Algorithm 1: Generate Responses with Multi-Model Few-Shot Reasoning

Input:

- Record set $\mathcal{R} = \{\rho^{(1)}, \rho^{(2)}, \dots, \rho^{(N)}\}$, where each record $\rho^{(i)}$ has:
 - Drug name $d^{(i)}$
 - URL $u^{(i)}$
- Prompt set $\mathcal{Q} = \{q^{(1)}, q^{(2)}, \dots, q^{(L)}\}$ Few-Shot Examples $\mathcal{E} = \{(q^{(j)}, a^{(j)})\}$ (at least 2 examples)
- AI Model Endpoints $\mathcal{M} = \{M_1, M_2, \dots, M_k\}$

Output: Structured answers $\hat{y}(j,i)_k$ and justifications $\hat{J}(j,i)_k$ for each $q^{(j)}$ by each model M_k , associated with $d^{(i)}$ and $u^{(i)}$.

1 Initialization:

- 1. Setup logging; load Q.
- 2. Set $U_{processed} \leftarrow \emptyset$.

Process Records:

foreach $\rho^{(i)} \in \mathcal{R}$ do

Extract
$$\{d^{(i)}, u^{(i)}\}$$
.

if
$$u^{(i)} \in U_{processed}$$
 then

Retrieve T_{report} from $u^{(i)}$

Retrieve $T_{abstract}$ from $u^{(i)}$ Form context:

$$C(i) \leftarrow \mathcal{E} \parallel T_{report} \parallel T_{abstract}$$

Query Models:

foreach
$$q^{(j)} \in \mathcal{Q}$$
 do

foreach
$$M_k \in \mathcal{M}$$
 do

Submit $(C(i), q^{(j)})$ to M_k ; let $\tilde{a}(j, i)_k$ be the raw response.

Parse $\tilde{a}(j,i)_k$ to extract:

$$\hat{y}(j,i)_k \quad and \quad \hat{J}(j,i)_k$$

Store & Update:

Save $\hat{y}(j,i)_k$ and $\hat{J}(j,i)_k$ with $\{d^{(i)}, u^{(i)}\}.$

Update $U_{processed} \leftarrow U_{processed} \cup \{u^{(i)}\}.$

Post-Processing:

1. Validate consistency across:

$$\hat{y}(j,i)_1, \hat{y}(j,i)_2, \dots, \hat{y}(j,i)_k$$

2. Flag discrepancies if any.

Finalize:

Finalize logs, close files, and output the dataset.

```
Algorithm 2: Decision Tree Classification
```

```
Input: Directory D of CSV files. Each file F \in D contains columns
                {NSCLC_Diagnosed, NSCLC_Treatment, Drug_Discontinued, Outcome_Favourable}
                (optionally Link).
                [1mm] Expected pattern: P = (yes, yes, no, yes).
   Output: For each F \in D, a filtered CSV file F_{rel} containing rows r such that
                ig(\ell(r[	exttt{NSCLC\_Diagnosed}]),\,\ell(r[	exttt{NSCLC\_Treatment}]),\,\ell(r[	exttt{Drug\_Discontinued}]),\,\ell(r[	exttt{Outcome\_Favourable}])ig)=P
               with \ell(x) denoting the lowercase, trimmed form of x.
 1 Algorithm:
 2 1. Initialization:
   \forall F \in D, \quad R_F \leftarrow \emptyset.
 4 2. For each CSV file F \in D with extension .csv:
        Set the file path: path \leftarrow join(D, F).
   Load the data: df \leftarrow read\_csv(path, header = 0).
 7 3. For each row r \in df:
       Define
     \vec{v}(r) \Big( \ell \big( r [\texttt{NSCLC\_Diagnosed}] \big), \ \ell \big( r [\texttt{NSCLC\_Treatment}] \big), \ \ell \big( r [\texttt{Drug\_Discontinued}] \big), \ \ell \big( r [\texttt{Outcome\_Favourable}] \big) \Big).
         if \vec{v}(r) = P then
     R_F \leftarrow R_F \cup \{r\}.
10 4. Output:
        if R_F \neq \emptyset then
            Write R_F to a new CSV file F_{rel} (e.g., F_{relevant\_links.csv}).
13
        else
            Log that no relevant rows were found for F.
15 5. Termination:
16 Process all F \in D and terminate.
```

Algorithm 3: Individual Model Classifier

Input:

- Link List: $\mathcal{L} = \{\ell_1, \ell_2, \dots, \ell_N\}$
- LLM Responses: For each $\ell \in \mathcal{L}$, preliminary response $r_{LLM}^{(1)}(\ell)$ (NSCLC mention) and additional responses $R(\ell)$.
- LLM Endpoint Credentials: Access credentials or API keys.
- Prompts/Context: \mathcal{P} (original question set or context).

Output: Relevance Classification for each $\ell \in \mathcal{L}$ where

$$Label(\ell) \in \{Relevant, NotRelevant\}$$

along with $R(\ell)$ and final validation response $f(\ell)$.

1 Initialization:

1. Initialize data structure $\mathcal{R}: \ell \mapsto R(\ell)$; set up logging.

Collect Responses:

foreach $\ell \in \mathcal{L}$ do

Retrieve $r_{LLM}^{(1)}(\ell)$ and store all responses $R(\ell)$.

Initial Check:

foreach $\ell \in \mathcal{L}$ do

$$\begin{tabular}{ll} \textbf{if} & r_{LLM}^{(1)}(\ell) & does & not & contain & "yes" & \textbf{then} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Concatenate:

foreach $\ell \in \mathcal{L}$ that passed do

Form prompt:

$$T(\ell) \leftarrow (R(\ell) \parallel \mathcal{P})$$

Final Validation:

foreach $\ell \in \mathcal{L}$ with $T(\ell)$ do

Submit $T(\ell)$ to LLM; obtain $f(\ell)$.

Classification:

foreach $\ell \in \mathcal{L}$ do

$$Label(\ell) \leftarrow f(\ell)$$

Output:

Record $Label(\ell)$, $R(\ell)$, and $f(\ell)$ in structured format.

Algorithm 4: Majority Vote Ensemble

Input:

- Base Folder B containing subfolders $\mathcal{F} = \{F_1, F_2, \dots, F_L\}$ with CSV files (each with a Link column).
- Model Prefixes $\mathcal{P} = \{p_1, p_2, \dots, p_n\}$ for locating CSV files.
- Minimum Occurrences $m \in N$ (default: m = 2).
- Pre-processed CSVs via LLM-based Classification (only relevant links present).

Output: For each $p \in \mathcal{P}$, a CSV file listing links ℓ that satisfy

$$\mathcal{O}(\ell) \geq m$$
,

with:

- $\mathcal{M}(\ell)$: set of models flagging ℓ ,
- $\mathcal{O}(\ell)$: total occurrence count.

1 Initialization:

1. Setup logging; define subfolders \mathcal{F} and map each $F \in \mathcal{F}$ to its model.

foreach $p \in \mathcal{P}$ do

```
Initialize: For each link \ell, set \mathcal{O}(\ell) = 0 and \mathcal{M}(\ell) = \emptyset.

foreach F \in \mathcal{F} do

Locate CSV files in F with filename prefix p.

foreach CSV file do

Read file; for each row extract link \ell from the Link column.

if \ell \notin \mathcal{O} then

Set \mathcal{O}(\ell) \leftarrow 1 and \mathcal{M}(\ell) \leftarrow \{modelcorresponding to F\}.

else

Update \mathcal{O}(\ell) \leftarrow \mathcal{O}(\ell) + 1 and add the model to \mathcal{M}(\ell).
```

Aggregate:

Define the set of qualifying links:

$$\mathcal{L} = \{\ell \mid \mathcal{O}(\ell) \ge m\}.$$

Output:

Create a CSV file with columns: **Link**, **Models** $(\mathcal{M}(\ell))$, and **Count** $(\mathcal{O}(\ell))$; log the number of aggregated links for prefix p.

Finalize:

1. Repeat for each $p \in \mathcal{P}$; finalize logs and close files.