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1 Improved Forward Inclusion Backward Elim-
ination (FIBE)

The FIBE pipelineE] is an iterative feature selection method (see Fig. 1)) designed
to optimize the performance of a model set M with K predictive models by
refining the feature set Fyy. The pseudo-code for the proposed FIBE pipeline for
a regression task is presented in Algorithm|[I] Initially, the data D is divided into
N outer folds. For each outer fold ¢, the data D is split into training/validation
data d; and test data test;. An empty feature set placeholder F; and an initial
performance metric mg are initialized.

Forward Inclusion Phase (lines 8-24): In the forward inclusion phase, each
feature f not already in Fj is temporarily added to F;. The algorithm performs
N inner folds on the training/validation data d;. For each inner fold j, the
data d; is split into training data train,;; and validation data val;;. Each model
pr of M is trained on train;; and validated on val;;, resulting in an estimated
performance metric temp;;i, where £k € K. The mean performance metric m
is calculated across the N inner folds and K models. If my improves upon the
previous metric ms_1, i.e., ms < mg_1 for regression tasks, the feature f is
retained in Fj; otherwise, it is removed.

Thttps://github.com/i3-research/fibe
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Algorithm 1 Forward Inclusion Backward Elimination (FIBE) Pipeline for
Regression Task

1:

2:
3:

»

52:

53:
54:
55:
56:
: end for
58:

Input: Data D with feature set Fyy, Model set M with K models, Number of outer/inner
folds N, Number of iterations I, voting criterion v
Output: Selected Feature Set Fg, N-folds test performance metrics metric: (t € [1, N])
for i=1to N do > Loop over outer folds

Split data D for outer folds training/validation d; and test test;

Initialize empty Feature Set placeholder Fj, lowest error metric mg = +o00

for iter =1 to I do

Initialize step counter s <+ 1

for each feature f in feature set Fyy\F; do > Forward inclusion process starts
Add f — F; temporarily
for j =1to N do > Loop over inner folds

Split d; into training data train;; and validation data val;;
for predictive model pi and model index k£ in model set M do
Train p with feature set F; of train;;
Validate on val;; and estimate error metric temp;
end for
end for
Estimate mean error metric ms = ﬁ Z;V:1 SR tempijk
if mg is better than ms_; then
keep f in F;
else
remove f from F;
end if
s+—s+1
end for
for each feature f in feature set F; do > Backward elimination process starts
Remove f from F; temporarily
for Loop over inner folds: j =1 to N do
for predictive model pr and model index k in model set M do
Train py with feature set F; of train;;
Validate on val;; and estimate error metric temp;
end for
end for
Estimate mean error metric ms = ﬁ Zjvzl Zf:l temp;jk
if mg is better than ms_; then
Keep current F; with f removed
else
Put back f to F;
end if
s+—s+1
end for
end for

: end for
: g + maximum length among F; (i € [1, N])
: for i =1to N do > Building N dictionaries with features as keys

g — temp

for j =len(F;) to 1 do
Add temp as a ‘value’ to feature f;; as ‘key’
temp < temp — 1

end for

: end for
: Create a unified dictionary Ugjct from N dictionaries by including each feature (f) once

and summing its values across all dictionaries.
Fg <+ Select features f from Ugjct that satisfies Ugict[f] > g and appears > v times in F;
(i € [1,N])
for i =1to N do > Final testing for outer folds with selected feature set Fig
Split data D for outer folds training d; and test test;
Train M with feature set Fg of d;
Test on test; and estimate error metric metric;

Return: Fg, Ugjct, metric; (i € [1, N])
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Figure 1: Schematic diagram of our improved forward inclusion backward elim-
ination (FIBE) technique.

Backward Elimination Phase (lines 25—40): In the backward elimina-
tion phase, each feature f in F; is temporarily removed. The inner fold cross-
validation process is repeated, with each model py of M trained and validated
on the modified feature set. The mean performance metric my is recalculated.
If m, improves upon the previous metric, the feature is permanently removed
from Fj; otherwise, it is reinstated. This iterative process ensures that only
features contributing positively to the model’s performance are retained.
Feature Aggregation and Selection (lines 43—52): After completing the
specified number of iterations I (lines 6-41), the features appearing in the fea-
ture sets F; across all outer folds are evaluated. To identify important features,
we construct feature dictionaries for each fold and create a unified dictionary as
follows:

1. Let g denote the maximum length among the feature sets F; (i € [1, N]).
For each fold i, initialize a temporary variable temp with the value of g. Iterate
over the features in Fj in reverse order of their ranking (from len(F;) to 1).
Assign the current value of temp as the ‘value’ to the feature f;; (the j-th
feature in F;), where the feature serves as the ‘key’. Decrease temp by 1 at each
step.

2. After constructing individual dictionaries for all N folds, create a unified
dictionary Ugjct by including each unique feature f only once. For features that
appear in multiple dictionaries, their corresponding values are summed across
all dictionaries and assigned as a single value Ugjct[f]-

3. Finally, select the feature set Fis from Ug;c that satisfies two criteria: (i)
the feature f’s aggregated value Ugict[f] must be greater than or equal to g,
and (ii) the feature f must appear in at least v folds, where v is a predefined
threshold. This ensures that the selected features are consistently important



across folds and have sufficient aggregated importance.

Final Testing (lines 53—57): Finally, the algorithm tests the model M using
the selected feature set Fig on the outer test sets test;. The performance metrics
metric; are estimated for each outer fold 7. The algorithm returns the selected
feature set F's and the test performance metrics metric;.

2 Implementation Details

In our FIBE employment, we use a Fyy feature set consisting of 517 features. Our
model set M consists of three predictive models (i.e., K = 3): regression forest
(100 trees with a maximum depth of 5), linear support vector regressor (SVR),
and the Gaussian SVR. We set inner and outer folds, N = 5, and the number of
iterations, I = 3. We also set the voting threshold criterion v = round(0.6 x N),
i.e., we select those features as dominant for a particular neurocognitive score
that appears > v times over N outer folds. For calculating the error between
the ground truth and predicted scores in steps 17 and 33 in Algorithm [I] we use
the mean absolute error, mg, loss function defined as:

1 N K 1 N K A
me= e S temp = 11 S S S Gy Braal}
j a=1

j=1k=1 j=1k=1 i

where A is the total number of predictions accumulated for K models over NV
inner folds within each outer fold ¢, and G and P are the ground truth and
the predicted scores, respectively. We ran our experiments in Python version
3.6 on the E2 cluster of Boston Children’s Hospital using an Intel E5-2650 v4
Broadwell 2.2 GHz processor, and 16 GB of RAM.

3 Features Importance Ranking in Selected Fea-
ture Subset

Our selected feature set Fg comes with a dictionary Ugic; that contains values
Udgict[f] for a feature key f, and a higher Ugiet[f] value is proportional to the
feature f’s early selection in forward inclusion stage as well as most frequent
selections across IN-folds. Thus, we can calculate the relative importance of a
feature f in the feature set Fg. We define a feature weight metric fweight for a
particular feature f in the unified dictionary Ugjc as:

Udict[f]
fweight (%) = =————— x 100, 2
R SR .
where f; represents each feature in Ugiet, and n denotes the total number of
features in the dictionary. Note that this relative feature weight fyeight(%) is
calculated for better feature importance visualization purposes. These weights
are not used in any predictive tasks.



Table 1: Pearson Correlation for Full Scale I1Q)

Feature Correlation | P-value

DAD_ED_LEV_STD
cort_thick-ctx_rh_G_front_sup
cort_thick-ctx-rh-fuzzy12_dorsomedialfrontal
cort_area-ctx_lh_S_postcentral
gwesurf_ LD _gm-ctx_lh_G_pariet_inf-Supramar
fiber_vol-R_TFO

gwesurf LD _gm-ctx-lh-superiortemporal

0.15 0.17

-0.28 0.0074
-0.25 0.019

0.38 0.00023
0.35 0.00069
0.32 0.0023
0.31 0.0033

Table 2: Pearson Correlation for Digit Span

Feature Correlation | P-value
gwesurf_FA_wm-ctx_1h_S_orbital lateral 0.37 0.00044
cort_sulc-ctx-lh-postcentral 0.34 0.0013
fiber_LD-R_pSCS -0.27 0.012
cort_area-ctx_lh_S_temporal transverse -0.19 0.067
cort_vol-ctx_lh_G_pariet_inf-Supramar 0.22 0.035
cort_sulc-ctx-rh-frontalpole 0.31 0.0029
gwesurf_TD_gm-ctx_1h_G _front_inf-Orbital 0.26 0.014
cort_T2w_white-0.2-ctx_1h_G_temp_sup-G_T _transv -0.20 0.064
gwesurf_LD_wm-ctx-rh-isthmuscingulate -0.19 0.071
gwesurf_FA_wm-ctx_1h_G_temporal_inf 0.28 0.0086
cort_vol-ctx_1h_S_postcentral 0.38 0.0002
gwesurf_MD_wm-ctx_rh_S_temporal_transverse -0.24 0.026
cort_area-ctx_lh_S_postcentral 0.42 5.3e-05
Table 3: Pearson Correlation for Math Computation
Feature Correlation | P-value
ndd_var -0.11 0.3
aseg_LD-Left-Cerebellum-Cortex 0.27 0.012
cort_sulc-ctx_rh_G_cingul-Post-dorsal -0.20 0.057
cort_sulc-ctx_rh_G_front_inf-Orbital -0.24 0.026
sex -0.24 0.022
cort_sulc-ctx_1h_G_occipital_sup 0.20 0.061
fiber_vol-Fmaj 0.20 0.062
gwesurf_MD_wm-ctx_rh_S_suborbital -0.20 0.057
cort_area~ctx_rh_G_temp_sup-Plan_polar 0.19 0.071
cort_area-ctx-rh-postcentral 0.28 0.0072
cort_sulc-ctx_rh_S_front_middle 0.20 0.062




Table 4: Pearson Correlation for Coding

Feature Correlation | P-value
gwesurf_TD_gm-ctx_lh_Lat_Fis-ant-Vertical -0.21 0.044
cort_area-ctx-rh-inferiortemporal 0.22 0.038
aseg_MD-Left-Cerebellum-Cortex 0.36 0.00058
cort_thick-ctx_rh_S_circular_insula_inf -0.41 7.4e-05
subcort_T2w-Right-Cerebellum-Cortex 0.23 0.027
cort_sulc-ctx-rh-mean -0.34 0.0011
gwesurf_FA_wm-ctx_1h_S_orbital lateral 0.36 0.00051
gwesurf_TD_gwe-ctx_rh_G_subcallosal -0.24 0.025
fiber_[FA-R_ATR 0.32 0.0023
gwesurf TD_gwe-ctx_1h_G _occipital_middle -0.20 0.057
cort_thick-ctx_rh_G_temp_sup-Plan_tempo -0.37 0.0004
Table 5: Pearson Correlation for Symbol Search
Feature Correlation | P-value
gwesurf_MD_wm-ctx_rh_S_suborbital -0.22 0.042
cort_sulc-ctx_lh_G_rectus 0.18 0.094
cort_area-ctx_lh_S_circular_insula_inf -0.27 0.0099
gwesurf_FA_gwe-ctx_1h_S_orbital lateral 0.19 0.067
cort_sulc-ctx_lh_G_precuneus -0.20 0.057
subcort_T2w-Right- Accumbens-area 0.17 0.12
gwesurf_LD _gwe-ctx_1h_S_orbital lateral 0.22 0.036
subcort_vol-Left-Accumbens-area 0.26 0.016
cort_thick-ctx_lh_S_cingul-Marginalis -0.16 0.14
cort_area-ctx_lh_S_front_inf -0.17 0.12
gwesurf_FA_gwe-ctx_1h_Pole_temporal 0.22 0.043
gwesurf_FA_wm-ctx-rh-caudalanteriorcingulate 0.14 0.19
gwesurf_TD_gwe-ctx_1h_S_orbital lateral -0.16 0.13
cort_T1w_white-0.2-ctx_rh_S_postcentral -0.20 0.064




Table 6: Pearson Correlation for Processing Speed Index

Feature Correlation | P-value
cort_thick-ctx_rh_S_circular_insula_inf -0.35 0.00087
cort_sulc-ctx_lh_S_orbital lateral 0.26 0.014
chr_var -0.18 0.089
gwesurf_LD_gwce-ctx_1h_S_orbital lateral 0.16 0.13
cort_vol-ctx-rh-superiortemporal -0.32 0.0022
gwesurf_LD_gwe-ctx_1h_Pole_occipital -0.24 0.024
cort_vol-ctx-rh-inferiortemporal 0.18 0.084
gwesurf_MD_gm-ctx_lh_Pole_occipital 0.19 0.069
gwesurf_FA_wm-ctx_rh_S_orbital-H_Shaped -0.17 0.12
gwesurf_TD_gwc-ctx-lh-parsorbitalis -0.23 0.028

Table 7: Pearson Correlation for Verbal Comprehension Index

Feature Correlation | P-value
gwesurf_FA_gwe-ctx_1h_S_pericallosal -0.37 0.00037
cort_area~ctx_lh_S_postcentral 0.31 0.0033
gwesurf LD _gwe-ctx_1h_S_postcentral -0.43 2.9e-05
total_#_cardiac_surgery -0.19 0.08
gwesurf_LD_gwe-ctx_1h_S_pericallosal -0.35 0.00076
cort_thick-ctx_rh_S_precentral-sup-part -0.31 0.0031
gwesurf_LD_gwe-ctx-lh-isthmuscingulate -0.40 0.00011
CHD _diagnosis 0.17 0.11
ndd_var -0.06 0.55
cort_thick-ctx_rh_G_front_sup -0.35 0.00068
cort_thick-ctx-rh-fuzzy12_dorsomedialfrontal -0.36 0.00049
gwesurf_TD _gwe-ctx_1h_Lat_Fis-post -0.31 0.0034




Table 8: Pearson Correlation for Vocabulary

Feature Correlation | P-value
cort_vol-ctx_1h_G_oc-temp_med-Lingual 0.27 0.012
chr_var -0.23 0.028
cort_vol-ctx_lh_S_postcentral 0.25 0.02
cort_T2w_white-0.2-ctx_rh_S_orbital-H_Shaped 0.25 0.017
subcort_vol-Right-Hippocampus 0.26 0.012
aseg_LD-Right-Caudate 0.24 0.023
gwesurf_FA_wm-ctx_1h_G_temp_sup-G_T _transv 0.26 0.013
gwesurf_ LD _gm-ctx_lh_G_temp_sup-Lateral 0.23 0.027
cort_thick-ctx-rh-fuzzy12_dorsomedialfrontal -0.25 0.017
gwesurf_ MD _gm-ctx_rh_G_temp_sup-Lateral 0.33 0.0017
cort_thick-ctx_rh_G_front_sup -0.24 0.023
cort_sulc-ctx-lh-lateraloccipital 0.29 0.0053
gwesurf_MD _gm-ctx_1h_G _pariet_inf-Supramar 0.34 0.0012
Table 9: Pearson Correlation for Similarities
Feature Correlation | P-value
gwesurf_FA _gwe-ctx 1h_S_pericallosal -0.39 0.00019
gwesurf_LD_gwe-ctx_1h_S_pericallosal -0.33 0.0015
cort_T2w_white-0.2-ctx_rh_G_temporal_inf -0.32 0.0026
gwesurf_LD_gwe-ctx-lh-parsorbitalis -0.43 3.1e-05
gwesurf LD _gwe-ctx 1h_S_postcentral -0.43 2.7e-05
gwesurf_MD _gm-ctx-lh-caudalmiddlefrontal 0.31 0.0032
gwesurf_LD_gm-ctx_lh_S_intrapariet_and_P_trans 0.42 4e-05
Table 10: Pearson Correlation for Reading Composite

Feature Correlation | P-value
cort_sulc-ctx_1h_G_temporal_inf 0.34 0.0012
cort_vol-ctx_rh_S_postcentral 0.29 0.0055
cort_thick-ctx_lh_G_Ins_lg_and_S_cent_ins -0.30 0.0042
cort_sulc-ctx-lh-postcentral 0.29 0.0064
gwesurf_FA_wm-ctx-lh-transversetemporal 0.25 0.018
subcort_vol-Right-Hippocampus 0.27 0.01
gwesurf_FA_wm-ctx_rh_G_temp_sup-G_T _transv 0.21 0.048
aseg_LD-3rd-Ventricle -0.30 0.0048
cort_thick-ctx_rh_S_circular_insula_inf -0.24 0.025
aseg_MD-3rd-Ventricle -0.26 0.014
cort_T2w_white-0.2-ctx_lh_Lat_Fis-ant-Horizont 0.23 0.028




Table 11: Pearson Correlation for Spelling

Feature Correlation | P-value
case 0.23 0.03
gwesurf_FA_wm-ctx_rh_Lat_Fis-ant-Vertical 0.27 0.01
cort_vol-ctx_lh_S_postcentral 0.31 0.0028
gwesurf_LD_gm-ctx-rh-caudalmiddlefrontal -0.22 0.04
cort_thick-ctx_1h_G_Ins_lg_and_S_cent_ins -0.24 0.025
cort_area-ctx_rh_G_postcentral 0.19 0.071
cort_area-ctx_lh_G_cingul-Post-dorsal 0.25 0.02
gwesurf_FA_wm-ctx-lh-transversetemporal 0.25 0.019
cort_sulc-ctx_rh_S_oc-temp_lat 0.28 0.007
aseg_LD-Left-Cerebellum-Cortex 0.27 0.0098
gwesurf_FA_gm-ctx_rh_G_oc-temp_lat-fusifor 0.19 0.067
cort_vol-ctx_rh_S_subparietal 0.25 0.017
cort_vol-ctx-rh-rostralanteriorcingulate 0.21 0.046

Table 12: Pearson Correlation for Word Reading

Feature Correlation | P-value
ndd_var -0.12 0.24
cort_T1w_white-0.2-ctx_lh_G_oc-temp_med-Lingual 0.18 0.085
cort_sulc-ctx_rh_G_front_inf-Orbital -0.24 0.022
cort_sulc-ctx_1h_G_temporal_middle -0.26 0.013
cort_vol-ctx_lh_Lat_Fis-post -0.22 0.038
gwesurf_FA_wm-ctx_rh_G_temp_sup-G_T _transv 0.27 0.0099
gwesurf_LD_gm-ctx_rh_Pole_temporal 0.22 0.038
cort_vol-ctx_lh_G_oc-temp_med-Lingual 0.35 0.00068
gwesurf_LD_wm-ctx_1h_S_suborbital 0.22 0.037
gwesurf_TD_gwe-ctx_1h_G_oc-temp_med-Parahip -0.22 0.043
gwesurf_FA_gwe-ctx_rh_S_orbital-H_Shaped -0.18 0.095
cort_thick-ctx-rh-fuzzy12_dorsomedialfrontal -0.20 0.063
fiber_vol-L._CgH 0.19 0.069
Table 13: Pearson Correlation for Sentence Comprehesion
Feature Correlation | P-value
cort_sulc-ctx_lh_G_temporal inf 0.27 0.011
fiber FA-R_ATR 0.16 0.13
cort_area-ctx_lh_S_postcentral 0.26 0.015
cort_area-ctx_1h_G_subcallosal -0.16 0.13
fiber_vol-R_pSCS 0.19 0.082
cort_T2w_white-0.2-ctx_rh_G _subcallosal 0.18 0.091




Table 14: Pearson Correlation for Matrix Reasoning

Feature Correlation | P-value
gwesurf_MD_gwe-ctx-lh-parsorbitalis -0.45 1.2e-05
cort_sulc-ctx-rh-fuzzy12_posterolateraltemporal -0.36 0.00046
fiber FA-L_CgC 0.31 0.0029
fiber_ FA-R_IFO 0.42 3.6e-05
gwesurf_LD_gwe-ctx 1h_G_Ins_lg_and_S_cent_ins -0.41 6.4e-05
gwesurf_TD_wm-ctx_rh_G_occipital sup -0.32 0.0025
cort_sulc-ctx_lh_S_orbital_med-olfact 0.39 0.00018
cort_thick-ctx-lh-posteriorcingulate -0.39 0.00013
cort_T2w_white-0.2-ctx_rh_S_oc-temp_med_and_Lingual -0.31 0.0031
fiber_vol-L._CgC 0.34 0.00094
gwesurf_FA_gwe-ctx rh_G_Ins_lg_and_S_cent_ins 0.31 0.0032
gwesurf_MD _gwc-ctx_1h_S_circular_insula_ant -0.46 5.2e-06
gwesurf_TD_gwc-ctx_rh_G_rectus -0.38 0.00029

Table 15: Pearson Correlation for Block Design

Feature Correlation | P-value
cort_sulc-ctx_1h_G_temp_sup-Plan_polar -0.21 0.047
cort_sulc-ctx_rh_G _precentral -0.28 0.007
cort_T2w_white-0.2-ctx-lh-parsorbitalis 0.23 0.027
DAD_ED_LEV_STD 0.27 0.011
cort_T1w_white-0.2-ctx-rh-parsorbitalis -0.21 0.046
cort_sulc-ctx-rh-pericalcarine 0.29 0.0056
cort_sulc-ctx_lh_S_precentral-inf-part 0.22 0.039
chr_var -0.14 0.19
gwesurf_LD_gm-ctx-lh-supramarginal 0.32 0.0025
aseg_FA-Left-Thalamus-Proper -0.20 0.066
cort_sulc-ctx-lh-fuzzy12_superiortemporal -0.20 0.058
cort_sulc-ctx-lh-pericalcarine 0.24 0.021
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