 — 2A

2
1 (47 3v5 V15 .
= ﬂiTst 20 + T(Ax — Ay) cos 26 + T(Ax +4,)sin20
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02) _ [{(=,5|Hpg|+,13)|% + [(=,12|Hpg|+,13)|? + [(—,14|Hpg|+,13)[?
€+,13 - 2A

2A

[i(A +A4 )C0526+\/i_5(Ax—Ay)sin20] }

1 (4,%
—{—sm 26+[\/_(A —A )c0529+(A + A )stB]

02) _ [{(—,6|Hyg|+,14) | + [(—,13|Hpg|+,14)|? + [(—,15|Hpg | +,14) |
€+,14 - 2A

2
1(9 35 V15
= E{ZAZZ sin® 26 + [T (A, —A,)cos20 + - (A, + A,)sin 29]

3 V3 ’
+ [E (A + A,)cos20 + - (A, —A,)sin 29] }

8(02) _ |<_I7|thS|+I15)|2 + |<_:14|ths|+:15)|2 + I(_116|ths|+115)|2
+,15 — 2A

2
1 (25 _ V3
= ﬂ{TAZZ sin? 26 + [ (Ay —Ay)cos20 +— (A +4,)sin 26]

[—(A +Ay)c0529+ (A —Ay)sm29]2}

8(02) _ |<—,8|thsl+,16)|2 + |<_515|H1'1fs|+'16)|2

+,16 — 2A
21A {449 A,%sin? 26 + [£ (Ax —A,)cos20 + \/_(A +4,)sin 20]2}
Egolz) _ [(++,2|Hpg| = 1) 1% + [(+,9] Hpgl = 1)|2
' —2A
= —i{[@ (A +A,)cos20 + g (A, — A,)sin 29]2 + %AZZ sin? 29}

8(02) _ |<+'1|thsl_iz)|2 + |<+J3|ths|_12)|2 + |<+;1O|ths|_;2)|2
-2 = —2A

2

=_1{[E

7
77 (A, —Ay)cos20 + %(Ax +4,)sin 29]

2
3 V3 25
+ [E (A, +A,)cos20 + - (A, —A,)sin 29] + TAZ2 sin? 29}

£(02) _ [{+,2| Hygs | —=,3)|% + [{(+,4|Hys| =317 + [{+,11|Hy|—,3)|?
-3 —2A
2
1 ([3 V3 .
=— ﬁ”i (Ax - Ay) cos 20 + > (Ax + Ay) sin 29]

2
9
[—(A +Ay)00529+£('4 —Ay)sm29] +4Az sin 29}
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(02)
€_8

<

(02)

-10 —

£02) _ [(+,3|Hpg| =4 % + [{(+,5]Hpgs| =4 + [{+,12| Hy | —,4)1
-t —2A

2
= _%{[¥ (Ay —Ay)cos26 + ?(Ax +A,)sin 29]

1.2
+ [V3(4, + A,) cos 26 + (A, — A,) sin 29]2 + %sin2 29}

£02) _ [(+,4|Hyg|—,5)1% + [{(+,6]Hpgs|=,5)? + [{+,13| Hy|—,5) 1
-5 —2A

1
= —ﬁ{[ﬁ(Ax —Ay)cos26 + (A, + Ay)sin 29]2

2
3v5 V15 Al
[—(A +A4,)cos20 + — 2 (Ax—Ay)sinZG] +%sin2 29}

5(02) _ |<+'5|ths|_'6)|2 + |<+'7|ths|_'6)|2 + |<+,14’|th5|_,6)|2
=6 = —2A

2
3 V15
= ZA{[ [(Ax —A,)cos20 + T(Ax +4,)sin 29]

* 9
[ (A, +Ay)c0529+ (A —Ay)smze] +4AZ sin 29}

5(02) _ |<+I6|thsl_’7)|2 + |<+'8|ths|_'7)|2 + |<+115|ths|_l7)|2

-7

—2A

2
1

= ZA“ (Ax —A4y) cos 20 +— (A +Ay)sm29]

V2l V7 ©oos
+ [T (A + A,)cos20 + " (A, — A,)sin 29] + TAZ2 sin? 20

_ |<+'7|thsl_t8>|2 + |<+116|ths|_i8)|2
—2A

2
1 ([v21 V7 49
= _ﬂ{[T (A, —Ay)cos20 + = (A, + A,)sin 29] + TAZ2 sin? 29}

_ |<+'1|thsl_t9>|2 + |<+110|ths|_J9)|2
—2A

2
1 (49 V7
= 2A{4 A,%sin 229+[—(A Ay) cos 26 +T(Ax+Ay)sin29] }

_ {+2[Hyg = 10)1? + [{(+,91Hug| = 10)|* + [{+, 11| Hyg|—,10)1?
—2A

2
25
= 2A§4AZ sin 229+[—(A +Ay)c0529+£(A y)sinZH]

3 V3 ’
+ [E (Ax - Ay) cos 20 + 7(Ax + Ay) sin 29] }
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0z _ [{+3[Hygl = 11)|% + [(+,10|Hyg| =11} + [(+,12|Hpg|—,11)[?
€_11 =

, —2A
2
1(9 3 V3
= —ﬂ{ZAZZ sin? 20 + [E (A +A,)cos26 + - (A, —A,)sin 29]

[—(A —A )c0529+£(A +A4 )SInZQ]Z}

£02) _ [(+,4|Hyg|—12)1% + [(+,11|Hpg| =, 12) |2 + [(+,13|Hpg|—,12) |
-12 — —2A

2 2
1 {AZ 226+[3\/§ V15

T T(Ax +A4,) cos 29+T(Ax —A,)sin 29]

4

+ [V3(Ay — Ay) cos 26 + (4, + Ay) sin26]°

L2 _ {HSIHu| = 13)12 + [(+121Hy | = 13)|% + [ 141 Hig |-, 13) 12
-13 — —2A

1 (A2
=_ﬂ{_sm 20 + [V3(A, + A)) cos 20 + (A, —Ay)smze]

[i(A —Ay)c0529+£(A +Ay)sm29H

5(02) _ |<+l6|thS|_t14)|2 + |<+113|ths|_’14)|2 + |<+!15|Hl’1fS|_J14)|2
-15 — —2A

2
1 (9 3v5 V15
=— ﬁ{ZAZZ sin? 26 + [T (A +Ay)cos20 + - (A4, — A,)sin 29]

3 V3 ’
+ [E (Ax - Ay) cos 20 + > (Ax + Ay) sin 28] }

L(02) _ [(+,7|Hp| = 15)1? + [(+,14|Hyg| =, 15)|? + [{+,16|Hyi | —,15)
—15
—2A

2
1 (25 3 V3
= —ﬂ{TAZZ sin? 26 + [5 (Ax + A,) cos26 + - (A, — A,)sin 29]

[— (Ay —Ay)cos26 +§(Ax +A,)sin 29] }

(02) |<+,8|thsl—,16)|2 + |<+!15|thsl_ll6)|2
—16 —2A

2
1 (49 .
= 2A{4AZ sin 22(9+[—(A +Ay)c0529+—(A y)smze]}

The first- and second-order corrections for the energy of the electron-Zeeman Hamiltonian are the
same as for the / = 1/2 case. In order to obtain the cross terms, let us remind the non-diagonal elements for

the electron-Zeeman Hamiltonian.
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(+,1|Hez|—,9) = (=9|Hez|+,1) = (+,2|Hez|—,10) = (—,10|Hez|+,2) = (+,3|Hez|—,11)
= (= 11|Hez|+,3) = (+,4|Hez|—12) = (—,12|Hez|+,4) = (+,5|Hez|—,13)
= (—,13|Hez|+,5) = (+,6|Hez| —,14) = (=, 14|Hez|+,6) = (+,7|Hez|—,15)
= (—,15|Hqz|+,7) = (+,8|H.z|—,16) = (—,16|H.z|+,8) = —g,BB sin 20
(= 1|Hez|+,9) = (+,9|Hez|—1) = (—2|Hez|+,10) = (+,10|Hez|—,2) = (—,3|Hez|+,11)
= (+,11|Hez|—,3) = (—4|Hez|+,12) = (+,12|Hez|—,4) = (—,5|Hez|+,13)
= (+,13|Hez|—,5) = (—,6|Hez|+,14) = (+,14|Hez|—,6) = (—,7|Hez|+,15)
= (+,15|Hez|—,7) = (—,8|Hez|+,16) = (+,16|H¢z|—,8) = g,BB sin 26
The cross terms can be calculated as follows:

LD _ (+,1|Hez|—,90(—,9|Hygs|+,1) + {4+, 1| Hygs| =, 91— 9| Hez | +,1) _ 499.$BA, sin® 26
2A

+,1 5.(:)) _ SEO)

8(11) _ <+:2|HeZ|_110><_:10|ths|+:2> + <+:2|ths|_:10)(_:10|He2|+:2) _ 25gZﬁBAZ Sinz 20
- 2A

+,2 g-(rO) — £

8(11) _ <+:3|HeZ|_111)(_:11|ths|+:3) + <+:3|ths|_:11)(_:11|He2|+:3) _ 9gzﬁBAz Sinz 20

+3 = gio) _ 8&0) 2A

8(11) _ <+:4‘|HeZ|_:12)(_:12|ths|+:4) + (+:4|ths|_:12)(_:12|He2|+:4) _ gzﬂBAZ Sil‘lz 20
- 2A

+4 = g-(rO) — &0

8(11) _ <+:5|HeZ|_:13)(_:13|ths|+:5) + (+:5|ths|_:13)(_:13|HeZ|+:5) _ _gzﬂBAz Sil‘lz 20
- 2A

+5 = g-(rO) _ Ego)

8(11) _ <+:6|HeZ|_:14‘)(_:14|th5|+:6) + <+l6|thS|_J14)(_I14|HGZ|+I6) _ 9gZBBAZ Sinz 29
B 24

+6 g-(rO) ()

8(11) _ <+:7|HeZ|_115)(_:15|ths|+:7> + <+:7|ths|_:15)(_:15|He2|+:7) _ 25gZﬁBAZ Sinz 20
B 2A

+7 = S_E_O) _ g£0)

JCE (+8[Hez| = 16)(=16|Hpss|+,8) + (+,8|Hngs|— 16— 16|Hez|+,8) _ 49g,BBA, sin” 26

+8 = gio) — ¢ 2A
(01 — (= 1Hez|+9)+91Hngs| = 1) + (= 1Hngs |+ 9N+ Hez| = 1) 499,BBA, sin” 26
’ g©® — © 24
(0D _ (2| Hez|+,10)(+,10|Hnts|—,2) + (=2| Hygs|+,10)(+,10|Heg|—,2) _  259,8BA, sin? 26
' £©® — ¢ 2
(0D _ (=31 Hez|+11)(+, 11| Hygs|—3) + (=31 Hnes |+ 110+ 11| Heg|—3) _ 99,8BA, sin” 26
£© — g0 2A
0D — (=4 Hez+,12)(+ 12| Hngs| —4) + (—4lHnes|+,12)(+,12|Hez| —4) _ g2BBA, sin” 26
£© — ¢ 2A

LD _ (=,5|Hez|+,13)(+,13|Hys|=,5) + (=,5|Hpgs|+,13)(+,13|Hez|—,5)  g,BBA, sin” 26

-5 £ — sfrO) 24

LD _ (=,61Hez|+,14)(+,14|Hngs|—,6) + (6| Hngs| +,14)(+,14|Hez|—,6) _ 99.BBA, sin” 20
-6 e — sfro) 24

LD (= 71Hez |+, 150+, 15|Hngs|—7) + (7| Hngs |+, 15K+,15|Hez| =, 7) _ 259,8BA, sin® 26
- £©® — ¢ 2
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(—8|Hez|+,16){(+,16|Hygs|—,8) + (—,8|Hyps|+,16){(+,16|Hez|—,8) _ 499,BBA, sin? 26

(D _
-8 (O]
e® — g 2A
8(11) — <_19|HeZ|+:1)(+:1|ths|_:9> + <_,9|ths|+;1)<+,1|HeZ|_,9) — 4992ﬁBAZ Sinz 29
-? e — eio) 24
LD _ (= 10]Hez|+,2)(+,2| Hpgs|—,10) + (=, 10| Hpgs|+,2)(+,2|Hez|—,10) _ 25g,BBA, sin* 20
-,10 £0) — gio) 2A
LD _ (=111 Hez|+,3)(+,3 | Hngs|—11) + (=, 11 Hnes[+,3)(+,3|Hez| - 10) _ 99,8BA, sin? 26
-11 £0) — EJ(rO) 2A
LD _ (= 12|Hez|+,4)(+ 4| Hys|—,12) + (=, 12|Hpgs|+,4)+,4|Hez|—,12)  g,BBA, sin” 26
-12 £(0) _ gJ(rO) 2A
LD _ (13| Hez|+,5X+,51 Hhts|—,13) + (= 13| Higs | +,51(+,5|Hez|—13) _ g,BBA, sin? 26
-13 £(0) _ EJ(rO) 2A
JRCEV (= 14|Hez|+,6)(+,6| Hhts|—,14) + (= 14| Hnes|+,6X+,6|Hez| = 14) _ 9g,8BA, sin® 20
-14 £(0) _ gE_O) N 2A
LD (=15|Hez|+,7)(+,7 | Hnts|—/15) + (= 15|Hngs |+, 70+, 7| Hez| =, 15) _ 25g,BBA, sin” 26
—10 @ — B 2A
8(11) _ <_!16|HeZ|+!8)(+:8|thsl_116> + <—,16|ths|+,8)(+,8|Hezl—,16) _ _49gZBBAZ Sil’lz 20
-,16 gg)) _ g_(FO) a 2A
L) _ (h9lHeg| = 10— LHus| +9) + (91 Hygs = 1) UHeg|+,9) _ 499,84, sin® 20
+9 RO 2
) _ {+101Hez|=2)(= 2| Hhgs|+,10) + (+,10|Hngs| =, 20— 2| Hez|+,10) _ 25g,BBA, sin” 26
+10 e® _ c© B 2A
(v _ (H11Hezl=3X=3IHnes|+,11) + (+,11|Hngs| —,3X—3[Hezl+,11) _ 9g,8BA, sin® 20
+,11 S_E_O) — £ - 2A
(11) _ <+:12|HeZ|_:4‘)(_;4|thS|+:12) + (+112|th5|_l4)(_l4|HeZ|+l12) _ _gZﬂBAZ Sin2 29
+12 — S_E_O) — £(0 - 2A
(11) _ <+:13|HeZ|_:5)(_;5|thS|+:13) + (+113|th5|_i5)(_i5|HeZ|+l13) _ gZﬂBAZ Sin2 29
+13 — S_E_O) — £(0 - 2A
a1 _ (+14|Hez|—,6)(— 6| Hyss|+,14) + (+,14|Hy|—,6)(— 6| Hez|+,14)  9g,BBA, sin® 26
+,14 85_0) _ gg)) 2A
(11) _ <+:15|HeZ|_:7><_:7|ths|+,15> + <+,15|ths|_;7)(_;7|HeZ|+;15) _ 25gZBBAZ sin” 20
+,15 — 85_0) _ 8&0) - 2A
a1 _ (+,16|Hez|—,8)(—8|Hyss|+,16) + (+,16|Hys|—,8)(—8|Hez|+,16)  49g,BBA, sin” 26
+16 ™~ e® _ ¢© B 2A

Thus, the perturbed energies for the case with /= 7/2 for the spin quartet state were explicitly obtained in the
second order. To our knowledge the analytical expressions above with /= 7/2 and § = 3/2 for the energies in

terms of the Zeeman perturbation theory are for the first time given in this work, which are extremely accurate.
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b) Perturbed energies in the case that the ZFS, g- and A-tensors are non-collinear

In this subsection, we consider the general case in which all the three magnetic tensors are non-collinear
for the spin quartet state. An approach adopted here is not a Zeeman perturbation treatment, but the rank-2
ZFS and electron-Zeeman Hamiltonian are taken as the non-perturbed term and the hyperfine structure
interaction as the perturbed one. Thus, first the non-perturbed Hamiltonian gives a 4 x 4 matrix which is
expanded in terms of the spin functions and in which the presence of the electron Zeeman terms destroys the
spin conjugation symmetry, and thus, first we exactly solve the corresponding quartic secular equation.

The non-perturbed Hamiltonian for the arbitrary direction of the magnetic field can be represented as
1
H=D [SZZ —35(+ 1)] + E(S:* = S)%) + (SxGux + SyGyx + S292x)BBx

+ (Sx9xy + SyGyy + S:92y)BBy + (Sx9xz + SyGyz + S2:922)BB;
where By, By and B: are the elements of the vector B. In the polar coordinate-axis system, B, = Bsinfcosg, By
= Bsinfsing and B: = Bcosf where B = |B| and § and ¢ are the polar and azimuthal angle, respectively. Note
that the x, y and z axes denote the principal axes of the ZFS tensor. In the following discussion, we set g;; =

BgijB; for simplicity. The Hamiltonian can be written in the matrix representation

D +5 (9o + Gay + 92z) 5 (G = 1G5 + Gy = 19}y + Gie = 132) V3E 0
V3 1 Giex = il + Gloy = iGlyy + Ghz — igyz  V3E
ao|lz (Ghex + gy + Gy + iGyy + G2z +1932) =D+ (92x + Giy + 922) TRy Ty e e
N Lo B,
VEE gl + igh + gl + iGhy + Gl + G} =D =5 (gix + gy + 922) = (G = 1932 + Gy = 193y + Gice — 1932)
0 V3E BB i B0
5 (G + Gy + Gy + 1G5y + Giz +1932) D = (gix + G2y + 922)

The secular quartic equation of the Hamiltonian matrix is given as
x*+pox?+qox+1r,=0
with

2 2 > 7 2 1 1 5 7 2 1 I I I 5 r 2 5 7 2 1 1
Do = _Z(D +3E ) - ngx - ngxgxy - ngy - ngxgxz - ngygxz - ngz - Egyx - sgyxgyy
5 r 2 1 ’ 1 ’ 5 7 2 5 7 2 I I 5 r 2 I I
- Egyy - Sgyxgyz - Sgyygyz - Egyz - Egzx - ngxgzy - Egzy - 5gzxgzz
1 li 5 2

- ngygzz - Egzz
qo = 2(D — 3E) gy” + 4(D — 3E) ey + 2(D — 3E) g, " + 4(D — 3E) gry iy + 4(D — 3E) gy g,

+2(D = 3E)gl,” +2(D + 3E) g}y’ + 4(D + 3E) glyx gy + 2(D + 3E) gl

+4(D + 3E)gyngys + 4(D + 3E) g}y gys + 2(D + 3E) g}, — 4D gh’ — 8D ghe sy
- 4'Dg;y2 - 8Dg;xgéz - 8Dg;ygéz - 4Dg;zz
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— (N2 2212 2/29r42 2119131
ro—(D + 3E%) +E(D + 12DE — 9E )gxx +ngx + (D% + 12DE — 9E )gxxgxy—kzgxx Ixy

1 D2 4+ 12DE — 9E2) g’ 2 27 12 5 2 9 ro1 3 9 1 4
+§( + - )gxy +ngx Ixy +ngxgxy +ngy
2 2\ A4 A 9 r 3 2 2\ 7 ’
+ (D + 12DE — 9E )gxxgxz + ngx Gxz + (D + 12DE — 9E )gxygxz

2712/r 27!/2/ 9131 12 AP
+Tgxx gxygxz+Tgxxgxy gxz‘*'zgxy gxz+§(D + 12DE — 9E )gxz

2712/2 27///2 2712129/ /39/ r 3 914
+§gxx Yxz +Tgxxgxygxz +ngy Yxz +ngxgxz +ngygxz +ngz

1 9 9 9
+ E (DZ — 12DE — 9E2)g£/x2 + § )’cnggzxz + Zg;cxg;cyg;xz + 592’0/293,12(2
+21112+21112+2/2/2+i,4

4gxxgngyx 4gxygngyx 8gxz Iyx 16gyx

’ 12

9
+ (DZ — 12DE — 9E2)gjlzxgjlzy + Zg;cngyxgjlzy + E.g)’cxgalcygjlzxgjlzy + ngy gyxgjlzy

9 ’ ro ’ 9 ’ ro ’ 9 12 ’ 9 13
+ ngxgngyxgyy + ngygngyxgyy + ngz IyxYyy + Zgyx Gyy

1 9 9 9
+ E(DZ —12DE — 9E2)g£/y2 + ggplcngjlzyz + Zgalcxgalcygjlzyz + ggalcyzgjlzyz

9111291112912/227121291 139/4
+ngxgngyy +ngygngyy +§gxz Iyy +E yx yy +Zgyxgyy +1—6gyy

’ 12

9
+ (DZ — 12DE — 9E2)gjlzxgjlzz + Zgalcngyxg;z + E.g)’cxgalcyg;xg;z + Z.gxy gyxgjlzz

9 ’ ro ’ 9 ’ ro ’ 9 r 2 ’ 9 13
+ ngxgngyxgyz + ngygngyxgyz + ngz IyxYGyz + Z.gyx Iyz

9 9 9
+ (DZ — 12DE — 9E2)gjlzygjlzz + Zgalcng;ygjllz + Egalcxgalcyg;yg;z + Z.g)’cyzg;/ygjlzz

9 ’ ro ’ 9 ’ ro ’ 9 12 ’ 27 12 ’
+ ngxgngyygyz + ngygngyygyz + ngz 9Iyy3Gyz + T.gyx 9yyGyz

27 9 1 9
+ Tg;/xg;/yzgjlzz + Zg;yggjlzz + E (DZ — 12DE — 9E2)g;zz + §galcng£1zz

9 ! ! ! 2 9 ! 2 ! 2 9 ! ! ! 2 9 ! ! ! 2 9 ! 2 ! 2
+ngxgxygyz +§gxy gyz +ngxgngyz +ngygngyz +§gxz gyz

27 ! 2 ! 2 27 ! ! ! 2 27 ! 2 ! 2 9 ! ! 3 9 ! ! 3 9
+§gyx 9yz +Tgyxgyygyz +§gyy Iyz +Zgyxgyz +Zgyygyz +_gyz

1 9 9 9 9
=5 (5D% = 9E®) gy’ + 2 Gix Gon” + 3 Grx iy Gin” + g0y G + 7Gx GraGin”
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911129/2129/2/291//2912/2
+ngygngzx +§gxz Yzx +§gyx Y9zx +Zgyxgyygzx +§gyy Y9zx

9 ’ ror 2 9 ’ ror 2 9 72 5 2 9 r 4 2 2N\ o ol
+Zgyxgyzgzx +Zgyygyzgzx +§gyz Yzx +Egzx _(SD —9E )gzxgzy

9 P2 0 9 roo ro 9 r2 5 9 P
+ ngx YzxY9zy + ngxgxygzxgzy + ngy 9zx9zy + ngxgngzxgzy

9//!! 9/2// 9!211 911// 9/2//
+ ngygngzxgzy + ngz Yzx9zy + Zgyx 9zx9zy + Egyxgyygzxgzy + Zgyy 9zxYzy

9 ’ ror 9 ’ ror 9 P25 9 13 1
+ Egyxgyzgzxgzy + Egyygyzgzxgzy + Zgyz 9zxYzy + Zgzx Yzy

1 9 9 9 9
- E (SDZ - 9E2)géy2 + §g)’cngéy2 + Zg;cxg;cygéyz + § ;cyzg;yz + Zg;cxg;czgéyz

9!112912129/2/2911129/212
+ngygngzy +§gxz Yzy +§gyx Yzy +Zgyxgyygzy +§gyy 9zy

911129111291212 27121291 r 3 9/4
+Zgyxgyzgzy +Zgyygyzgzy +§gyz 9zy +§gzx 9zy +Zgzxgzy +1—6gzy

2 2\ ! oyl 9 12 9 [ N A 9 12 0
- (SD —9E )gzxgzz + ngx 9zx9zz T ngxgxygzxgzz + ngy 9zxYzz

9 ’ N 9 ’ ror 9 P2 1 9 P2 7 9 ’ ’ ro
+ ngxgngzxgzz + ngygngzxgzz + ngz 923922z + Zgyx 9zx9zz T Egyxgyygzxgzz

9 9 9 9
12 0 ’ ror ’ "o P2 5 r 3
+ Zgyy 9zx9zz + Egyxgyzgzxgzz + Egyygyzgzxgzz + Zgyz 9zx9zz T Zgzx 9zz

2 2\ ! ! 9 P20 9 N R A 9 P2 1
- (SD —9E )gzygzz + ngx 9zy9zz + ngxgxygzygzz + ngy 9zy9zz

9 ’ ror 9 ’ ror 9 12 0 9 P2 5
+ ngxgngzygzz + ngygngzygzz + ngz 9zy9zz + Zgyx 9zy9zz

9 ! ! i ! 9 i 2 i ! 9 ! ! ! ! 9 ! ! ! !
+ Egyxgyygzygzz + Zgyy 9zy9zz + Egyxgyzgzygzz + Egyygyzgzygzz

9/211 271211 271121 9/31 1 2 2N\ 1 2
+Zgyz gzszz"'ngx 9zy9zz +ngxgzy 9zz +Z.gzy gzz_E(SD - 9E )gzz

9/2/29111291212911129///2
+§gxx Yzz +ngxgxygzz +§gxy 9zz +Z.gxxgxz.gzz +Z.gxygngzz

9 ! 2 ! 2 9 ! 2 ! 2 9 ! ! ! 2 9 ! 2 ! 2 9 ! ! ! 2
+§gxz 9zz +§gyx 9zz +Zgyxgyygzz +§gyy Yzz +Zgyxgyzgzz

9 ! ! ! 2 9 ! 2 ! 2 27 ! 2 ! 2 27 ! ! ! 2 27 ! 2 ! 2
+Zgyygyzgzz +§gyz 9zz +§gzx 9zz +ngxgzygzz +§gzy Yzz

9 ’ r 3 9 1 r 3 9 1 4
+Zgzxgzz +Zgzygzz +1_6922

The coefficients of the quartic equation are complex as expected from the non-collinearity between the ZFS
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and g-tensors. The exact analytical energy eigenvalues and the corresponding spin substates for D < 0 are

given in the following:

1 2qo
g == |—Juo + |—2p0 — U + —= (
1 2 0 \] Do 0 \/u—o

3
Mg =+ E> -dominant state)

1
Mg =+ E> -dominant state)

2
£2=5 \/u_o"'\j_zl)o_uo—\/% (
0

1 240 1
—_ — |=2p, — yo — 22 (M=——>-d i ttt)
& > NATA \] Do — Ug _uo s > ominant state
1 2qo 3
=—|—Ju,— =200 — Uy + — (M:——)-d i ttt)
&y ) uO \/ po uO uO S ) ominant state

where 1o is one of the solutions of the resolvent cubic equation of the secular equation,

= 2aqcos garceos (2
Ug = 24, COS |z arccos 2ag

with

1
ag = §ﬂp02 + 127‘0

_ 2p03 + 27q03 - 72p0T0
B 3po? + 367,

0

Note that for D > 0, E3, Es, E1 and E is the eigenvalue corresponding to the |Mg = +3/2>-, [+1/2>-, |-1/2>-
and |-3/2>-dominant state, respectively.
According to Denton and co-workers [ 7], the square of the jth element of the eigenvector corresponding

to the eigenvalue ¢; of a Hermitian matrix can be described as follows

n

n-1
|Ui,j|2 l_[ (8 — &) = l_[(fi - xj,k)
1

k=1;k+i k=

where v;; is the coefficient to be determined, x; is the eigenvalues of the minor M; of the Hermitian formed

by removing the jth row and column. In the case of the spin Hamiltonian under study, the spin eigenfunctions

-3

where o, B, y» and J, correspond to v,1, Vu2, Va3 and va4, respectively. By using the formula, we calculate a4,

corresponding to the eigenvalue ¢, are written in the form

1

1
*3)

B,

[Yn) = an 2

e

2, y3 and d4, which are the diagonal element of the unitary matrix for diagonalizing the spin Hamiltonian
matrix.

(51 - x1,0)(51 - x1,1)(51 - xl,Z)
(&1 —&2) (&1 — &3) (&1 — &)

|051|2 =
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(52 - xz,o)(fz - x2,1)(82 - xz,z)
(82 — &1) (&2 — &3) (82 — &4)

12 = (e3 = x30) (23 — x31)(£3 — %3,)
(63 —&)(e3 — &) (&3 — &4)

|B.1? =

V3

(54 - x4,0)(54 - x4,1)(€4 - x4,2)
(4 —&1) (4 — &2) (&4 — &3)

In order to determine the element of the eigenvectors, we define the following four 3 by 3 matrixes;

|64|2 =

1 £ ’ Por ’ o
/ -D+ E (g;x + g;y + g;z) g:’cx — 9yx + Ixy — L9yy + 9xz — L9yz \/§E \
' 1 V3 , : N
Ml = g:’cx + ig)’zx + g:’cy + ig)’zy + g:’cz + igg’/z -D— E(g;x + g;y + géz) 7(9)’& - lg;/x + g:’cy - lg)’/y + g:’cz - lg)’/z)
V3 . , . 3
\ V3E 5 (G 195 + Giy + 1G5y + Gia + 195) D =5 (i + Giy + 922)
3

(045 00+ g2y + 922) V3E 0 \

| 1 V3 |
M, = | \/§E =D - E(g;x + g;y + g;z) 7(g;,rx - ig;/x + g:’cy - ig)’ly + g:’cz - ig}’/z)

0 7 (gxx + L9yx + Ixy + L3yy + 9xz + "gyz) D - E (gzx + 9zy + gzz)
D+ E(.gzx + 9Gzy + gzz) T(gxx —lGyx + Gxy — L9yy + Gxz — lgyz) 0
| V3 |
= 3 ’ L or ’ P ’ P 1 ’ ’ '
M3 - | 7 (gxx + LGyx + Gxy + LGyy + YGxz + l.gyz) -D+ E (gzx + 9zy + gzz) \/§E |
3

\ 0 \/§E D _E(g;x +g;y +g;z)/

/ D+ E(.g;x + g;y + g;z) 7 (gxx —l0yx + Gxy — lGyy + Gxz — lgyz) \/§E \
Y Y P L e
4 | 7 (gxx + ".gyx + .gxy + "gyy + Gxz + l.gyz) -D+ E (.gzx + .gzy + gzz) Gxx — lgyx + gxy - lgyy + Gxz — lgyz
1

\ \/§E g)’cx + ig)’/x + g;’ry + ig;/y + g:’cz + ig)’lz -D - E (g;x + g;y + g;z) /

and the secular equation for each matrix is represented as
xB+px?+qx+r=00=1234)
with
3 3 3
P1=D 4592+ 592y + 592

2 2712711712711711712712711
q1=—(D + 3E )_ngx _ngxgxy_zgxy _ngxgxz_zgxygxz_zgxz _Zgyx _Egyxgyy

7 7 2 7 ’ ’ 7 ’ ’ 7 ;2 ’ 1 ;2 ’ 1 ro
_Zgyy _Egyxgyz_zgyygyz_Zgyz +3D.gzx_zgzx +3Dgzy_§gzxgzy

1 ! 2 ! 1 ! ! 1 ! ! 1 ! 2
- Zgzy + 3Dgzz - Egzxgzz - Egzygzz - Zgzz
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1 1 1
rn==D(D*+3E%) +, (D - 12E) gL’ + (D = 12E)gygry +7(D = 12E)gL,°
1 1 1 1 1 ’ 1 2 1 7 2
+ E(D - 12E)gxxgxz + E(D - 12E)gxygxz + Z(D - 12E)gxz + Z(D + 12E)gyx
1 1 ’ 1 ;7 2 1 1 1
+ E(D + 12E)gyxGyy t+ Z(D +12E) gy~ + > (D + 12E) gy gy

1 1o 1 2 3 2 2\ 4/ 9 12y
+§(D + 12E)gyygyz+Z(D + 12E)gyz +E(D ) )gzx_ggxx Gzx

12 912/

9
roo ’ 12 ror ’ ro
- ngxgxygzx - ggxy Gzx — ngxgngzx - ngygngzx - ggxz Gzx — ggyx 9zx

9 9 1
’ ’ ’ r2 ’ ror ’ ror 12 r 2
- Zgyxgyygzx - §gyy Gzx — Zgyxgyzgzx - Zgyygyzgzx - §gyz 9zx T ZDgzx

;3 3 2 2\ o/ r 2 9 ror ’ 9 r2 9 ror
_ggzx +§(D —E )gzy_ggxx gzy_zgxxgxygzy_ggxy gzy_ngxgngzy

’ ro 12 9 r 2 9 ' ' ’ 9 12 9 ’ ror
_ngygngzy _ggxz 9zy _ggyx 9zy _Zgyxgyygzy _ggyy Yzy _Zgyxgyzgzy

ror 12 Dal.q’ 9121 1D1291123/3
_Zgyygyzgzy_ggyz gzy'*'z gzxgzy_ggzx 9zy +Z 9zy _ggzxgzy _ggzy

3 2 2\ 7 r2 9 ro ' 9 12 9 ror
+ E (D —E )gzz - §gxx Yzz — ngxgxygzz - §gxy Y9zz — ngxgngzz

9 9
’ ro 12 12 ' ' ’ r2 ’ ror
- ngygngzz - §gxz Yzz — §gyx Yzz — Zgyxgyygzz - ggyy 9zz — Zgyxgyzgzz

’ ror 12 1 ro 9 12 1 ror 9 P
- Zgyygyzgzz - ggyz 9zz + EDgzxgzz - §gzx 9zz T EDgzygzz - Zgzxgzygzz
_2 ;2 +1D ,2__ ’ [2_2 ’ [Z_E 7 3
) 9zy Yzz 4 9zz 8 9z2x9zz ) 9zyYzz 8 9zz

3 i 3 ! 3 !
p,=-D +Egzx +§gzy +§gzz

2 3 3

3 3 3
r 2 ’ ’ 7 2 ’ 1 ' 1 7 2 1 '
q; = _(Dz + 3E2) - ngx - ngxgxy - ngy - ngxgxz - ngygxz - Z.gxz - Zgyx - Egyxgyy

3 r 2 3 ’ ’ ’ ’ ;2 ’ 9 ;2 ’ 9 ro
_Zgyy _Egyxgyz_zgyygyz_zgyz _Dgzx_zgzx _Dgzy_zgzxgzy

! 2 ! 9 ! ! 9 ! ! 9 ! 2
- Zgzy - Dgzz - Egzxgzz - Egzygzz - Zgzz

S&9



2 2 3 12 3 1o 3 r 2 3 1o 3 ror 3 r 2 3 ;2
T2=D(D + 3E )+ZDgxx +§Dgxxgxy+ZDgxy +§Dgxxgxz+EDgxygxz+ZDgxz +ZDgyx

3 1 1 3 7 2 3 1 ’ 3 1 ’ 3 72 1 2 2\ 7
+§Dgyxgyy+ZDgyy +§Dgyxgyz+§Dgyygyz +ZDgyz +§(D —9E )gzx

9121 9!!! 9/2/ 91119//1 12
+ g xx 9zx T ngxgxygzx + ggxy Gzx + ngxgngzx + ngygngzx + ggxz Yzx

912/ 9//! 912! 9/// 9//1 r 2
+§ yx 9zx +Zgyxgyygzx +§gyy Yzx +Zgyxgyzgzx +Zgyygyzgzx +§ yz Yzx

9 r 2 9 r 3 1 2 2\ 7 9 12 9 ro ’ 9 12
_ZDgzx _ggzx +§(D —-9E )gzy+§gxx Yzy +ngxgxygzy+§ xy Yzy

9 P 9 ’ ro 9 12 9 r 2 ’ ’ ’ 12
+ ngxgngzy + ngygngzy + §gxz 9zy + g yx Gzy + Zgyxgyygzy + §gyy 9zy

9 ’ ro 9 ’ ror 9 12 9 ro r 2 2
+ Zgyxgyzgzy + Zgyygyzgzy + ggyz Yzy — EDgzxgzy - Egzx Gzy — ZDgzy

2711291312 2\ o/ 9/21 9/// 9/2/
_Egzxgzy —59zy +E(D - 9E )gzz+§gxx gzz"'zgxxgxygzz'{'g xy Yzz

911191119/2/91219111 r2
+ngxgngzz +ngygngzz +§gxz 9zz +§gyx 9zz +Zgyxgyygzz +§gyy Yzz

9 ’ ro 9 ’ ror 9 12 9 ro r 2 7 9 ror
+ Zgyxgyzgzz + Zgyygyzgzz + §gyz 9zz — EDgzxgzz - Egzx Yzz — EDgzygzz

27 27

27 27 12 9 r 2 ror 2 ror 2 9 r 3
z _Egzxgzz _Egzygzz —5Yzz

- Tgéxgéyg;z - Egzy Yzz — Z Dgz

3 i 3 ! 3 !

ps =—D _Egzx_zgzy_zgzz
3 r 2 3 ’ ’ 3 r 2 ro ’ ’ ;2 3 r 2 3 ’ ’
q3=_(D2+3E2)_ngx _ngxgxy_zgxy _ngxgxz_zgxygxz_zgxz _Zgyx _Egyxgyy

3 r 2 3 ’ ’ 3 ’ ’ 3 ;2 ’ 9 ;2 ’ ro
_Zgyy _zgyxgyz_zgyygyz_zgyz +Dgzx_zgzx +Dgzy_zgzxgzy

9 r 2 ’ 9 ro ror 9 r 2
- Zgzy + Dgzz - Egzxgzz - Egzygzz - Z.gzz
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2 2 3 12 3 1o 3 r 2 3 1o 3 ror 3 r 2 3 ;2
T3=D(D + 3E )+ZDgxx +§Dgxxgxy+ZDgxy +§Dgxxgxz+EDgxygxz+ZDgxz +ZDgyx

3 1 1 3 7 2 3 1 ’ 3 1 ’ 3 72 1 2 2\ 7
+§Dgyxgyy+ZDgyy +§Dgyxgyz+§Dgyygyz +ZDgyz _E(D —9E )gzx

9 12 9 ’ ’ ’ 9 r 2 ror ’ ro 12
- ggxx Gzx — ngxgxygzx - ggxy Gzx — ngxgngzx - ngygngzx - ggxz Yzx

9
- gg;ngéx - Zg;/xggzygéx - gg;yzgéx - Zg;xg;/zgéx - Zg;yg;/zgéx - §g;zzgéx
9 r 2 9 r 3 1 2 2\ 7 9 12 9 ro ’ 9 12
_ZDgzx +§gzx _E(D —-9E )gzy_ggxx gzy_zgxxgxygzy_ggxy 9zy

9 P ’ ro 12 r 2 ’ ’ ’ 12
- ngxgngzy - ngygngzy - §gxz 9zy — ggyx 9zy — Zgyxgyygzy - §gyy 9zy

9 ’ ro 9 ’ ror 9 12 9 ro 7 r 2 2
- Zgyxgyzgzy - Zgyygyzgzy - ggyz Yzy — EDgzxgzy + Egzx Gzy — ZDgzy

2711291312 2\ o/ 9/21 9/// 9/2/
+Egzxgzy +§gzy _E(D - 9E )gzz_ggxx gzz_zgxxgxygzz_ggxy 9zz

9 ror 9 ’ ro 9 12 12 ’ ’ ' r2
- ngxgngzz - ngygngzz - ggxz 9zz — ggyx 9zz — Zgyxgyygzz - §gyy Yzz

9 ’ ro 9 ’ ror 9 12 9 ro 27 r 2 7 9 ror
- Zgyxgyzgzz - Zgyygyzgzz - §gyz 9zz — EDgzxgzz + Egzx Yzz — EDgzygzz

27!!/ 27/2/ 9 r 2 27/ r 2 27/ 129/3
+ngxgzygzz +Egzy Yzz _ZDgzz +Egzxgzz +§gzygzz +§gzz
3 ! 3 i 3 !
pa=D _Egzx _Egzy _Egzz
7 7 7 7 7 7 7 7
Gs=—(D* +3E%) = 2 9" =5 Gix Gy = 7 0ry” — 390z — 5 Gy Gz — 703z — 799x° — 5 9xGy

7 r 2 7 ’ ’ 7 ’ ’ 7 ;2 ’ 1 r 2 ’ 1 ro
_Zgyy _zgyxgyz_zgyygyz_zgyz _3Dgzx_zgzx _3D.gzy_§gzxgzy

1 r 2 ’ 1 ro ror 1 2
- Zgzy - 3D.gzz - Egzxgzz - Egzygzz - Zgzz
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1 1 1
r, = —D(D? + 3E?) + Z(D —12E) gL + E(D — 12E)Gix Gy +Z(D —12E)g,”

1 1 1 1
+5 (D = 12E)g3x iz + 5 (D = 12E)giygsp + 7 (D = 12E)g3,” + 5 (D + 12E) gs,”*

1 1 1
+ E(D +12E) g} Gy + Z(D +12E)g,,° + > (D + 12E) g}» gy

1 1o 1 2 3 2 AP 9 12
+§(D + 12E)gyygyz+Z(D + 12E)gyz _E(D ) )gzx +§gxx Gzx

12 912/

9 roo ’ 9 12 9 ror 9 ’ ro 9
+ ngxgxygzx + ggxy Gzx t ngxgngzx + ngygngzx + ggxz Gzx + ggyx 9zx

9 ’ ’ ’ 9 r2 9 ’ ror 9 ’ ror 9 12 1
+ Zgyxgyygzx + §gyy Gzx t Zgyxgyzgzx + Zgyygyzgzx + §gyz 9zx T ZDg

3 ;3 3 2 2\ o/ 9 r 2 9 ror ’ 9 r2 9 ror
+§gzx _E(D —E )gzy+§gxx gzy"'zgxx.gxygzy +§ xy gzy+ngxgngzy

9!//9/2191219111912/9111
+ngygngzy +§gxz 9zy +§gyx 9zy +Zgyx.gyygzy +§gyy Yzy +Zgyxgyzgzy

9 ’ ror 9 12 1 ro 9 r 2 1 2 9 ror 2 3
+Zgyygyzgzy+§gyz gzy+EDgzxgzy+§gzx 9zy +ZD.gzy +§gzx.gzy +

3 2 2\ ! 9 12 9 ror 9 12 9 ror
- E (D —E )gzz + §gxx 9zz + ngxgxygzz + §gxy 9zz t ngx.gngzz

9!//912/912/911191219///
+ngygngzz +§gxz Yzz +§ yx Y9zz +Zgyx.gyygzz +§gyy 9zz +Z.gyxgyzgzz

9 ’ ror 9 12 1 ro 9 12 1 ror 9 P
+ Zgyygyzgzz + ggyz 9zz + EDgzxgzz + §gzx 9zz T EDgzygzz + Zgzxgzygzz

9 12 1 ;2 9 ror 2 9 ror 2 3 ;3
+§gzy gzz"'ZDgzz +§gzxgzz +§gzygzz +§gzz
Cubic equations,

x3+px?+qx+r,=0(0{=1,23,4)

are transformed as follows;

X3 = (piz - 3qi>x _ 2p;% — 9piq; + 27

3 27
by substituting x to x — %. Then, the solutions of the cubic equations are represented as follows.
1 b; 2mn i
Xim = 2a; cos [§ arccos (2—;) + T] —% (m=0,1,2)
with
0 = VP =34
' 3
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2p;® — 9Ipiq; + 277

bi - -
3pi® — 9q;
2
Forn=1Ms=+3/2), a; =15 = |v1_1| (real).
3 V3
[ [D + E (g;x + g;y + g;z) - Sl] Ta1 + 7(9;“ - ig)’/x + gJ’cy - ig)’/y + g)’cz - ig;lz)ﬁl + ‘/§E71 =0— (AZ)

7(gxx+lgyx+gxy+lgyy+gxz+lgyz)rrzl+[_D+E(gzx+gzy+gzz)_€1]ﬁl+(.gxx_Lgyx+gxy_lgyy+gxz_Lgyz)yl"'\/gEal:Oi(BZ)

= P I A L o V3 L e L o
3Eral + (gxx + t9yx + Ixy + t9yy + G9xz + lgyz).Bl +|-D - _(gzx + 9zy + gzz) —&|rnt (gxx — l9yx + Gxy — L9yy + Gxz — lgyz)61 =0 (CZ)
2 2

V3 3
l V3EBy + 5 (Ghx + Gy + Gry + 193y + Gz + 1G32)71 + [D =5 (g + g2y + 922) = 81] 8 =0—(D2)

(C2) % 2E(Gyx + igyx + Gry + iGyy + G2z +1952)
! . 7 7 . ! ! . ! ! . ! ! . ! ! . ! 2
2V3E2( Gy + iGyx + Gy + iGyy + Grz + i9y2)Tar + 2E(Gax + 19yx + Gy + 19y + Gz + 1952) Ba

1 . ’ .y ’ 0
+ 2E [_D - E (géx + géy + géz) - 51] (galcx + lGyx + Ixy + LGyy + Gxz + lgyz)yl
+VBE(gi” + Gy + Gy + Gyy” + Gxa” + G527 )01 = 0— (E2)
(B2) % (gx” + Gyx” + Gay” + Gyy” + Gz + 92")
\/§ r 2 7 2 r 2 ;2 ;2 r 2 ’ . ’ .y ’ .
— (G + 932" + 9" + 9y + Gxr + 932 )(Gax + Gy F Gy + 193y + Gz + 19y2)Tmn
1 ’ ’ 1 1 2 7 2 7 2 ;2 ;2 ;2
+ [_D + E(gzx + 9zy + gzz) - 51] (gxx + Iyx + Ixy + Gyy t 9y, T Gyz ),81

+ (G + Gy + Gy + Gy + Grz” + 92 ) (Grx — Gy + Gy — iy + Giz
—ig)y1 + V3E(Ghx” + Gi” + Gy + Gy’ F Gar” + s )8 = 0 — (F2
l9yz)V1 YGxx Iyx Ixy 9yy Ixz Iyz )01 (F2)

(E2) — (F2)
\/§ ! ! i i ! ! ! L ) ! . ! ! LR
7 (4E2 - gxx2 - gyx2 - gxy2 - gyy2 - gx22 - gyzz)(gxx + LGyx + Ixy + lGyy + Gxz + lgyz)ral
/ 2 0 ’ 2 / . 1 \2
+12E(Grx + 192 + Gy + iy + Grz + i9y2)
| D 1 ’ ’ ’ r 2 1 2 r 2 r 2 ;2 2
- __ + E(gzx + 9zy + gzz) —& (gxx + Iyx + Ixy + Iyy + 9y, T Gyz ) ﬁl
1 i i i ! L ! LA ! La )
+12E [_D - E (gzx + Yzy + gzz) - 51] (gxx + LGyx + Ixy + lGyy + Gxz + lgyz)
- (galcxz + ggllxz + gJ’cyz + g)’/yz + galczz + g;/zz)(g;cx - ig;/x + gJ’C]/ - igjlzy + g;cz
~ igy)jn = 0—(G2)
(G2)xV3E
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3 L ) ! La ) ! .
EE(4‘E2 - gJ’cxz - gjl/xz - g)’cyz - gjrzyz - gJ’czz - g;/zz)(g)’cx + L9yx + Ixy + ldyy + Gxz + lgyz)ral
/ 2 / 20 / . 1 \2
+ {2\/§E 2(Goex + 19y + Gy + 193y + Gz + 1952)
\/— 1 ’ ’ ’ r 2 r 2 72 ;2 ;7 2
—V3E [_D + E (gzx + 9zy + gzz) - 51] (gxx + Iyx + Ixy + 9yy + Gxz
+ gjl/zz)}ﬁl
2 1 ! ! ! ! L ) ! L ) ! L )
+ {2\/§E [_D - E (gzx + Yzy + gzz) - 51] (gxx + L9yx + Ixy + l9yy + Gxz + lgyz)
—VBE(gh" + Gyx” + Gy + Gy + Gxz” ¥ 952 )G — 10yx + Gry — iy + Gz
—igy )y =0 —@2)
1 1 1 1 ! 2 1 .y ’ .
(HZ) X {ZE [_D + E (gzx + 9zy + gzz) - 51] (gxx + lGyx + Ixy + LGyy + Gxz + l.gyz)
— (G + Gy + Gy + Gy ¥ G+ G2 )G = 19y + Gy — 19y + Gz
- igjrzz)}
3 ! ! 14 1 ! ! ! ! LE ! La ) i
{ZE [D + E (gzx + 9zy + gzz) - 51] [_D - E (gzx + 9zy + gzz) - 61] (.gxx + L9yx + Ixy + l9yy + Gxz
+ igj’,z)
3
- [D +5 (92 + G2y + 922) = 81] (Gox” + Gl + Gy + Gy + 9™ + 9 ) (Gl
- igjlzx + gplcy - ig;y + gylcz - ig;z)}ral
1
+ {\/§E [_D - E(géx + géy + géz) - Sl] (gylcxz + .gjlzxz + gylcyz + g;/yz + gylczz + 93’122)
\/§ ! i i i !
- 7 (gxx2 + gyx2 + gxy2 + .gyy2 + gx22
I ’ . ' .y ' . 1 \2
+ gyzz)(gxx — lGyx + Ixy — LGyy + Gxz — lgyz) }ﬂl
2 1 ! ! i ! LA ! La ) 14 La |
+ {2\/§E [_D - E (gzx + 9zy + gzz) - gl] (.gxx + L9yx + Ixy + lgyy + Gxz + lgyz)
- \/§E(galcx2 + gjlzxz + gJ’cyz + gglzyz + galczz
’ ’ .y r . ' . 1 \2
+ gyzz)(gxx —19yx t Gxy — lG9yy + Gxz — lgyz) }yl =0—12)

Applying (H2) — (12) yields the following equation,

B numer(f;)
1™ denom(B,) Ta1
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where
3 ! ! ! 1 ! ! ! ! . ! !
numer(By) = 2E [D + 2 (gzx +gzy t+ gzz) - E1] [_D ) (gzx t9zy t gzz) - 51] (gxx + 19yx t Gxy
+igyy + gxz +19yz)
3
D42 (gt + 8y 022) — | (9”037 + 01+ 930+ 1% + 332 (0
- igjl/x + g;cy - ig;/y + g)’cz - igjrzz)
3 . ! ! . !
— 5 E(4E? - G — g — g = G — gl — G?)(Ghx + i + Gl + iy

+ Grz +19y2)
denom(By) = 2V3ED + &) (gox” + Gya” + Gry” + Gyy” + Grz” + Gyz")
/ 2 0 / 20 ’ . 1 \2
+ 2V3E2(gin + igyx + Giy + iGyy + Grz + 19y2)

\/§ r 2 r 2 r 2 ;r 2 ;2
+7(gxx +gyx +gxy +gyy + Gxz

2 , , . 2
+ g;z )(galcx - lg;x + gJ,cy - lgjlzy + galcz - lgjlzz)
Next,

1 La | ! La | ! Lap |
(Gz)xz\/g(g;cx_lgyx+gxy_lgyy+gxz_lgyz)
3 2 r 2 r 2 r 2 7 2 ;7 2 ;7 2 ;2 ;2 ;) 2 ;) 2 ;2 ;) 2
Z(4E —YGxx —YGyx —YGxy —YGyy “YGxz — Gyz )(gxx +gyx +gxy +gyy + Gxz +gyz )ral
;2 ;2 ;2 7 2 r 2 r 2 ’ . ' . ’
+{\/§E(gxx + 9y Gy Gy Gk 9y )Gk T iGYx + Gry + iy + i

+ igj’,z)
\/§ 1 ’ ' 1 ;7 2 ; 2 ;2 r 2 r 2
- 7 [_D + E (gzx + 9zy + gzz) - gl] (gxx + Iyx + Ixy + Iyy + Gxz
; 2 1 s ’ 2 0 ! s
+ Gyz )(gxx — lGyx + Ixy — LGyy + Gxz — lgyz)}ﬂl
1 ’ ’ ’ r 2 1 2 r 2 ;2 ;2 ;2
+ {\/§E [_D - E(gzx + 9zy + gzz) - 51] (gxx + Iyx + Ixy + Iyy + 9y, T Gyz )
\/§ r 2 r 2 r 2 ;2 ;2
- 7 (gxx + Iyx + Ixy + Iyy + Gxz
7 2 ’ . ’ . ' . 1 \2
+ 9yz )(gxx — lGyx + Ixy — LGyy + Gxz — lgyz) }yl =0— (JZ)

’ . ’ .y ’ . 1 \2
(A2) % {ZE (Grx + iGyx + Gry + iGyy + Grz + 192)

1
- [_D + E (géx + géy + géz) - gl] (gylcxz + gglzxz + galcyz + gjlzyz + galczz + g:;lzz)}
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3 1 ’ ’ 1 . ; . ’ . 1 \2
{ZE [D + E(gzx + gzy + gzz) - 51] (gxx + lgyx + gxy + lgyy + Ixz + lgyz)

3 1
- [D + E(géx + géy + géz) - 51] [_D + E(géx + géy + géZ) - 51] (g;xz + gJ”xz

; 2 ;7 2 ;2 7 2
+ 05y + gy + Gxs + Gy )}ral
r 2 r 2 r 2 7 2 r 2 2 ’ . ’ . ’
+{\/§E(gxx + 0y Gxy Gy Ghs + 9ys ) (Grx + iGyx + Gry +iGyy + Gxs
—|—ig3’,z)
—\/§ 1 ' ’ ’ ; 2 r 2 12 r 2 12
- 7 [_D + E(gzx + Yzy + gzz) - 51] (gxx + Iyx + Ixy + Yyy + Gxz
;2 ’ L 1 L 1 s
+ 9yz )(gxx — lGyx + Ixy — l9yy + Gxz — lgyz)}ﬁl
! La ) ! Lag ) ! La | 2
+ [2\/§E 2(Gox +igyx + Gry + 193y + Gz + 1932)
1 ’ ’ ’ 7 2 r 2 r 2 ;2 ;2
- \/§E [_D + E(gzx + Yzy + gzz) - 51] (gxx + Iyx + Ixy + Iyy + Gxz

+95.)| =0 —x2)

Applyging (J2) — (K2) yields the following equation,

B numer (y,)

Y1 ) Ta1

~ denom(y,

where
_ 3 1 ’ ’ 1 ’ i ’ ;2 r 2 7 2
numer(yl) = (D + E(gzx + 9zy + gzz) —&||-D+ E(gzx + 9zy + .gzz) —& (gxx + Iyx + Ixy
+ 95"+ Ghr + Gys")

3 ' ' ’ ’ .y ' . ’ . 1 \2
—2E [D + E (gzx + gzy + gzz) - Sl] (gxx + lgyx + gxy + l.gyy + Ixz + lgyz)

3 7 2 7 2 7 2 7 2 ;2 ;2 ;2 ;) 2 ;) 2 ;) 2
+Z(4‘E2 —IGxx —YGyx —YGxy —Y9yy “YGxz — YGyz )(gxx +gyx +gxy +gyy
; 2 ;2
+ 9% +9y:)
denom(yl) = 2\/§E(D + 81)(galcx2 + ggllxz + galcyz + gjlzyz + gJ’czz + g;/zz)
’ - ’ .o ’ . 1 \2
+ 2V3E2(gix + i0yx + Gy + 19yy + Gz + 1932)

\/g 2 2 2 2 2
+7(g;cx +g£1x +gylcy +.93,1y +galcz

r 2 ’ . r . ' . 1 \2
+ gyz )(gxx - lgyx + gxy - l.gyy + Ixz — l.gyz)
Finally, from (D2) we obtain
5. = _2\/§E,81 - \/g(galcx + igjlzx + galcy + ig;/y + gylcz + ig;/z)yl
1 ! ! i
2D - 3(gzx + 9zy + gzz) - 2El
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Similarly, for n =2 (Ms=+1/2), we set

B = g2 = |772,2|2

and

_ numer (v2)

V2= denom(y,) "2

3 1
numer(yz) =2F [D - E (géx + géy + géz) - 52] [_D + E (géx + géy + géz) - 82] (gylcx - ig;x + galcy
- igjl/y + gJ’CZ - igjrzz)
3
—[D—5 (géx + géy + géz) — & (g;cxz + gjlzxz + g;cyz + g;yz + gylczz + g;zz)(g;cx
2
+igyx + Gxy +igyy + Grz +i9Y2)
3 .y ' .y
- _E(4E2 - gJ,cxz - g;xz - gJ,cyz - g;yz - galczz - gjlzzz)(galcx — lGyx + Ixy — 9yy
2
+ g;cz - igjrzz)
3 1 1 ’ 1 ’ ’ i 2 r 2 r 2
denom(yz) = [D - E (gzx + Yzy + gzz) - 52] [_D - E (gzx + Yzy + gzz) - 52] (gxx + Iyx + Ixy
+ 95"+ Gxs” ¥ 9ys)

3 ’ ’ ’ ' .y ’ . ' . 1 \2
—2E [D - E(gzx + 9zy + gzz) - 52] (gxx — lGyx + Ixy — lG9yy + Gxz — lgyz)

3 7 2 12 ;2 ;2 ;2 ;2 ;2 ;2 ;2 ;) 2
+Z(4E2_gxx _gyx _gxy _gyy — Y9xz _gyz )(gxx +gyx +gxy +gyy
7 2 ; 2
+ s + 92 )

_ numer(6,)
2= denom(c?z)rﬁ2

numer(8,) = 2V3E(D + &) (gox” + Gyx” + Gxy” + Gyy” + 92" + 9y2°)
/ . ’ 2 ’ . 1 \2
+ 2\/§E2(gxx - lgyx + gxy - lgyy + Ixz — lgyz)
\/§ 1 2 7 2 ;2 ;2 ;2

+ 7 (gxx + gyx + gxy + .gyy + Ixz

7 2 ; . ’ . ' . 1 \2
+ 92 )(Ghex + igYx + Gy +19yy + Gz +i9Y2)

_ 3 ’ ’ ’ 1 ’ ’ ’ 7 2 7 2 ;2
denom(52) =|D - E (gzx + 9zy + gzz) —&||-D - E (gzx + 9zy + .gzz) —& (.gxx + Iyx + Ixy
+ 95"+ Gh + 9y5")

3 ’ ’ ’ ’ . ’ . ' . 1 \2
- 2E [D - E (gzx + gzy + gzz) - 52] (gxx - lgyx + gxy - lgyy + Ixz — l.gyz)

3 7 2 7 2 7 2 ;2 ; 2 ; 2 ; 2 ; 2 ;2 ;) 2
+Z(4’E2_gxx “Yyx —Yxy —Yyy —YGxz — YGyz )(gxx +gyx +gxy +gyy

;7 2 2
+ 9%+ 9ys")
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_ ~V3(gax — igyx + Gy — iGyy + Gz — 19y2)752 — 2V3EY,
2D +3(g4x + g2y + 9%2) — 22

were obtained. For n =3 (Ms=-1/2), we set

az

2
Y3 =13 = |U3,3|

and

numer(as)
a3 =————<r
7 denom(az) 13

numer(as) = 2V3E(D + &) (g’ + Gyx” + 90" + 93" + 94" +952°)
’ . / 2 ’ . 1 \2
+ 2V3E2(gyx + igyx + Gay + i9yy + Giz + 1932)
ﬁ ! ! ! ! !

+ 7 (gxx2 + gyx2 + gxy2 + gyy2 + gxz2

7 2 / . ’ . ' . 1 \2
+ 9yz )(gxx — l9yx + Ixy — L9yy + Gxz — lgyz)

3 1
denom(a3) = [D + E (géx + géy + géz) - 53] [_D + E (géx + géy + géz) - 53] (galcxz + gjlzxz + gJ’cyz
+ 95"+ ks + 9ys)

3 ! ! ! ! La | ! . ! L 2
—2E [D + E (gzx + gzy + gzz) - 53] (gxx + lgyx + gxy + l.gyy + Yxz + "gyz)

3 7 2 7 2 7 2 ;2 ;2 ;2 ;) 2 ;) 2 ;2 ;) 2
+Z(4‘E2_gxx _gyx _gxy _gyy — Gxz _gyz )(gxx +gyx +gxy +gyy
7 2 ; 2
+ 9 + 9y )
_ numer(fs)
37 denom(Bs) Ty

numer(fs) = 2E [D + % (9ox + goy + 952) — 83] [—D - % (9ox + g2y + 952) — 23] (Gxx + 19z + Gy
+igyy + gxz +19yz)
- [D +;(9;x + gzy + g;z) - 53] (g;’cxz + g;’zxz + g;'cyz + g},}yz +9.°+ g;,zz)(g;x
—igyx + Gry — 19y + Grz — 19yz)
- ;E (4E2 — gia” = 9" = Giy” = Gyy” = Gz’ = 932" ) (Gex + 193 + iy + 193y

+ Gz + 19y2)
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— 3 1 I ’ 1 ’ ’ ’ ;2 r 2 7 2
denom(ﬂ3) =D+ E (gzx + Yzy + gzz) —&|[-D+ E (gzx + Yzy + gzz) — &3 (gxx + Gyx + Ixy
+ 94y + 9%+ 9y:°)

3 ! ! ! ! L ) ! LE | ! L ) 2
—2E [D + E(gzx + gzy + gzz) - 53] (gxx + lgyx + gxy + lgyy + Ixz + lgyz)

3 7 2 7 2 72 ;2 ;7 2 ;2 ;2 ;2 ;2 ;) 2
+Z(4‘E2_gxx “Y9yx —Y9xy —Y9yy “Y9xz — Yyz )(gxx +gyx +gxy +gyy

+ %" + 95"
5 = “2V3EBs ~V3(gix + ig3x + Guy + i)y + Gir +iG32)1ys
' 2D —3(gzx + g2y + 922) — 283

were obtained.

For n=4 (Ms=-3/2), we set
2
0y =754 = |V4,4|

_ numer(B,)
* ™ denom(B,) T54

1 3
numer(&) = [_D - E (géx + g;y + g;z) - 54] [D - E (géx + g;y + géz) - 54] (gg’cxz + g3’1x2 + gJ’cyz
+ 94y + 9%+ 9y:°)

3 ! ! ! ! La ) ! La | ! LE ) 2
—2E [D - E (gzx + gzy + gzz) - 54] (gxx - lgyx + gxy - lgyy + Ixz — lgyz)

3 7 2 7 2 ;2 r 2 7 2 ;2 ;2 ;2 ;2 ;) 2
+Z(4‘E2 —IGxx —YGyx —Gxy —YGyy T YGxz — YGyz )(gxx +.gyx +gxy +gyy
7 2 ! 2
+ 9%+ 9y:")
denom(B) = 2V3E(D + &)(Grx” + Gy + Gy” + Gy + Gz + 9yz")
/ 2 ’ - ’ . 1 \2
+ 2\/§E2(gxx —lGyx + Ixy — lG9yy + Gxz — l.gyz)
\/§ r 2 r 2 r 2 ;2 ;2
+ 7 (gxx + Iyx + Ixy + Iyy + Gxz
2 ; . ’ .y ' . 1 \2
+ 957 )(Grx + 192 + Gy + iy + Grz +i952)

_ numer(y,)

T
Va4 ) 54

"~ denom(y,
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numer (y,) = 2E [—D + % (92x + G2y + 922) — 64] [D - ; (92x + 92y + 922) — 84] (9xx = igysx + Gxy
—igyy + Gxz: — 19y2)
- [D - g (Gix + Gty + 922) = 64] (90" + 932" + 93" + 93" + 0% + 93.7) (G
+igyx + Guy 19y + Gz +1932)
- gE (4B = g” = 03" = Gioy” = Gyy” = 92" = 952" ) (G2 = 1932 + Giy = 13y

+ Gz — 19yz)
denom(ys) = 2V3E(D + &) (ghx” + Gyx” + Gry” + Gyy” + Gz + Gyz")
+ 2V3E? (Ghx — i} + Gloy = iGhy + Giez = 10Y2)
+ ? (92" + 9" + Gy’ + 93" + 9s”
+ 057 ) (Gl + LG + Gy + 10y + Gz + iGY2)°

_ ~V3(gxx — igyx + Gxy — iy + Grz — i9y2)Bs — 2V3EY,
2D +3(gix + Gzy + 922) — 224

Ay

were obtained.
In the case of the non-collinearity between the ZFS and A-tensors, the matrix representation of the A-

tensor is transformed in the basis of the principal axis system of the ZFS tensor by a unitary matrix

A, 0 0 Ay Ay Al
A=|0 A, 0 |->A=[(A4) A4, A,
0 0 A4, Ay Ay, Ay,

Then, the matrix elements of the hyperfine structure Hamiltonian in the basis of |Ms, Mp> are as follows.

iZMl‘SM,M,’A’zl
1
+ % M1> _ izw/63 — 4M M8y 014147
1 )
+ E‘/ 63 — 4AM; M8y 1147

2M; 8,1 A3
1
_%, M1> = |5\/63 =AM M[5y 011 A
1
E\/ 63 — 4M1M15M,M,’—1A1+

3
<i 7!MI|ths

3

1 3
(2 M|+ 5. M) = (= 5, M3

3 1 1 3\
<+7,M,’|ths +7,M,> = <+7,M,|ths +§,M,’>
iZMISMIMI'A,zzl-

1
+ % M1> _ J_r?/63 — 4M M8y 0141 A5
1 )

- 2V 63 — 4M1MI,5M,MI'—1AZS

1
<i Q,leths
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2M16M1M;A;6
1
+%,M1> = {5V 03— AMM; Sy 11 A2
1
oV 63 — 4MIM16M1MI’—1 2+

<_%'M;|ths

1, 1 1 1.\
<+§'MI|ths —§,M1> = <—7,M1|ths +§;M1>
1, 3 3 1.\
<_§'MI|ths —§,M1> = <—7,M1|ths —§;M1>

where
=A%
p2 = (Ao + 147
v = V3 (45 + 14},)
w4 = 3%
w5 = (Ao +i47)
v = 5(Asz +143,)
1o = V3 (A F il + A}, £ AY)
he = 5(Alx Fidly + A £ A)))
The upper and lower signs should be chosen in the double sign.
In order to expand the hyperfine structure Hamiltonian, we carry out the calculations based on the
tensor product between the spin eigenfunctions and the basis vector of the nuclear spin operator, as given in

the following.

3 1 1 3

[0 (M) = WB)@IM,) =t |[+5,My) + B [+ 5.M) + v |~ 5. M) + 8|~ 5. M)
(—1M—+3' S Mg=toin=3,My= —sin=4,Ms= 3)
n= ’ S — zyn_ ) S — Zln_ ) S — zjn_ ) S — 2

Then, the matrix element of the expanded hyperfine structure Hamiltonian can be simply represented.

iZMI‘SM,M,’/lij
1 !
¢M51M1> = {F5V63 = AMM; Sy 411
1
izﬂ 63 — 4M1MI’6M1MI'—1VU

<¢M§’ M1'|ths

where
Aij = %(A;czfij + 1Ay + ALij)

Kij = %(A;cxfij + 1Ay & + 1AM — Ay + Ap (i + 1AL, 05)

Vi = %(A;cxfij — ALy & + 1Ay — Ay + ApeGij — 1A%,055)

& =3B a; +V3a;"B; + 2vi"B; + 2B;"v; + V38, v; + V31,5

myj = V3B a; —V3a;"B; + 2y, "B — 2By, + V38 y; — 3y 5

Gij = 3a"a; + B B; — vi'v; — 38" ;

and i (j) = 1if My(Ms) = +3, (/) = 2,if M{(Mg) = +% i () =3, if My(Ms) = -2 and i (j) = 4 if M{(Ms) =
-2, respectively. Note that
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& =&

*

Nij = —Mji
Gij" =i
and thus,
/11'1* = Aji
Hij* = Vji

Zeroth-order energies are the energy eigenvalues of the non-perturbed Hamiltonian,

1 2
£+%=£1(0) =3 —,/u0+\/—2p—uo+—q

N

1 2
(0) q
Ej1=6" =2 ,/u0+\j 2p—uy——
2 2 v Uo

1 2
(0) q
E_% =& = E v Uo \j 2p —ug __\/u_o

&

— (0) /
3—21 N uo_\/_Zp_uO+_0

Since the energies correspond to the same Ms-dominant state, for example, |l,b +3 +§> and |1,[) & +§>
2 2

are degenerate (&,3) and the matrix element of the expanded hyperfine structure Hamiltonian
2

<1p 3 +§|thS Y 5 +§> is not zero, the first-order energies must be obtained by using the degenerate

perturbation theory. The sub-matrixes to be diagonalized are |1/JMS,M,)(1/JMS,M,|ths|1/)MS,M,’)(lpMS,M,’|
(Mg = +2and 2, M;, M] = +Z,+3, +2 and +2). Therefore, the first-order energies can be represented as
2 2 1 252 2 2 g P
51&415),1\4, = sgn(Ms)2M/ 151 + pyvig
Where i =1 if Mg = +3,i=2if Mg = +5,i=3if Mg= - andi=4if Mg = ->. The function sgn(x) is the

sign function defined by

1, x>0
sgn(x) =4 0O, x=0
-1, x<0
The second-order energies are as follows:
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+E’+§ g+% — £+% £+% - £+% £+% - 8_%
7 5\|? 7 A\ 7 5\|?
|<ll}+§) +§|ths l,b_l, +§>| |<lzb+§l +§|ths IIJ_§1 +E>| |<1/J+§, +§|ths ¢_§: +§>|
2 2 + 2 2 + 2 2
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_ 4915401 + TlpVar | 49013431 + TlyaVar | 4914441 + T4V
- © _ (0 ©_ © _ 0
& & & & & T &
2 2 2
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€3 5=
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R e e 2 e s | 2 e s |
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_ 254321 + 19013V | 25A13431 + 19143V31 | 25444441 + 19014V
-  _ 0  _ 0 o _ .
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The perturbed energies to the second order are as follows.

1 2q 49415451 + Tl12Voq
E . _p — =1 E
+347 2 v Uo +\] 2p—ug + ,—0 + 731411 1% + pyqveg + 81(0) 82(0)

4913431 + Tly3Vs1 49414441 + Tl14Vae
RONINO RONINO

i

25413431 + 19043V31 25414441 + 19p14Vay
(0) (0) (0) (0)
& T& & TE&

2q 2541221 + 19045V,
E+%’+g = E —+/ U + \/_Zp — Uy +—| + 5\/ |/111|2 + H11V11 + 81(0) _ 82(0)

2q 9MaAz1 + 27U15Vo
. 9y ot 2
E+§,+§ ) Yo +\/ 2p—up + \/u_o + 311117 + v + Eio) ~ 82(0)

OsAz1 + 27013V Iyadag + 2714V
81(0) _ S;O) 81(0) _ giO)

S113



N

A1aAar + 31U14Vy
RONINO

2q Madzr +31U1oVe1  Agzdzg + 31433,
+347 =5[~vUo t —2p —uy + + |11 1% + uq1v41 + 0 0 + 0 ©)
2 g —¢ g —¢€
1 2 1 3

N

A1aAar + 31U14Vy
RONINO

1 2q Ihadz1 + 27U15Vo
E_%_% = > —JUp + J—Zp —uy +—| = 3141 ? + wvis + ) )

N RO

9i3ds1 +27U13vs1 Iyadyr + 2714 Va
Eio) _ 8;0) Eio) _ SiO)

2q 2541221 + 1945V,
Es s==|=Jug+ [=2p—uy+—|—5VI111% + pty1v11 +
35T J Tl Y RONINO

25413431 + 19013V31 2541441 + 19p14Vay

(0) (0) (0) (0)
& T& & TE&
1 2q 4912221 + T2V
Eps r=s|—Juot+ |20 —ug+—=|—7VIA1|* + py1vis +
+3732 2 \j \/u’_O 81(0) _ 82(0)

4913431 + Tly3Vs1 49414441 + Tl14Vae
RONINO RONINO

1 2q 494,115 + TUz1 V12
E i O — . — L 1,12
+347 2 v Uo +\] 2p —ug ,—0 + 7| A221% + papvap + 82(0) 81(0)

495332 + Tla3Vs, 4954447 + T4 Vas
NONINO NONINO

i

2523432 + 190p3V3, 25254447 + 19024Vs,
(0) (0) (0) (0)
& & & TE&

1 2q 25251212 + 19Up1 V1
Eii,5= 5|Vt \/_ZP — Uy — ——=| + 5V 4221* + pzavaa + ©
o & —&

S114

2q Madzr +31U1oVe1  Agzdzg + 31433,
£33 1 =57/ Uo + [=2p—up+ Y |11 1% + uq1v41 + 0) ) + ) 0)
vz 2 & 7& & T &



= — — — [ 2
E+%,+% 2 +/ Uo + \] Zp Uy \/u_o +3 |/122| + HUo2Voo + 82(0) _ gl(o)

33z + 27Up3V3,  Ipuday + 27 o4V,
NONINO NONNO

1 2q Az1diz + 31Uz Vip  Apzdsy + 31py3vs,
E+l,+l =5 [Vuo t+ —2p —up — + [A2212 + paavas + [©) 0 + 0 ©)
ze 2 & & & T &

i

Azahaz + 31Uz4Va,
NONINO

1 2q Az1diz + 31Uz Vip  Apzdsy + 31py3vs,
E+l,_l = E JUo + —2p —Up ———|—+ [A2212 + paavas + © © + Q) ©
v &g & T &

i

Azahaz + 31Uz4Va,
RONO

1 2q 92112 + 27Uz V1,
By z=5[Vuot+ [72p —uo ———=| = 3V A2a|* + haavar + © _ .
v Uo & T¢&

332 + 27U23V3y  Ipudan + 27 o4V,
Eéo) _ E?EO) Eéo) _ gio)

1 2q 25251242 + 19Up1 V1
_1 o — . _c 2
Eyis > |V%o +\/ 2p —ug T 5V 122217 + pazvaz + 82(0) — 81(0)

25233432 + 19053V3y | 25A2442 + 19U24Vso
(0) (0) (0) (0)
& T& & T&

1 2q 494,115 + TUz1 V12
E i Ly — g — | 1,12
+3-7 2 v Uo +\] 2p —ug ,—0 72212 + papva; + 82(0) 81(0)

495332 + Tla3Vs, 4954447 + T4 Vas
NONINO NONINO

1 2q 49231 13 + TU31V13
E_i,7=5|Juo— |=2p —ug———=| = 7y/|A33]* + uz3vs3 +
7t3 2 \/ \/u_o 8§0) _ 81(0)

493523 + TlzaVas 4934443 + T34 Va3
83(,0) _ géo) 83(,0) _ gio)

S115



E

1
2

+ 253323 + 19U35V23 | 25A3444

1 2q 25231443 + 19u31 V13
143 T 5 |WU T \/_ZP — Uy — \/_u_o — 52331 + uzzvss +

53(0) _ 51(0)

3+ 1934 V43

£~S)O) _ Séo) O _ giO)

3

1 2q 93113 + 2731 V13
=5 [W% ~ \/_ZP — U _\/_u_o — 3V 33| + p3zvas +

53(0) _ 51(0)

32423 + 27U32V23  IA34dsz + 27134 Vas

s§°) _ séo) s§°) _ SA(.O)

2q
Vo — [=2p —ug — ——| — V|433]% + Uz3vsz +
VUo

A34daz + 31U34Va3
NONINO

2q
Vo — [=2p —ug — ——| + /|433]% + Uz3vsz +
VYo

A34daz + 31U34Va3
NONINO

i

Az1diz + 31Uz Vis  Azpdas + 31ps,v03
NONINO RONINO

Az1diz + 31Uz Vi3 Azpdas + 31ps,v53
NONINO RONNO

1 2q 931413 + 27Uz, V13
13=5 Juo — J—Zp —ug — ——| + 3v33]? + pazvas +

ggo) i 1(o)

32423 + 27135Vo3  IAgadys + 27134V

NONINKD 0

1

(0)
&y

2q 2513143 + 19u3,v
’_§:E /uo_\/_zr)_uo__ _|_5 M.33|2+[l331/33+ 31713 31Y13
v Uo

ggo) i 1(o)

2523223 + 19U33Vp3 | 2523443 + 19U34V43

géo) _ géo) géo) _ Sio)

1
Vito

493523 + TlzoVa3 4934443 +

2 4931415 + 7u3qv
; zV“‘)‘]‘Z"‘”"‘—" b T T gy + 22arhia + Tl

ggo) i 1(o)

TU34V43

géo) _ géo)

S116

géo) _ giO)



N

49042224 + TlhgzV24

1 2q
E =5 —\/u—o—\j—Zp iy +

— 7\ A441? + pgqVaq +

492414 + Tla1V1a
NONINO

4924334 + Tlg3V34

Sio) _ séo)

1
E

Jio

25042224 + 1904224

2q
%Jr;:E —,/uo—\]—Zp—u0+— -5

Eim _ s§°)

254114 + 1904114
NONINO

[A4al? + ptaavas +

2524334 + 1943V34

Sio) _ séo)

1 2q
E_%_'_%:E —\/u—o—\/—Zp—u0+— -3

i

4224 + 27142 V24

Eio) _ s§°)

41 d1a + 27Us1 V14
| 2441 + HaaVas + © _.©

Iy334 + 27 1g3V34

fio) _ séo)

Aazza + 314224

2q
— fur— |=2p— i
Up \j p u0+\/u—0

Sio) _ ggo)

Ag1A1a + 31Usq V14
RONIRO

—V12441? + pag Vs +

A43Aza + 31py3V3y

fio) _ séo)

AgaAzs + 31goV0y

1 2
E_g_%zz —\/u—o—\j—Zp—uO-l-\/—Z_O

Sio) _ S;o)

Ag1A1a + 31Usq V14
RONRO

+ V14441? + g Vs +

Ay3Azq + 31Uy3V3y

fio) _ séo)

2

i

IuzAzs + 2714224

1 2q
E_;_%=§ —\/u—o—\/—Zp—u0+— +3

SiO) _ g;o)

4114 + 27 Us1 V14
RONRO

|A4a|? + UaaVas +

IuzAszs + 271y3V34

SAEO) _ géo)

2
Ter

2542424 + 1945V 24

%’_g = E —+/ U _\/_Zp — Uy +

SiO) _ géo)

q 2544114 + 190U41V14
+ 54/ |A4a|? + UaaVas +
8(0) _ 8(0)
4 1

254334 + 1943V34

SAEO) _ géo)

Sio) _ géo)

S117



1 2q 492414 + Tla1V1a
E_%_;:E —1[u0_\]_2p_uO +\/_u_0 +7 |/144|2+l.l441/44+ 84(0)_81(0)

494224 + TlhazVas 4943434 + TlHy3V3y
NONNO NONNO

It is worth noting that when at least two of the ZFS, g- and A-tensors are collinear and/or the magnetic

field is aligned to the principal axis the energy representations are much simpler.
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Summary and Chart of Procedure for ESR Analyses of High-Spin Metallocomplexes

Step 0: Reproduce the experimental ESR spectra by using the fictitious spin-1/2 Hamiltonian (if needed),
noting that not all the principal values of the A®-tensor may be determined.

Step 1: Determine the principal values of the g*- and Af-tensors with relative coordination between the
tensors taken from the quantum chemical calculation.

Step 2: Calculate the principal values of the g™¢-tensor as a function of the £/D value by using the g°ff/g're
relationships if the ZFS and g"™<-tensors are collinear.

Step 2°: If the ZFS and g'™¢-tensors are non-collinear, evaluate the principal values of the g'™¢-tensor by
solving the exact analytical energies or spectral simulation by using the full spin-Hamiltonian for
variable E/D values.

Step 3: Calculate the principal values of the A™°-tensor by using the Af/At™ relationships.

S119



Step 0: Construct the experimental spectra in order to compare with the simulated one on screen.

¥
/ Experimental spectrum /

b

Read the resonance field of each canonical peak:
El: BI: BJ

i

Solve the equation
g:"BB; = hv
for g, (i=1,2 and 3).

¥
gi".gs" 95"
Agff AEH AE"

+ linewidth (strain)

h 4

Spectrum based on
the fictitious spin-1/2
Hamiltonian
approach

l

Does the spectrum
match the experimental
one?

Yes

eff _eff _eff
g1 82 83 «

A;‘lﬂ- A;ff Agff
+ linewidth (strain}

Chart S1. Flow chart of the procedure for reproducing the experimental ESR spectra by using the fictitious spin-
1/2 Hamiltonian. The background in blue indicates that the fictitious spin-1/2 Hamiltonian is applied.
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Step 1. Introduce the result obtained by the quantum chemical calculations to the effective magnetic

tensors (relevant to the fictitious spin-1/2 Hamiltonian approach)

A set of parameters determined in Step 0.

eff _eff _eff
81 8z .03

eff geff qeff
ASFE gefE g

Quantum Chemical Calculation

N Uy (8,),Un(00) | | o _
e(%). Ua(8n) ; Oy = {ag g Ve,

¥ i 0y ={aa Faval |

g A%, 6., 0,

Chart S2. ar, f1, yr (T = g or A) are the Euler’s angle with respect to the molecular principal axis coordination

°ff or Af-tensor.

system and Ut(@r) is the unitary matrix transforming the g
Step 2: Transform the principal values of the g-tensor to those of the g™*-tensor in case of the

collinearity between the ZFS and g-tensors.

A set of parameters which true

phenomenologically reproduces
the experimental spectrum.

gi" g5" 95" 3 > Gu Gy 8z
Mg ¥
gi™e = g/ £ (E/D)
Lj=xy.zk=123 E/D dependence
of g-values
L ]
f Step 3

eff true

Chart S3. fjiMS indicates a function of the E/D value used for transforming the g®" values to the g

values. For example, for S = 3/2 and for the magnetic resonance transition between the states |Ms= £3/2>-

1-34 1+34

2o o
J1+322 fy @=1 J1+322

background in orange indicates that the true spin Hamiltonian is applied.

3
and ffz D=1+ ﬁ with A = E/D. The

3
. .. +2
dominant transition, f,*(1) =1 —
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Step 2’: Transform the principal values of the g®f-tensor to those of the g™-tensor in case of the non-

collinearity between the ZFS and g-tensors.

A set of parameters which true r Loop W

phenomenologically reproduces 0<E/D<1/3
the experimental spectrum. ¢
g$rfxggﬁ:g§t-f Input; gx’gwgyﬂ'g
- Ug(Bg) . ‘ Optimize gy, gy, 9z
v ¥ =
Spectrum based on Spectrum based on
the fictitious spin-1/2 the true spin-1/2
Hamiltonian Hamiltonian
approach approach

Compare the simulated spectra

Are two spectra
identical?

Yes

. J

!

E/D dependence of
g-values

!

Chart S4. Flow chart of the procedure for obtaining the set of the £/D value and the principal value of the g-
tensor in the case of the non-collinearity between the ZFS and g-tensors.
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Step 3: Estimate all the sets of the magnetic parameters and evaluate the accuracy of the principal 4-

values

e E/D dependence ,

A set of parameters which

phenomenologically reproduces of g-values
the experimental spectrum AT = A;ﬁ/}}im (E/D) l
Li=xy,zk=123
vefEJ eff' eft'J 4‘ B gy, gz
without strain D,E
é - Ug (Bg) Try another E/D
v Up(8,) v “
Spectrum based on Spectrum based on
the fictitious spin-1/2 the true spin-1/2
Hamiltonian Hamiltonian
approach approach

\—( Compare the simulated spectra lil

'

Are two spectra No

identical?

v

QX'QTJQZPAX'A}'IAZIDJ Elegjﬂ_n‘ A

Substitute to energy *Substitute to energy
Ezgm (95" g5, 05", A3™, 45", A5, B, 6, 0,) Enigt, (G 8yr G20 Axs Ay, A, D,E, B, 0,0,
[ * *
ff oo
Eo1y, =By, = Bomtan = sy

4—{ Normalized by D, E/D = 1, A/D =a,B/D = b
r

MM

afrf = 'Er = (gxn Gy gz“ﬁ» 4, gy Ay ﬂz»ﬂiﬂ»ﬂfﬂ Bg: BA)
Mg

agff = Ey = (gxn .g)u gz'b' 1, Ay a)u az'agff'agft'l HgJ HA}

a§ = B (g,, 9,,8,b, 4,050, 0,057,057, 0, 0,) @M+ 1)

'

Draw ;i dependence of A% fixing another parameters.

Do (2M, + 1) curves No

cross at one point?

Either Are A and A2 Neither
as expected?

Bath
End
Chart S5. Flow chart of the procedure for obtaining the full set of the magnetic parameters. Eif%f.Mz and Eygpy,

denote the analytical energy from the fictitious spin-1/2 and the full spin-Hamiltonian, respectively. In the
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parameter of the energy, B denotes the resonance field.

There are some remarks relevant to the procedure described above.

1. As mentioned before, not all the principal values of the A-tensor may be determined due to the line-
broadening appearing in the experimental spectra. Indeed, only the Az-value was determined in the
complexes under study.

2. Generally, solving the A°"-values is easier than for the A"™°-values (step 3). Fortunately, the E/D
dependence of the A™¢-values can be obtained for the complexes under study.

3. The possible range of the £/D value can be limited because of the principal values of the g-tensor and/or
the off-principal-axis extra lines frequently observed in the experimental spectra from high spin systems
having sizable ZFS tensors.

4. The D-value can be evaluated from the intensities of small transitions between the other spin substates
except the large canonical peaks. For example, both the |[Ms = +3/2>- and |Ms = £1/2>-dominant

transitions were observed in the spectra under study, enabling us to determine the D-values.
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Applications of the Perturbation Theory to ESR Analyses of Five-Coordinated Cobalt
Complexes in Their Quartet Spin State
1. Complex 1
a) Perturbed energies for the case of collinear ZFS, g- and A-tensors
Here, we derive perturbed energies, which arise only from a hyperfine A-tensor (/ = 7/2), in order to estimate
the accuracy of the hyperfine parameters in a quartet spin system (S = 3/2) having a sizeable ZFS tensor such
as five-coordinated cobalt complexes. Thus, first we solve the problem of the eigenvalue and eigenfunction
of the spin Hamiltonian composed of only electron spins in the presence of an external static magnetic field.
The approach here for the spin quartet state is not a simple Zeeman perturbation one. The ZFS and electron
Zeeman interactions are taken as the non-perturbed term Ho and the hyperfine splitting interaction is taken
as the perturbed term A’. The non-perturbed and perturbed terms are represented as follows.
Hy=S-D-S+f(S-gB
H=85-A1
For simplicity, the ZFS, g- and A-tensors are assumed to be collinear. The non-perturbed Hamiltonian Ho can
be rewritten when the static magnetic field B is applied parallel to the z-axis of the principal axis coordinate

system of the complex, where the z-axis is the principal z-axis of the ZFS tensor, as follows:
— 21 2 2
Hy=D|S, —55(5 + D[+ E(S* = S)%) + 92:8B.S.

H' = SyAwely + SyAy L, + S, A4l

The matrix representation of Ho on the basis of |Ms> is

3
/ D+29:FB 0 V3E 0 \
1
0 D +59.,8B 0 V3E
HO = 1
0 V3E 3
V3 0 D-30ubB
This matrix can be divided into two 2 X 2 matrixes H; and H> due to the symmetry of the spin functions.
3
D+ 92:PB V3E
H1 = 1
V3E —D =5 9:.PB
1
~D +=g,,8B V3E
H, = 2
2

3
V3E D == 92:PB

Thus, the exact energy eigenvalues and the spin eigenfunctions are

1
gi’% = izgzzﬁB - \/(D + gZZBB)Z + 3E*

-1 =
£43 = F592BB +/(D F g,,BB)? + 3E
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3 . _1
|lpi%>=c059i i§>+smei +§>
= ] +1 in 6 73
|lpi%>—cos I _E>—sm I +§>
where
V3E
tan20y = ————
T D+ g,.pB

We construct electron-nuclear spin wavefunctions as follows:

3 1
|¢i§(MI)> = |¢i%>®|M,) = cos 0, iE'M1> +sin 6, $E,M1>

1 ] _3
|1/’i%(MI)> = |1[1J_r%>®|M,) = cosOf iE'M1> —sin 6% +§,M1>

The matrix elements of the hyperfine structure Hamiltonian in the basis of |Ms, M> are given in the following:

5MSM§5M,M,’M5M1AZZ

1 ’ ’

(Mg, M{|Hygs| Mg, M) = E5MSM§¢15M,M,’¢1\/15 — 4MsMg 63 — 4M;M;(Arx — Ay, )
1
16

SugniF10mm) 41V 15 — 4MsMs[63 — 4M M (A + Ayy)

where

(L i=j
61'1'_{0, i#]

The upper and lower signs should be chosen in the double sign. The matrix representation of the hyperfine

structure Hamiltonian expanded by the spin wavefunctions are as follows:

Hygs

M,
¢MS=J_%(M1)> = i_5M,M;Azz(2 cos2604 + 1)

(1030 .

Hygs >

M
(1,402 1D i1, -3 M) = 5 8372, (2 cos 265 = 1)

(ChH

2

1 _
Higs ¢Ms=+;<Mz)> = SV/63 = AMM;8y1 (Coscer F Cosellyy)

(10— 20

Hygs

¢MS=+%(M1)> = _MISMIMI’AZZ Sil’l 29+

<¢Ms=—%(M”) Hhgs

1 —
Vs 30D} = 583 A M8y (Sus s F S-ssy)

<1/JMS=+%(M1) Hys

¢M5=+%(MI)> = <¢MS=+%(M1) Hhgs

¢M5=+%(M;))

1
(10— D1, 1)) = 583 =AM By (SccAne £ S-cchyy)

(1,,- 301

Hygs

¢MS=+%(MI)> = MI(SMIMI’AZZ Sil’l 29_
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< Vs +3(M1) Hyg|, 1(M1)>=—M15MIMI:AZZsin20+
(1w D s [, _ 2 010) = (1, _ 31| s, _ 2 1D)

(8 s 2D o, __110) = 3 V&= A (Cresan T Ceshy)
(g 3 D s 5} = (50| His [, _ 3000D)
< |t 3(M,)>=M,6MIMI:AZZsin29_

(1w 2 D s [, __510) = (i, __ 51| s, _ 101D

where

1
Cisc = 7 (\/§ cos6, cosf_=+ 2sinf, cosf_ — V3sin 0, sin 9_)
1
Siss = 7 (\/§ cosf,sinf_+2sinf,sinf_ + V3sin 0, cos 9_)
1
Sice = Z (—\/§ cosO,sinf_ =+ 2cosf, cosO_ — V3sin 0, cos 9_)

1
Cics = 7 (—\/§ sin@, sinf_+ 2cosf,sinf_ + V3 cos 0, cos 9_)

The upper and lower signs should be chosen in the double sign. We can evaluate the zeroth-order and
perturbed energies in the following:

The zeroth-order energies are the energy eigenvalues of the non-perturbed Hamiltonian.

eQ =1 gzzﬁB J(D * g,,BB)? + 3E2

1
5(01) = +EgzzﬂB + \/(D 1gzzBB)z + 3E?
2

The first-order energies are the diagonal elements of the expanded hyperfine Hamiltonian, as given in the

following:
M
(1) 1
=+—A,,(2 2 1
si%MI 5 2z(2c0s204 + 1)
M,
®
=+ -
gi'l,MI 5 A,,(2cos26 —1)

The second-order energies are given in a convoluted manner, as follows;
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3
+E,+

N w

©)

3
+E,+

N =

2
5(; 1
+2—=

N
N

@
&
23

N
N

£?

7(Crsehxx — Cschyy)’ s 424,,% sin? 26,
92:PB — (D + 9,,8B)? + 3E2 — \/(D — g,,BB)* + 3E* —2,/(D + g,,8B)? + 3E?
N 7(SrssArx = Ssshyy)”
92:PB — /(D + 9,,8B)? + 3E2 + /(D — g,,BB)? + 3E?

2 2 .
7(CrscArx + Coschyy)” +12(Coselir — CoscAyy) 4,," sin? 20,
gzzﬂB - \/(D + gzz.BB)2 + 3E2 - \/(D - gzz.BB)2 + 3E2 _2\/(D + gzzﬁB)z + 3E2
2 2
+ 7(S+ssAxx + S—ssAyy) + 12(S+ssAxx - S—ssAyy)
gzzﬁB - \/(D + gzz,BB)Z +3E% + \/(D - gzz:BB)z + 3E2

2 2 .
12(Cyschx + CoscAyy)” + 15(Chschyx — C-scAyy) N 24,,% sin? 260,
gzzBB - \/(D + gzz.BB)Z + 3E2 - \/(D - gzz.BB)2 + 3E2 _2\/(D + gzzﬂB)z + 3E2
2 2
+ 12(S+55Axx + S—ssAyy) + 1S(S+ss‘4xx - S—ssAyy)
gzzﬁB - \/(D + gzzBB)z + 3E2 + \/(D - gzzﬁB)Z + 3E2

2 2 .
15(Cyschx + CoscAyy)” + 16(Chschyy — C-scAyy) N 1A,,% sin? 20,
gzzBB - \/(D + gzz.BB)Z + 3E2 - \/(D - gzz.BB)2 + 3E2 _2\/(D + gzzﬂB)z + 3E2
2 2
+ 15(S+55Axx + S—ssAyy) + 16(5+ssAxx - S—ssAyy)
gzzﬁB - \/(D + gzzBB)z + 3E2 + \/(D - gzzﬁB)Z + 3E2

2 2 .
16(Cyschx + CoscAyy)” + 15(Chschyx — C-scAyy) N 1A,,% sin? 20,
gzzBB - \/(D + gzz.BB)Z + 3E2 - \/(D - gzz.BB)2 + 3E2 _2\/(D + gzzﬂB)z + 3E2
2 2
+ 16(S+55Axx + S—ssAyy) + 1S(S+ss‘4xx - S—ssAyy)
gzzﬁB - \/(D + gzzﬁB)Z + 3E2 + \/(D - gzzBB)z + 3E2

2 2 .
15(Cysclx + CoscAyy)” + 12(Chsehyx — C-scAyy) N 24,,% sin? 260,
gzzBB - \/(D + gzzﬂB)z + 3E2 - \/(D - gzzﬂB)z + 3E2 _2\/(D + gzzﬂB)z + 3E2
2 2
+ 15(S+ssAxx + S—ssAyy) + 1Z(S+ss‘4xx - S—ssAyy)
gzzﬁB - \/(D + gzzﬁB)Z + 3E2 + \/(D - gzzBB)z + 3E2

2 2 .
12(Cyschux + CoscAyy)” + 7(CoschArx — C—scAyy) 4,," sin? 20,
gzzBB - \/(D + gzzﬂB)z + 3E2 - \/(D - gzzﬂB)z + 3E2 _2\/(D + gzzﬂB)z + 3E2
2 2
12(5+55Axx + S—ssAyy) + 7(S+ssAxx - S—ssAyy)
gzzﬁB - \/(D + gzzBB)z + 3E? + \/(D - gZZBB)Z + 3E?
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2 .
@ 7(Crschrx + C_schyy) 94,," sin? 26,

&

3 7 +
*27%  9BB—+/(D+9g,,8B)*+3E2—./(D—g,,8B)?+3E2 —2,/(D + g,,$B)? + 3E2
2
+ 7(S+ssAxx + S—ssAyy)
gzzﬁB - \/(D + gzz,BB)Z + 3E2 + \/(D - gzz:BB)z + 3E2

@ 7(C+schx + C—scAyy)z
+2%7  —GsuPB + /(D — g,,BB)? + 3E% + /(D + g,,BB)? + 3E?
.\ 7(Stochrx + S_ccAyy)”
—922BB + /(D — g,,8B)? + 3E? — /(D + g,,BB)?* + 3E?
294,," sin? 20_

+
2\/(D - gzz,BB)z + 3E2

@ 7(Crsehux — CscByy)” +12(CrseAx + Csehyy)
+3%3  —0,.BB + (D — g,,BB)? + 3E? + /(D + g,,BB)? + 3E?
.\ 7(Svechrx = S—cchyy)’ +12(Sscehxx + S—cchyy)
~9.:BB + /(D — g,,8B)? + 3E2 — /(D + g,,BB)? + 3E2
54,," sin?26_

_|_
2\/(D — g,,8B)? + 3E2

@ 12(CoseAgx — Csehyy)” +15(Crgedrx + Cschyy)
+2+3  —0,,BB + /(D — g,,BB)? + 3E? + /(D + g,,BB)? + 3E?
o 12(Secche = S_cehyy)’ +15(Stcchux + S—cehyy)’
~92:PB + /(D — g,,8B)? + 3E2 — /(D + g,,BB)? + 3E?
24,," sin? 20_

+
2\/(D - gzzﬁB)z + 3E?

@ 15(CoscAr = Coselyy)” + 16(CoscAry + CoseAyy)”
37 —0;uBB + (D — gzBB)? + 3E% + /(D + g,,BB)? + 3E?
o 15(Seccux = S-ccyy)” +16(Sycchn +Sceyy)’
~922PB + /(D — g,,8B)* + 3E2 — \/(D + g,,$B)? + 3E2
1A,," sin? 20_

+
2\/(D — g,,8B)? + 3E2

@ 16(C.selux = Coseyy)’ +15(CscAux + CoscAyy)”
+372  —9u2BB + /(D — gzBB)? + 3E% + /(D + g,,BB)? + 3E?
16(Sicchry = S—cclyy)” + 15(Sicchrx + S—ccyy)”
—92:PB + /(D — g,,8B)? + 3E? — /(D + g,,BB)? + 3E?
N 1A,,% sin? 20_
2/(D - g,,BB)? + 3E?
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2 2
15(C+schx - C—sz:Ayy) + 12(C+schx + C—scAyy)
_gzzﬁB + \/(D - gzz.BB)Z + 3E? + \/(D + gzzﬁB)z + 3E?
2 2
+ 15(S+::0Axx - S—ccAyy) + 12(S+cchx + S—ccAyy)
_gzzBB + \/(D - gzz,BB)z + 3E%2 — \/(D + gzz:BB)z + 3E?
24,," sin? 20_

+
2\/(D - gzz,BB)z + 3E2

~
N
—

+
N
|
N w

2 2
12(C+schx - C—scAyy) + 7(C+schx + C—scAyy)
_gzzﬁB + \/(D - gzz.BB)Z + 3E? + \/(D + gzzﬁB)z + 3E?
2 2
+ 12(S+cchx - S—ccAyy) + 7(S+cchx + S—ccAyy)
_gzz.BB + \/(D - gzzBB)Z + 3E2 — \/(D + gzzﬁB)Z + 3E?
54,," sin?26_

+
2\/(D - gzzBB)Z + 3E?

~
N
—

+
N
|
[NI13

2
7(C+schx B C—scAyy)
_gzzﬁB + \/(D - gzz.BB)z + 3E? + \/(D + gzzﬂB)Z + 3E?
2
+ 7(S+cchx - S—ccAyy)
_gzz.BB + \/(D - gzzBB)Z + 3E2 — \/(D + gzzﬁB)Z + 3E?
54,," sin?26_

_|_
2\/(D — g,,8B)? + 3E2

~
N
—

+
N =
|
N[

. 2
_ 24,," sin? 26, N 7(Stcchxx — S—ccAyy)
2\/(D - gzzBB)Z + 3E? gzzﬁB + \/(D + gzzBB)z + 3E% — \/(D - .gzzBB)2 + 3E?
2
+ 7(C+csAxx - C—csAyy)
gzzBB + \/(D + gzzﬁB)z + 3E2 + \/(D - gzzBB)z + 3E2

. 2 2
_ 54,," sin? 20, N 7(Stechux + S—cchAyy)” + 12(Sycchux — S—ccAyy)
2\/(D - gzzBB)Z + 3E? gzzﬁB + \/(D + gzzBB)z + 3E% — \/(D - .gzzBB)2 + 3E?
2 2
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gzzBB + \/(D + gzzﬁB)z + 3E2 + \/(D - gzzBB)z + 3E2

. 2 2
_ 2A,," sin? 20, N 12(Sycchux + S-ccAyy)” + 15(Sicchux — S—ccAyy)
2\/(D - g,.pB)? +3E?  g,,B + /(D + g,,PB)* + 3E? — /(D — g,,BB)* + 3E?
2 2
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922BB + /(D + g,,8B)? + 3E2 + /(D — g,,8B)? + 3E2
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@ _ A sin?26, .\ 15(S,cchrx + S_ccAyy)’ +16(Sicchrx — S—cchyy)’
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4 16(Creofnn + Coasyy)” + 15(Coasn = Ccsflyy)’
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. 2 2
@ 24,,% sin? 20, N 15(Stcchux + S—ccAyy)” + 12(Stcchux — S—ccAyy)
1 3=
272 2\/(D - gzzBB)z + 3E? gzzBB + \/(D + gzzﬁB)Z + 3E% — \/(D - gzzﬁB)z + 3E?
2 2
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gzzBB + \/(D + gzzBB)Z + 3E2 + \/(D - gzzﬁB)Z + 3E2

. 2 2
@ _ ZA,%sin?20, N 12(Stcchux + S—ccAyy)” + 7(Stechxx — S—ccAyy)
1 5~
272 2\/(D — 9zzPB)* +3E% g,,BB + \/(D + 92:8B)* + 3E% — \/(D — 9zzPB)?* + 3E?
2 2
+ 12(C+csAxx + C—csAyy) + 7(C+csAxx - C—csAyy)
gzzBB + \/(D + gzzBB)Z + 3E2 + \/(D - gzzﬁB)Z + 3E2

. 2
@ _ 2A%sin?20, N 7(Stcchxx + S—ccAyy)
17—
272 2\/(D - gzzBB)z + 3E2 gzzBB + \/(D + gzzﬁB)Z + 3E2 - \/(D - gzzﬁB)z + 3E2
2
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gzzBB + \/(D + gzzﬁB)z + 3E2 + \/(D - gzzBB)z + 3E2

2 .
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3,7
2%  —9..PB _\/(D _gzzﬂB)Z + 3E? +\/(D +gzzﬂB)2 + 3E? _2\/(D _gzzﬂB)z + 3E?
2
7(C+csAxx + C—csAyy)
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2 2 .
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2 2
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2 2
+ 15(C+csAxx - C—csAyy) + 12(C+csAxx + C—csAyy)
_gzzBB - \/(D - gzzBB)Z + 3E2 — \/(D + gzzﬁB)Z + 3E?

2 2 .
@ 12(StssAxx — S—ssAyy)” + 7(Sysshrx + S—ssAyy) 54,," sin? 26_
3 5
272 _gzzﬁB _\/(D _gzz.BB)z + 3E? +\/(D +gzzﬂB)2 + 3E? _2\/(D _gzzﬂB)z + 3E?
2 2
n 12(C+csAxx - C—csAyy) + 7(C+csAxx + C—csAyy)
_gzzBB - \/(D - gzzﬁB)z + 3E2 — \/(D + gzzBB)z + 3E?

@ 7(SssArx — S—sshyy) .\ 94,2 sin? 20_
277 —9uuBB — (D = g,,BB)? +3E7 + (D + ,,B) + 367 —2/(D — g,,BB) + 3E”
N 7(CresArx = Cocsyy)”
~9228B —\/(D — g,,8B)* + 3E2 — \/(D + g,,$B)? + 3E>

In summary, when the ZFS, g- and A-tensors are collinear and the magnetic field is aligned to the z-
axis of the principal axis coordination system, the zeroth-order and perturbed energies in the second order

are represented as follows:

1 7
E3 7==0,,8B (D +guPB)?+3E2+—-A,,(2cos20, +1) +&% ,
2tz 2 4 +2%2

1 5
E3,5=50:BB —(D+ g, BB) + 3E7 + 2 A,,(2cos 20, + 1) + 3
22

22

1 3
E 3 3==0,,8B—(D+gmuPB)?+3E2+=-A,,(2c0os20, +1) +%
217 2 4 +2%32
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E 3
E 3
2-
E 3
2-

E 3 5=

272

E 3
2"

Ei1 7=~

+§'+§

5
E,1,5="3 L 9,88 + VD = 9,,BB)? + 3E% + 7 A, (2c0s20_ — 1) + ef)+
2 2 T2

E+3

1
212

E:

,+

E_l 5 =
2' 2

E 1 3=
2

E11=
2%z

E11=
2 2

E13=
2 2

1 1
1 =5 922PB — J(D + g,,8B)? + 3E2 + 7422(2c0520, +1) +¢

+§,+§

1 > > 1 @
1= > 9288 — J(D + g,,8B)? + 3E2 — 7422(2c0s20, + 1) + ¢

1 > > 3 @
3= > 9288 — J(D + g,,8B)? + 3E2 — —AZZ(Z c0s20, +1) + ¢

1 > 5 O @
> 9288 — J(D + g,,8B)? + 3E2 — 742(2cos20, + D +e 5 5
272

1
7= 592:BB ~ J + g,,BB)? + 3E? — —AZZ(Z cos26, +1) + 5(2)

1
59::BB + J(D = g,,BB)? + 3E% +— AZZ(Z cos26_ —1) + 5(2)

3
-5 gZZBB +(D — g,,BB)? + 3E2 + = 7 Az (200526~ 1) + 5(2)

-5 gZZBB +(D — g,,BB)? + 3E? +~ AZZ(Z cos26_—1) + 5(2)

-5 gZZBB +/(D — g,,BB)? + 3E2 — —AZZ(Z cos26_—1) + 5(2)

3
-5 gZZBB +/(D — g,,BB)? + 3E2 — 7 Az (200526~ 1) + 5(2)

5
gZZBB +/(D — g,,BB)? + 3E2 — 7 Az (200526~ 1) + gf)
’2

.+2

5
gZZBB JO + g,,BB)? + 3E% — 7 Az (2005260, = 1) + e?
2 2

3
gZZBB JO + g,,BB)? + 3E% — 7 Az (20020, = 1) + 8(2)+
' 2

1
ngZﬁB J(D + g,,8B)? + 3E2 — —AZZ(Z cos20, — 1)+ 5(2)+
*2

3
BB — /(D + g,,fB)? + 3E2 + - 7 An (200520, = 1) + e®

! 2

3.1
+—,+i

N =

N|w

N[N

7
gzzﬁB VD +,,PB)? +3E2 — 7 A, (2c0s20, — 1) +¢7 ,

1

BB — /(D + g,,BB)? + 3E2 + - AZZ(Z cos26, — 1) + ¥ |

r2

7

2

5

2

1

2

1

2

2

7
gZZBB +/(D — g,,BB)? + 3E2 — 7 Az (200526~ 1) + g‘z) ;
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1 5
B_1s=30:58 - VD +g,,BB)? +3E% + 7 A, (2c0s 260, — 1) + £
2 2
1 2 2 ©)
Ei7=3 =9228B — (D + g,,8B)? + 3E% + AZZ(Z cos260, — 1) +e7 5

2 2

1
E_s,7==59:B - J(D — g,,BB)? + 3EZ — —AZZ(Z cos20_+ 1) +e9

2'+2

1 5
E_s,5==50:PB (D~ g,,pB)? +3E2 — 7 A,,(2c0s20_+1) + e
2" 2

2'+2

1 3
E3,3==50:PB (D~ g,,pB)? +3E2 7 A,,(2c0s20_+1) + e
2" 2

2'+2

1 1
E 3,1==50:PB (D~ g,,pB)? +3E2 — 7 A,,(2c0s20_+1) + e?
272

2'+2

Bz 1= —ZgZZﬁB J(D = g,,BB)? + 3E% + — AZZ(Z cos20_ +1) +&e%

2 2

3
Bz 3= —ZgZZﬁB J(D = g,,BB)? + 3E% + = 7 Az (2c0s26_+1) +e¥

2’ 2

5
Bz s=- ZgZZﬁB V(D = g,,BB)? +3E2 + 7 A, (2c0s20_+ 1) + €% ¢
272

B r=—3 gZZBB J(D = g,,BB)? + 3E% + - AZZ(Z cos26_ + 1) + 5(22) )
The analytical expressions derived above with the static magnetic field B along the principal z-axis for the
case that all the three magnetic tensors are collinear for the spin quartet state with a nuclear spin /= 7/2 are
extremely accurate. Note that the other analytical expressions with B applied parallel to the other principal
axes can easily be derived by invoking the cyclic transformation of the principal axis coordinates, which
includes giving D replaced with (3E — D)/2 and E replaced with —(E + D)/2 for B//x, and similarly D with —

(3E + D)/2 and E with (D — E)/2 for B/Jy.

b) Evaluation of the accuracy of the 4°/4'™ relationships

In this section, we show the accuracy of the 4zz-value estimated for the spin quartet state with sizable ZFS
tensors assuming the g*/g™° relationships, noting that the 4°/4™ relationship is valid. The energies derived
in the previous section are fully dependent on gzz, D, E, Azz and B. If the energies and all the parameters are

accurate, the following equation holds, affording the relevant expressions. .

E,3,,, 920D Ay B) = B3, (920D, B Ary, B) = B3 (951450, B) — B3 (957 451B) (1)
! 2’ 2’

where the difference between the energies from the true spin-Hamiltonian in the left-hand side equates to that
between the energies from the fictitious spin-1/2 Hamiltonian in the right-hand side. The values for g..°%, 4..°T
and B can be easily obtained from the experiment and its associated spectral analyses, and the value for g.
and the ZFS parameters are obtained by using the g°/g'™ relationships as a function of E/D. Then, we solve

the equation for A4.. and compare the solution with the experimental value obtained from the A°/4ve
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relationship. As shown below, the 4°%/4™¢ relationship is valid since the analytical expressions for the
energies underlying the relationship and all the necessary parameters are highly accurate. The accuracy of
the particular relationship eq (1), as given below, will be shown in the following sections,

ALt 2

2, e @
where A = E/D.
¢) ESR Analysis of complex 1
Table S1. The possible combinations of the g®/g"™¢ relationships.
Case gte g°ff gt/ gtrue Figure No.
X 0.82 1- 1_—31
V14322
1 v 1.3 1- 1+—3A Figs. S1, S2, S3, S4 and S5
V14322
z 7.72 1- ;
' V14322
X 1.3 1-— 1_—3)L
V14322
1+ 31  Figs. 6 and 7 in the main text and Figs.
2 y 0.82 =
V1+322 S6, 87, S8, S9 and S10
z 7.72 1- ;
' V1+322

* Case 2, which is highlighted in yellow, provides the most reasonably simulated spectrum.

Case 1
gtrue
8
6
4
2
. : : : ' : EID . . - : . : E/D
0.05 0.10 0.15 0.20 0.25 0.30 0.05 0.10 0.15 0.20 0.25 0.30
Figure S1. The calculated g™ values for complex 1 by use of the g*f-value and g*/g™ relationships. # =
XX
_1-84 13 _ . 14384 772 _ 2 g off/ true . .
o o i o0 1 +\/1+3/12 with 4 = E/D. The g*"/g"™* relationships adopted here are

for the |Ms = £3/2>-dominant transitions.
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Figure S2. The simulated randomly-oriented X-band ESR spectra of complex 1 (S = 3/2) as a function of E/D.
The values for E/D used were 0.01, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. The spectra in blue and red are based on
the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. Microwave frequency used: 9.625
GHz, the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: g° = [0.82, 1.3, 7.72], 4,*(*’Co) = 919.2 MHz,
D=-14 cm™" and g™ and 4,™°(*’Co) for the variable E/D’s are calculated by using the value of g and the
gf/g'e relationships shown in Table S2. The g-, A- and D-tensors were assumed to be collinear. Any strain
effect of the tensor to the linewidth was not included. The simulated spectra were obtained by using EasySpin
(ver. 6.0.6) [8].

130 170 210 250
Magnetic Field / mT
=0 D
0.11 e
| Il 1 |
0 100 200 300 400 500 600 700 800 900

Magnetic Field / mT

Figure S3. The simulated randomly-oriented X-band ESR spectra of complex 1 (S = 3/2) as a function of E/D.
The values for £/D used were 0.11, 0.12, 0.13 and 0.14. The spectra in blue and red are based on the fictitious
spin-1/2 and true spin Hamiltonian approaches, respectively. Microwave frequency used: 9.625 GHz, the peak-
to-peak linewidth: 1.0 mT, the magnetic tensors: g* = [0.82, 1.3, 7.72], 4°(**Co) = 919.2 MHz, D =14 cm™!
and g™ and 4."™*(*Co) for the variable E/D’s are calculated by using the value of g°" and the g®T/g'™e
relationships shown in Table S2. The g-, A- and D-tensors were assumed to be collinear. Any strain effect of the
tensor to the linewidth was not included. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8].
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Table S2. The principal values of the g™¢-tensor and A..-values used in the simulated spectra of complex 1

. 0.82 1-32 13 1430 772 2 .
F 2 21). e =1-— e =1- =1 th A = E/D. The g®/gt™e
(Figures S20 and S21) ST o 0 T o0 +\/1+3/12 wi / e gl/g

relationships adopted here are for the |Ms = £3/2>-dominant transitions.

E/D axx gry g7z E/D axx gry g7z

0.01 27.2 43.6 2.574 0.14 1.879 3.421 2.623
0.10 2.643 4.628 2.599 0.15 1.753 3.223 2.630
0.11 2.399 4.241 2.604 0.20 1.318 2.540 2.671
0.12 2.196 3.921 2.610 0.25 1.064 2.146 2.723
0.13 2.025 3.651 2.616 0.30 0.900 1.895 2.782

One of the possible sets of the magnetic parameters: gxx = 2.025, gyy = 3.651, g7z = 2.616, Az(*°Co)

=311.5 MHz, D =—14 cm™! and E/D = +0.13. The extra line observed at about 200 mT was simulated when
E/D=+0.18.

210 250 290 330
Magnetic Field / mT
I |

0 100 200 300 400 500 600 700 800 900
Magnetic Field / mT

Figure S4. The simulated randomly-oriented X-band ESR spectra of complex 1 (S = 3/2). The spectra in blue
and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. Microwave
frequency used: 9.625 GHz, the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: g™ = [0.82, 1.30, 7.72],
A=T(PCo) = 919.2 MHz, g™ = [2.025, 3.651, 2.616], 4.™(**Co) = 311.5 MHz, D =—14 cm™" and E/D = +0.13.
The g-, A- and D-tensors were assumed to be collinear. Any strain effect of the tensor to the linewidth was not
included. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8]. Inset: the expanded spectrum
from 130 mT to 330 mT. The extralines attributed from the | My = +1/2>-dominant transitions can be reproduced
by using the true spin Hamiltonian (red line) but not by the fictitious spin-1/2 Hamiltonian (blue line).
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3 M > M >
=+— ==
Ms=+5<—>Ms=-§ ST ST,
AtrUB/MHZ Atzr:e/MHZ
zz 315
500 314
313
4007 3115 312 3115
300 311
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0.05 0.10 0.15 0.20 0.25 0.30 E/b
100 302
0 0.126 01128 0.130 0.132 0.134 ED

Figure S5. The E/D dependence of the A7™¢-value which is the solution of eq (f) with the parameters used for
the simulated spectrum in Figure S22. Red, green, blue, gray, cyan, magenta, yellow and brown curves
correspond to the assignments to M; = +7/2, +5/2, +3/2, +1/2, -1/2,-3/2, -5/2 and —7/2, respectively. Because all
the energies and the parameters were accurate, all the curves cross at one point. The black line indicates the A-
value (= 311.5 MHz) calculated by using the relationship (eq (1)) in the case of E/D = 0.13. The figure on the
right shows the expanded one in the range of 0.125 < E/D < 0.135.

Case 2

gtrue true

3 g

EID

EID

0.05 010 0.15 0.20 0.25 0.30 0.05 010 0.15 0.20 0.25 0.30

1-34

1.3 1
5 T

Figure S6. The calculated g™°-values by use of the g*f-value and g*/g™° relationships.

0.82 1431 7.72 2 . . .
—_—=1- = ith 1 = E/D. The g*/g'™¢ relationships adopted here are for the |[Ms=
P v Al LN v 7 gle ps adop IMs

+3/2>-dominant transitions.
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Figure S7. The simulated randomly-oriented X-band ESR spectra of complex 1 (S = 3/2). The spectra in blue
and red are based on the fictitious spin-1/2 and true spin Hamiltonian approach, respectively. Microwave
frequency used: 9.625 GHz, the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: g*f = [0.82, 1.3, 7.72],
Af(°Co) =919.2 MHz, D =14 cm™ and g™ and A."™°(**Co) for the variable E/D’s are calculated by using the
value of g° and the g*/g'™* relationships. The g-, A- and D-tensors were assumed to be collinear. Any strain
effect of the tensor to the linewidth was not included. The simulated spectra were obtained by using EasySpin
(ver. 6.0.6) [8].

130 170 210 250 290 330
Magnetic Field / mT

Qgig ~r i
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Figure S8. The simulated randomly-oriented ESR spectra of complex 1 (S = 3/2) as a function of £/D. The
spectra in blue and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively.
Microwave frequency used: 9.625 GHz, the peak-to-peak linewidth: 1.0 mT; the magnetic tensors: g° = [0.82,
1.30, 7.72], A-"(**Co) = 919.2 MHz, D = —14 cm™! and g™ and 47™(*°Co) for the variable E/D’s are shown in
Table S3. The g-, A- and D-tensors were assumed to be collinear. Any strain effect of the tensor to the linewidth
was not included. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8]. Note that the
resonance peaks marked by a single asterisk *, double asterisk ** and triple asterisk *** appear only for the true
spin Hamiltonian approach. Inset: the expanded spectra in the range of 130 mT to 330 mT.
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Table S3. The principal values of the g"™¢-tensor and A_.-values used in the simulated spectra of complex 1

. 1.3 1-31 082 1430 772 2 .
F 2 26). sue =1 — s =1- =1 th A = E/D. The g®/gt™e
(Figures S25 and S26) ST T o0 T o0 +\/1+3/12 wi / e gl/g

relationships adopted here are for the |Ms = £3/2>-dominant transitions.

E/D xx grr g7z E/D axx gry g7z

0.01 43.1 27.5 2.574 0.18 2.318 1.744 2.654
0.10 4.190 2919 2.599 0.19 2.198 1.669 2.662
0.15 2.780 2.033 2.630 0.20 2.090 1.602 2.671
0.16 2.606 1.924 2.637 0.25 1.687 1.353 2.723
0.17 2.453 1.828 2.645 0.30 1.427 1.195 2.782

One of the possible sets of the magnetic parameters: gxx = 2.318, gyy = 1.744, g7z = 2.654, A7(*°Co)

=316.0 MHz, D =—14 cm™! and E/D = +0.18. The extra line observed at about 200 mT was simulated when
E/D=+0.18.

130 170 210 250 290 330
Magnetic Field / mT
I

0 100 200 300 400 500 600 700 800 900
Magnetic Field / mT

Figure S9. The simulated randomly-oriented X-band ESR spectra of complex 1 (S = 3/2). The spectra in blue
and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. Microwave
frequency used: 9.625 GHz, the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: g = [1.30, 0.82, 7.72],
A=T(PCo) = 919.2 MHz, g™ = [2.318, 1.744, 2.654], A.™°(**Co) = 316.0 MHz, D =-14 cm™! and E/D = +0.18.
The g-, A- and D-tensors were assumed to be collinear. Any strain effect of the tensor to the linewidth was not
included. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8].
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Figure S10. The E/D dependence of the A7™¢-value which is the solution of eq (1) with the parameters used for
the simulated spectrum in Figure S1-5. Red, green, blue, gray, cyan, magenta, yellow and brown curves
correspond to the assignments to M; = +7/2, +5/2, +3/2, +1/2, -1/2,-3/2, -5/2 and —7/2, respectively. Because all
the energies and the parameters were accurate, all the curves cross at one point. The black line indicates the A-
value (= 316.0 MHz) calculated by using the relationship (eq (})) in the case of £/D = 0.18. The right figure
shows the expanded one in the range of 0.17 < E/D <0.19.

Table S4. Comparison of the theoretical and the experimental magnetic parameters. Theoretical values were
taken from the result of DFT calculations.

Theor. Expl. (Case I) Expl. (Case 2)
x 2.0671 2.025 2.318
g 2.0550 2.616 2.654
g: 2.1119 3.651 1.744
A-/MHz 84.49 311.5 316.0
D/em™ +9.9705 -14 -14
E/D +0.1666 +0.13 +0.18
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It is worth noting that the principal values of the g'™°-tensor are not permutable.

Table S5. Permutation of the obtained principal values of the g™¢-tensor.

Case xx gry 8zz

2.025 3.65 2.616
(a) 2.025 2.616 3.65
(b) 3.65 2.616 2.025
(c) 3.65 2.025 2.616
(d) 2.616 2.025 3.65
(e) 2.616 3.65 2.025

(CY—
(b)

(c) —*

(d) — et
(@ — ™

0 100 200 300 400 500 600 700 800 900

Magnetic Field / mT
Figure S11. The randomly-oriented X-band ESR spectra of complex 1 (S = 3/2), as simulated based on the
magnetic parameters in the literature [6] The spectra in blue and red are based on the fictitious spin-1/2 and true
spin Hamiltonian approaches, respectively. Microwave frequency used: 9.625 GHz, the peak-to-peak linewidth:
1.0 mT, the magnetic parameters: g1°" = 7.72, g,°T=1.30, g:*" = 0.82, 4,*T(*°Co) = 919.2 MHz, g™ are shown in
Table S5, 4,7(**Co) = 459.6 MHz, D = —14 cm™' and E/D = +0.13. The g-, A- and D-tensors were assumed to
be collinear. Any strain effect of the tensor to the linewidth was not included. The simulated spectra were
obtained by using EasySpin (ver. 6.0.6) [8].
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Expected ZF (Zero-Field)-Frequency domain spectra for complex 1:

6
6000 ‘ ‘ ‘ 25210
5000 - 5
4000 ¢
L5+
3000 ¢
1 L
2000 ¢
1000 051
A RN
0 1 2 3 4 856 858 860 862 864
Frequency/GHz Frequency/GHz

Figure S12. The simulated zero-field frequency-domain spectra of complex 1. The magnetic tensors: g™ =
[2.025, 2.616, 3.651], A.™°(**Co) = 311.5 MHz, D =14 cm™ and E/D = +0.13 and the linewidth was set
to 1 MHz. The g-, A- and D-tensors were assumed to be collinear. Any strain effect of the tensor to the
linewidth was not included. The simulated spectra (stick) were obtained by using EasySpin (ver. 6.0.0-
dev.29) [8]. The low-frequency region was attributed to hyperfine transitions. The broken vertical line on
the right indicates the value of VD? + 3E2 = 860.44 GHz in units of GHz.

10000 | | T T
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Frequency/GHz

Figure S13. The simulated frequency-domain zero-field Fourier-transform spectrum of complex 1 (S = 3/2). The
magnetic tensors: g = [1.30, 0.82, 7.72], A-*"(**Co) = 919.2 MHz and the linewidth was set to 1 MHz.
The g°- and A°-tensors were assumed to be collinear. Any strain effect of the tensor to the linewidth
was not included. The simulated spectra (stick) were obtained by using EasySpin (ver. 6.0.0-dev.29) [8].
No peak was expected to appear above 4 GHz, and the spectral pattern is rather simple.
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2. Complex 2

a) Perturbed energies for the case of non-collinear ZFS and A-tensors

Here, we derive the perturbed energies of the spin Hamiltonian including the ZFS, electron Zeeman and
hyperfine interactions in the case of non-collinear ZFS and A-tensors with a nuclear spin of / = 7/2, in which
the D.- and A.-axes are parallel. The zeroth-order energies and eigen-functions from the non-perturbed spin
Hamiltonian are the same as the previous section since the ZFS and g-tensors are assumed to be collinear.

The matrix representation of the hyperfine tensor transformed by a unitary matrix is given as follows,

A, 0 0 Ay Ay 0
A=[0 A, 0 |-A=[(4), A, 0
0 0 A4, 0 0 A,

Then, the perturbed Hamiltonian A’ can be denoted as follows.
H' = Hyes = S A"+ 1 = Sy Ay Ly + Sy Asy Ly, + S AL L + S Ay L, + S, AL, L
The matrix elements of the hyperfine structure Hamiltonian in the basis of |Ms, M are
(Mg, M{|Hygs|Ms, M) = 6M5M§5M1MI’MSMIAIZZ

1 T A
(Mg — 1, M} |Hp¢s| Mg, M;) = 1—65M1M;i1J 15 — 4Ms(Mg — 1)y/63 — 4M;M; (A}, + 1A}, + A}, F AY))

(Ms + 1, Mj|Hygs|Mg, My) = (Mg — 1, M;|Hygs| Mg, M;)*
where
1, i=j
Oy = {0, [ # ]

The upper and lower signs should be chosen in the double sign. The matrix representation of the hyperfine

splitting Hamiltonian expanded by the spin wavefunctions are given as follows.

M,
+— 5M,M,’Azz(2 cos2604 + 1)

Hygs >

<¢M +3(M1) ¢ i%(MI)> —

M,
*— Oy Azz(2 cOs 2605 — 1)

Hygs >

(1,402 1D s, -3 1)) =

Hhfs

1 Al Al T !
<¢M +1(M,) b, +%(M,)> = E,/63 — 4MM[ 8y 0141 [Corsc(Akx 1 1A%y ) + Coge (4 F AYy)]

ths ths

(g 2 D i, 30} = (8, _ 5D Hrs| i, 1)) = M8y 5in20,

Hhfs

1 . =
Y 3(M)) Y _3(M) =—,/63—4M,M;5MIM;i1[5+SS(A;,xJ_rley)+s_ss(lAyx+Ayy)]
MS 2 MS +2 2

ths ths

< 3(M1)

e O1D) = (0, _ 10

—

< (29 1(M1) Hpgs [

1(M,)> ,/ 63 — 4MM[ 8y py1 11 [Stce(Asx £ 14ky) = S_cc (14 F AYy)]

ths ths

(- 301

Vg a D) = (1, _20)

lpMsz_%(MI)> = MI(SMIMI’AZZ Sin 29_
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Hifs Hhs

(1,022 1)

Vs 100} = (,, 10

wMF%(M;)}*

<1/JMS=_%(M1') Hhgs

1 _
¢MS=_%(M,)> = S V68 = AMM 8y [Cocs (Al 141y) + Co (i) F 45,)]

<1/’MS=+%(M1') Hhgs Hhgs

Vs 300D} = (0, 5

wMF%(M;)}*

<1/) __1(M})|Hpgs Hpfs

Vs 300D} = (0, 5

Voo s D)

where

1
Cisc = 2 (\/§ cos 0, cosO_ + 2sin @, cos O_ — V3 sin b, sin 9_)
1
Siss = 7 (\/§ cosf,sinf_+2sinf,sinf_ + V3sin 0, cos 9_)
1
Sice = Z (—\/§ cosO,sinf_ =+ 2cosf, cosO_ — V3sin 0, cos 9_)

1
Cics = 7 (—\/§ sin@, sinf_+ 2cosf,sinf_ + V3 cos 0, cos 9_)

The zeroth-order energies, as shown below, are the same ones as in the previous case.

ey =t 2gzzﬁB V(D £ 9,,BB)? + 3E?

ey =75 gzzﬁB +/(D ¥ g,,8B)? + 3E2

The first-order energies are also the same ones as in the previous case.

M;
SJ(_:%?M, = i7AZZ(2 cos2604 +1)

M;
ef_é)'MI = i7AZZ(2 cos 260+ — 1)

where the upper and the lower signs should be chosen in the double sign.
The second-order energies are given as follows;
7|Crse(Aly + i) + Cgo (1Al — AL 4947 % sin? 26,
92:8B =D + g,.pB)* + 3E2 = (D — g,,BB)* + 3E2  —2/(D + g,,BB)? + 3E?
7|8 vos (Al + iAL) + S_ss (1A — A
92:8B = /(D + g,.PB)* + 3E? + /(D = g,,B)* + 3E?
7| (Csefe = Cosetyy)” + (Coselliy + Coscie) | 9417 sin? 26,
92288 — /(D + g,,BB)” +3E? — /(D = g,,fB)” + 362 ~2,/(D + g,,fB)? + 3E”
7[(Sussicn = S—ssAyy)” + (SassAry + S-ssdy)’|
92:8B = /(D + g,.8B)? + 3E? + /(D = g,,B)* + 3E?
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o 7| (Coseue + Csetly)” + (Coselly = Csehie) |

3,5
+§'+7 gzzﬁB - \/(D + gzz.BB)Z + 3E% — \/(D - gzzﬁB)Z + 3E?
! ! 2 ! I 2
12 [(C+schx - C—scAyy) + (C+schy + C—scAyx) ] %A’ZZZ sin2 29+

&

92:BB — /(D + g..BB)? + 3E? — /(D — g,,BB)? +3E?  —2,/(D + g,,BB)? + 3E?
7| (Sussicn + S-ssAy)” + (SussAry = S-sshi)’|

92:PB — /(D + g..BB)? + 3E? + /(D — g,,BB)? + 3E?
12 [(SissAe = S_ssAyy)” + (SussAiy + S_ssAyy)’|

92:PB — /(D + g..BB)? + 3E? + /(D — g,,BB)? + 3E?

0) _ 12 [(C+scAgcx + C—SCAS/y)Z + (C+scA;cy - C—scA;/x)z]
+%’+% gzzﬁB - \/(D + gzz.BB)Z + 3E% — \/(D - gzzﬁB)Z + 3E?
15 [(C+SCA;cx - C—scAgzy)z + (C+SCA;cy + C—scAS/x)z] %A'ZZZ Sil‘l2 29+

&

92288 — /(D + g,2BB)? + 3E% — /(D = g,,pB)? + 32 —2,/(D + g,,BB)? + 3E?
12 [(SessAe + S_ssAyy)" + (SussAy = S_ssAyy)’]

92:BB — /(D + g..pB)? + 3E? + /(D — g,,BB)? + 3E?
15 [(SessAe = S_ssAyy)" + (SussAiy + S_ssAy)’]

92:BB — /(D + g..pB)? + 3E? + /(D — g,,BB)? + 3E?

@) _ 15 I:(C+SCA;CX + C—SCASIy)Z + (C+SCA;CJ/ - C—SCA:’VX)Z:I
27 G.uBB — /(D + g;,PB)? + 3E% —\[(D — g,,pB)? + 3E7
16 [(C+SCA;cx - C—scAgzy)z + (C+SCA;cy + C—scAS/x)z] %A'ZZZ Sil‘l2 29+

&

gzzBB - \/(D + gzz.BB)z + 3E? — \/(D - gzz,BB)z + 3E? _2\/(D + gzz,BB)2 + 3E?
1 1 2 ! ! 2
15 [(Sess ke + S_sAyy)” + (SussAy = S_ssAy)’]
gzzﬁB - \/(D + gzz.BB)z + 3E? + \/(D - gzz,BB)z + 3E?
1 1 2 ! ! 2
16 [ (Sess ke = S_ssAyy)” + (SussAiy + S_ssAy)’]
gzzﬁB - \/(D + gzz.BB)z + 3E? + \/(D - gzz,BB)z + 3E?

@) _ 16 I:(C+SCA;CX + C—scAgly)z + (C+SCA;CJ/ - C—SCA:’VX)Z:I
272 9.uBB — /(D + g,,pB)? + 3E% —\[(D — g,,pB)? + 3E7
15 [(C+scAgcx - C—SCA;’VJ/)Z + (C+scAgcy + C—SCA:’YX)Z:I %A'ZZZ sin? 20,

&

gzzﬁB - \/(D + gzz.BB)z + 3E? — \/(D - gzz,BB)z + 3E? _2\/(D + gzz,BB)z + 3E?
1 ! 2 ! ! 2
16 [ (Sess ke + S_sAyy)" + (SussAy = S_ssAy)’]
gzzﬂB - \/(D + gzz.BB)z + 3E? + \/(D - gzzﬁB)z + 3E?
! ! 2 ! ! 2
15 [(Sess e = S_ssAyy)” + (SussAiy + S_ssAy)’]
gzzﬂB - \/(D + gzz.BB)z + 3E? + \/(D - gzzﬁB)z + 3E?
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N 12 [(C+scAgcx - C—scA;;y)z + (C+SCA;cy + C_scA’yx)z] %A’ZZZ sin? 29+
3
2 gzz.BB_\/(D +gzz.BB)2+3E2 _\/(D_gzzﬁB)Z + 3E? _2\/(D +gzzﬂB)2 + 3E?
! ! 2 ! ! 2
15 [ (SyssAe + S_syy)” + (SessAy = S_ssAy)’]
92:BB — /(D + g,,B8B)? + 3E% + /(D — g,,B8B)? + 3E?
! ! 2 ! ! 2
12 [(SyssAe = S_syy)” + (SessAy + S_sAyy)’|
92:BB — /(D + g,,B8B)? + 3E% + /(D — g,,B8B)? + 3E?

. 12 [ (Cosclli + CoscAyy)” + (CoscAy = CoscAi)’|
53 GuBB —\J© + g.BB) + 3E” — (D — g,,pB)? + 37
7| (Crsellion = Coscly)” + (CaseAiy + Csch)’| 25417 sin’ 26,
922PB — /(D + g,,BB)? + 3E2 = \/(D — g,,B)* + 362 —2,/(D + g,,8B)? + 3E?
12 [(SessAe + S_sAyy)" + (SussAy = S_ssyy)’]
9::PB = (D + g..BB)? + 3E2 + /(D — g,,8B)* + 3E?
7| (Sussicr = S—ssAyy)” + (SassAry + S_sshi)’|
9::PB = (D + 9..BB)? + 3E2 + /(D — g,,8B)* + 3E?

&

1 1 2 ! ! 2
_ 7 [(C+schx + C—scAyy) + (C+schy - C—scAyx) ] ‘t}—gA'ZZZ Sil’l2 29+
gzzBB - \/(D + gzz.BB)z + 3E? — \/(D - gzzBB)z + 3E? _2\/(D + gzz,BB)z + 3E?
! ! 2 ! ! 2
7| (Sussicn + S-ssAy)” + (SassAry = S-sshi)’|
gzzBB - \/(D + gzz.BB)z + 3E? + \/(D - gzz,BB)z + 3E?

o T (Crselli + Coacdyy) + (Crsclly — Cscdy)']
345 —G,,BB + (D — 9,.PB)? + 3EZ + /(D + g,,pB) + 352
7| (SccAie + S-cclyy)” + (SuccAry = S_cchy)’| 49417 sin? 26
~922BB + (D — 9,,pB)? + 3E% — /(D + g,,BB)? + 3E?  2,/(D — g,,BB)? + 3E?

&

o 7| (Coselier = Coscly)” + (Cusehly + Ccty)]
4545 —g,,BB + (D — g,.PB)? + 3EZ + /(D + g,,pB) + 352
12 [ (Cseline + Coseyy)” + (Crsciy = Cosclyy)']
~9:2PB + /(D = 9,,BB)? + 3E? + /(D + g,,BB)? + 3E?
7| (SuccAie = S—cclyy)” + (Succry + S_cchy)’|
~9:2PB + (D = 9,,pB)? + 3E? = /(D + g,,BB)? + 3E?
12 [(SyecAix + S—ccAyy)” + (SrccAy = S-celys)’| 2517 sin® 2.
" 9,288 + /(D — G, BB)E T 3B — (D ¥ G, BB + 3% | 2J(D - g, BB + 3E?

&
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o 12](Cosee = Csetly)” + (Coselly + CseAie) |
345 —922BB + /(D — g,,8B)* + 3E% + /(D + g,,$B)? + 3E2
15 [(C+scAgcx + C—scA;/y)z + (C+scAgcy - C—scAglx)z]

&

~922PB + /(D = gzzBB)* + 3E* + (D + g,,B)* + 3E*
12 I:(S+CCA;(X - S—CCA;/y)Z + (S+CCA;Cy + S—ccAglx)z]

_gzzﬁB + \/(D - gzz.BB)Z + 3E% — \/(D + gzzBB)Z + 3E?
15 I:(S+CCA;(X + S—CCA;/y)Z + (S+CCA;Cy - S—ccAglx)z]

2 .
243, sin® 26_

_gzzﬁB + \/(D - gzz.BB)Z + 3E% — \/(D + gzzBB)Z + 3E?

@) _ 15 [(CHcA;cx - C—SCA;/y)Z + (CHCA;W + C‘SCA;”‘)Z]
+%’+% _gzzﬁB + \/(D - gzz.BB)Z +3E% + \/(D + gZZBB)Z +3E?
16 [(C+scAgcx + C—SCAS/V)Z + (C+SCA;CY - C_SCA;x)Z]

&

_gzzﬂB + \/(D - gzz.BB)z +3E? + \/(D + gzz,BB)z + 3E?
15 [ (SyecAe = S—ceAyy)” + (Succy + S_ccAys) |

_gzzﬂB + \/(D - gzz.BB)z + 3E? — \/(D + gzz,BB)z + 3E?
16 [ (SyecAe + S—ceAyy)” + (StccAy = S_ccAys) |

2\/(D - gzzBB)z + 3E?

141 2 ;.2
747;" sin” 26_

_gzzﬂB + \/(D - gzz.BB)z + 3E? — \/(D + gzz,BB)z + 3E?

o 16 (Gt = Cactyy)’ + (Coctty + )]
77 —~g,.BB +/(O — g,,BB)? + 3E% + (D + g,,BB)” + 3E
15 [(C+scAgcx + C—SCAS/V)Z + (C+SCA;CY - C_SCA;x)Z]

&

_gzzﬂB + \/(D - gzz.BB)z + 3E? + \/(D + gzz,BB)z + 3E?
16 I:(S+CCA;CX - S—CCA:’Vy)Z + (S+CCA;CJ/ + S—CcAlyx)z]

_gzzﬁB + \/(D - gzz.BB)z + 3E2 — \/(D + gzz,BB)z + 3E?
15 I:(S+CCA;CX + S—CCA:’Vy)Z + (S+CCA;CJ/ - S—CcAlyx)z]

2\/(D - gzz,BB)2 + 3E?

141 2 ;.2
747, sin” 26_

_gzzﬁB + \/(D - gzz.BB)z + 3E2 — \/(D + gzz,BB)z + 3E?

@) 15 I:(C+SCA;CX - C—SCA:’Vy)Z + (C+scAgcy + C—SCA:’VX)Z:I

375 —G,BB + (D — g,.PB)? + 3EZ + /(D + g,,pB) + 352
12 [(C+scAgcx + C—SCA:’Vy)Z + (C+scAgcy - C—scAlyx)z]

&

_gzzﬁB + \/(D - gzz.BB)z + 3E? + \/(D + gzz,BB)z + 3E?
15 I:(S+CCA;CX - S—CCA:’Vy)Z + (S+CCA;CJ/ + S—CcAlyx)z]

_gzzﬂB + \/(D - gzz.BB)z + 3E? — \/(D + gzzﬁB)z + 3E?
12 [(S+ccAgcx + S—CCA;/y)Z + (S+CCA;C)/ - S—ccAglx)Z]

2\/(D - gzz,BB)z + 3E?

2 .
243, sin® 26_

_gzzﬂB + \/(D - gzz.BB)z + 3E? — \/(D + gzzﬁB)z + 3E?
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15
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&

@
272

&

12 [ (Cusedive = Coseyy)” + (Cosciy + Csclyy)|

~92:BB + /(D — g..hB)? + 3E2 + /(D + g,,8B)* + 3E?
7 [(C+scAgcx + C—SCAS/y)Z + (C+scA;cy - C—scAlyx)z]

~922PB + /(D = gzzBB)* + 3E* + (D + g,,B)* + 3E*
12 I:(S+CCA;(X - S—CCA;/y)Z + (S+CCA;Cy + S—ccAglx)z]

_gzzﬁB + \/(D - gzz.BB)Z + 3E% — \/(D + gzzBB)Z + 3E?
7 I:(S+CCA;(X + S—CCAS/y)Z + (S+CCA;(y - S—ccAlyx)z]

2541 2 2.2
FAz;" sin” 26_

_gzzﬁB + \/(D - gzz.BB)Z + 3E% — \/(D + gzzBB)Z + 3E?

7 [(C+scAgcx - C—SCAS/y)Z + (C+scA;cy + C—scA;/x)z]

~922BB + /(D = g2.8B)? + 3E2 + /(D + g,,BB)? + 3E?
7 [(S+ccAgcx - S—ccAgly)z + (S+ccAgcy + S—CCA:’YX)Z:I

2\/(D - gzzBB)z + 3E?

4941 2 :02
FAz;" sin” 26_

_gzzﬂB + \/(D - gzz.BB)z + 3E? — \/(D + gzz,BB)z + 3E?

2\/(D - gzz,BB)2 + 3E?

o foa?sin?20, 7| (Succhier = S—ccAiyy)” + (SyecAiy + S-cely)’|
e 2\/(D + g,,$B)? +3E2  g,,fB + /(D + g,,8B)? + 3E%2 — /(D — g,,8B)? + 3E?
7[(Creshive = Cocsyy)” + (CoesAiy + Cocsiys)’|
gzz.BB + \/(D + gzzBB)z +3E% + \/(D - gzz.BB)z + 3E?
@ 2541 % sin? 26, 7| (Succhier + S_ccAiyy)” + (SyecAiy = S-cely)’|
1

(2

&

—

5 =
22 2\/(D+gzzﬁB)2 + 3E? gzzBB+\/(D+gzz.BB)2 + 3E? _\/(D _gzz,BB)z + 3E?
! ! 2 ! ! 2
12 [(S+cchx - S—ccAyy) + (S+cchy + S—ccAyx) ]

gzz.BB + \/(D + gzz,BB)z + 3E2 - \/(D - gzz.BB)z + 3E?

7 I:(C+CSA;CX + C—csAgly)z + (C+CSA;C}/ - C—CsAlyx)z]

gzz.BB + \/(D + gzz,BB)z + 3E? + \/(D - gzz.BB)z + 3E?

12 [(C+csA;cx - C—csAgzy)z + (C+CSA;CJ/ + C—CSAS’X)Z]

gzz.BB + \/(D + gzz,BB)z + 3E? + \/(D - gzz.BB)z + 3E?

%A'ZZZ Sil’l2 29+ 12 [(S+CcAgcx + S—CCASIy)Z + (S+CCA;C}/ - S—CCA:’YX)Z:I

1.3~
~2*2  2y/(D + g,,pB)? +3E2  g,,fB + /(D + g,,8B)? + 3E% — /(D — g,,fB)? + 3E>
1 ! 2 ! ! 2
15 [(SrecAin = S—ccAyy)” + (StccAiy + S—ccAly)’|

gzz.BB + \/(D + gzz,BB)z + 3E2 - \/(D - gzz.BB)z + 3E?

12 [(C+csAgcx + C—CSA;/y)Z + (C+CSA;CY B C_CSA;’X)Z]

gzz.BB + \/(D + gzz,BB)z +3E2 + \/(D - .gzz.BB)z + 3E?

15 [(C+csA;cx - C—CSAS/y)z + (C+CSA;CY + C—CSA;’X)Z]

gzz.BB + \/(D + gzz,BB)z +3E2 + \/(D - .gzz.BB)z + 3E?
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1.1
2%z

—

&

2
11
272

—

&

(2
13
272

—

&

_ %A’ZZZ Sirl2 29+ n 15 [(S+ccAgcx + S—ccAgzy)z + (S+ccAgcy - S—ccAlyx)z]

- 2\/(D + gzz.BB)Z + 3E? gzzBB + \/(D + gzzﬂB)z + 3E? — \/(D - gzzBB)Z + 3E?
! ! 2 I ! 2
16 [ (StccAlex = S—ccAyy)” + (SeccAiy + S—ccAys)’]
gzzﬁB + \/(D + gzzﬁB)Z + 3E? — \/(D - gzzﬂB)z + 3E?
! ! 2 I I 2
15 [ (Cocoliex + CcsAyy)” + (Cresy = Cocsly)’|
gzzﬁB + \/(D + gzzﬁB)Z +3E% + \/(D - gzzﬂB)z + 3E?
! ! 2 I I 2
16 [ (Cacoliex — CcsAyy)” + (Cresy + Cocsy)’|
gzzﬁB + \/(D + gzzﬁB)Z +3E% + \/(D - gzzﬂB)z + 3E?

_ %A’ZZZ sin2 29+ 16 [(S+CCA;C)C + S—ccAgly)z + (S+ccAgcy - S—ccAlyx)z]

2D+ g..PBY +3E2  g,,BB + /(D + g,,BB)? + 3E% — /(D — g,,BB)? + 3E7
15 [ (StccAlex — S—ccAyy)” + (SeccAiy + S—ccys)’]
92:BB + /(D + g,,pB)? + 3E2 — /(D — g,,8B)? + 3E?
16 [ (Cacoliex + CcsAyy)” + (Cresy — Cocsy)’|
92:BB + /(D + g,.BB)? + 3E2 + /(D — g,,8B)? + 3E?
15 [ (Cacoliex — CcsAyy) + (Cresy + Cocsys)’|
92:BB + /(D + g,.BB)? + 3E2 + /(D — g,,8B)? + 3E?

_ %A'ZZZ Sil’l2 29+ 15 [(S+ccA;cx + S—ccAgly)z + (S+ccAgcy - S—CCA:’YX)Z:I

 2J(D +9,,BB)? +3E%  g,,BB + /(D + g,,BB)? + 3E2 — /(D — g,,BB)? + 3E?
12 [(SyecAe = S—ceAyy)” + (SuccAy + S_ccAys) |
922BB + /(D + g,,BB)? + 3E? — /(D — g,,BB)? + 3E?
15 [(Cacoliex + CocsAyy) + (Cresy = Cocslys)’|
922BB + /(D + g,,BB)? + 3E? + /(D — g,,BB)? + 3E?
12 [(Cocsliex — CocsAyy) + (Cresy + Cocsly)’|
922BB + /(D + g,,BB)? + 3E? + /(D — g,,BB)? + 3E?

24—514’222 Sil’l2 29+ 12 [(S+CcAgcx + S—CCASIy)Z + (S+CCA;C}/ - S—CCA:’YX)Z:I

 2J(D +9,.BB)? +3E?  g,,8B + /(D + g,,BB)? + 3E% — /(D — g,,BB)? + 3E?
1A 1 2 1A ! 2
7| (S-ccAlie = Sicclyy)” + (S-ccy + Siccdy)’|
gzz.BB + \/(D + gzz,BB)z + 3E2 - \/(D - gzz.BB)z + 3E?
! ! 2 ! ! 2
12 [(Cacsiex + CocsAyy)” + (Cresy — Cocsys)’]|
gzz.BB + \/(D + gzz,BB)z +3E2 + \/(D - .gzz.BB)z + 3E?
! ! 2 ! ! 2
7[(Cresin = Cocsyy)” + (CocsAiey + Cocsly)’]
gzz.BB + \/(D + gzz,BB)z +3E2 + \/(D - .gzz.BB)z + 3E?
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—

o __ Salsn2e, 7 |(Succhier + S_ccAiyy)” + (SuecAiy = S-cely)’|
2% 2/ +g,,BB) +3E? g,,B +/(D + g,,BB)? + 3E% — /(D — g,,BB)? + 3E7
7 (Cresin + Cocsiyy)” + (CocsAiy = Ccsiy)’]
922PB + /(D + g,,BB)? + 3E2 + /(D — g,,B)? + 3E2

&

o 7| (SrssAler + S ssAly) + (Sussy = S_sh) | 4941,% sin? 26
2% —052BB — D — 0,,BB)2 + 3E2 + /(D + g,,fB)? + 3B  —2,/(D — g,,pB)? + 3E*
7|(Cresin + Cocsyy)” + (CucsAiny = Cocsy)’|
08B = (D = g,,BB)” + 3E2 —\/(D + g,,BB)? + 3E?

&

L 7| (SussAler = SssAly)” + (Suashy + S_sy) |
22 —02BB — /(D — g;2BB)? + 3E% + /(D + g, fB)? + 3E*

12 [(SessAe + S_ssAyy)" + (SussAy = S_ssAyy)’] 2517 sin? 26.

~0228B — /(D — g;,fB)? + 3E2 + /(D + g,,pB)? + 3E2  —2,/(D — g,,pB)? + 3E7
7| (Cresin = CocsAyy)” + (CacsAiy + Cocshy)’|

~9:2PB =D = 9,,pB)? + 3E? = /(D + g,,BB)? + 3E?
12 [ (CacsAive + Ccsyy)” + (CresAty — CocsAly)’|

~9:2PB =D = 9,,pB)? + 3E? = /(D + g,,BB)? + 3E?

o 12[(Srssir = Sssh))” + (SussAly + SssAl)|
22 —0,.8B — (D — g,.BB)? + 3E2 + /(D + g,,pB)? + 3E7
15 [(SssAicr + S_ssAyy)” + (Sussiy = S_ssly) | 24,2 sin? 26._
~922BB =D — 9,.PB)? + 3E% + /(D + g,,BB)? + 3E?  ~2,/(D — g,..BB)? + 3E?
12 [ (CacsAive = Ccsyy)” + (CresAty + CocsAly)’|
~9:2PB =D = 9,,pB)? + 3E? = /(D + g,,BB)? + 3E?
15 [(CacsAive + CcsAyy)” + (CresAty = CocsAly)’]
~9:2PB =D = 9,,pB)? + 3E? = /(D + g,,BB)? + 3E?

&

o 15[ (Srssir = Sosshy)” + (SussAly + SssAl)|
27 —0,,8B — /(D — g,.BB)? + 3E2 + /(D + 4,,pB)? + 3E7
16 [(Syssir + S-ssAyy)” + (SussAiy = S_sslys)| 1472 sin? 26,
~922BB = /(D = 9,,PB)* + 3E% + \/(D + g,,$B)? + 3E?  ~2,/(D ~ g,,BB)? + 3E?
15 [ (CacsAive = CcsAyy)” + (CresAty + Cocsly)’]
~9:2PB =D = 9,,pB)? +3E? = /(D + g,,BB)? + 3E?
16 [(CacsAive + CcsAyy)” + (CrosAty — Cocsly)’]
~9:2PB =D = 9,,pB)? +3E? = /(D + g,,BB)? + 3E?

&
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) 16 [ (SyssAie = S-ssAyy)” + (SessAiy + S-ssAis) |
273 —9.,BB — /(D — 0,,BB) + 3E% + /(D + g,,fB)? + 3
15 [(SissAicr + S-ssyy)” + (Susslliy = Sssly) | 1472 sin? 26_
~922BB —\J(D = g,2BB)” + 3E2 + /(D + g,,BB)> + 362 —2/(D — g,,fB)? + 3E”
16 [(CacsAivx — CocsAyy)” + (CresAty + Cocsly)’|
02288 —\J(D = g..BB)” + 3E2 — /(D + g,,BB)? + 3E?
15 [ (CacsAive + CcsAyy)” + (CresAty = Cocsly)’|
02288 — /(D = g..BB)” + 3E2 — /(D + g,,BB)? + 3E?

o 15[ (Srssir = S_sshy)” + (SussAly + SssAl)|
2% —0sBB — D — 6,,BB)2 + 3E2 + /(D + g,,fB)? + 3E
12 [(SyssAicr + S-ssyy)” + (Sussiy = S_sslys) | 2472 sin? 26,
02288 = /(D — §,,BB)? + 3E2 + /(D + g,,BB)? + 362 —2,/(D — g,,fB)? + 3E7
15 [(CacsAive = CocsAyy)” + (CresAyy + CocsAly)’|
~92:PB = /(D = g,,BB)? + 3E? — /(D + g,,BB)* + 3E?
12 [ (Coesie + CocsAiyy)” + (Cresy = CocsAy)|
~92:PB = /(D = g,,BB)? + 3E? — /(D + g,,BB)* + 3E?

&

o 12[(Srssir = Sssh))” + (SussAly + SssAl)|
272 —0:BB — (D — g,,BB)? + 3E% + /(D + g,,fB)? + 3E7
7| (SyasAle + S-ssyy) + (SrasAly = S-ssAis) | 25417 sin? 2.
02288 = /(D — §,,BB)? + 3E2 + /(D + g,,BB)? + 362 —2,/(D — g,,fB)? + 3E7
12 [ (CacsAive = CcsAyy)” + (CresAty + Cocsly)’|
~9::B = /(D = g,,BB)? + 3E? — /(D + g,,BB)* + 3E?
7|(Cresin + Cocsyy)” + (CacsAiny = Cocshy)’|
~922BB — /(D — g::8B)? + 3E2 — /(D + g,,BB)? + 3E?

&

@ 7 [(5+ssA;cx - S—SSA;’VJ/)Z + (S+ssA;cy + S—ssAglx)z] %A’ZZZ sin? 26_
273 ~0,,BB — /(D — g,,BB)? + 3E2 + /(D + g,,pB)? + 362  ~2,/(D — g,,BB)? + 3E*
7 [(C+CSA;cx - C—CSA;IVJ/)Z + (C+CSA;Cy + C—CSA:’YX)Z:I

_gzz.BB - \/(D - gzz,BB)z + 3E2 - \/(D + gzz.BB)z + 3E?

&

In summary, when the ZFS and g-tensors are collinear but the ZFS and A-tensors are non-collinear and
the magnetic field is aligned to the z-axis of the principal axis coordinate system, the perturbed energies in
the second order are represented in a similar way as in the previous section, except for substituting only the
second-order energies. The expressions explicitly given above for the case including the hyperfine
interactions as the perturbation are for the first time derived and they are extremely accurate for the sizable

ZFS tensor.
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b) ESR Analysis of complex 2.
Table S6. The possible combinations of the g*/g"™¢ relationships
Case ge g g°fl/gtme Figure #
1-32
V1+322

1+ 321
1 1.21 1—— Figs. S14, S15,S16 S17 and S18
4 V1 + 342 &

2
V1+322
1-32
V1+322
1+ 31 Figs. 2 and 3 in the main text and

X 0.92 1-

z 8.8 1-

X 1.21 1-

2 0.92 1-——=
4 V14322 Figs. S19, S20, S21, S22 and S23
8.8 1 2
z . al——
V14322

* Case 2, which is highlighted in yellow, provides the most reasonably simulated ESR spectrum.

Case 1 (see Table S6 for the g°/g'™ relationship)

gtrue
ol
6l
4l
o} \
005 010 015 020 025 030 =0 0,05 010 0.15 090 025 030 /0
1-31

Figure S14. The calculated g™-values by use of the g-value and g*/g™ relationships. —e = 1 —

o5 NeEsye

121 _ . 1434 88 _ 2 e ) tru . . _
Py 1 T o0 1+ Neweres with 1 = E/D. The g®/g"™* relationships adopted here are for the |Ms

+3/2>-dominant transitions. The inset on the right shows the expanded figure in the range of 1.5 < g™°¢ < 3.5. The

broken lines indicate g™ = 2.0 and 3.0.
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Figure S15. The simulated randomly-oriented X-band ESR spectra of complex 2 (S = 3/2). The spectra in blue
and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. Microwave
frequency used: 9.625 GHz, the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: g*f=[0.92, 1,21, 8.8],
Af(°Co) = 1345.2 MHz, D = -9 cm™!, and g™* and 4,™(*’Co) for the variable E/D’s are calculated by use of
the g*-value and the g°/g"™° relationships. The ZFS and g-tensors were assumed to be collinear. A set of rotation
angles (Euler angles) of the A™¢-tensor with respect to the ZFS tensor were a=-90, =90, and y= 36 degrees.
(Note: Because only 4,-value was considered, of which the principal axis was parallel to the D.-axis, it seemed
that there was no effect on the spectra.) Any strain effect of the tensor to the linewidth was not included. The
simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8].
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Figure S16. The simulated randomly-oriented ESR spectra of complex 2 (S = 3/2) as a function of E/D. The
spectra in blue and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively.
Microwave frequency used: 9.625 GHz, the peak-to-peak linewidth: 1.0 mT; the magnetic tensors: g° = [0.92,
1.21, 8.80], 4z°T(**Co) = 1345.2 MHz, D = -9 cm™' and g™ and 47"™(**Co) for the variable E/D’s are shown in
Table S2-1. The ZFS and g-tensors were assumed to be collinear. A set of rotation angles (Euler angles) of the
A™¢-tensor with respect to the ZFS tensor were o =-90, £ =90, and y= 36 degrees. (Note: Because only 4,-
value was considered, of which the principal axis was parallel to the D--axis, it seemed that there was no effect
on the spectrum.) Any strain effect of the tensor to the linewidth was not included. The simulated spectra were
obtained by using EasySpin (ver. 6.0.6) [8]. Note that the resonance peaks marked by a single asterisk *, double
asterisk ** and triple asterisk *** appear only for the true spin Hamiltonian approach. The inset shows the
expanded spectra in the range of 120 mT to 300 mT.
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Table S6. The principal values of the g™ -tensor and A..-values used in the simulated spectra of complex 2
(Figures S17 and S18).

E/D xx gyy gzz E/D xx gyy gzz

0.01 30.5 40.5 2.934 0.14 2.108 3.184 2.989
0.10 2.965 4.307 2.962 0.15 1.967 2.999 2.998
0.11 2.691 3.948 2.968 0.20 1.479 2.364 3.045
0.12 2.464 3.650 2.975 0.25 1.194 1.997 3.014
0.13 2.272 3.398 2.982 0.30 1.010 1.764 3.172

One of the possible sets of the magnetic parameters: gxx = 2.108, gyy = 3.184, g7z = 2.989, A7A(*°Co)
=456.98 MHz, D = -9 cm™! and E/D = +0.14. The extra line observed at about 200 mT was simulated by

using the parameters.

120 160 200 240 280
| Magnetic‘Field /mT ‘ ‘ / ‘ ‘
0 100 200 300 400 500 600 700 800
Magnetic Field / mT

Figure S17. The simulated randomly-oriented X-band ESR spectra of complex 2 (S = 3/2). The spectrum in blue
and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. Microwave
frequency used: 9.625 GHz, (the spectrum in black) the magnetic tensors: g°T = 8.8, g,¢T=1.21, g:*" = 0.92,
A*(®*Co) = 1345 MHz, the peak-to-peak linewidth: 8.0 mT, strain of the linewidth: [0, 900, 900] MHz; (the
spectrum in blue and red) the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: gx*™ = 0.92, gyy*T=1.21,
g2 = 8.8, A7M(?Co) = 1345 MHz; gxy™ = 2.1085, gyy™ = 3.18412, gz/™ = 2.9895, 47/™(**Co) = 456.98
MHz, D = -9cm™ and E/D = +0.14. Any strain effect of the tensor to the linewidth was not included in the
spectra in blue and red. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8]. Inset: The
expanded spectra from 120 mT to 300 mT. The extralines attributed from the |Ms = +1/2>-dominant transitions
can be reproduced by using the true spin Hamiltonian (red line) but not by using the fictitious spin-1/2
Hamiltonian (blue line).

S155



t
AL IMHzZ

600

0.05 0.10 0.15 0.20.0.25 O.

30

3
Me=+—Me=——
ST ST,

t
A, IMHz

46Qf
459}
458t

457

456

=

455

EID 4

EID

0.136 0.138 0.140 0.142 0.144

Figure S18. The E/D dependence of the A7™-value which is the solution of eq (1) with the parameters used for
the simulated spectrum in Figure S2-5. Red, green, blue, gray, cyan, magenta, yellow and brown curves
correspond to the assignments to M; = +7/2, +5/2, +3/2, +1/2, -1/2,-3/2, -5/2 and —7/2, respectively. Because all
the energies and the parameters were accurate, all the curves cross at one point. The black line indicates the A-
value (= 456.98 MHz) calculated by using the relationship (eq (1)) in the case of E/D = 0.14. The figure on the
right shows the expanded one in the range of 0.135 < E/D < 0.145.

Case 2 (see Table S6 for the g°/g'™ relationship)

gtrue
8
6
4
2
- : : : : : EID . . . . - : EID
0.05 0.10 0.15 0.20 0.25 0.30 0.05 0.10 0.15 0.20 0.2570.30 /
Figure S19. The calculated g™ values by using the g*"-value and g°"/g" relationships. —ax = 1 — 134
" gyue J1+322°
092 _ . 1434 88 _ 2 g ofF) true . . _
grue = Tirsa oo 1+ NeeeTed with A = E/D. The g*/g"™* relationships adopted here are for the | My

+3/2>-dominant transitions.
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Figure S20. The simulated randomly-oriented ESR spectra of complex 2 (S = 3/2) as a function of E/D. E/D
used were 0.01, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. The spectra in blue and red are based on the fictitious spin-1/2
and true spin Hamiltonian approaches, respectively. Microwave frequency used: 9.625 GHz, the peak-to-peak
linewidth: 1.0 mT; the magnetic tensors: g* =[1.21, 0.92, 8.80], 4z°"(*’Co) = 1345.2 MHz, D = -9 cm™' and g'™°
and A47™¢(*Co) for the variable £/D’s are shown in Table S7. The ZFS and g-tensors were assumed to be
collinear. A set of rotation angles (Euler angles) of the A™°-tensor with respect to the ZFS tensor were a =-90,
P =90, and y=36 degrees. (Note: Because only 4,-value was considered, of which the principal axis was
parallel to the D.-axis, it seemed that there was no effect on the spectrum.) Any strain effect of the tensor to the
linewidth was not included. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8].
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Figure S21. The simulated randomly-oriented ESR spectra of complex 2 (S = 3/2) as a function of E/D. The
spectra in blue and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively.
Microwave frequency used: 9.625 GHz, the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: g*T=[1.21,
0.92, 8.80], A™(**Co) = 1345.2 MHz, D = -9 cm™' and g™, and A7™¢(*’Co) for the variable E/D’s are shown in
Table S7. The ZFS and g-tensors were assumed to be collinear. A set of rotation angles (Euler angles) of the
A™¢-tensor with respect to the ZFS tensor were o =-90, £ =90, and y= 36 degrees. (Note: Because only 4,-
value was considered, of which the principal axis was parallel to the D--axis, it seemed that there was no effect
on the spectrum.) Any strain effect of the tensor to the linewidth was not included. The simulated spectra were
obtained by using EasySpin (ver. 6.0.6) [8]. Note that the resonance peaks marked by a single asterisk *, double
asterisk ** and triple asterisk *** appear only for the true spin Hamiltonian approach. The inset shows the
expanded spectra in the range of 120 mT to 300 mT.
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Table S7. The principal values of the gi™e-tensor and A..-values used in the simulated spectra of complex 2
(Figures S22 and S23).

E/D axx gry g7z E/D axx gry g7z

0.01 40.1 30.8 2.934 0.18 2.157 1.957 3.025
0.10 3.900 3.275 2.962 0.19 2.045 1.873 3.035
0.15 2.587 2.281 2.998 0.20 1.945 1.797 3.045
0.16 2.425 2.158 3.006 0.25 1.570 1.518 3.014
0.17 2.283 2.051 3.015 0.30 1.328 1.341 3.172

One of the possible sets of the magnetic parameters: gxx = 2.283, gyy = 2.051, gzz = 3.015, AzA(*°Co)
=460.91 MHz, D = -9 cm™! and E/D = +0.17. The extra line observed at about 200 mT was simulated by

using the parameters.

120 160 200 240 280

Magnetic Field / mT
0 100 200 300 400 500 600 700 800
Magnetic Field / mT

Figure S22. The simulated randomly-oriented X-band ESR spectra of complex 2 (S = 3/2). The spectrum in blue
and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively. Microwave
frequency used: 9.625 GHz, (the spectrum in black) the magnetic tensors: g°T = 8.8, g,¢T=1.21, g:*" = 0.92,
A1*(®*Co) = 1345 MHz, the peak-to-peak linewidth: 8.0 mT, the strain parameters of the linewidth: [0, 900, 900]
MHz; (the spectrum in blue and red) the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: gxx*™ = 1.21,
gyyeff: 0.92, gzzeff= 8.8, Azzeff(”Co) = 1345 MHZ; gXXtrue = 2.2832, gyymle = 2.0512, gzztme = 3.0152, Azzt“‘e(”Co)
=460.91 MHz, D = -9cm™ and E/D = +0.17. Any strain effect of the tensor to the linewidth was not included in
the spectra in blue and red. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8]. Inset: The
expanded spectra from 120 mT to 300 mT. The extralines attributed from the |Ms = +1/2>-dominant transitions
can be reproduced by using the true spin Hamiltonian (red line) but not by using the fictitious spin-1/2
Hamiltonian (blue line).

In the simulated spectrum in Figure S22, 477" = 460.91 MHz was calculated by using the 4°/4te-

relationship for the principal z-axis because AYp® is parallel to GYM¢. The E/D dependence of Az/™
obtained by putting the magnetic parameters to the derived perturbed energies crosses at a point with E/D =

0.17 and Az;™ = 460.91 MHz (Figure S23).
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Figure S23. The E/D dependence of the A7™-value which is the solution of eq (7) with the parameters used for

the simulated spectrum in Figure S22. Red, green, blue, gray, cyan, magenta, yellow and brown curves

correspond to the assignments to M;=+7/2, +5/2, +3/2, +1/2, -1/2,-3/2, -5/2 and —7/2, respectively. Because all
the energies and the parameters were accurate, all the curves cross at one point. The black line indicates the Az
value (= 460.91 MHz) calculated by using the relationship (eq (1)) in the case of E/D = 0.17. The inset on the
right shows the expanded figure in the range of 0.165 < E/D < 0.175.

Table S8. Comparison of the theoretical and experimental magnetic parameters for complex 2. The
theoretical values were taken from the result of DFT calculations.

Theor. Expl. (Case I) Expl. (Case 2)
x 2.0705 3.18412 2.0512
g 2.0469 2.9895 3.0152
g: 2.1176 2.1085 2.2832
A,/MHz 72.37 456.98 460.91
D/em™ +9.9705 -9 -9
E/D +0.1666 +0.14 +0.17
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3. Complex 3

a) Perturbed energies in the case of non-collinearity between the ZFS and g-tensors for S = 3/2

Here, we derive the perturbed energies of the spin-Hamiltonian including the ZFS, electron Zeeman and

hyperfine interactions in the case of non-collinearity between the ZFS and g-tensors, in which the D.- and g-

axes are parallel. The non-perturbed terms include the ZFS and electron Zeeman interaction tensors:
Hy=S-D-S+fS-g-B

where the g-tensor is represented in the matrix form as

Ixx Gxy O
8=|9yx 9Yyy 0
0 0 9

Using 2nd-order parameters of ZFS (D and E) and with the magnetic field parallel to the z-axis of the ZFS

tensor, the non-perturbed Hamiltonian is described as
1
Hy=D|S? — §5(5 + 1)] +E(S2—S%) + 9..BS.B,

which is the same formula as in the collinear case. Therefore, the zeroth-order energies are the same as the
previous ones. Since the ZFS and A-tensors are collinear, the first- and the second-order perturbed energies

are already derived.
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b) ESR analysis of complex 3

Figure S24 shows the simulated ESR spectra of complex 3 as a function of £/D in the case of non-collinearity
between the ZFS and g-tensors. The principal values of the g-tensor were optimized for each value of £/D.
Since the A-tensor was assumed to be collinear with the ZFS tensor, A7™° in the right-most column in Table

S9 was calculated by using the 47/ A7™¢ relationship.
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Figure S24. The simulated randomly-oriented X-band ESR spectra of complex 3 (S = 3/2). The spectra in
blue and red are based on the fictitious spin-1/2 and true spin Hamiltonian approaches, respectively.
Microwave frequency used: 9.482 GHz, the peak-to-peak linewidth: 1.0 mT, the magnetic tensors: g =
[1.51,1.19, 7.6], A-*T(*°Co) = 745.5 MHz, D = 10 cm™! and g™ and 4,™°(*°Co) for the variable E/D’s are
in Table S9. The D- and A-tensors were assumed to be collinear. A set of rotation angles (Euler angles) of
the g'™°-tensor with respect to the D-tensor were o =—113, f= 180, and y= 0 degrees. Any strain effect of
the tensor to the linewidth was not included. The simulated spectra were obtained by using EasySpin (ver.
6.0.6) [8]. The resonance peaks marked by an asterisk *, double asterisk ** and triple asterisk *** appear
only for the true spin Hamiltonian approach. The broken line at 150 mT indicates the resonance position of
the extra line appearing in the experimental spectrum.

Table S9. The principal values of the g™e-tensor and A."™¢-values used in the simulated spectra of complex

3 in Figure S24.

EID=) gy gyme g/me AZ™/MHz
0.14 3.86 2.82 2.582 253.2
0.15 3.62 2.64 2.589 253.9
0.16 3.42 2.48 2.596 254.7
0.17 3.23 2.34 2.604 255.4
0.18 3.07 2.22 2.612 256.2
0.19 2.93 2.12 2.621 257.1
0.20 2.80 2.02 2.630 258.0
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0.21 2.68 1.93 2.640 258.9

0.22 2.57 1.86 2.649 259.8
0.23 248 1.79 2.659 260.8
0.24 2.39 1.72 2.670 261.9
0.25 231 1.67 2.681 262.9
0.26 2.24 1.61 2.692 264.0
0.27 2.17 1.57 2.703 265.1
0.28 2.11 1.52 2.714 266.3
0.29 2.14 1.48 2.727 267.5
0.30 1.98 1.45 2.739 268.7
0.31 1.93 1.42 2.752 269.9
0.32 1.87 1.39 2.764 271.1
0.33 1.82 1.37 2.777 272.4

We consider two cases, E/D = +0.14 (Case 1) and +0.33 (Case 2), where the extraline was simulated,

appearing at about 150 mT (indicated by the broken line in Figure S24).

Case 1

LJLunu
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Figure S25. The simulated randomly-oriented X-band ESR spectra of complex 3 (S = 3/2). The spectra in
black and blue are the same as given in Figure 9 in the manuscript. The spectrum in red is based on the true
spin Hamiltonian approach. Microwave frequency used: 9.4715 GHz, (the spectrum in red) magnetic
tensors: gy™° = 3.86, gy = 2.82, g/ = 2.5818, A/™°(**Co) = 253.2 MHz, D =—-10 cm™! and E/D =
+0.14, peak-to-peak linewidth: 1.0 mT. The ZFS and A-tensors were assumed to be collinear. A set of

S162



rotation angles (Euler angles) of the gi™e-tensor with respect to the ZFS tensor were a=-113, f= 180, and
y=0 degrees. Any strain effect of the tensor to the linewidth was not included in the spectrum in red. The
simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8]. The resonance peaks marked by an
asterisk *, double asterisk ** and triple asterisk *** appear only for the true spin Hamiltonian approach.
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Figure S26. The £/D dependence of the AY“®-value which is the solution of eq (1). Red, green, blue, gray,
cyan, magenta, yellow and brown curves correspond to the assignments to M;=+7/2, +5/2,+3/2,+1/2, —
1/2,-3/2,-5/2 and —7/2, respectively. Because all the energies and the parameters were accurate, all the
curves cross at one point. The black line indicates the 4z-value (= 253.242 MHz) calculated by using of the

relationship (eq (f)) in the case of £/D = 0.33. The right figure shows the expanded one in the range of
0.138 <E/D <0.142.
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Figure S27. The simulated randomly-oriented X-band ESR spectra of complex 3 (S = 3/2). The spectra in
black and blue are the same as given in Figure 9 in the manuscript. The spectrum in red is based on true
spin Hamiltonian approach. Microwave frequency used: 9.4715 GHz, (the spectrum in red) the magnetic
tensors: g¥u® = 1.82, gy = 1.37, gile = 2.7774, AT"¢(>°Co) = 2724 MHz, D = —10cm™! and
E /D = 40.33, the peak-to-peak linewidth: 1.0 mT. The D-, and A-tensors were assumed to be collinear. A
set of rotation angles (Euler angles) of the g'™°-tensor with respect to the D-tensor were o =—113, f= 180,
and y= 0 degrees. Any strain effect of the tensor to the linewidth was not included in the spectrum in red.
The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8] The inset shows the expanded
spectrum in the range from 135 mT to 365 mT. The resonance peaks marked by an asterisk * and double
asterisk ** appear only for the true spin Hamiltonian approach.
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Figure S28. The £/D dependence of the AY“®-value which is the solution of eq (1). Red, green, blue, gray,
cyan, magenta, yellow and brown curves correspond to the assignments to M;=+7/2, +5/2,+3/2,+1/2, —
1/2,-3/2,-5/2 and —7/2, respectively. Because all the energies and the parameters were accurate, all the
curves cross at one point. The black line indicates the 4z-value (= 272.403 MHz) calculated by using the

relationship (eq (f)) in the case of £/D = 0.33. The figure on the right shows the expanded one in the range
0f 0.325 <E/D <1/3.
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4. Discrepancy in the experimental g¢'-tensors between the conventional X-band and high-
field ESR spectroscopies for complex 4.

We have examined three possible cases below to evaluate the discrepancy in the experimental ge-
tensors between the conventional X-band and high-field ESR spectroscopies for complex 4.

Case I: Assuming that the experimental g®-tensor from the X-band spectroscopy is correct
and E/D = 0.26. The g*/g™¢ relationships give g™ = [2.46, 2.25, 2.54] (gave = 2.417) or [1.75, 3.16,
2.54] (gave = 2.483). The former choice gives the X-band simulated spectrum (Fig. 15) based on the
true spin Hamiltonian approach. The g.-value of 2.51 obtained from the high-field spectroscopy is
close to 2.54, while both the g.- and g,-values from the high-field spectroscopy disagree with those
from the X-band spectroscopy with the help of the relationships.

Case 2: Assuming that the experimental g'™°-tensor from the high-field spectroscopy is correct
and E/D = 0.26. The g°/g"" relationships give g* = [1.76, 1.30, 7.09] or [1.66, 1.37, 7.09], both of
which don’t seem reasonable.

Case 3: Assuming that both the g~ and g'™°-tensor (from the high-field spectroscopy) are
correct. The three g°/g'™ relationships give greatly different values for the ratio of £/D. We have
also invoked the relationships for the possible occurrence of the non-collinearity between the D- and
g-tensors, and there is no such possibility enabling us to reproduce the X-band spectrum.

|| =X-hand Exp.
| —High-field Exp.

0 100 20K 300 400 500 600
Magnetic Ficld / mT

Fig. S29 (black) The reproduced randomly-oriented X-band ESR spectrum of complex 4 (S = 3/2) shown in
the literature [10] and (red) the simulated ESR spectrum of complex 4 (S = 3/2) calculated by using the
magnetic parameters from the high-field experiment shown in the literature [11]. Microwave frequency
used: 9.474 GHz; (the spectrum in black) the magnetic parameters: g1 = 7.2, g = 1.97, g;¢T= 1.4,
A1*(*°Co) = 560.5 MHz, the peak-to-peak linewidth: 16.0 mT, the strain parameters of the linewidth: [0,
1850, 1600] MHz; (the spectrum in red) the magnetic parameters: g = [2.20, 2.08, 2.51], D =—38.7 cm™!
and £ =-10.0 cm™! (E/D = 0.26), the peak-to-peak linewidth: 16 mT. The D-, g- and A-tensors were
assumed to be collinear. Any strain effect of the tensor to the linewidth was not included in the spectrum in
red. The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8].
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Quantum Chemical Calculations
1. Cartesian coordinates of complex 1 - 3 optimized at the UB3LYP/6-31G* method with PCM (CH:Cl,
solvent)

Cartesian coordinates of complex 1

Co 1.123826 0.490574  -0.010374
2.965976 1.884343  -0.126014
4.883328  -2.635118 0.671629
6.078034  -1.576772  -0.939381

-1.734345 1.426148  -0.253925

-0.515978 2.014018  -0.049327

-1.211109  -0.907482  -1.082154
0.045033  -0.552557  -1.484883

-1.283233  -0.412126 1.433060
0.069572  -0.319422 1.609306
2.603479  -1.146266 0.055054

-2.664815 2.362564  -0.605923

-2.022244 3.593753  -0.613008

-0.687991 3.334682  -0.252148

-1.707009  -1.874947  -1.909060

-0.740435  -2.130543  -2.877237
0.336661  -1.281374  -2.580825

-1.855935  -0.977152 2.536527

-0.833582  -1.268268 3.434377
0.351638  -0.830267 2.824231

-4.084394 2.098417 -0.911242

-4.487495 1.071818  -1.780970

-5.836542 0.884945  -2.080938

-6.805366 1.724754  -1.526458

-6.415726 2.756457  -0.669091

-5.067262 2.941931 -0.364159
0.348681 4.365007  -0.039747
1.108034 4.401404 1.139602
2.007354 5.442072 1.372329
2.161905 6.462415 0.431329
1.410477 6.436636  -0.746359
0.507558 5399087  -0.977467

-3.029035  -2.518683  -1.789589

-3.792264  -2.725215  -2.952355

-5.025670  -3.373185  -2.887751

-5.516375  -3.826204  -1.660686

-4.762090  -3.633312  -0.501142

-3.526325  -2.990031 -0.564194
1.588593  -1.131930  -3.344723
2.223203  -2.265023  -3.881820
3.386990  -2.133898  -4.639312
3.932529  -0.869007  -4.874792
3.304871 0.264038  -4.351044
2.139952 0.135863  -3.593668

-3.301341  -1.181250 2.750563

-3.741659  -2.382762 3.332626

-5.094524  -2.588067 3.604133

-6.028957  -1.594866 3.300751

-5.600250  -0.393390 2.731325

-4.248167  -0.184165 2.462513
1.704526  -0.858377 3.414792
2.145796  -2.018360 4.075288

oloNokololololololookoloRokolololololo oo ko lolokoololoNolo o oo oo No N o RO N RO WAV A4y v 4y Ao NeN %]
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3.397735  -2.054280 4.688671
4.226586  -0.930217 4.657258
3.794931 0.229871 4.009482
2.542506 0.269187 3.394380
4.308976 0.635946 0.062850
3.906179  -0.741501  -0.495505
4988614  -1.770826  -0.178861
7.220943  -2.444679  -0.701188
8.092052  -1.911712 0.424726
-1.911540  -0.080795 0.043072
2.746176  -1.470750 1.013741
2.257855  -1.959268  -0.454391
-2.463532 4.553797  -0.837701
-0.814416  -2.832920  -3.694409
-0.943833  -1.666588 4.432150
-3.742481 0.426698  -2.233829
-6.128470 0.081625  -2.751631
-7.855748 1.577431  -1.762300
-7.161472 3.415726  -0.233152
-4.768013 3.737971 0.311764
0.977833 3.618268 1.879252
2.585214 5.457116 2.292555
2.861923 7.273174 0.614712
1.526182 7.225092  -1.485296
-0.076175 5381429  -1.893926
-3.419037  -2.363046  -3.906063
-5.604253  -3.520074  -3.795658
-6.478673  -4.328020 -1.609104
-5.132744  -3.984372 0.457717
-2.940270  -2.863999 0.339331
1.807148  -3.250807  -3.692551
3.869581  -3.019979  -5.042477
4.838978  -0.767047  -5.464985
3.718493 1.251608  -4.534885
1.647651 1.019401  -3.201577
-3.018249  -3.160378 3.561375
-5.417563  -3.524486 4.050693
-7.083095  -1.754503 3.509909
-6.318475 0.387643 2.498260
-3.923935 0.760662 2.039578
1.505032  -2.895538 4.096367
3.726314  -2.961227 5.188507
5.201016  -0.957041 5.136958
4.428231 1.112591 3.991516
2.208084 1.179649 2.906853
5.204965 0.982476  -0.458052
4.558700 0.536400 1.125926
3.806806  -0.658813  -1.579921
6.854921  -3.450752  -0.485515
7.753952  -2.450066  -1.653998
8.422373  -0.889965 0.211942
8.979646  -2.545082 0.532093
7.549045  -1.917900 1.374306
-3.062750  -0.362336 0.059984

zefianfiasiianfanfiasfiarfianfasfianfianfianfiasfianfianiianfasfasfianiianfiasfasfianiianfasfanfianiiacfiasfanfianiianfiasfanfianiiacfiasfanfianiiacfasfanfianfia=fic o NONONO O RO NONONQ!

Cartesian coordinates of complex 2
Co -0.043558 0.582647  -0.035243
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-1.494225
-4.461155
-5.433943
2.953527
1.859018
2.004779
0.773144
1.945580
0.708344
-1.919977
4.098858
3.732949
2.327259
2.418839
1.428697
0.417727
2.292723
1.252589
0.280797
5.470676
1.438343
3.727344
-0.876128
3.586910
-1.042377
-3.091390
-3.107314
-4.394294
-6.745713
-7.408269
2.759477
-2.105637
-1.801119
4.395854
1.443348
1.209802
-3.911600
-3.267684
-3.078156
-6.629786
-7.302599
-7.483196
-8.419921
-6.844482
3.819852
-1.667406
-0.752464
-1.222590
3.823576
4.578325
3.806557
3.609982
4.449712
3.714716
-1.387508
-0.962598
-1.815589
0.855179

2.394014
-1.533024
-0.041637

0.817266
1.644042

-1.003592
-0.449675
-1.231336
-0.712083
-0.611601

1.541185
2.876911
2.897147

-1.682763
-1.556524
-0.776004
-2.125173
-2.174832
-1.275094

0.938464
4.102869

-2.406488
-0.323032
-2.879232
-0.927002

1.491031

0.200728
-0.575692
-0.630324
-0.029744
-0.708439
-1.125572
-1.332312

3.726616

-1.969096

-2.779150

2.137476

1.236254
0.478745
-1.712330
-0.401260
1.058593
-0.436857
-0.272052

-1.257568
-1.076189
-0.145712

0.607257

-3.171732

-1.724522

-2.899029

-3.557980

-2.208224

-3.475071

0.055166
-0.899950
-1.667424

4.220019

-0.247271
-0.583094
0.822919
-0.111857
-0.139001
1.352062
1.583813
-1.192731
-1.467510
0.134957
-0.208362
-0.300583
-0.253066
2452641
3.419929
2.836417
-2.154110
-3.075263
-2.608161
-0.208871
-0.309053
2.540938
3.443370
-2.159523
-3.221622
-0.403655
0.439550
0.166444
0.592403
-0.636472
0.024319
-0.727999
0.846321
-0.389538
4.419105
-3.970644
-0.080793
-1.455685
1.495772
0.501087
1.502947
-0.546292
-0.742414
-1.542064
0.048489
3.332612
4.516099
2.983954
1.763141
2.435684
3.513745
-3.016222
-2.234480
-1.249343
-2.884691
-4.312942
-2.977484
0.611264
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Cartesian coordinates of complex 3

Co

TTTZITITZTITITITDT T T DWW Z2Z2Z2Z22Z2ZZ0O

2.043260
0.722829
5.671190
5.617107
6.217854

0.651550
-0.973842
3.281109
1.989548
3.420554
2.140823
2.930794
1.570666
-0.859668
-2.143032
-2.167185
-3.344154
-4.582359
-4.562650
-3.406366
-3.486590
-2.938636
-2.665500
-4.929312
-5.920738
-6.796278
-5.722037
-6.673588
4.025365
3.185109
1.921572
4.275622
3.529887
2.201444
3.373577
2.263684
1.155319
5.486712
0.649097
5.748185
0.986637
4.816272
-0.291411
3.717217
-0.786411
-0.715316
-3.268374
-5.516661
-3.574440
-2.926763
-1.924403
-3.092950
-1.628124
-2.685189
-5.390571

5.004506
4.041290
0.375168
0.252105
1.732916

0.036957
1.160152
-1.177174
-1.095052
1.145133
1.567047
-0.816287
-0.676612
-1.522602
0.526189
-0.886939
-1.630822
-0.994213
0.413788
1.197824
2.737523
3.304385
3.285909
3.257910
-1.754142
-1.354804
-3.281239
-1.403080
-1.910996
-2.312909
-1.775677
2.199385
3.330787
2.891559
-1.289627
-1.458102
-1.058341
-2.185101
-1.894329
2.087392
3.695052
-1.553841
-1.026800
-0.353373
-2.071501
-2.189252
-2.713941
0.923480
2.995095
4.401917
2.950382
2.941480
2.952641
4.383631
2.910457

-0.443413
-1.135292

0.709379
-1.050540
-0.287909

-0.204214
-0.174056
-0.999643
-1.441692
-0.027405
-0.294169
1.493073
1.522521
-0.262936
-0.129668
-0.167116
-0.119864
-0.029880
0.007223
-0.037897
-0.005710
-1.337666
1.186389
0.155987
0.023161
-1.188745
-0.015840
1.328779
-1.868245
-2.898846
-2.595030
-0.066794
-0.369894
-0.506336
2.685275
3.506113
2.741232
-1.684034
-3.380077
0.186056
-0.851021
2.989888
3.132721
0.239755
-1.119873
0.495993
-0.153675
0.076249
-2.176606
-1.312170
-1.528690
2.136543
1.134245
1.189151
1.087941
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-5.574847
-4.915786
-7.760907
-6.300208
-6.999878
-5.221644
-6.695534
-5.130543
-6.084395
-6.884105
-7.632398
3.454669
3.900749
2.262849
6.080133
5.842089
5.690917
0.115295
0.859938
-0.025500
5.961953
6.207901
6.239081
1.010333
0.935181
0.083257
5.252355
4.908660
5.419501
-0.878192
-0.411643
-0.723190
4.887251

2.958982
4.353914
-1.877228
-1.615526
-0.278804
-3.602948
-3.783388
-3.636719
-1.688726
-0.330717
-1.934853
-2.909779
4.341064
-1.815769
-1.264036
-2.831196
-2.686859
-2.828583
-1.896414
-1.057518
1.690158
3.076505
1.428426
4.012534
4.604504
3.106105
-2.280005
-1.954867
-0.641264
-0.427690
-0.594395
-2.035345
-0.507771

-0.678112
0.183228
-1.156566
-2.131152
-1.204507
-0.936553
0.024029
0.835955
2.208161
1.401161
1.374361
-3.759150
-0.475481
4.526447
-1.700946
-2.491292
-0.731835
-3.159557
-4.454084
-3.173534
1.184482
0.109595
-0.538797
-1.901674
-0.241426
-0.686154
2.295159
4.002704
2.929418
2.431256
4.131603
3.166273
0.426123
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2. Relationship between molecular structures and principal axes of the A, g, and D tensors.
The relationship between the molecular structures and principal axes of the theoretical magnetic tensors for
complex 1-3 calculated in this study are summarized in Figure S30. The calculations were carried out by two

methods, i.e., DFT and CASSCF.

DS5+50 tensor g tensor A(%9Co) tensor

Molecules

DFT CASSCF DFT CASSCF DFT
Y Y Y
z ‘—l z ‘4 z ‘—"l
X X X
Y 7 X
z
X / Y
X X Y
’ ﬁ ’ /L
ra
v y
Figure S30. Relationship between the molecular structures and principal axes of the theoretical D-, g-, and A-

tensors for complex 1-3. The principal axes of the magnetic tensors obtained by the DFT and CASSCF
method are depicted.
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3. CASSCEF calculations of complex 1-3.

The cobalt complexes 1-3 have trigonal bipyramidal structures at the UB3LYP/6-31G* optimized geometries.
In the trigonal bipyramidal coordinations, the valence d orbitals split into three groups: dx, and dy, (e”
symmetry in D3 point group), dxy and dx—y2 (€), and d,2 (a1") orbitals. The e" orbitals (dx, and dy,) are the
most stable among the three groups, and the d» orbital is the most unstable. The Co' complexes under study
have seven valence d-electrons and therefore the main configuration of the spin-quartet ground state is given
by (dxz)*(dy2)*(dxy)'(dx2-y2)'(d-2)". The energy gap between the e” and e’ orbitals is generally small and thus
excited states arising from the electron excitation from the e" to e’ orbitals have small excitation energies.
We note that such a quasi-degeneracy of the electronic states prevents us to predict the g- and DSC-tensors by
means of DFT methods for those magnetic tensors. Those magnetic tensors can be calculated by using the
second-order perturbation theory starting from a non-relativistic wavefunction as the unperturbed
wavefunction. Thus, we carried out CASSCF calculations of the electronic ground and excited states of
complex 1-3. In the present study, we used the Sapporo-DZP basis set only for the cobalt atom, and the 3-
21G basis set for the other nuclei, due to the limitations of our computational resources.

The CASSCEF active space of complex 1-3 is illustrated in Figure S31. The active space consists of the
valence 3d orbitals/electrons of the cobalt atom. We carried out the state-specific (SS) CASSCF for the
electronic ground state. Electronic excited states calculations were carried out at the CAS-CI level by using
the SS-CASSCEF canonical orbitals for the ground state. The CASSCF excitation energies, major electronic
configurations having the CI coefficient ¢ greater than 0.3 (¢ > 0.3), and contributions to the principal values
of the g- and DSC-tensors are summarized in Tables S10-S12. From the Tables S10-S12, the wavefunction
of the 1 A ground state is well described by the single configuration, justifying the usage of DFT for the
ground state geometry optimizations and the A-tensor calculations. However, complex 1-3 have many low-
lying excited states, and the first excited quartet state (2 “A) is calculated to be ca. 2,000 cm™! above the
ground state. From the CASSCF wavefunction analyses, the 2 #A state contributes significantly to the g- and
D59, principal values. The other low-lying states also have non-negligible contributions to the g- and D3°-
tensors. In the DSO-tensor, the spin-doublet and quartet states have positive and negative contributions,
respectively, to the principal value of the DSC-tensor. This is because the absolute sign of the coefficients
depending on the difference in spin quantum numbers between the ground and excited states appearing in the
sum-over-states formula is different for AS =0 and 1 [12]. Note that only the electronic excited states having
the same spin quantum number as the electronic ground state can contribute to the g-tensor, and therefore the

spin-doublet excited states have no contributions to the g-tensor of complex 1-3.
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Orbital energy/Hartree

0.1

0.0

1

N

Figure S31. The CASSCF canonical orbitals of the electronic ground state of complex 1-3. Red arrows specify
the main electronic configuration of the ground state.

Table S10. The electronic states of complex 1 calculated at the CASSCF(7e,50)/Sapporo-DZP(Co) and 3-
21G(other nuclei) level.

i DOi¢/em™!
State Main configurations® AE/cm™ 'g . om
=x i=y i=z i=x i=y i=z
1A 0.9 (22uuu) 0
—0. +0.
pip  OO2MRMWHE0 @I e G014 00019 04745 —0.1523 03854 —46.8702
—0.42 (uu22u)
3ep ORI TOSIQUIM 5000 0005 01129 00010 -5.5054 159127  —0.1709
—0.38 (2uu2u)
gep 073 QUOWTOAWRIDCh00 00300 00391 00882 49773 22337 87662
—0.42 Quuu2)
SYA —0.69 (u2u2u) +0.46 (2uu2) 6302  0.1187 0.0426 00354 145984 -1.5917 -3.8114
69A  —0.82 (wu2u2)+0.49 (L2uu2) 10477  0.0227 0.0006 0.0003 -2.3709  —0.0107  —0.0461
74A 0.90 (uuu22) 14193 00001  0.0000 0.0002 —0.0064 —0.0001  —0.0221
—0. +0.
gap 0 (uu22WFOSI QAN )60 00004 00000 00001  -0.0505  —0.0006 —0.0165
+0.32 (u22uu)
—0.43 (u2uu2) +0.41 (2uu2u)
gipn 040 (a2 7038, 667 00016 00000 00000 —-0.1626  —0.0058  —0.0032
(2uuu2)
—0.33 (uu22u)
josa 003 QuuD)TOST@IMD - osa0, 00000 00000 00012 -0.0004  —0.0002  —0.1424
+0.34 (uuu22)
124 0.90 (222u0) 15 806 0.0709 00166 13954
22A 083 (2220u) +0.34 (u22du) 18482 04716  3.8617  0.1008
324 —0.76 (22u20) —0.39 (2u220) 18905 0.2849  0.0031  0.0044
42A  —0.86 (22udu) 20 815 0.0005  0.0004 02521
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52A
62A
72A

8 2A

92A

10 2A

112A

122A

132A
142A
152A
16 2A
172A
18 2A

192A

20 2A
212A
222A

23 2A

24 2A

252A

26 2A
27 2A
28 2A
29 2A

30 %A

312A

322A

332A
342A
352A

36 2A
372A

—0.55 (22uud) +0.44 (2u2ud)
—0.38 (u22ud)

0.53 (u22du) —0.31 (u2202)

—0.55 (2u2du) +0.32 (u22ud)
—0.31 (ud22u)

—0.50 (2uu2d) —0.50 (u22ud)
+0.34  (u2u2d) —0.33

(2u2ud)

0.62 (2ud2u) +0.44 (2202u)
—0.37 (u2d2u)

—0.35 (u22ud) —0.35 (2u220)
+0.31 (u2220) -0.31

(u22du)

—0.66 (22uud) —0.42 (2u2ud)
+0.42 (uu22d)

—0.48 (uu22d) —0.35 (u2u2d)
—-0.31 (Quu2d)  -0.30

(u2220)

0.52 (2202u) —0.33 (2022u)

—0.55 (u2d2u) —0.33 (2ud2u)
+0.32 (u2202)

—0.61 (22u02) —0.34 (u2ud2)

0.46 (u2202) +0.41 (2uud2)
+0.34 (2uu2d)

0.76 (uu2d2)

—0.58 (ud2u2) +0.45 (u2du2)

—0.40 (2udu2) +0.38 (2022u)
+0.38 (202u2) 030

(u2d2u)

0.51 (022u2) +0.41 (u2du2)
—0.39 (2ud2u)

—0.46 (2u022) +0.38 (u2022)

—0.57 (udu22) +0.40 (uu2d2)
+.31 (ud22u)

0.43 (220u2) +0.40 (2u022)
+0.39 (u2022)

—0.49 (20u22) +0.45 (02u22)
—0.32 (uu22d)

—0.45 (udu22) +0.40 (u2ud2)
+0.38 (Quud2)  -0.37

(ud22u)

0.75 (uud22)

—0.57 (u0222) +0.55 (0u222)

0.61 (u0222) +0.60 (0u222)

0.30 (u22ud)

—0.39 (u2220) —0.36 (2uud2)
-0.35 (2u220) 032

(220u2)

0.34 (2u2ud) —0.33 (u2u2d)

0.45 (ud22u) —0.43 (22u02)
—0.38 (2u202)

0.40 (uu22d) +0.36 (ud2u2)
—0.33 (20u22)

0.45 (udu22)

0.49 (2udu2) +0.35 (2022u)
—0.34 (0222u)

0.50 (0222u) +0.46 (2022u)

—0.37 (u2022) —0.35 (u2220)

21295
22369
22 444

22713

24513

26 118

26 660

271759

28 941
29 642
30 641
31374
31 864
32467

32 864

32 897
34311
34732

34 898

35717

36298

36 557
37 356
37 660
47 832

48 183

48 892
49 194

49 327
49 808
50131

72 823
73 119

0.0000
0.6478
1.2149

0.0067

0.4439

0.0617

0.0001

0.0003

0.5128
0.0024
0.3129
0.0004
0.0016
0.0307

0.1310

0.4325
0.0247
0.5894

0.0275

0.0260

0.7669

0.0012
0.0006
0.1560
0.1514

0.0001

0.0004

0.0721

0.0021
0.0757
0.0021

0.0175
0.0006

0.0019
0.2101
0.5107

0.4881

4.4679

0.1222

0.0002

0.0023

0.0567
0.0001
0.1998
0.0404
0.0022
0.0031

0.0980

0.2606
0.4635
0.0919

0.0173

0.0014

0.1846

0.0033
0.0024
0.0052
0.1085

0.0007

0.0043

0.0001

0.0016
0.0294
0.0002

0.0808
0.0062

1.7546
0.9411
0.4749

0.0001

0.0019

0.0002

0.0418

0.0008

0.0105
0.3352
0.0212
0.0412
0.0133
0.5266

0.1134

0.0108
0.0175
0.0118

0.5097

0.0175

0.0183

0.3389
0.1563
0.0001
0.0001

0.3052

0.0689

0.0061

0.0003
0.0003
0.0008

0.0003
0.0050
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—0.31 (u0222)
~0.46 (220u2) +0.41 (12022)

3824 —041  (022u2) —036 74198 0.0004 00001  0.0324
(202u2)
3924 0:49(20u22) 1041 (02u22) g 00036  0.0223  0.0021

+0.37 (202u2)
40°A  —0.45 (2u022) —0.44 2u202) 75076 0.0005  0.0127  0.0022

@ The CAS-CI configurations having the coefficient |c| > 0.3 are listed. 2, 0, u, d represents for doubly occupied, unoccupied,

spin up (o), and spin down (B), respectively. ? Contributions to the g-tensor principal values. ¢ Contributions to the DSC-tensor

principal values.

Table S11. The electronic states of complex 2 calculated at the CASSCF(7e,50)/Sapporo-DZP(Co) and 3-
21G(other nuclei) level.

o DS%¢/em™!
State Main configurations® AE/cm™ .g . . . cm .
1=X l=y 1=z I1=X l:y 1=z
14A  1.00 (22uuu) 0
~0.71 (2u2uu) +0.49 (u22
24A (2u2uu) (u22uu) 1977  0.0003 0.0000 04439 —0.0316 —0.0106 —44.2742

—0.43 (uu22u)
—0.69 (u22uu) —0.51 (2u2uu)

4 _ _ -
A 035 uuzw) 3007 0.0054 02529 00002 —7.0272 —18.9203  —0.0193
0.70 (u2u2u) —0.43 (v2uu2)
4 - _ _
A T3 (uazw £0.30 (w22 6518  0.1453  0.0007 0.0294 —9.8770 —4.9400  —3.1113
. +0.
s54q 066 Quuw) 053 (wu22u) 6860 0.0494 0.0017 00595 —4.1264 —1.2630 —6.0028
+0.43 (2uuu?2)
6ia 075 (u2u2) =0.52 (u2uu2) 10740 0.0220 0.0129  0.0000 -3.6012  —0.0043  —0.0054
—0.40 (2uuu?2)
74A  0.88 (uuu22) 14958  0.0000 0.0000 0.0001  —0.0056 —0.0001  —0.0148

—0.60 (uu22u) +0.50 (u2u2u)
84A  —0.32 (u22uu) +0.31 (2uu2u) 24248 0.0001 0.0001 0.0003 —0.0171 —0.0001 —-0.0270
+0.31 (uuu22)
—0.52 (uu2u2) —0.51 (2uuu2)
94A  +0.43 (2uu2u) +0.33 (u22uu) 25270  0.0007 0.0008 0.0000 —0.1587  —0.0031 —0.0024
—0.31 (u2uu2)
—0.59 (u2uu2) +0.54 (2uuu2)

4 . _ -
1094 S u22) 031 (uzugy 26129 00000 00000 00010 00050 —0.0003  ~0.1209
124 —0.90 (222u0) 15 467 0.0263  0.0393  2.1946
227 0.84 (2220u) 18290 0.9997 29740  0.0355
~0.73 (22u20) —0.42 (2u220)
2
VA0 w0 19 024 02786  0.0039  0.0017
427 —0.80 (22udu) +0.31 (22uud) 20 944 0.0006  0.0000  0.0449
0.56 (22uud) —0.36 (2u2ud)
2
A 035 (uzde) 21257 0.0030  0.0001  1.8859
62A  —0.49 (2u2du) +0.36 (u22ud) 22 401 12926 05125  0.3884
724 —0.53 (u22du) +0.32 (u2202) 22509 04278 0.0923  1.0595
~0.47 (u22ud) +0.43 (2uu2d)
2
A 041 unud) 039 uzg) | 2259 0.0067  0.6552  0.0158
—0. +0.
g2p 038 (Qud2w)H048 (2d2u) 50 03946  3.8991  0.0004

—0.33 (2202u)

0.35 (u22ud) +0.35 (u22du)
102A  —0.33 (22u20) +0.31 (2u220) 26 152 0.1104 0.1489 0.0171
—0.31 (u2220) —0.30 (ud22u)
—0.58 (22uud) —0.46 (2u2ud)

112A 26 873 00104  0.0079  0.0549
—0.37 (uu22d)

122A  0.56 (uu22d) +0.32 (u2u2d) 27925 0.0001  0.0000  0.0002

132A —0.56 (2202u) +0.33 (2022u) 29177 05921  0.0427  0.0003
0.50 (u2d2u) +0.35 (2ud2

142A (u2d2u) (2ud2u) 30 028 00287  0.0016 03716

+0.31 (u2202) —0.30 (0222u)
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1524 —0.61 (22u02) +0.34 (u2ud2) 30 829 0.1929 03658  0.0011
0.44 (2uud2) —0.38 (u2202)

2
1638 s u20m) 1031 auzgy 317 0.0002  0.0081  0.0075
1724 —0.75 (wu2d2) 32148 0.0086  0.0524  0.0082
~0.47 (ud2u2) —0.44 (2udu2)
2
1824 0% (2de2) 32 661 0.0169  0.0003  0.8967
0.47 (u2du2) +0.44 (022u2)
2
1924 0 0 (udou) 33234 04783 01363  0.0167
~0.42 (2udu2) —0.38 (u2d2u)
202A  +0.36 (202u2) +0.34 (2022u) 33 318 03034 00604  0.0378
+0.32 (ud2u2)
0.45 (2u022) —0.36 (2202u)
2
28 e 032 oz 47T 0.4990 03616  0.0014
0.45 (udu22) +0.42 (uu2d2)
2
2240 35 350 03930  0.0217  0.0333
232A  0.48 (12022) —0.45 (220u2) 35 449 0.0627  0.0055  0.6004
242A  0.49 (20u22) —0.42 (02u22) 36234 0.0300 00127  0.0448
0.47 (udu22) +0.46 (u2ud2)
2527 +0.33 (02u22) —0.32 (ud22u) 36 896 05533 02555  0.0013
+0.32 (2uud2)
2624 0.79 (uud22) 37286 0.0017 00025 02781
272A  —0.65 (u0222) +0.52 (0u222) 37929 0.0011  0.0005  0.0218
2824 0.66 (0u222) +0.56 (u0222) 38429 0.0720  0.0027  0.0006
2924 034 Qu20)LO3T(22ud) 0o 0.1054  0.1623  0.0056

~0.31 (022u2)
3024 0.45 (u2220) —0.36 (220u2) 48 394 0.0102  0.0021  0.2768
0.33 (u2u2d) —0.33 (2uud2)

A 05 uzad) 49 138 0.0015  0.0001  0.0610
3224 i)';; 7(11(32?13)2;252 3(2(‘111?%)2) 49 520 0.0908  0.0000  0.0129
3324 i)g; 1(11(3?12?1)2)_351 1(0(;1(;31?2) 49714 0.0000  0.0000  0.0041
3424 ;8:;5 8(213(212 033 u2d2) 5504 0.0625  0.0284  0.0000
3524 9';; 5(2(‘;‘;3121)2;3()32 éﬁ?z) 50 556 0.0002 00012 0.0015
36 2A :8:;2 ggiz; T0AT@0Z2D) 43 g 0.0304  0.0609  0.0015
3724 038(u2022)70.36 u2220) 4y g 0.0002  0.0031  0.0029

~0.31 (u0222)
3824 —0.37(220u2) —0.36 (u2022) 74 598 0.0001  0.0082  0.0310
0.54 (20u22) +0.42 (202u2)

+0.35 (02u22) —0.30 (22u02)
402A  —0.51 (2u022) —0.43 2u202) 75492 0.0003  0.0060  0.0042

@ The CAS-CI configurations having the coefficient |c| > 0.3 are listed. 2, 0, u, d represents for doubly occupied, unoccupied,

392A 74 969 0.0018 0.0114 0.0197

spin up (o), and spin down (B), respectively. ? Contributions to the g-tensor principal values. ¢ Contributions to the DSC-tensor

principal values.

Table S12. The electronic states of complex 3 calculated at the CASSCF(7e,50)/Sapporo-DZP(Co) and 3-
21G(other nuclei) level.

gi DS%;¢/cm™!

State Main configurations® AE/cm™! . | . . . .
i=x i=y i=z i=x i=y i=z

1*A  —0.99 (22uuu) 0

24A  —0.87 (u22uu) —0.40 (uu22u) 2107  0.0006 0.0021  0.4802 —0.0145 —0.5993  —47.1967
34A  —0.85 (2u2uu) +0.47 (u2u2u) 2971  0.0131  0.2198  0.0009 —14.7149 —8.6068 —0.1838
44A  0.69 (2uu2u) +0.59 (uu22u) 6117 0.0077 0.0019  0.1020 —-0.1673 —0.5887 —10.4763
54A  0.72 (u2u2u) +0.46 (2uuu2) 7542  0.1591  0.0081 0.0011 —6.5924 —-10.6713 —0.0418
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64A
74A

8 4A

94A
10 *A
12A
22A
32A

42A
52A
62A
72A

8 2A
92A

10 2A

112A

122A

132A

142A

152A
16 2A

172A

18 2A

192A

20 2A

212A

222A
23 2A

24 2A

252A

26 2A

—=0.75 (uu2u2) +0.60 (2uuu2)

0.84 (uuu22) —0.33 (2uu2u)
+0.32 (u2uu2)

0.54 (2uuu2) —0.45 (u2u2u)
+0.42  (uu2u2) -041

(2u2uu)
—=0.35 (u2uu2)

—0.57 (uwu22u) +0.54 (2uu2u)
+0.45 (uuu22)  +0.36

(u22uu)

0.76 (u2uu2) +0.33 (uu2u2)

—0.89 (222u0)

0.74 (22u20) —0.48 (u2220)

—0.81 (2220u) —0.34 (2u2du)

—0.66 (22udu) +0.45 (22uud)
+0.40 (u22ud)

—0.55 (22udu) —0.43 (22uud)
-0.34  (u22ud) +0.33

(u22du)

0.52 (u22du) +0.47 (2u2ud)

0.57 (u2u2d) —0.53 (2u2ud)

—0.49 (2u2du) —0.41 (u22du)

0.67 (u2d2u) —0.42 (2202u)

0.45 (22uud) —0.36 (2u2du)
—0.32 (u2220)

0.49 (uu22d) +0.48 (u22ud)
—0.44 (22uud)

—0.48 (uu22d) —0.43 (2uu2d)
+0.35 (u22du)

—0.52 (2202u) +0.41 (0222u)
+0.35 (2u2du)

0.55 (2ud2u) +0.50 (2u202)
—0.34 (ud22u)

0.59 (22u02) +0.33 (2uud2)

—0.49 (uu2d2)

—0.46 (u2ud2) +0.35 (202u2)
-0.33  (Quu2d) +0.33

(2u202)
—0.33 (220u2)

—0.48 (uu2d2) +0.36 (ud22u)
+0.34  (202u2)  +0.33

(2ud2u)

0.52 (2udu2) +0.42 (ud2u2)
—0.31 (u2d2u)

—0.49 (u2du2) —0.40 (ud22u)
+0.36 (2udu2)

—0.49 (u2022) —0.40 (ud2u2)
+0.33  (Quud2) -0.32

(2202u)

0.43 (2u022) +0.42 (220u2)
—0.30 (0222u)

0.46 (02u22) +0.38 (2u022)

0.40 (20u22) —0.40 (2uud2)
+0.39 (uud22)

0.56 (udu22) +0.31 (2uud2)
—0.31 (202u2)

0.57 (uud22) —0.47 (u0222)
—0.36 (20u22)

11242
14915

23951

25363
28 242
14 956

18397
18 835

21072

21273

22 157

22779

22908
25271

25737

26 791

27 882

29 731

30 051

31469
32568

32 586

33251

33 566

33 806

35238

35567
35906
36 673

36 784

38 149

0.0113
0.0000

0.0009

0.0000

0.0000

0.0121
0.0001

0.0013

0.0000

0.0001

0.0033
0.0002

0.0001

0.0001

0.0011

—-0.0177
—-0.0077

—0.0001

—0.0012
—0.0062
0.1541

1.1163
1.6437

0.0328

0.0026

0.1195

0.6743

0.1988
4.5578

0.0005

0.0020

0.0009

0.0198

0.0302

0.1923
0.0066

0.2105

0.0104

0.0682

0.0006

0.3823

0.0398
0.0041

0.1957

0.0830

0.0227

—2.3647
—0.0062

—0.2476

—-0.0017
—0.0018
1.0736

0.0010
1.1612

0.0000

0.1043

0.4488

0.0383

1.3383
0.0296

0.2453

0.0160

0.0364

0.6789

0.0144

0.1796
0.0177

0.0032

0.0185

0.4600

0.5287

0.1741

0.6308
0.1197

0.3726

0.1508

0.0356

—0.4181
—0.0248

—0.0043

—0.0062
—0.1288
1.3118

0.0101
0.0535

0.0652

1.0538

1.7226

0.1218

0.5310
0.0008

0.0951

0.0218

0.0136

0.0450

0.2522

0.0136
0.0339

0.0026

0.0142

0.2867

0.4727

0.0346

0.0937
0.1211

0.0045

0.1354

0.1735
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272A  0.61 (0u222) —0.55 (u0222) 38579 0.0087  0.0514  0.0176
0.57 (0u222) +0.41 (u0222)

2

28°A 30 ud22) 39175 0.0085  0.0045  0.1013
0.41 (ud2u2) +0.37 (u2220)

2924 —035 (uduw2) 035 48229 0.1472 00581  0.0501
(2u2ud)
0.51 (W2ud2) —0.49 (2u220)

3024 4032 (022u2) —0.32 48851 0.0001 00378  0.2359
(220u2)
~0.35 (u22ud) —0.34 (udu22)

2

A ) 49 661 00267  0.0480  0.0267
~0.37 (u2202) +0.33 (2022u)

2

22 o) 50 595 0.0001  0.0051  0.0723

3324 040 (udu22) ~034 (uu22d) 50 806 00192  0.0039  0.0026

~0.33 (022u2)
342A 046 (u2du2) —0.35 (ud22u) 51295 0.0285  0.0407  0.0281
—0.38 (u2du2) —0.32 (20u22)

2

A 022) 51 448 0.0037  0.0191  0.0000
~0.57 (2022u) —0.35 (0222u)

3624 032 (20u22) 032 72257 0.0418  0.0242  0.0044
(2202u)
0.47 (2u022) +0.42 (2u220)

3724 039 (0u222) +0.36 73667 0.0009  0.0001  0.0001
(2u202)
~0.48 (022u2) -0.41 (220u2)

2

/A0 02) 75 603 0.0005  0.0164  0.0209
0.42 (02u22) +0.34 (20u22)

2

98 w202) 76 847 0.0128  0.0007  0.0001

4024 041 @2022)70.37(02022) o) 00296 00128  0.0076

—0.33 (u2202)

@ The CAS-CI configurations having the coefficient |c| > 0.3 are listed. 2, 0, u, d represents for doubly occupied, unoccupied,

spin up (o), and spin down (B), respectively. ? Contributions to the g-tensor principal values. ¢ Contributions to the DSO-tensor
pm up Y P y g p p

principal values.
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4. Quantum chemical calculations on the electronic structure and magnetic tensors of complex 4
The molecular structure of complex 4 and principal axis system of the D-tensor calculated by CASSCF is
given in Figure S32. The principal values and direction cosines of the g- and A-tensors of complex 4 in the

principal axis system of the D-tensor, as calculated by CASSCEF, are given in Table S13.

Fig. S32 The molecular structure and principal axis coordinate of the D-tensor of complex 4, as calculated
by CASSCF.

Table S13 The principal values and direction cosines of the magnetic tensors of complex 4 in the principal
axis system of the D-tensor, as calculated by CASSCF.

a) g-tensor
8xx 8yy 8zz
Principal values 2.2419 2.047944 2.661085
X 0.9992315 0.0371124 0.0126125
Y —0.0368430 0.9991012 —0.0209604
Z 0.0133791 —0.0204796 —0.9997007
b) A-tensor
Ax/MHz Ayy/MHz A,/MHz
Principal values 122.9381 63.7055 178.7272
X 0.9658926 —0.2584846 —0.0153994
Y 0.2382587 0.8638740 0.4437956
Z 0.1014112 0.4323279 —0.8959957
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{ 1) 20} ELLH 400 S0} )
Magnetic Field £ ml

Fig. S33 (black) The reproduced randomly-oriented X-band ESR spectrum of complex 4 (S = 3/2) shown in
the literature [10] and (red) the spectrum simulated by use of the theoretical magnetic parameters given in
Table S12 including the relative coordination between D- and g-/A-tensors. Microwave frequency used:
9.474GHz; (the spectrum in black) the magnetic parameters: g% = 7.2, g,* = 1.97, g:* = 1.4, 4,°*(*°Co) =
560.5 MHz, the peak-to-peak linewidth: 16.0 mT, the strain parameters of the linewidth: [0, 1850, 1600]
MHz; (the spectrum in red) the magnetic parameters: g = [2.2419, 2.047944, 2.661085], A(**Co) =
[122.9381, 63.7055, 178.7272] MHz, D = —48.94 cm™!, £ = —12.65 cm™! (E/D = 0.26), the peak-to-peak
linewidth: 1.0 mT. Any strain effect of the tensor to the linewidth was not included in the spectrum in red.
The simulated spectra were obtained by using EasySpin (ver. 6.0.6) [8].
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